
Introduction to Object-Oriented Programming
OOP Case Studies: Collections and JavaFX

Christopher Simpkins
chris.simpkins@gatech.edu

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 1 / 32



The Collections Framework

A collection is an object that represents a group of objects.
The collections framework allows different kinds of collections to
be dealt with in an implementation-independent manner.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 2 / 32



Collection Framework Components

The Java collections framework consists of:
Collection interfaces representing different types of collections
(Set, List, etc)
General purpose implementations (like ArrayList or HashSet)
Abstract implementations to support custom implementations
Algorithms defined in static utility methods that operate on
collections (like Collections.sort(List<T> list))
Infrastructure interfaces that support collections (like Iterator)

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 3 / 32



ArrayList Basics

Create an ArrayList with operator new:
ArrayList tasks = new ArrayList();

Add items with add():
tasks.add("Eat");
tasks.add("Sleep");
tasks.add("Code");

Traverse with for-each loop:
for (Object task: tasks) {

System.out.println(task);
}

Note that the for-each loop implicitly uses an iterator.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 4 / 32



Using Iterators

Iterators are objects that provide access to the elements in a
collection. In Java iterators are represented by the Iterator
interface, which contains three methods:

hasNext() returns true if the iteration has more elements.
next() returns the next element in the iteration.
remove() removes from the underlying collection the last
element returned by the iterator (optional operation).

The most basic and common use of an iterator is to traverse a
collection (visit all the elements in a collection):
ArrayList tasks = new ArrayList();
// ...
Iterator tasksIter = tasks.iterator();
while (tasksIter.hasNext()) {

Object task = tasksIter.next();
System.out.println(task);

}

See ArrayListBasics.java for more.
CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 5 / 32

http://www.cs1331.org/code/collections/ArrayListBasics.java


Defining Iterators

public class DynamicArray<E> implements Iterable<E> {
private class DynamicArrayIterator implements Iterator<E> {

private int cursor = 0;
public boolean hasNext() {

return cursor <= DynamicArray.this.lastIndex;
}
public E next() {

cursor++;
return DynamicArray.this.get(cursor - 1);

}
public void remove() { DynamicArray.this.remove(cursor - 1); }

}
private Object[] elements;
private int lastIndex;
public DynamicArray(int capacity) {

elements = new Object[capacity]; lastIndex = -1;
}
public Iterator iterator() { return new DynamicArrayIterator(); }

See DynamicArray.java for examples.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 6 / 32

http://www.cs1331.org/code/collections/DynamicArray.java


The Iterable Interface

The Iterable interface has one abstract method, iterator:
public interface Iterable<T> {

Iterator<T> iterator();
}

An instance of a class that implements Iterable can be the target of
a for-each loop.

DynamicArray<String> da = new DynamicArray<>(2);
da.add("Stan");
da.add("Kenny");
da.add("Cartman");
System.out.println("da contents:");
for (String e: da) {

System.out.println(e);
}

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 7 / 32



Using Generics

Supply a type argument in the angle brackets. Read
ArrayList<String> as “ArrayList of String”
ArrayList<String> strings = new ArrayList<String>();
strings.add("Helluva"); strings.add("Engineer!");

If we try to add an object that isn’t a String, we get a compile error:
Integer BULL_DOG = Integer.MIN_VALUE;
strings.add(BULL_DOG); // Won’t compile

With a typed collection, we get autoboxing on insertion and retrieval:
ArrayList<Integer> ints = new ArrayList<>();
ints.add(42);
int num = ints.get(0);

Notice that we didn’t need to supply the type parameter in the creation
expression above. Java inferred the type parameter from the
declaration. (Note: this only works in Java 7 and above.)
See ArrayListGenericsDemo.java for examples.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 8 / 32

http://www.cs1331.org/code/collections/ArrayListGenericsDemo.java


Sets

A Set is a collection with no duplicate elements (no two elements e1
and e2 for which e1.equals(e2)) and in no particular order. Given:
List<String> nameList = Arrays.asList("Alan", "Ada", "Alan");
Set<String> nameSet = new HashSet<>(nameList);
System.out.println("nameSet: " + nameSet);

will print:
nameSet: [Alan, Ada]

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 9 / 32



Maps
A Map<K, V> object maps keys of type K to values of type V. The
code:
Map<String, String> capitals = new HashMap<>();
capitals.put("Georgia", "Atlanta");
capitals.put("Alabama", "Montgomery");
capitals.put("Florida", "Tallahassee");
for (String state: capitals.keySet()) {

