GEO4210

Introduction to Petroleum Geology and Geophysics

Geophysical Methods in Hydrocarbon Exploration

About this part of the course

 Purpose: to give an overview of the basic geophysical methods used in hydrocarbon exploration

Working Plan:

- Lecture: Principles + Intro to Exercise
- Practical: Seismic Interpretation excercise

Lecture Contents

- Geophysical Methods
- Theory / Principles
- Extensional Sedimentary Basins and its Seismic Signature
- Introduction to the Exercise

Geophysical methods

Passive:

Method using the natural fields of the Earth, e.g. gravity and magnetic

Active:

Method that requires the input of artificially generated energy, e.g. seismic reflection

The objective of geophysics

is to locate or detect the presence of subsurface structures or bodies and determine their size, shape, depth, and physical properties (density, velocity, porosity...) + fluid content

Geophysical methods

Method	Measured parameter	"Operative" physical property
Gravity	Spatial variations in the strength of the gravitational field of the Earth	Density
Magnetic	Spatial variations in the strength of the geomagnetic field	Magnetic susceptibility and remanence
Electromagnetic (SeaBed Logging)	Response to electromagnetic radiation	Electric conductivity/resistivity and inductance
Seismic	Travel times of reflected/refracted seismic waves	Seismic velocity (and density)

Further reading

- Keary, P. & Brooks, M. (1991) An Introduction to Geophysical Exploration. Blackwell Scientific Publications.
- Mussett, A.E. & Khan, M. (2000) Looking into the Earth An Introduction to Geological Geophysics. Cambridge University Press.
- McQuillin, R., Bacon, M. & Barclay, W. (1984) An Introduction to Seismic Interpretation – Reflection Seismics in Petroleum Exploration. Graham & Trotman.
- Badley, M.E. (1985) Practical Seismic Interpretation. D. Reidel Publishing Company.

http://www.learninggeoscience.net/modules.php

Gravity

- Gravity surveying measures spatial variations in the Earth's gravitational field caused by differences in the *density* of sub-surface rocks
- In fact, it measures the variation in the accelaration due to gravity
- It is expressed in so called *gravity anomalies* (in milligal, 10⁻⁵ ms⁻²), i.e. deviations from a predefined reference level, *geoid* (a surface over which the gravitational field has equal value)
- Gravity is a scalar

Gravity

- Newton's Universal Law of Gravitation for small masses at the earth surface:
- Spherical
- Non-rotating
- Homogeneous

$$F = \frac{G \times M \times m}{R^2} = mg \rightarrow g = \frac{G \times M}{R^2}$$

- $-G = 6.67x10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$
- R is the Earth's radius
- M is the mass of the Earth
- m is the mass of a small mass

g is constant!

Gravity

- Non-spherical Ellipse of rotation
- Rotating Centrifugal forces
- Non-homogeneous Subsurface heterogeneities

Disturbances in the acceleration

Geoid = main sea-level

$$g_{av} = 9.81 \text{ m/s}^2$$

$$g_{max} = 9.83 \text{ m/s}^2 \text{ (pole)}$$

$$g_{min} = 9.78 \text{ m/s}^2 \text{ (equator)}$$

Magnetics

- Magnetic surveying aims to investigate the subsurface geology by measuring the strength or intensity of the Earth's magnetic field.
- Lateral variation in magnetic susceptibility and remanence give rise to spatial variations in the magnetic field
- It is expressed in so called *magnetic anomalies*, i.e. deviations from the Earth's magnetic field.
- The unit of measurement is the *tesla* (T) which is volts-s-m⁻² In magnetic surveying the *nanotesla* is used (1nT = 10⁻⁹ T)
- The magnetic field is a vector
- Natural magnetic elements: iron, cobalt, nickel, gadolinium
- Ferromagnetic minerals: magnetite, ilmenite, hematite, pyrrhotite

Magnetics

 Magnetic susceptibility, k

a dimensionless property which in essence is a measure of how susceptible a material is to becoming magnetized

