
Lecture 1

Introduction to Probability and Set Theory

Notes

Motivation

Definitions

Uncertainty/Randomness in our life

- Will it snow tomorrow?
- Can LeBron James and the Miami Heat win a third NBA title this year?
- If I flip a coin 100 times, what are the chances I get 50 heads and 50 tails?

We often want to assess how likely of such event $occurs \Rightarrow Probability$ is the right tool

Probability and Set Theory

Notes

Introduction to

Set Theory Probability

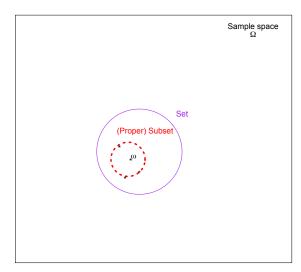
1.3

Probability and

Set Theory

PURDUE

Introduction


et The Probability Notes

Probability theory is based on the paradigm of a random experiment, i.e. an action whose outcome cannot be predicted beforehand.

- Element: a single item (outcome), typically denoted by ω
- Set: a collection of elements
- Sample space: the set of all possible outcomes for a random experiment and is denoted by Ω
- Subset: a set itself which every element is contained in a large set.

PURDUE

Sample Space, Set, Subset

Probability and Set Theory	Notes
PURDUE	
Introduction	
Set Theory	
Probability	

Example 1

We are interested in whether the price of the S&P 500 decreases, stays the same, or increases. If we were to examine the S&P 500 over one day, then $\Omega = \{$ decrease, stays the same, increases $\}$. What would Ω be if we looked at 2 days?

Solution.

Introduction to Probability and Set Theory

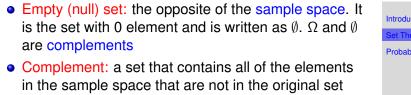
Notes

1.5

Introduction to Probability and

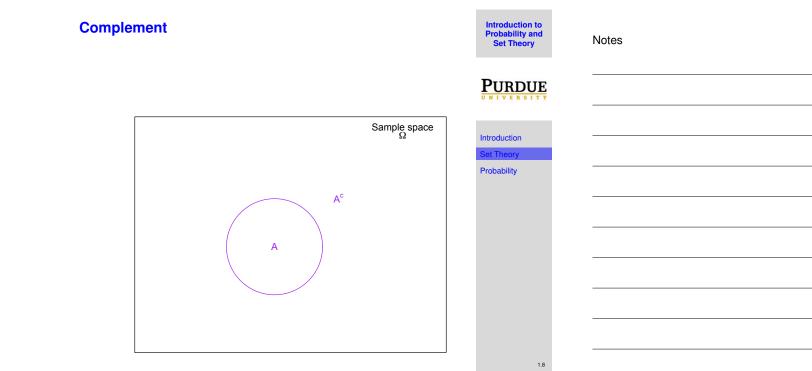
Introduction

et Theory


Probability

Definitions (cont'd)

Introduction to Probability and Set Theory


1.7

Notes

• Event: any subset of the sample space. It can be one or more elements

PURDUE	
Introduction	
Set Theory	
Probability	

Example 2

Let us examine what happens in the flip of 3 fair coins. In this case $\Omega = \{(T, T, T), (T, T, H), (T, H, T), (H, T, T)\}$ (T, H, H), (H, T, H), (H, H, T), (H, H, H). Let *A* be the event of exactly 2 tails. Let B be the event that the first 2 tosses are tails. Let C be the event that all 3 tosses are tails. Write out the possible outcomes for each of these 3 events

Solution.

Introduction to **Probability and** Set Theory

et The

PURDUE Introduction Probability

Example 3

Start with a standard deck of 52 cards and remove all the hearts and all the spades, leaving 13 red and 13 black cards. List the cards in each of the following sets:

- N =not a face card
- R = neither red nor an ace
- E = either black, even, or a Jack

Introduction to Probability and Set Theory

1.9

Introduction Probability

Notes

Notes

Example 4

Suppose a fair six–sided die is rolled twice. Determine the number of possible outcomes

- For this experiment
- The sum of the two rolls is 5
- The two rolls are the same
- The sum of the two rolls is an even number

Solution.

Introduction to Probability and Set Theory

Notes

Notes

Frequentist Interpretation of Probability

The probability of an event is the long-run proportion of times that the event occurs in independent repetitions of the random experiment. This is referred to as an empirical probability and can be written as

 $\mathbb{P}(event) = \frac{\text{number of times that event occurs}}{\text{number of random experiment}}$

Introduction to Probability and Set Theory

1.11

Introduction Set Theory Probability

Equally Likely Framework

 $\mathbb{P}(event) = \frac{\text{number of times that event occurs}}{\text{number of all possible outcomes}}$

Remark:

- Any individual outcome of the sample space is equally likely as any other outcome in the sample space.
- In an equally likely framework, the probability of any event is the number of ways the event occurs divided by the number of total events possible.

Example 5

Find the probabilities associated with parts 2–4 of Example 4

Solution.

Introduction to Probability and Set Theory

1.13

Notes

Introduction Set Theory

1.14

Notes

Introduction to Probability and

Set Theory

PURDUE

Introduction Set Theory

Probability Rules

- Any probability must be between 0 and 1 inclusively
- The sum of the probabilities for all the experimental outcomes must equal 1

If a probability model satisfies the two rules above, it is said to be legitimate

Introduction to Probability and Set Theory

Notes

Notes

Example 6

An experiment with three outcomes has been repeated 50 times, and it was learned that outcome 1 occurred 20 times, outcome 2 occurred 13 times, and outcome 3 occurred 17 times. Assign probabilities to the outcomes. What method did you use?

Solution.

Introduction to Probability and Set Theory

Introduction Set Theory

Example 7

A decision maker subjectively assigned the following probabilities to the four outcomes of an experiment:

 $\mathbb{P}(E_1) = 0.1 \ \mathbb{P}(E_2) = 0.15 \ \mathbb{P}(E_3) = 0.4 \ \mathbb{P}(E_4) = 0.2$

Are these probability assignments legitimate? Explain.

Solution.

Introduction Set Theory

Introduction to **Probability and**

Set Theory

Summary

In this lecture, we learned

- Set theory definitions: sample space, set, subset, element, empty set, complement, event
- The Frequentist Interpretation of Probability and the Equally Likely Framework
- Probability Rules

1.17

Notes

Introduction Set Theory

1.18

Notes

Homework 0

Read the Syllabus!

Visit the main course website at http://www.stat.purdue.edu/ cfurtner251/stat225http://www.stat.purdue.edu/ cfurtner/stat225 and course website for section 081/091 http://www.stat.purdue.edu/ huang251/stat225.html Introduction to Probability and Set Theory

Notes

Notes