
Introduction to Parallel and
High-Performance Computing

(with Machine-Learning applications)

Anshul Gupta, IBM Research

Prabhanjan (Anju) Kambadur, Bloomberg L.P.

Introduction to Parallel and High-Performance
Computing (with Machine-Learning applications)

Part 1

Parallel computing
basics and parallel
algorithm analysis

Part 2

Parallel algorithms for
Building a Classifier

Part 1: Parallel and High-Performance Computing

•Why parallel computing?

Part 1: Parallel and High-Performance Computing

•Why parallel computing?

• Parallel computing platforms

Part 1: Parallel and High-Performance Computing

•Why parallel computing?

• Parallel computing platforms

• Parallel algorithm basics

Part 1: Parallel and High-Performance Computing

•Why parallel computing?

• Parallel computing platforms

• Parallel algorithm basics

• Decomposition for parallelism

Part 1: Parallel and High-Performance Computing

•Why parallel computing?

• Parallel computing platforms

• Parallel algorithm basics

• Decomposition for parallelism

• Parallel programming models

Part 1: Parallel and High-Performance Computing

•Why parallel computing?

• Parallel computing platforms

• Parallel algorithm basics

• Decomposition for parallelism

• Parallel programming models

• Parallel algorithm analysis

Why parallel computing?

Microprocessor
trends: 1972--2015

Kirk M. Bresniker, Sharad
Singhal, R. Stanley Williams,
"Adapting to Thrive in a New
Economy of Memory
Abundance",Computer, vol.48,
no. 12, pp. 44-53, Dec. 2015,
doi:10.1109/MC.2015.368

Parallel computing platforms

Highest level of
parallelism:

• Compute nodes on an
interconnection network

• Possibly, thousands of nodes

• Distributed memory

• Distributed or shared address
space

• Scalability analysis crucial

Parallel computing platforms (cont.)

A generalized compute node

• (Possibly) multiple CPUs

• (Possibly) multiple GPUs

Parallel computing platforms (cont.)

Parallel computing platforms (cont.)

Shared memory on a node, but
Non-Uniform Memory Access
(NUMA).

Parallel computing platforms (cont.)

Nvidia GeForce GTX 680 (Kepler)

• 4 GPCs (graphics processing
clusters)

• 8 SMXs (streaming
multiprocessors)

• 192 X 8 = 1536 CUDA cores

Parallel hardware hierarchy

Node
ensemble

Nodes

CPUs

Cores

GPUs

GPCs

SMXs

CUDA
cores

Parallel program hierarchy

Process
groups

Processes

Thread
pools

Threads

GPU thread
grids

GPU thread
blocks

GPU
threads

Parallel programming paradigms

Distributed Memory Shared Memory Accelerator

Parallel programming paradigms

Distributed Memory

• Multiple processes

• Distributed address
space

• Explicit data
movement

• Locality!

Parallel programming paradigms

Distributed Memory

• Multiple processes

• Distributed address
space

• Explicit data
movement

• Locality!

Shared Memory

• Multiple threads

• Shared address space

• Implicit data
movement

• Locality!

Parallel programming paradigms

Distributed Memory

• Multiple processes

• Distributed address
space

• Explicit data
movement

• Locality!

Shared Memory

• Multiple threads

• Shared address space

• Implicit data
movement

• Locality!

Accelerator

• Host memory  PCIe
 Device memory

• Explicit data
movement

• Locality!

Algorithm design

• Algorithm design is critical to devising a computing
solution

Algorithm design

• Algorithm design is critical to devising a computation
solution

• Serial algorithm is a recipe or sequence of basic steps or
operations

Algorithm design

• Algorithm design is critical to devising a computation
solution

• Serial algorithm is a recipe or sequence of basic steps or
operations

• Parallel algorithm is a recipe for solving the given
problem using an ensemble of hardware resources

Algorithm design

• Algorithm design is critical to devising a computation
solution

• Serial algorithm is a recipe or sequence of basic steps or
operations

• Parallel algorithm is a recipe for solving the given
problem using an ensemble of hardware resources

• Specifying parallel algorithm involves a lot more than
specifying a sequence of basic steps

Algorithm design

• Algorithm design is critical to devising a computation
solution

• Serial algorithm is a recipe or sequence of basic steps or
operations

• Parallel algorithm is a recipe for solving the given
problem using an ensemble of hardware resources

