Lecture 1

Introduction to Probability and Set Theory
Text: A Course in Probability by Weiss 1.2 ~ 2.3
STAT 225 Introduction to Probability Models January 13, 2014

Whitney Huang Purdue University

Agenda

Introduction
(2) Set Theory
(3) Probability

Purdue

Notes
 Nos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Motivation

Uncertainty/Randomness in our life

- Will it snow tomorrow?
- Can LeBron James and the Miami Heat win a third NBA title this year?
- If I flip a coin 100 times, what are the chances I get 50 heads and 50 tails?
We often want to assess how likely of such event occurs \Rightarrow Probability is the right tool

Definitions

Probability theory is based on the paradigm of a random experiment, i.e. an action whose outcome cannot be predicted beforehand.

- Element: a single item (outcome), typically denoted by ω
- Set: a collection of elements
- Sample space: the set of all possible outcomes for a random experiment and is denoted by Ω
- Subset: a set itself which every element is contained in a large set.

PURDUE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability and Set Theory

Notes

Purdue

Introduction

Probability
\qquad

Example 1

We are interested in whether the price of the $S \& P 500$ decreases, stays the same, or increases. If we were to examine the S\&P 500 over one day, then
$\Omega=$ \{decrease, stays the same, increases $\}$. What would Ω be if we looked at 2 days?

Solution.

PuRDUE

Introduction

Set Theory

 ProbabilityIntroduction to
Probability and Probability and
Set Theory

Purdue

Introduction

Set Theory Probability

Notes
\qquad

Definitions (cont'd)

Notes

PURDUE

Introduction Set Theory Probability
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to
Probability and robability and
Set Theory

Notes

PuRDUE

Example 2

Let us examine what happens in the flip of 3 fair coins. In this case $\Omega=\{(T, T, T),(T, T, H),(T, H, T),(H, T, T)$, $(T, H, H),(H, T, H),(H, H, T),(H, H, H)\}$. Let A be the event of exactly 2 tails. Let B be the event that the first 2 tosses are tails. Let C be the event that all 3 tosses are tails. Write out the possible outcomes for each of these 3 events

Solution.

Example 3

Start with a standard deck of 52 cards and remove all the hearts and all the spades, leaving 13 red and 13 black cards. List the cards in each of the following sets:

- $N=$ not a face card
- $R=$ neither red nor an ace
- $E=$ either black, even, or a Jack
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to Probability and Set Theory

Notes

PURDUE

Introduction
 Set Theory

Probability
\qquad

Example 4

Suppose a fair six-sided die is rolled twice. Determine the number of possible outcomes

- For this experiment
- The sum of the two rolls is 5
- The two rolls are the same
- The sum of the two rolls is an even number

Solution.

Frequentist Interpretation of Probability

The probability of an event is the long-run proportion of times that the event occurs in independent repetitions of the random experiment. This is referred to as an empirical probability and can be written as

$$
\mathbb{P}(\text { event })=\frac{\text { number of times that event occurs }}{\text { number of random experiment }}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to robability and Set Theory

Notes

 Nos

 Nos}
Purdue

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Equally Likely Framework

$\mathbb{P}($ event $)=\frac{\text { number of times that event occurs }}{\text { number of all possible outcomes }}$

Remark:

- Any individual outcome of the sample space is equally likely as any other outcome in the sample space.
- In an equally likely framework, the probability of any event is the number of ways the event occurs divided by the number of total events possible.

Example 5

Find the probabilities associated with parts 2-4 of Example 4

Solution.

Purdue
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to Probability and Set Theory

Notes

PURDUE

Introduction Set Theory

\qquad

Probability Rules

(1) Any probability must be between 0 and 1 inclusively
(2) The sum of the probabilities for all the experimental outcomes must equal 1

If a probability model satisfies the two rules above, it is said to be legitimate

Introduction to Probability and

 Set Theory
Purdue

1.15

ntroduction to robability and Set Theory

Purdue

Introduction Set Theory

An experiment with three outcomes has been repeated 50 times, and it was learned that outcome 1 occurred 20 times, outcome 2 occurred 13 times, and outcome 3 occurred 17 times. Assign probabilities to the outcomes. What method did you use?

Solution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Notes
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 7

A decision maker subjectively assigned the following probabilities to the four outcomes of an experiment:

$$
\mathbb{P}\left(E_{1}\right)=0.1 \mathbb{P}\left(E_{2}\right)=0.15 \mathbb{P}\left(E_{3}\right)=0.4 \mathbb{P}\left(E_{4}\right)=0.2
$$

Are these probability assignments legitimate? Explain.

Solution.

Summary

In this lecture, we learned

- Set theory definitions: sample space, set, subset, element, empty set, complement, event
- The Frequentist Interpretation of Probability and the Equally Likely Framework
- Probability Rules
\qquad

Notes

 ,

 ,}
Purdue

Introduction
Set Theory
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homework 0

(1) Read the Syllabus!
(2) Visit the main course website at http://www.stat.purdue.edu/ cfurtner251/stat225http://www.stat.purdue.edu/ cfurtner/stat225 and course website for section 081/091 http://www.stat.purdue.edu/ huang251/stat225.html

Notes

PURDUE

Introduction
Set Theory
\qquad
1.19

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

