Introduction to NoSQL

Nicolas Travers

CNAM – France

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

Schedule & Organization

- Introduction to NoSQL databases
 - 3V, ACID vs BASE, families, CAP theorem, JSon
- Presentation of MongoDB
 - Language, distribution, replication, application
- Practice Works on MongoDB
 - Queries : find + aggregate

DBMS vs NoSQL

Fault-tolerance

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQI

le cnam

Context

- Applications and Web platforms
 - Exponential growth of the amount of Data (x2 / 2 years)
 - Unprecedent management of this volume
 - Need to distribute both computation and data
 - Huge number of servers
 - Heterogeneous data, maybe complex and often linked
- Ex:
 - Google, Amazon, Facebook
 - Google DataCenter :
 - 5000 servers/data center, ~1M de servers
 - Facebook:
 - 1 PetaBytes of data

Big Data = Transactions + Interactions + Observations

Source: Contents of above graphic created in partnership with Teradata, Inc.

CEDRIC Lab - Vertigo

N. Travers

8

Introduction to NoSQL

le cnam

BI: Traditional methods

Decisional vs 3V

Incompatible classical approach with the **3V** of *BigData*:

- Volume: Designed to store GB/TB of data, but needs PB (maybe EB).
- Variety: Heterogeneous and variable types of data, text, semi-structured
- Velocity: Data are produced more and more quickly

CEDRIC Lab - Vertigo

N. Travers

10

Introduction to NoSQL

le cnam

DBMS: Limitations

- Standard databases
 - Functionalities
 - Joins between tables
 - Complex queries
 - Strong coherency of data
- Requirements in a distributed context
 - Links between entities => same server
 - ++ links => difficulties for data organization

DBMS: Limitations (2)

- ACID properties for transactions
 - Set of operations
 - Atomicity (integral completion or none)
 - Consistency (consistent at start and end)
 - Isolation (no communication between them)
 - Durability (an operation cannot be reversed)
 - Pessimistic view on consistency
- Requirements in a distributed context
 - Difficulties in insuring those properties
 - Conflict with efficiency / performances

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQI

le cnam

ACID vs BASE

- Modern systems use the BASE model
 - Optimistic view on consistency
 - Basically Available:
 - Any request => An answer
 - Even in a changing state
 - Soft State:
 - Opposite to Durability.
 - System's state (servers or data) could change over time (without any update)
 - Eventually consistent:
 - · With time, data can be consistent
 - Updates have to be propagated

Solution: NoSQL

- NoSQL : Not Only SQL
 - New data storage/management approach
 - Scales up the system (through distribution)
 - Complex metadata management
 - No schema
- Do not substitute DBMS, dedicated to:
 - Very huge volume of data (PetaBytes)
 - Very short response time
 - Consistency is not mandatory

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQI

le cnam

Databases and NoSQL

The Hard Life of a NoSQL Coder

Part 1: The Outing

NoSQL DB: Characteristics

- No relations => Collections
 - No fix structures (nay none)
- Complex data (e.g. documents)
 - Objects, nesting, arrays
- Data distribution
 - High parallelization (Map/Reduce)
- Data replication
 - Disponibility vs Consistency (no transactions)
 - Few writes, many reads

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

Sharding: Scalability

- Datablocks are distributed in a cluster of servers
- Horizontal partitioning
- 3 types of technics:
 - 1. Resource allocation based: HDFS
 - 2. Tree-based structure: Clustered index (sort)
 - 3. Hash-based structure: Consistent Hashing

CEDRIC Lab - Vertigo

N. Travers

NoSQL Systems

HOW TO WRITE A CV

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQI

le cnam

Several NoSQL systems

- Key-Value Store
 - Data are identified by a unique key (used for querying)
 - DynamoDB, Voldemort, Redis, Riak, MemcacheDB
- Column data
 - Relation 1-n "one-to-many" (messages, posts)
 - HBase, Hypertable, Spark, Elasticsearch
- Documents
 - Complexes data, attributes/values
 - MongoDB , Cassandra, CouchDB, Terrastore
- Graphs
 - Highly connected entities, Social Networking
 - Neo4j, OrientDB, FlockDB