• Specifying parallel algorithm involves a lot more than
specifying a sequence of basic steps

Parallel algorithm design steps

• Identifying portions of work that can be performed
concurrently

Parallel algorithm design steps

• Identifying portions of work that can be performed
concurrently

• Mapping concurrent pieces of work onto computing agents
running in parallel

Parallel algorithm design steps

• Identifying portions of work that can be performed
concurrently

• Mapping concurrent pieces of work onto computing agents
running in parallel

• Making the input, output, and intermediate data available to
the right computing agent at the right time

Parallel algorithm design steps

• Identifying portions of work that can be performed
concurrently

• Mapping concurrent pieces of work onto computing agents
running in parallel

• Making the input, output, and intermediate data available to
the right computing agent at the right time

• Managing simultaneous requests for shared data

Parallel algorithm design steps

• Identifying portions of work that can be performed
concurrently

• Mapping concurrent pieces of work onto computing agents
running in parallel

• Making the input, output, and intermediate data available to
the right computing agent at the right time

• Managing simultaneous requests for shared data

• Synchronizing computing agents for correct program execution

Parallel algorithm design steps

• Identifying portions of work that can be performed concurrently
- Decomposition

• Mapping concurrent pieces of work onto computing agents
running in parallel

• Making the input, output, and intermediate data available to the
right computing agent at the right time – Data Dependencies

• Managing simultaneous requests for shared data

• Synchronizing computing agents for correct program execution –
Task Dependencies

Decomposition for concurrency

Task Decomposition Data Decomposition

Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified
and mapped onto to threads or
processes

Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified
and mapped onto to threads or
processes

• Tasks share or exchange data
as needed

Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified
and mapped onto to threads or
processes

• Tasks share or exchange data
as needed

• May be static or dynamic

Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified
and mapped onto to threads or
processes

• Tasks share or exchange data
as needed

• May be static or dynamic

Data Decomposition

• Data is partitioned (input,
output, or intermediate)

Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified
and mapped onto to threads or
processes

• Tasks share or exchange data
as needed

• May be static or dynamic

Data Decomposition

• Data is partitioned

• Partitions are assigned to
computing agents

• “Owner computes” rule

Decomposition for concurrency

Task Decomposition

• Concurrent tasks are identified
and mapped onto to threads or
processes

• Tasks share or exchange data
as needed

• May be static or dynamic

Data Decomposition

• Data is partitioned

• Partitions are assigned to
computing agents

• “Owner computes” rule

• Usually static

Decomposition for concurrency

Data
Decomposition

Task
Decomposition

Hybrid
Decompositions

(Example: sparse
matrix factorization)

+ =

Task decomposition example

Chess Program

• Each task evaluates all moves of a single piece (branch-and-bound)

• Small data (board position) can be replicated

• Dynamic load balancing required

R1 B1 P1K1 Q

. . .

P2

Data decomposition example

Dense Matrix-Vector Multiplication

. =

P1

P2

P3

P4

P5

P6

P7

P8

P9

Parallel application design guidelines

• Focus on one level of hierarchy at a time – from top to
bottom.

Parallel application design guidelines

• Focus on one level of hierarchy at a time – from top to
bottom.

• Devise the best decomposition strategy at the given level

Parallel application design guidelines

• Focus on one level of hierarchy at a time – from top to
bottom.

• Devise the best decomposition strategy at the given level

• Computing agents are likely to be parallel themselves

Parallel application design guidelines

• Focus on one level of hierarchy at a time – from top to
bottom.

• Devise the best decomposition strategy at the given level

• Computing agents are likely to be parallel themselves

• Minimize interactions, synchronization, and data
movement among computing agents

Parallel application design guidelines

• Focus on one level of hierarchy at a time – from top to
bottom.

• Devise the best decomposition strategy at the given level

• Computing agents are likely to be parallel themselves

• Minimize interactions, synchronization, and data
movement among computing agents

• Minimize load imbalance and idling among computing
agents

Parallel application design guidelines

• Focus on one level of hierarchy at a time – from top to
bottom.