System.out.println("Capital of " + state + " is "
+ capitals.get(state));

}

prints:
Capital of Georgia is Atlanta
Capital of Florida is Tallahassee
Capital of Alabama is Montgomery

Note that the order of the keys differs from the order in which we added
them. The keys of a map are a Set, so there can be no duplicates and
order is not guaranteed. If you put a new value with the same key as
an entry already in the map, that entry is overwritten with the new one.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 10 / 32



Using Collections.sort(List<T> list)

The collections framework includes algorithms that operate on
collections implemented as static methods of the Collections class.
A good example is the sort method:
public static <T extends Comparable<? super T>> void sort(List<T> list)

sort uses the “natural ordering” of the list, that is, the ordering
defined by Comparable.
<? super T> is a type bound. It means “some superclass of T.”
The <T extends Comparable<? super T» means that the
element type T or some superclass of T must implement
Comparable.

See SortTroopers.java for examples.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 11 / 32

http://www.cs1331.org/code/collections/super-troopers/SortTroopers.java


Can we Collections.sort(List<T> list)?
Given the Collections static method:
public static <T extends Comparable<? super T>> void sort(List<T> list)

And the classes:
public class Person implements Comparable<Person>
public class GtStudent extends Person { ... }

Can we sort a List<GtStudent>?

Type checker "proves" that a type argument satisfies a type
specification. Prove by substituting without causing contradictions:
[GtStudent/T, Person/?]<T extends Comparable<? super T»

⇒ <GtPerson extends Comparable<Person super GtStudent>

We can sort a List<GtStudent> becuase
GtStudent extends Person,
Person implements Comparable<Person> and
Person is a supertype of GtStudent

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 12 / 32



Anonymous Inner Classes

We can subclass Comparator and make an instance of the subclass
at the same time using an anonymous inner class. Here’s a mustache
comparator as an inner class:
Collections.sort(troopers, new Comparator<Trooper>() {

public int compare(Trooper a, Trooper b) {
if (a.hasMustache() && !b.hasMustache()) {

return 1;
} else if (b.hasMustache() && !a.hasMustache()) {

return -1;
} else {

return a.getName().compareTo(b.getName());
}

}
});

The general syntax for defining an anonymous inner class is

new SuperType < TypeArgument > () {class_body}

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 13 / 32



Functional Interfaces

Any interface with a single abstract method is a functional interface.
For example, Comparator is a functional interface:
public interface Comparator<T> {

int compare(T o1, T o2);
}

As in the previous examples, we only need to implement the single
abstract method compare to make an instantiable class that
implements Comparator.

Note that there’s an optional @FunctionalInterface annotation
that is similar to the @Override annotation. Tagging an interface as a
@FunctionalInterface prompts the compiler to check that the
interface indeed contains a single abstract method and includes a
statement in the interface’s Javadoc that the interface is a functional
interface.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 14 / 32



Lambda Expressions

A lambda expression is a syntactic shortcut for defining the single
abstract method of a funtional interface and instantiating an
anonymous class that implements the interface. The general syntax is

(T1 p1, ...,Tn pn) -> {method_body}

Where
T1, ...,Tn are types and
p1, ...,pn are parameter names

just like in method definitions.

If method_body is a single expression, the curly braces can be
omitted. Types in parameter list can also be ommitted where they can
be inferred.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 15 / 32



MustacheComparator as a Lambda Expression

Here’s our mustache comparator from SortTroopers.java as a lambda
expression:
Collections.sort(troopers, (Trooper a, Trooper b) -> {

if (a.hasMustache() && !b.hasMustache()) {
return 1;

} else if (b.hasMustache() && !a.hasMustache()) {
return -1;

} else {
return a.getName().compareTo(b.getName());

}
});

Because Collections.sort(List<T> l, Comparator<T>
c) takes a Comparator<T>, we way that Comparator<T> is the
target type of the lambda expression passed to the sort method.
The lambda expression creates an instance of an anonymous
class that implements Comparator<Trooper> and passes this
instance to sort

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 16 / 32

http://www.cs1331.org/code/collections/super-troopers/SortTroopers.java


Target Types
static interface Bar {

int compare(Trooper a, Trooper b);
}
static void foo(Bar b) { ... }

Given the Bar interface, the call:
foo((Trooper a, Trooper b) -> {

if (a.hasMustache() && !b.hasMustache()) {
return 1;

} else if (b.hasMustache() && !a.hasMustache()) {
return -1;

} else {
return a.getName().compareTo(b.getName());

}
});

creates an instance of the Bar interface using the same lambda
expression.

