
1

Introduction to Programming – Lecture 25

1

Chair of Software Engineering

Introduction to Programming

Bertrand Meyer

Last revised 25 January 2005

Introduction to Programming – Lecture 25

2

Chair of Software Engineering

Lecture 25:
Topological Sort — 2: Algorithm

Introduction to Programming – Lecture 25

3

Chair of Software Engineering

Back to software...

2

Introduction to Programming – Lecture 25

4

Chair of Software Engineering

Overall structure (1)

Given:
A type G
A set of elements
of type G
A relation
constraints on
these elements

Required:
An enumeration of
the elements in an
order compatible
with constraints

class
TOPOLOGICAL_SORTABLE [G]

feature

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

topologically_sorted: LINKED_LIST [G] is
require

no_cycle (constraints)
do

...
ensure

compatible (Result, constraints)
end

end

Introduction to Programming – Lecture 25

5

Chair of Software Engineering

Overall structure (2)

class
TOPOLOGICAL_SORTER [G]

feature

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

sorted: LINKED_LIST [G]

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

end

Instead of a function
topologically_sorted,
use:

• A procedure process.

• An attribute sorted
(set by process) to
hold the result.

Introduction to Programming – Lecture 25

6

Chair of Software Engineering

Non-uniqueness

In general there are several possible solutions

In practice topological sort uses an optimization
criterion to choose between possible solutions.

1

2

b

a

y

0
1 2 3 c

d

3

Introduction to Programming – Lecture 25

7

Chair of Software Engineering

Cycles

must be a partial order: no cycle in the
transitive closure of constraints

No circular chain of the form e0 e1, … en e0

If there are cycles there exists no solution to the
topological sort problem!

<

Introduction to Programming – Lecture 25

8

Chair of Software Engineering

Overall structure (2)

class
TOPOLOGICAL_SORTER [G]

feature

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

sorted: LINKED_LIST [G]

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

end

Introduction to Programming – Lecture 25

9

Chair of Software Engineering

Cycles

The relation constraints+ must be a partial
order: no cycle

In terms of the original relation this means
that constraints contains no set of pairs

{[e0, e1], [e1, e2], …, [en, e0]}

With such a cycle, there exists no total order
compatible with constraints

4

Introduction to Programming – Lecture 25

10

Chair of Software Engineering

Overall structure (2)

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

Assumes there are no cycles in the constraints.

Not realistic! Input may contain errors!

Introduction to Programming – Lecture 25

11

Chair of Software Engineering

Overall structure (3)

Don’t assume anything; find cycles as byproduct of
attempt to do topological sort

The task of process becomes:

“Attempt to do topological sort,
accounting for possible cycles”

if “Cycles found” then
“Report cycles”

end

Introduction to Programming – Lecture 25

12

Chair of Software Engineering

Overall structure (2)

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

5

Introduction to Programming – Lecture 25

13

Chair of Software Engineering

Overall structure (3)

process is

-- No precondition
do

...
ensure

compatible (sorted, constraints)

“sorted contains all elements that were
not initially involved in a cycle”

end

Introduction to Programming – Lecture 25

14

Chair of Software Engineering

The basic loop idea

…
loop

“Find a member next of elements for which constraints
contains no pair of the form [x, next]”

sorted.extend (next)

“Remove next from element, and remove from constraints
any pairs of the form [next, y]”

end

Introduction to Programming – Lecture 25

15

Chair of Software Engineering

Loop invariant

Scheme 2: “constraints+ has no cycles”

Scheme 3: “constraints+ has no cycles other than
any that were present originally”

6

Introduction to Programming – Lecture 25

16

Chair of Software Engineering

Terminology

If constraints has a pair [x, y], we say that

x is a predecessor of y

y is a successor of x

Introduction to Programming – Lecture 25

17

Chair of Software Engineering

Algorithm scheme
process is

do
from

create {...} sorted.make
invariant

“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle, given by remaining constraints, in remaining elements”
end

end

Introduction to Programming – Lecture 25

18

Chair of Software Engineering

Implementing the algorithm

(Number of elements: n
Number of constraints: m)

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

We start with these data structures, directly reflecting input data:

Example:
elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}

1

2

b

a

y

0
1 2 3 c

d

7

Introduction to Programming – Lecture 25

19

Chair of Software Engineering

Data structures 1: original

b c d
elements = {a, b, c, d}

constraints =
{[a, b], [a, d], [b, d], [c, d]}

a

a b a d b d c d

Efficiency: The best we can hope for: O (m+n)
m

n

Introduction to Programming – Lecture 25

20

Chair of Software Engineering

process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle, given by remaining constraints, in remaining elements”
end

end

Algorithm scheme

Introduction to Programming – Lecture 25

21

Chair of Software Engineering

The operations we need (n times)

Find out if there’s any element with no
predecessor (and then get one)

Remove a given element from the set of elements

Remove from the set of constraints all those
starting with a given element

Find out if there’s any element left

8

Introduction to Programming – Lecture 25

22

Chair of Software Engineering

Data structures 1: original

b c d
elements = {a, b, c, d}

constraints =
{[a, b], [a, d], [b, d], [c, d]}

a

a b a d b d c d

Efficiency: the best we can hope for: O (m+n)

Using elements and constraints as given wouldn’t allow
reaching this!

m

n

elements

constraints

Introduction to Programming – Lecture 25

23

Chair of Software Engineering

Implementing the algorithm

Choose a better internal representation

• Give every element a number (allows using
arrays)

• Represent constraints in a form adapted to what
we want to do with this structure:

• “Find next such that constraints has no pair of the
form [y, next]”

“Given next , remove from constraints all pairs of the
form [next, y]”