• Devise the best decomposition strategy at the given level

• Computing agents are likely to be parallel themselves

• Minimize interactions, synchronization, and data
movement among computing agents

• Minimize load imbalance and idling among computing
agents

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

• Problem size, W = total amount of work: TS = kW

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

• Problem size, W = total amount of work: TS = kW

• Parallel run time, TP: time elapsed between start of computation
until the last of the p computing agents finishes

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

• Problem size, W = total amount of work: TS = kW

• Parallel run time, TP: time elapsed between start of computation
until the last of the p computing agents finishes

• Overhead, sum of all wasted compute resources: TO = pTP – TS

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

• Problem size, W = total amount of work: TS = kW

• Parallel run time, TP: time elapsed between start of computation
until the last of the p computing agents finishes

• Overhead, sum of all wasted compute resources: TO = pTP – TS

• Speedup, ratio of serial to parallel time: S = TS/TP = pTS/(TS+TO)

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

• Problem size, W = total amount of work: TS = kW

• Parallel run time, TP: time elapsed between start of computation
until the last of the p computing agents finishes

• Overhead, sum of all wasted compute resources: TO = pTP – TS

• Speedup, ratio of serial to parallel time: S = TS/TP = pTS/(TS+TO)

• Efficiency, fraction of overall time spent doing useful work:
E = S/p = TS/pTP = TS/(TS+TO)

Parallel algorithm analysis

• Serial run time, TS: time required by best known method on a
single computing agent

• Problem size, W = total amount of work: TS = kW

• Parallel run time, TP: time elapsed between start of computation
until the last of the p computing agents finishes

• Overhead, sum of all wasted compute resources: TO = pTP – TS

• Speedup, ratio of serial to parallel time: S = TS/TP = pTS/(TS+TO)

• Efficiency, fraction of overall time spent doing useful work:
E = S/p = TS/pTP = TS/(TS+TO)

Parallel algorithm analysis

Parallel algorithm analysis

Isoefficiency function

• Function fE(p) of the number
of computing agents p by
which the problem size W
must grow in order to maintain
a given efficiency E.

Isoefficiency function

• Function fE(p) of the number
of computing agents p by
which the problem size W
must grow with p in order to
maintain a given efficiency E.

• Captures the effect of
communication, load-
imbalance, contention, serial-
bottlenecks, etc.

Isoefficiency function

Scalability analysis

E = S/p = TS/pTP

Scalability analysis

E = S/p = TS/pTP

Since TO = pTP – TS or pTP = TS +TO

Scalability analysis

E = S/p = TS/pTP

Since TO = pTP – TS or pTP = TS +TO

Therefore, E = TS/(TS +TO), or E = kW/(kW+TO), because TS = kW

Scalability analysis

E = S/p = TS/pTP

Since TO = pTP – TS or pTP = TS +TO

Therefore, E = TS/(TS +TO), or E = kW/(kW+TO), because TS = kW

W = TO . E/k(1-E)

Scalability analysis

E = S/p = TS/pTP

Since TO = pTP – TS or pTP = TS +TO

Therefore, E = TS/(TS +TO), or E = kW/(kW+TO), because TS = kW

W = TO . E/k(1-E)

W ~ TO

Scalability analysis: W = O(n3)

Algorithm A

TP = O(n3/p) + O(n2/√p)

Algorithm B

TP = O(n3/p) + O(n√n)

Scalability analysis: W = O(n3)

Algorithm A

TP = O(n3/p) + O(n2/√p)

W = O(n3) => n3 ~ n2√p

Algorithm B

TP = O(n3/p) + O(n√n)

W = O(n3) => n3 ~ n1.5p

Scalability analysis: W = O(n3)

Algorithm A

TP = O(n3/p) + O(n2/√p)

W = O(n3) => n3 ~ n2√p

n ~ √p

Algorithm B

TP = O(n3/p) + O(n√n)

W = O(n3) => n3 ~ n1.5p

n1.5 ~ p

Scalability analysis: W = O(n3)

Algorithm A

TP = O(n3/p) + O(n2/√p)

W = O(n3) => n3 ~ n2√p

n ~ √p

W = O(n3) = O(p1.5)

Algorithm B

TP = O(n3/p) + O(n√n)

W = O(n3) => n3 ~ n1.5p

n1.5 ~ p

W = O(n3) = O(p2)

Parallel algorithm design and analysis

Dense Matrix-Vector Multiplication (1-D decomposition)