The type of object instantiated by a lambda expression is
determined by the target type of the call in which the lambda
expression appears.

See LambdaTroopers.java for examples.CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 17 / 32

http://www.cs1331.org/code/collections/super-troopers/LambdaTroopers.java


Streams and Pipelines

A stream is a sequence of elements.
Unlike a collection, it is not a data structure that stores elements.
Unlike an iterator, streams do not allow modification of the
underlying source

A collection provides a source for a pipeline, which processes a stream
derived from the source.

A pipleline carries values from a source to a sink.
A pipeline contains:

A source: This could be a collection, an array, a generator
function, or an I/O channel.
Zero or more intermediate operations. An intermediate operation,
such as filter, produces a new stream
A terminal operation. A terminal operation, such as forEach,
produces a non-stream result, such as a primitive value (like a
double value), a collection, or in the case of forEach, no value at
all.CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 18 / 32



Method References

Three kinds of method references:
object::instanceMethod - like x ->
object.instanceMethod(x)

Class::staticMethod - like x -> Class.staticMethod(x)

someList.forEach(System.out::println);

Class::instanceMethod - like (x, y) ->
x.instanceMethod(y)

Comparator<Trooper> byName =
Comparator.comparing(Trooper::getName);

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 19 / 32



Stream Example: How Many Mustaches?

Consider this simple example from SortTroopers.java:
long mustaches =

troopers.stream().filter(Trooper::hasMustache).count();
System.out.println("Mustaches: " + mustaches);

troopers.stream() is the source
.filter(Trooper::hasMustache) is an intermediate
operation
.count() is the terminal operation, sometimes called a sink

The terminal operation yields a new value which results from applying
all the intermediate operations and finally the terminal operation to the
source.
See StreamTroopers.java for examples.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 20 / 32

http://www.cs1331.org/code/collections/super-troopers/SortTroopers.java
http://www.cs1331.org/code/collections/super-troopers/StreamTroopers.java


Stream Example: Long Words

Given:
List<String> words = Arrays.asList("Hello", "World", "Welcome", "To",

"Java", "8");

Write a single statement that assigns to avg the average word length:
double avg = words.stream()

.map(String::length)

.reduce(0, (a, b) -> a + b) / (0.0 + words.size());

Using words and avg, write a single statement that collects a list of all
words in words that are longer than avg, and assigns this list to a
properly typed List<T>:

List<String> longWords = words.stream()
.filter(word -> word.length() > avg)
.collect(Collectors.toList());

See this and other stream examples in Streams.java

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 21 / 32

http://www.cs1331.org/code/collections/Streams.java


The equals Method and Collections

A class whose instances will be stored in a collection must have a
properly implemented equals method.
The contains method in collections uses the equals method in
the stored objects.
The default implementation of equals (object identity - true only
for same object in memory) only rarely gives correct results.
Note that hashcode() also has a defualt implementation that
uses the object’s memory address. As a rule, whenever you
override equals, you should also override hashcode

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 22 / 32



A Recipe for Implementing equals(Object)

Obeying the general contract of equals(Object) is easier if you
follow these steps.

1 Ensure the other object is not null.
2 Check for reference equality with == (are we comparing to self?).
3 Check that the other object is an instanceof this object’s class.
4 Cast the other object to this’s type (guaranteed to work after

instanceof test)
5 Check that each “significant” field in the other object
equals(Object) the corresponding field in this object.

After seeing an example applicaiton of this recipe we’ll motivate the
proper implementation of equals(Object) methods by introducing
our first collection class, ArrayList.

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 23 / 32



An Example equals(Object) Method

Assume we have a Person class with a single name field.
1 Ensure the other object is not null.
2 Check for reference equality with == (are we comparing to self?).
3 Check that the other object is an instanceof this object’s class.
4 Cast the other object to this’s type (guaranteed to work after

instanceof test)
5 Check that each “significant” field in the other object
equals(Object) the corresponding field in this object.