I - NoSQL & Key-Value store

- Similar to a distributed "HashMap"
- Key + Value
 - No fixed schema on values (strings, object, integer, binaries...)
- Drawbacks:
 - No structures nor typing
 - No structured-based queries
- DynamoDB (Amazon), Redis (VMWare), Voldemort (LinkedIn)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQI

le cnam

I - NoSQL & Key-Value store (2)

- CRUD Operations (HTTP)
 - Create(key,value)
 - Read(key)
 - Update(key,value)
 - Delete(key)
- Horizontal scaling (partitionning/distribution)
- No vertical distribution (data segmentation)

I - NoSQL & Key-Value store (3)

CEDRIC Lab - Vertigo

N. Travers

22

Introduction to NoSQL

le cnam

II - NoSQL & Columns

- Column-based storage
 - DBMS: tuples (lines)
- Easy to insert a new column
 - Dynamic schema
- ➤ BigTable/Hbase (Google), Cassandra (Facebook&Apache), SimpleDB (Amazon)

II - NoSQL & Columns (2)

Advantages:

- XML/JSon support
- Column indexing
- Horizontal scaling

• Drawbacks:

- Hard to query complex data
- Difficult for linked data (distances, paths, time)
- Pre-defined queries (not on the fly)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

Multi-valued

II – NoSQL & Columns (3)

Row Oriented (RDBMS Model)

id	Name	Age	Interests
1	Ricky		Soccer, Movies, Baseball
2	Ankur	20	
3	Sam	25	Music

Column Oriented (Multi-value sorted map)

id	Name
1	Ricky
2	Ankur
3	Sam

id	Age
2	20
3	25

id	Interests
1	Soccer
1	Movies
1	Baseball
3	Music

III - NoSQL & Documents

- Based on the key-value store
 - Add semi-structured data (JSon/XML)
- HTTP API
 - More complex than CRUD
- MongoDB, CouchDB (Apache), RavenDB, Terrastore

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

III - NoSQL & Documents (2)

- Document management
 - Simple types (Int, String, Date)
 - No fix schema (docs may vary)
 - Nested data
- Advantages:
 - Richness for queries
 - Indexing several attributs
 - Easy to scale up
- Drawbacks:
 - Difficulties for data interconnexions
 - Dedicated to key-value (id)

III - NoSQL & Documents (3)

Relational data model

Highly-structured table organization with rigidly-defined data formats and record structure.

Document data model

Collection of complex documents with arbitrary, nested data formats and varying "record" format.

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

IV - NoSQL & Graph

- Storage: nodes, relations and properties
 - Graph Theory
 - Path querying on the graph
 - Data are loaded on demand
 - Difficulties for modeling
- ➤ Neo4j, OrientDB (Apache), FlockDB (Twitter)

IV - NoSQL & Graph (2)

- Available storage
 - Object (cf. documents)
 - Edges (with properties)
- Difficult for Sharding

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

IV - NoSQL & Graph (3)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQI

le cnam

Brewer's CAP Theorem (2000)

- 3 main properties for distributed management
 - 1. Consistency:
 - A data have the same value at the same time (coherency)
 - 2. Availability:
 - Even if a server is down, data is available
 - 3. Partition Tolerance:
 - Even if the system is partitioned, a query must have an answer (unless for global failures)
- Theorem: A distributed, networked system can have only two of these three properties.

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

- Initially XML used for complex internet communications (Web Services)
 - Too verbose
- JSON (JavaScript Object Notation)
 - Lightweight, text-oriented, language independent
 - Used for several Web services (Google API, Twitter API)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

JSon: Structures

- Key + Value
 - "lastname" : "Travers"
 - Keys with quotations
- Objects/documents
 - Collection of key/values
 - { "lastname" : "Travers", "firstname" : "Nicolas", "kind" : 1}

Data types

- Scalar : String, Integer, float, boolean, null...
- List : arrays [...]
- Documents : objetcs {...}

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

Arrays

- No typing inside arrays
 - "lessons" : ["SQL", 1, 4.2, null, "NoSQL"]
- Can nest documents

JSon: Identifiers

- Key « _id » commonly used to identify documents
 - Overwrite already stored ids
 - Can be automatically generated
 - Ex MongoDB: "_id": ObjectId(1234567890)

CEDRIC Lab - Vertigo

N. Travers

Introduction to NoSQL

le cnam

JSon: complete example