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Back to software...
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Overall structure (1)

Given:
A type G
A set of elements 
of type G
A relation 
constraints on 
these elements

Required:
An enumeration of 
the elements in an 
order compatible 
with constraints

class
TOPOLOGICAL_SORTABLE [G]

feature

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

topologically_sorted: LINKED_LIST [G] is
require

no_cycle (constraints)
do

...
ensure

compatible (Result, constraints)
end

end
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Overall structure (2)

class
TOPOLOGICAL_SORTER [G]

feature

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

sorted: LINKED_LIST [G]

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

end

Instead of a function 
topologically_sorted, 
use:

• A procedure process.

• An attribute sorted
(set by process) to 
hold the result.
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Non-uniqueness 

In general there are several possible solutions 

In practice topological sort uses an optimization 
criterion to choose between possible solutions.
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Cycles

must be a partial order: no cycle in the 
transitive closure of constraints

No circular chain of the form e0 e1, … en e0

If there are cycles there exists no solution to the 
topological sort problem!

<
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Overall structure (2)

class
TOPOLOGICAL_SORTER [G]

feature

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

sorted: LINKED_LIST [G]

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

end
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Cycles

The relation constraints+ must be a partial 
order: no cycle

In terms of the original relation this means 
that constraints contains no set of pairs

{[e0, e1], [e1, e2], …, [en, e0]}

With such a cycle, there exists no total order 
compatible with constraints
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Overall structure (2)

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end

Assumes there are no cycles in the constraints.

Not realistic! Input may contain errors!
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Overall structure (3)

Don’t assume anything; find cycles as byproduct of 
attempt to do topological sort

The task of process becomes:

“Attempt to do topological sort,
accounting for possible cycles”

if “Cycles found” then
“Report cycles”

end
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Overall structure (2)

process is
require

no_cycle (constraints)
do

...
ensure

compatible (sorted, constraints)
end
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Overall structure (3)

process is

-- No precondition
do

...
ensure

compatible (sorted, constraints)

“sorted contains all elements that were
not initially involved in a cycle”

end
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The basic loop idea

…
loop

“Find a member next of elements for which constraints
contains no pair of the form [x, next]”

sorted.extend (next)

“Remove next from element, and remove from constraints
any pairs of the form [next, y]”

end
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Loop invariant

Scheme 2: “constraints+ has no cycles”

Scheme 3: “constraints+ has no cycles other than 
any that were present originally”
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Terminology

If constraints has a pair [x, y], we say that

x is a predecessor of y

y is a successor of x
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Algorithm scheme
process is

do
from

create {...} sorted.make
invariant

“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and 
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle,  given by remaining constraints, in remaining elements”
end

end
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Implementing the algorithm

(Number of elements: n
Number of constraints: m)

constraints: LINKED_LIST [TUPLE [G, G]]

elements: LINKED_LIST [G]

We start with these data structures, directly reflecting input data:

Example:
elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}
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Data structures 1: original

b c d
elements = {a, b, c, d}

constraints =
{[a, b], [a, d], [b, d], [c, d]}

a

a b a d b d c d

Efficiency: The best we can hope for: O (m+n)
m

n
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process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and 
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle,  given by remaining constraints, in remaining elements”
end

end

Algorithm scheme
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The operations we need (n times)

Find out if there’s any element with no 
predecessor (and then get one)

Remove a given element from the set of elements

Remove from the set of constraints all those 
starting with a given element

Find out if there’s any element left
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Data structures 1: original

b c d
elements = {a, b, c, d}

constraints =
{[a, b], [a, d], [b, d], [c, d]}

a

a b a d b d c d

Efficiency: the best we can hope for: O (m+n)

Using elements and constraints as given wouldn’t allow 
reaching this!

m

n

elements

constraints
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Implementing the algorithm

Choose a better internal representation

• Give every element a number (allows using 
arrays)

• Represent constraints in a form adapted to what 
we want to do with this structure:

• “Find  next such that constraints has no pair of the 
form [y, next]”

“Given next , remove from constraints all pairs of the 
form [next, y]”
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process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and 
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle,  given by remaining constraints, in remaining elements”
end

end

Algorithm scheme
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Data structure 1: representing elements

elements: ARRAY [G]
-- Items subject to ordering constraints
-- (Replaces the original list)

b
a

c

d

2

1

3

4

elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}
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Data structure 2: representing constraints

