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Why parallel computing?

Microprocessor 
trends: 1972--2015

Kirk M. Bresniker, Sharad 
Singhal, R. Stanley Williams, 
"Adapting to Thrive in a New 
Economy of Memory 
Abundance",Computer, vol.48, 
no. 12, pp. 44-53, Dec. 2015, 
doi:10.1109/MC.2015.368



Parallel computing platforms

Highest level of 
parallelism:

• Compute nodes on an 
interconnection network

• Possibly, thousands of nodes

• Distributed memory

• Distributed or shared address 
space

• Scalability analysis crucial



Parallel computing platforms (cont.)

A generalized compute node

• (Possibly) multiple CPUs

• (Possibly) multiple GPUs
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Parallel computing platforms (cont.)

Shared memory on a node, but 
Non-Uniform Memory Access 
(NUMA).



Parallel computing platforms (cont.)

Nvidia GeForce GTX 680 (Kepler)

• 4 GPCs (graphics processing 
clusters)

• 8 SMXs (streaming 
multiprocessors)

• 192 X 8 = 1536 CUDA cores



Parallel hardware hierarchy
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Parallel program hierarchy

Process 
groups

Processes

Thread 
pools

Threads

GPU thread 
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GPU thread 
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GPU 
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• Multiple threads

• Shared address space
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Accelerator

• Host memory  PCIe
 Device memory

• Explicit data 
movement

• Locality!
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Parallel algorithm design steps

• Identifying portions of work that can be performed concurrently 
- Decomposition

• Mapping concurrent pieces of work onto computing agents 
running in parallel

• Making the input, output, and intermediate data available to the 
right computing agent at the right time – Data Dependencies

• Managing simultaneous requests for shared data

• Synchronizing computing agents for correct program execution –
Task Dependencies
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Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified 
and mapped onto to threads or 
processes

• Tasks share or exchange data 
as needed

• May be static or dynamic

Data Decomposition

• Data is partitioned

• Partitions are assigned to 
computing agents

• “Owner computes” rule

• Usually static



Decomposition for concurrency

Data 
Decomposition

Task 
Decomposition

Hybrid 
Decompositions

(Example: sparse 
matrix factorization)

+ =



Task decomposition example

Chess Program

• Each task evaluates all moves of a single piece (branch-and-bound)

• Small data (board position) can be replicated

• Dynamic load balancing required

R1 B1 P1K1 Q

. . .

P2



Data decomposition example

Dense Matrix-Vector Multiplication
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Isoefficiency function

• Function fE(p) of the number 
of computing agents p by 
which the problem size W
must grow with p in order to 
maintain a given efficiency E.

• Captures the effect of 
communication, load-
imbalance, contention, serial-
bottlenecks, etc. 



Isoefficiency function
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Scalability analysis

E = S/p = TS/pTP

Since TO = pTP – TS or pTP = TS +TO 

Therefore, E = TS/(TS +TO), or E = kW/(kW+TO), because TS = kW

W = TO . E/k(1-E)

W ~ TO
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Algorithm A

TP = O(n3/p) + O(n2/√p)
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Algorithm B

TP = O(n3/p) + O(n√n)

W = O(n3) => n3 ~ n1.5p

n1.5 ~ p

W = O(n3) = O(p2)
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Parallel algorithm design and analysis

Dense Matrix-Vector Multiplication (2-D decomposition)
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Isoefficiency function of dense sparse matrix-
vector multiplication

1-D decomposition

W ~ p2

2-D decomposition

W ~ plog2p

2-D decomposition is likely to yield higher speedups, require smaller 

problems to deliver the speedups, and scale more readily to larger number 

of computing agents. 
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Concluding remarks

• Parallelism necessary for continued performance 
improvement.

• Complex hierarchy of parallel computing 
hardware and programming paradigms

• Systematic top down parallel application design

• Decomposition strategy is critical

• Analysis important to understand scalability



Thank you!


