

















Ruth E. Schmitz, May 25<sup>th</sup>, 2006



## Phenomenology of Stability

- Stability strongly favors nuclides with even numbers of protons and/or neutrons
  - » ~50% are Even-Even
  - » ~25% are Odd-even
  - » ~25% are Even-Odd
  - » Only 4 out of 266 stable nuclides are Odd-Odd! The heaviest stable Odd-Odd nuclide is <sup>14</sup>N.
- "Magic Numbers" -- analogous to closed atomic shells
  - » Result in many stable isotopes or isotones
  - » Magic nuclei are particularly stable and more "inert"
  - » Magic #'s: 2,8,20,28,50,82,126

Ruth E. Schmitz, May 25<sup>th</sup>, 2006

## Nuclear Binding and Stability

- Protons and neutrons are more stable in a nucleus than free. The binding energy is the amount by which the nucleus' energy (i.e. mass) is reduced w.r.t. the combined energy (i.e. mass) of the nucleons.
- Example: N-14 atom Measured mass of N-14 = 14.0037
  - mass of 7 protons = 7 \* (1.00727 amu) = 7.05089 amu
  - mass of 7 neutrons = 7 \* (1.00866 amu) = 7.06062 amu
  - mass of 7 electrons = 7 \* (0.00055 amu) = 0.00385 amu
  - mass of component particles of N-14 = 14.11536 amu
- Binding energy is mass difference:  $E_{bind} = 0.11229 \text{ amu} = 104.5$ MeV

Ruth E. Schmitz, May 25th, 2006













Not used in medical imaging

 ${}^{A}_{Z}X \rightarrow {}^{A4}_{Z2}Y + {}^{4}_{2}He^{+2}$  + transition energy

Example:  ${}^{220}_{86}\text{Rn} \rightarrow {}^{216}_{84}\text{Po} + {}^{4}_{2}\text{He}^{+2} + 6.4 \text{ MeV transition energy}$ 

Ruth E. Schmitz, May 25<sup>th</sup>, 2006







Ruth E. Schmitz, May 25<sup>th</sup>, 200





































What's next Next week we will take a look at Radiation detection and measurements Dr. Lawrence MacDonald