
J. P. Cohoon and J. W. Davidson
©1999 McGraw-Hill, Inc.

Introduction to Programming and
Object-Oriented Design

Basics of machine, software, and
program design



Ch 1 / Foil 2

● Every computer is organized roughly into four parts
■ CPU - central processing unit

– Where decisions are made, computations are performed,
and input/output requests are delegated

■ Memory
– Stores information being processed by the CPU

■ Input devices
– Allows people to supply information to computers

■ Output devices
– Allows people to receive information from computers

Computer Organization



Ch 1 / Foil 3

Computer Organization

Memory

CPU

Input
Devices

Output
Devices



Ch 1 / Foil 4

CPU

● “Brains” of the computer
■ Arithmetic calculations are performed using the

Arithmetic/Logical Unit or ALU
■ Control unit decodes and executes instructions

● Arithmetic operations are performed using binary number system



Ch 1 / Foil 5

CPU

● Fundamental building block is a switch
■ Switches are made from ultrasmall transistors

● Example -- Pentium II



Ch 1 / Foil 6

● The individual digits of a binary number are referred to as bits
■ Each bit represents a power of two

● Examples

01011 = 0 • 24 + 1 • 23 + 0 • 22 + 1 • 21 + 1 • 20 = 11

00010 = 0 • 24 + 0 • 23 + 0 • 22 + 1 • 21 + 0 • 20 = 2

Binary Arithmetic

00010
+ 01011

01101

Binary
addition

2
+ 11

13

Equivalent
decimal
addition



Ch 1 / Foil 7

Binary Arithmetic

5
× 3

15

Equivalent decimal
multiplication

0101
× 0011

0101
0101

0000
0000
0001111

Binary
multiplication



Ch 1 / Foil 8

● Convention for handling signed numbers in binary representation
� The leading bit is a sign bit

– Binary number with leading 0 is positive
– Binary number with leading 1 is negative

● Magnitude of positive numbers is just the binary representation
● Magnitude of negative numbers is found by performing the two’s

complement
■ Complement the bits

– Replace all the 1's with 0's, and all the 0's with 1's
■ Add one to the complemented number

● Carry in most significant bit position is thrown away when
performing arithmetic

Two’s Complement



Ch 1 / Foil 9

Two's Complement Example

● Performing two's complement on the decimal 7 to get -7
■ Using a five-bit representation

7 = 00111 Convert to binary

11000 Complement the bits

11000 Add 1 to the complement
+ 00001

11001 Is -7 in two's complement



Ch 1 / Foil 10

Two's Complement Arithmetic

● Computing 8 - 7 using a two's complement representation with
five-bit numbers

8 - 7 = 8 + (-7) = 1

01000 Two's complement of 8

11001 Two's complement of -7

01000 Add 8 and -7
+ 11001

100001

00001 Is the five-bit result

Throw away the
high-order

carry as we are
using a five bit
representation



Ch 1 / Foil 11

Control Unit

● The fetch/execute cycle is
the steps the CPU takes to
execute an instruction

● Performing the action
specified by an instruction is
known as “executing the
instruction”

● The program counter (PC)
holds the memory address of
the next instruction

Fetch the instruction to
which the PC points

Execute the fetched
instruction

Increment the PC



Ch 1 / Foil 12

Input and Output Devices

● Accessories that allow computer to perform specific tasks
� Receiving information for processing
� Return the results of processing
� Store information

● Common input and output devices
� Speakers Mouse Scanner
� Printer Joystick CD-ROM
� Keyboard Microphone

● Some devices are capable of both input and output
� Floppy drive
� Hard drive
� Magnetic tape units



Ch 1 / Foil 13

Monitor

● Display device
● Also known as CRT (cathode ray tube)
● Operates like a television
● Controlled by an output device called a “graphics card”



Ch 1 / Foil 14

Monitor and Card Characteristics

● Refresh rate
■ How fast image is

updated on the screen
● Resolution

■ Displayable area
– Measured in dots per inch, dots

are often referred to as pixels (short for picture element)
■ Standard resolution is 640 by 480
■ Some cards support resolution up to 1280 by 1024