Introduction to Programming – Lecture 25

24

Chair of Software Engineering

process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle, given by remaining constraints, in remaining elements”
end

end

Algorithm scheme

9

Introduction to Programming – Lecture 25

25

Chair of Software Engineering

Data structure 1: representing elements

elements: ARRAY [G]
-- Items subject to ordering constraints
-- (Replaces the original list)

b
a

c

d

2

1

3

4

elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}

Introduction to Programming – Lecture 25

26

Chair of Software Engineering

Data structure 2: representing constraints

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Items that must appear after any given one

2

1

3

4

elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}

2 4

4

4

Introduction to Programming – Lecture 25

27

Chair of Software Engineering

Data structure 3: representing constraints

predecessor_count: ARRAY [INTEGER]
-- Number of items that must appear before
-- any given one

2

1

3

4

elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}

1

0

0

3

10

Introduction to Programming – Lecture 25

28

Chair of Software Engineering

process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle, given by remaining constraints, in remaining elements”
end

end

Algorithm scheme

Introduction to Programming – Lecture 25

29

Chair of Software Engineering

Finding a candidate (1)

Implement

next := “A member of elements with no predecessors”

as:

Let next be an integer, not yet processed, such that
predecessor_count.item (next) = 0

Seems to require an O (n) search through all indexes, but wait...

Introduction to Programming – Lecture 25

30

Chair of Software Engineering

process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle, given by remaining constraints, in remaining elements”
end

end

Algorithm scheme

11

Introduction to Programming – Lecture 25

31

Chair of Software Engineering

Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end

2

1

3

43

1
0

0

2

1

3

4

2 4

4

4

successors

predecessor_count

Introduction to Programming – Lecture 25

32

Chair of Software Engineering

Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end

2

1

3

43

1
0

0
0

2

1

3

4

2 4

4

4

successors

predecessor_count

Introduction to Programming – Lecture 25

33

Chair of Software Engineering

Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end

2

1

3

4

2 4

4

4

2

1

3

43

1
0

0

successors

0

2
predecessor_count

12

Introduction to Programming – Lecture 25

34

Chair of Software Engineering

Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end

2

1

3

43

1
0

0
0

2 01

2

1

3

4

2 4

4

4

successors

predecessor_count

Introduction to Programming – Lecture 25

35

Chair of Software Engineering

Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end

2

1

3

43

1
0

0
0

2 010

2

1

3

4

2 4

4

4

successors

predecessor_count

Introduction to Programming – Lecture 25

36

Chair of Software Engineering

Finding a candidate (1)

Implement

next := “A member of elements with no predecessors”

as:

Let next be an integer, not yet processed, such that
predecessor_count.item (next) = 0

We said:
“Seems to require an O (n) search through all indexes,
but wait...”

13

Introduction to Programming – Lecture 25

37

Chair of Software Engineering

Finding a candidate (2): on the spot

Complement

remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)

by
if remaining = 0 then

-- We have found a candidate!
candidates.put (freed)

end

Introduction to Programming – Lecture 25

38

Chair of Software Engineering

Data structure 4: candidates

candidates: STACK [INTEGER]
-- Items with no predecessor

Can be any dispenser structure:
stack, queue, priority queue

The choice will determine which topological sort we
get, when there are several possible ones

Introduction to Programming – Lecture 25

39

Chair of Software Engineering

Finding a candidate (2)

Implement

“Let next be a member of elements such that
constraints has no pair of the form [y, next]”

if candidates is not empty, as:

next := candidates.item

14

Introduction to Programming – Lecture 25

40

Chair of Software Engineering

The operations we need

Find out if there’s any element with no
predecessor (and then get one)

Remove a given element from the set of elements

Remove from the set of constraints all those
starting with a given element

Find out if there’s any element left

Introduction to Programming – Lecture 25

41

Chair of Software Engineering

process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle, given by remaining constraints, in remaining elements”
end

end

Detecting cycles

Introduction to Programming – Lecture 25

42

Chair of Software Engineering

Finding a candidate (3)

Implement the test

“Every member of has a predecessor”

as
not candidates.is_empty

To implement the test “No more elements”, keep
count of the processed elements and, at the end,
compare it with the original number of elements.

15

Introduction to Programming – Lecture 25

43

Chair of Software Engineering

Data structures: summary

elements: ARRAY [G]
-- Items subject to ordering constraints
-- (Replaces the original list)

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Items that must appear after any given one

predecessor_count: ARRAY [INTEGER]
-- Number of items that must appear before
-- any given one

candidates: STACK [INTEGER]
-- Items with no predecessor

Introduction to Programming – Lecture 25

44

Chair of Software Engineering

Initialization

Must process all elements and constraints
to create these data structures

This is O (m+n)

So is the rest of the algorithm

Introduction to Programming – Lecture 25

45

Chair of Software Engineering

Compiling: a useful heuristics

The data structure, in the way it is given, is often
not the most appropriate for specific algorithmic
processing

To obtain an efficient algorithm, you may need to
turn it into a specially suited form

We may call this “compiling” the data

Often, the “compilation” (initialization) is as costly
as the actual processing, or more, but that’s not a
problem if justified by the overall cost decrease

16

Introduction to Programming – Lecture 25

46

Chair of Software Engineering

Another lesson

It may be OK to duplicate information in our data structures:

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Items that must appear after any given one

predecessor_count: ARRAY [INTEGER]
-- Number of items that must appear before
-- any given one

This is a simple space-time tradeoff

2

1

3

4

2 4

4

4

2

1

3

4 2

1
0

0

Introduction to Programming – Lecture 25

47

Chair of Software Engineering

Software engineering lessons

Great algorithms are not enough

We must provide a solution with a clear
interface (API), easy to use

Turn patterns into components

Introduction to Programming – Lecture 25

48

Chair of Software Engineering

End of lecture 25