Sedimentary Rocks

- Limestone: 10-25.000

Sandstone: 0-21.000

- Shale: 60-18.600

Igneous Rocks

- Granite: 10-65

– Peridotite: 95.500-196.000

Minerals

– Quartz: -15

Magnetite: 70.000-2x10⁷

Magnetics

- Magnetic Force, H
- Intensity of induced magnetization, J_i
- $J_i = k \cdot H$
- Induced and remanent magnetization
- Magnetic anomaly = regional residual

NGU, 1992

Electromagnetics

Electromagnetic methods use the response of the ground to the propagation of incident alternating electromagnetic waves, made up of two orthogonal vector components, an electrical intensity (E) and a magnetizing force (H) in a plane perpendicular to the direction of travel

Electromagnetics

Electromagnetic anomaly = Primary Field – Secondary Field

Electromagnetics – Sea Bed Logging

SBL is a marine electromagnetic method that has the ability to map the subsurface resistivity remotely from the seafloor.

The basis of SBL is the use of a mobile horizontal electric dipole (HED) source transmitting a low frequency electromagnetic signal and an array of seafloor electric field receivers.

A hydrocarbon filled reservoir will typically have high resistivity compared with shale and a water filled reservoirs.

SBL therefore has the unique potential of distinguishing between a hydrocarbon filled and a water filled reservoir

Marine multichannel seismic reflection data

Reflection Seismology

- most important tool for 2D/3D mapping of subsurface [reveals layering, structural features such as faulting & folding]
- extensively used by the oil & gas industry to search for hydrocarbon fields

Reflection seismology can be considered as <u>echo or depth sounding</u> & it is easier performed at <u>sea</u> than on **land**

Reflection seismics output: seismic section (seismic reflection profile)

one of the problems: reflections may not come directly below the source, since they reflect at right angle to the interface, but the recording takes no account of this

Acoustic Impedance: $Z = \rho \cdot v$

Reflection Coefficient: $R = A_1/A_0$

$$R = \frac{\rho_2 v_2 - \rho_1 v_1}{\rho_2 v_2 + \rho_1 v_1} = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

Transmission Coefficient: $T = A_2/A_0$

$$T = \frac{2\rho_1 v_1}{\rho_2 v_2 + \rho_1 v_1}$$

 $-1 \le R \le 1$

R = 0 All incident energy transmitted ($Z_1 = Z_2$) no reflection R = -1 or +1 All incident energy reflected strong reflection R < 0 Phase change (180°) in reflected wave

- Shotpoint interval 60 seconds
- 25-120 receivers
- Sampling rate 4 milliseconds
- Normal seismic line ca. 8 sTWT

Sedimentary Basins

- Hydrocarbon provinces are found in sedimentary basins
- Important to know how basins are formed
- Basin Analysis
 - Hydrocarbon traps
 - Stratigraphy of
 - Source rock
 - Reservoir rock
 - Cap rock
 - Maturation of source rocks
 - Migration path-ways

Extensional Sedimentary Basins

- Offshore Norway Viking Graben, Central Graben
- Late Jurassic Early Cretaceous
- Mature Hydrocarbon Province

Basin Analysis

POST-RIFT

Syn-Rift

Rotated Fault Blocks

Increasing Fault Displacement

Seismic Signature of Extensional Sedimentary Basins

INTRODUCTION TO EXERCISE

Seismic Signature of Extensional Sedimentary Basins – Offshore Norway

Stratigraphy – Offshore Norway

Summary Offshore Norway

- Main Rifting Event: Late-Jurassic Early Cretaceous
- Structural Traps Fault bounded
- Main Reservoir: Upper Triassic Middle Jurassic, containing Tarbert, Ness, Rannoch, Cook, Statfjord and Lunde Fms.
- Source Rock: Upper Jurassic, Heather Fm
- Cap Rock: Early Cretaceous

Exercise

- Interprete seismic line NVGTI92-105
- Interprete pre-, syn- and post-rift sequences
- Interprete possible hydrocarbon traps
- Point out source-, reservoir, and cap-rock