● Number of colors supported

1280
pixels

across
screen

1024
pixels
down

screen



Ch 1 / Foil 15

● Application software
■ Programs designed to perform specific tasks that are

transparent to the user
● System software

■ Programs that support the execution and development of
other programs

■ Two major types
– Operating systems
– Translation systems

Software



Ch 1 / Foil 16

Application Software

● Application software is the software that has made using
computers indispensable and popular

● Common application software
� Word processors
� Desktop publishing programs
� Spreadsheets
� Presentation managers
� Drawing programs

� Learning how to develop application
software is our focus



Ch 1 / Foil 17

● Controls and manages the computing resources
● Important services that an operating system provides

■ File system
– Directories, folders, files

■ Commands that allow for manipulation of the file system
– Sort, delete, copy

■ Ability to perform input and output on a variety of devices
■ Management of the running systems

● Examples
■ MSDOS ®, Windows ®, UNIX ®

Operating System



Ch 1 / Foil 18

Translation System

● Set of programs used to develop software
● A key component of a translation system is a translator
● Types of translators

� Compiler
�Converts from one language to another

� Linker
�Combines resources

● Examples
■ Borland C++ ®, Microsoft Visual C++ ®, g++, Code Warrior ®

– Performs compilation, linking, and other activities.



Ch 1 / Foil 19

Software Development

● Major activities
� Editing
� Compiling
� Linking with precompiled files

– Object files
– Library modules

� Loading and executing
� Viewing the behavior of the program



Ch 1 / Foil 20

Software Development Cycle

Compile

Link

Library routines

Other object files

Think

Edit

Load

Execute

Source Program



Ch 1 / Foil 21

IDEs

● Integrated Development Environments or IDEs
■ Translation systems that support the entire software

development cycle
– E.g., Borland, MS Visual C++, Code Warrior

● Combine all of the capabilities that a programmer would want
handy while developing software
� Editor
� Compiler
� Linker
� Loader
� Debugger
� Viewer



Ch 1 / Foil 22

Engineering Software

● Software engineering
■ Area of computer science concerned with building large

software systems
● Challenge

■ Tremendous advances in hardware have not been
accompanied by comparable advances in software



Ch 1 / Foil 23

Complexity Trade-off

● System complexity tends to grow as the system becomes more
user friendly

High

Low

Complexity

Total Software
Complexity

User Simplicity



Ch 1 / Foil 24

Software Engineering Goals

● Reliability
■ An unreliable life-critical system can be fatal

● Understandability
■ Future development becomes very difficult if software is hard

to understand
● Cost Effectiveness

■ Cost to develop and maintain should not exceed profit
● Adaptability

■ System that is adaptive is easier to alter and expand
● Reusability

■ Improves reliability and maintainability, and reduces
development costs



Ch 1 / Foil 25

Software Engineering Principles

● Abstraction
■ Extract the relevant properties of an object while ignoring

inessential details
● Encapsulation

■ Breaking down an object into parts, hiding and protecting its
essential information, and supplying an interface to modify
the information in a controlled and useful manner

● Modularity
■ Dividing an object into smaller pieces or modules such that

the object is easier to understand and manipulate
● Hierarchy

■ Ranking or ordering of objects based on some relationship
between them



Ch 1 / Foil 26

● Process of extracting only the relevant properties of an object
● Extracted properties define a view of the object
● Example

� Car dealer views a car from selling features standpoint
– E.g., price, length of warranty, color, optional equipment

� Mechanic views a car from systems maintenance standpoint
– E.g., type of oil, size of the oil filter, type of spark plugs

Abstraction

Price? Oil change?