. =

P1

P2

P3

P4

P5

P6

P7

P8

P9

A x y

Parallel algorithm design and analysis

Dense Matrix-Vector Multiplication (2-D decomposition)

P1P1

. =

P1 P2 P3

P5 P6

P7 P8 P9

A x y

Parallel matrix-vector multiplication:
1-D decomposition

Parallel matrix-vector multiplication:
2-D decomposition

Scalability analysis of matrix-vector
multiplication (1-D decomposition)

TP = n2/p + tslog(p) + twn

Scalability analysis of matrix-vector
multiplication (1-D decomposition)

TP = n2/p + tslog(p) + twn

TO = tsplog(p) + twpn

Scalability analysis of matrix-vector
multiplication (1-D decomposition)

TP = n2/p + tslog(p) + twn

TO = tsplog(p) + twpn

W = O(n2)

Scalability analysis of matrix-vector
multiplication (1-D decomposition)

TP = n2/p + tslog(p) + twn

TO = tsplog(p) + twpn

W = O(n2)

1: n2 ~ plog(p)

Scalability analysis of matrix-vector
multiplication (1-D decomposition)

TP = n2/p + tslog(p) + twn

TO = tsplog(p) + twpn

W = O(n2)

1: n2 ~ plog(p)

2: n2 ~ pn, or n ~ p, or W = O(n2) = O(p2)

Scalability analysis of matrix-vector
multiplication (1-D decomposition)

TP = n2/p + tslog(p) + twn

TO = tsplog(p) + twpn

W = O(n2)

1: n2 ~ plog(p)

2: n2 ~ pn, or n ~ p, or W = O(n2) = O(p2)

Scalability analysis of matrix-vector
multiplication (2-D decomposition)

TP = n2/p + tslog(p) + tw(n/√p)log(p)

Scalability analysis of matrix-vector
multiplication (2-D decomposition)

TP = n2/p + tslog(p) + tw(n/√p)log(p)

TO = tsplog(p) + twn√plog(p)

Scalability analysis of matrix-vector
multiplication (2-D decomposition)

TP = n2/p + tslog(p) + tw(n/√p)log(p)

TO = tsplog(p) + twn√plog(p)

W = O(n2)

Scalability analysis of matrix-vector
multiplication (2-D decomposition)

TP = n2/p + tslog(p) + tw(n/√p)log(p)

TO = tsplog(p) + twn√plog(p)

W = O(n2)

1: n2 ~ plog(p)

Scalability analysis of matrix-vector
multiplication (2-D decomposition)

TP = n2/p + tslog(p) + tw(n/√p)log(p)

TO = tsplog(p) + twn√plog(p)

W = O(n2)

1: n2 ~ plog(p)

2: n2 ~ n√plog(p), or n ~ √plog(p),

or W = O(n2) = O(plog2p)

Scalability analysis of matrix-vector
multiplication (2-D decomposition)

TP = n2/p + tslog(p) + tw(n/√p)log(p)

TO = tsplog(p) + twn√plog(p)

W = O(n2)

1: n2 ~ plog(p)

2: n2 ~ n√plog(p), or n ~ √plog(p),

or W = O(n2) = O(plog2p)

Isoefficiency function of dense sparse matrix-
vector multiplication

1-D decomposition

W ~ p2

2-D decomposition

W ~ plog2p

2-D decomposition is likely to yield higher speedups, require smaller

problems to deliver the speedups, and scale more readily to larger number

of computing agents.

Concluding remarks

• Parallelism necessary for continued performance
improvement.

Concluding remarks

• Parallelism necessary for continued performance
improvement.

• Complex hierarchy of parallel computing
hardware and programming paradigms

Concluding remarks

• Parallelism necessary for continued performance
improvement.

• Complex hierarchy of parallel computing
hardware and programming paradigms

• Systematic top down parallel application design

Concluding remarks

• Parallelism necessary for continued performance
improvement.

• Complex hierarchy of parallel computing
hardware and programming paradigms

• Systematic top down parallel application design

• Decomposition strategy is critical

Concluding remarks

• Parallelism necessary for continued performance
improvement.

• Complex hierarchy of parallel computing
hardware and programming paradigms

• Systematic top down parallel application design

• Decomposition strategy is critical

• Analysis important to understand scalability

Thank you!