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Items that must appear after any given one

2

1
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4

elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}
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Data structure 3: representing constraints

predecessor_count: ARRAY [INTEGER]
-- Number of items that must appear before
-- any given one

2
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elements = {a, b, c, d}
constraints =

{[a, b], [a, d], [b, d], [c, d]}
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process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and 
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle,  given by remaining constraints, in remaining elements”
end

end

Algorithm scheme
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Finding a candidate (1)

Implement

next := “A member of elements with no predecessors”

as:

Let next be an integer, not yet processed, such that 
predecessor_count.item (next) = 0

Seems to require an O (n) search through all indexes, but wait...
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process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and 
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle,  given by remaining constraints, in remaining elements”
end

end

Algorithm scheme
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Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end
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Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end
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Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end
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Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end
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Removing successors
Implement

“Remove from constraints all pairs [next, y]”

as a loop over the successors of next:

targets := successors.item (next)
from targets.start until

targets.after
loop

freed := targets.item
remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)
targets.forth

end
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Finding a candidate (1)

Implement

next := “A member of elements with no predecessors”

as:

Let next be an integer, not yet processed, such that 
predecessor_count.item (next) = 0

We said:
“Seems to require an O (n) search through all indexes,
but wait...”
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Finding a candidate (2): on the spot

Complement

remaining := predecessor_count.item (freed)
predecessor_count.put (remaining −1, freed)

by
if remaining = 0 then

-- We have found a candidate! 
candidates.put (freed)

end
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Data structure 4: candidates

candidates: STACK [INTEGER]
-- Items with no predecessor

Can be any dispenser structure:
stack, queue, priority queue

The choice will determine which topological sort we 
get, when there are several possible ones
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Finding a candidate (2)

Implement

“Let next be a member of elements such that
constraints has no pair of the form [y, next]”

if candidates is not empty, as:

next := candidates.item
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The operations we need

Find out if there’s any element with no 
predecessor (and then get one)

Remove a given element from the set of elements

Remove from the set of constraints all those 
starting with a given element

Find out if there’s any element left
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process is
do

from
create {...} sorted.make

invariant
“constraints includes no cycles other than original ones” and
“sorted is compatible with constraints” and 
“All original elements are in either sorted or elements”

variant
“Size of elements”

until
“Every member of elements has a predecessor”

loop
next := “A member of elements with no predecessor”
sorted.extend (next)
“Remove next from elements”
“Remove from constraints all pairs of the form [next, y]”

end
if “No more elements” then

“Report that topological sort is complete”
else

“Report cycle,  given by remaining constraints, in remaining elements”
end

end

Detecting cycles
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Finding a candidate (3)

Implement the test

“Every member of has a predecessor”

as
not candidates.is_empty

To implement the test “No more elements”, keep 
count of the processed elements and, at the end, 
compare it with the original number of elements.
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Data structures: summary

elements: ARRAY [G]
-- Items subject to ordering constraints
-- (Replaces the original list)

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Items that must appear after any given one

predecessor_count: ARRAY [INTEGER]
-- Number of items that must appear before
-- any given one

candidates: STACK [INTEGER]
-- Items with no predecessor
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Initialization

Must process all elements and constraints 
to create these data structures

This is O (m+n)

So is the rest of the algorithm
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Compiling: a useful heuristics

The data structure, in the way it is given, is often 
not the most appropriate for specific algorithmic 
processing

To obtain an efficient algorithm, you may need to 
turn it into a specially suited form

We may call this “compiling” the data

Often, the “compilation” (initialization) is as costly 
as the actual processing, or more, but that’s not a 
problem if justified by the overall cost decrease
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Another lesson

It may be OK to duplicate information in our data structures:

successors: ARRAY [LINKED_LIST [INTEGER]]
-- Items that must appear after any given one

predecessor_count: ARRAY [INTEGER]
-- Number of items that must appear before
-- any given one

This is a simple space-time tradeoff

2

1

3

4

2 4

4

4

2

1

3

4 2

1
0

0

Introduction to Programming – Lecture 25

47

Chair of Software Engineering

Software engineering lessons

Great algorithms are not enough

We must provide a solution with a clear 
interface (API), easy to use

Turn patterns into components
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End of lecture 25