Ch 1 / Foil 27

Encapsulation

● Breaking down an object into parts, hiding and protecting its
essential information, and supplying an interface to modify the
information in a controlled and useful manner

● By hiding the information its representation and content can be
changed without affecting other
parts of the system

● Example - car radio
■ Interface consists of the

controls and types of
connectors for
connecting the radio to the car

■ The details of how it works is hidden
■ To install and use a radio, we do not

need to know anything about the radio’s electrical system

Power
Connector

Radio

Antenna
Input

Speaker
Connectors



Ch 1 / Foil 28

Modularity

● Dividing an object into smaller pieces or modules such that the
modules hold useful information and the object is easier to
understand and manipulate

● Most complex systems are modular
● Example - Automobile can be decomposed into subsystems

� Cooling system
– Radiator
– Thermostat
– Water pump

■ Ignition system
– Battery
– Starter
– Spark plugs



Ch 1 / Foil 29

Hierarchy
● Ranking or ordering of objects based on some relationship

between them
● Hierarchies help us understand complex systems

■ Example - a company hierarchy helps employees
understand the company and their positions within it

● For complex systems, a useful way of ordering similar
abstractions is from least general to most general

■ Scientists use this technique to identify and classify species
● Hierarchical ordering based

on natural relationships is
called a taxonomy



Ch 1 / Foil 30

Northern Timber Wolf Taxonomy
Kingdom Animalia

Subkingdom Metaoza
Phylum Chordata

Subphylum Vertabrata
Superclass Tetrapoda

Class Mammalia
Subclass Theria

Infraclass Eutheria
Cohort Ferungulata

Superorder Ferae
Order Carnivora

Suborder Fissipeda
Superfamily Canoidea

Family Caninae
Subfamily Caninae

Genus Canis
Subspecies Canis lupus occidentalis

(Northern Timber Wolf)



Ch 1 / Foil 31

OO Design and Programming

● Object-oriented (OO) design and programming is a methodology
that supports good software engineering

● Object-oriented design promotes thinking about software in a
way that models the way we think and interact with the real world

● Example - watching television
■ The remote is a physical object

with properties
– Weight, size, can send

messages to the television
■ The television is also a physical

object with various properties



Ch 1 / Foil 32

Objects
● An object is almost anything that can be attributed with the

following characteristics
� Name
� Properties
� The ability to act upon receiving a message

– Basic message types
● Directive to perform an action
● Request to change one of its properties



Ch 1 / Foil 33

Object-Oriented Programming

● Example
■ Sketch the design of a simple computer game called Bug

Hunt
– Goal of game is to eliminate the bugs on the screen

■ Features of game
– A moving bug is displayed in a window on the screen
– The bug changes directions randomly
– A bug is eliminated by “swatting” it several times
– If a bug is eliminated, a faster one pops up
– If an attempted swat misses the bug, the game ends



Ch 1 / Foil 34

Object-Oriented Programming

● First step
■ Determine the objects

– Mouse
– Window
– Bug



Ch 1 / Foil 35

Bug Hunt

● To implement Bug Hunt, a
bug needs the following
properties

■ Position in the window
■ A display image or picture
■ Current speed
■ Current direction
■ Strength (the number of

swats it takes to eliminate
the bug)

Current
direction

Other possible
directions



Ch 1 / Foil 36

Bug Hunt

● A bug needs to handle the
following messages

■ Draw
■ Move
■ Change direction
■ Hit
■ Kill
■ Is-pointed-at

Game
Controller

Mouse

MouseClick

Yes or No
Response

Is Pointed
At?



Ch 1 / Foil 37

Bug
The bug
class

Bug objects
with
particular
properties

Bug Instantiation

Position: 9,2.2
Image:
Speed: 4
Direction: Left
Strength: 4

Position: 5,3.8
Image:
Speed: 2
Direction: Right
Strength: 2

Position
Image
Speed
Direction
Strength

Draw
Set Direction
Hit
Kill
Is pointed at



Ch 1 / Foil 38

Inheritance

Bug
Properties Messages

SlowBug
Messages

Move

FastBug
Messages

is a is a

Messages
inherited by

descendants

Draw

SetDirection

Hit

Kill

IsPointed At

Position

Properties
inherited by

descendants

Image

Velocity

Direction

Strength

Move