Applying the recipe:
public boolean equals(Object other) {

1: if (null == other) { return false; }
2: if (this == other) { return true; }
3: if (!(other instanceof Person)) { return false; }
4: Person that = (Person) other;
5: return this.name.equals(that.name);

}

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 24 / 32



Conequences of Failing to Override
equals(Object)

In this simple class hierarchy, FoundPerson has a properly
implemented equals(Object) method and LostPerson does not.

abstract static class Person {
public String name;
public Person(String name) {

this.name = name;
}

}
static class LostPerson extends Person {

public LostPerson(String name) { super(name); }
}
static class FoundPerson extends Person {

public FoundPerson(String name) { super(name); }

public boolean equals(Object other) {
if (this == other) { return true; }
if (!(other instanceof Person)) { return false; }
return ((Person) other).name.equals(this.name);

}
}

See ArrayListEqualsDemo.java.CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 25 / 32

http://www.cs1331.org/code/collections/ArrayListEqualsDemo.java


hashCode

Hash-based implementations, HashSet and HashMap, store and
retrieve elements or keys using the hashCode method from
java.lang.Object:
public int hashCode()

The hashCode method maps an object to an int which can be
used to find the object in a data structure called a hashtable.
The point of a hash code is that it can be computed in constant
time, so hashtables allow very fast lookups.
Every object’s hashCode method should return a consistent hash
code that is not necessarily unique among all objects.

More specifically ...

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 26 / 32



hashCode’s Contract
Whenever it is invoked on the same object more than once during
an execution of a Java application, the hashCode method must
consistently return the same integer, provided no information used
in equals comparisons on the object is modified. This integer
need not remain consistent from one execution of an application
to another execution of the same application.
If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of the two
objects must produce the same integer result.
It is not required that if two objects are unequal according to the
equals(java.lang.Object) method, then calling the
hashCode method on each of the two objects must produce
distinct integer results. However, the programmer should be aware
that producing distinct integer results for unequal objects may
improve the performance of hash tables.

Bottom line: if you override equals you must override hashCode.
CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 27 / 32



A Recipe for Implementing hashCode1

You’ll learn hashing in depth in your data structures and algorithms
course. For now, here’s a recipe to follow:

1 Initialize result with a constant non-zero value, e.g., 17
2 For each significant field f (i.e., compared in equals method),

compute an int hash code c and add it to 31 * result.
For boolean fields, c = (f ? 1 : 0)
For byte, char, short, int fields, c = (int) f
For long fields, c = (int) (f (̂f »> 32 ))
For float fields, c = Float.floatToIntBits(f)
For double fields, c = (int)
(Double.doubleToLongBits(f)
(̂Double.doubleToLongBits(f) »> 32)) (notice this
converts to long then uses recipe for long fields)
For reference fields, if equals calls equals on the field, c =
f.hashCode()
For array fields, c = Arrays.hashCode(f)

3 return result
1Joshua Bloch, Effective Java

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 28 / 32



An Example hashCode Using Recipe2

class Trooper implements Comparable<Trooper> {

private String name;
private boolean mustached;

...
public boolean equals(Object other) {

if (null == other) return false;
if (this == other) return true;
if (!(other instanceof Trooper)) return false;
Trooper that = (Trooper) other;
return this.name.equals(that.name)

&& this.mustached == that.mustached;
}
public int hashCode() {

int result = 17;
result = 31 * result + name.hashCode();
result = 31 * result + (mustached ? 1 : 0);
return result;

}
}

2Joshua Bloch, Effective Java
CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 29 / 32



A Simpler Recipe for Implementing hashCode

The basic idea is to add some int value for each significant field.
Joshua Bloch’s recipe works well for Java’s collections, but a crude
approximation is also fine:

1 Initialize result with a constant non-zero value, e.g., 17
2 For each significant field f (i.e., compared in equals method),

compute an int hash code c and add it to 31 * result.
For boolean fields, c = (f ? 1 : 0)
For all numeric primitives, perform an explicit conversion to
int, c = (int) f
For reference fields, if equals calls equals on the field, c =
f.hashCode()
For array fields, c = Arrays.hashCode(f)

3 return result

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 30 / 32



How Items are Found in a Hash-Based Collection
The item’s hashCode is used to access the right bucket, then its
equals method is used to match elements in the bucket.

If you override equals, you must override hashCode!
CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 31 / 32



Consequences of Failing to Override hashCode

Set<Trooper> trooperSet = HashSet<>();
// ...
trooperSet.add(new Trooper("Mac", true));

// Mac is in the set, but we don’t find him because we didn’t
// override hashCode().
System.out.println("\nOops! Didn’t override hashCode():");
System.out.println("trooperSet.contains(new Trooper(\"Mac\", true))="

+ trooperSet.contains(new Trooper("Mac", true)));

prints:
Oops! Didn’t override hashCode():
trooperSet.contains(new Trooper("Mac", true))=false

CS 1331 (Georgia Tech) OOP Case Studies: Collections and JavaFX 32 / 32


