

Introduction to Python Programming – Part I

Dr. Sudip Misra Associate Professor Department of Computer Science and Engineering IIT KHARAGPUR Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Why Python?

- Python is a versatile language which is easy to script and easy to read.
- It doesn't support strict rules for syntax.
- Its installation comes with integrated development environment for programming.
- It supports interfacing with wide ranging hardware platforms.
- With open-source nature, it forms a strong backbone to build large applications.

Python IDE

- Python IDE is a free and open source software that is used to write codes, integrate several modules and libraries.
- It is available for installation into PC with Windows, Linux and Mac.
- Examples: Spyder, PyCharm, etc.

Starting with Python

- Simple printing statement at the python interpreter prompt, >>> print "Hi, Welcome to python!" Output: Hi, Welcome to python!
- To indicate different blocks of code, it follows rigid indentation. if True:
 - print "Correct" else: print "Error"

Data-types in Python

- There are 5 data types in Python:
 - ✓ Numbers

String
 x = 'This is Python'
 print x
 print x[0]
 print x[2:4]

>>This is Python
>>T
>>is

Data-types in Python (contd..)

✓ List
 x = [10, 10.2, 'python']

✓ Tuple

✓ Dictionary
 d = {1:'item', 'k':2}

Controlling Statements

- if (cond.):

 statement 1
 statement 2

 elif (cond.):

 statement 1
 statement 2

 else:
 - statement 1
 - statement 2

Introduction to Internet of Things

while (cond.):

x = [1,2,3,4]

for i in x:

statement 1

statement 2

statement 1

statement 2

Controlling Statements (contd..)

Break
 for s in "string":

 if s == 'n':
 break
 print (s)

 print "End"

Continue
 for s in "string":

 if s == 'y':
 continue
 print (s)
 print "End"

Functions in Python

- Defining a function
 - ✓ Without return value

def funct_name(arg1, arg2, arg3): # Defining the function

statement 1 statement 2

✓ With return value

def funct_name(arg1, arg2, arg3): # Defining the function

statement 1 statement 2 return x

Returning the value

NPTEL ONLINE CERTIFICATION COURSES

Functions in Python

 Calling a function def example (str): print (str + "!")

example ("Hi")

Calling the function

Output:: Hi!

NPTEL ONLINE CERTIFICATION COURSES

Functions in Python (contd..)

 Example showing function returning multiple values def greater(x, y): if x > y: return x, y
 else: return y, x

```
val = greater(10, 100)
print(val)
```

Output:: (100,10)

NPTEL ONLINE CERTIFICATION COURSES

Functions as Objects

- Functions can also be assigned and reassigned to the variables.
- Example:

def add (a,b) return a+b

print (add(4,6)) c = add(4,6) print c

Output:: 10 10

Variable Scope in Python

Global variables:

These are the variables declared out of any function , but can be accessed inside as well as outside the function.

COURSES

Local variables:

These are the ones that are declared inside a function.

Example showing Global Variable

g_var = 10

def example(): l_var = 100 print(g_var)

example() # calling the function

Output:: 10

Example showing Variable Scope var = 10

def example(): var = 100 print(var)

example() # calling the function print(var)

Output:: 100

NPTEL ONLINE CERTIFICATION COURSES

Modules in Python

- Any segment of code fulfilling a particular task that can be used commonly by everyone is termed as a module.
- Syntax: import module_name #At the top of the code

using module_name.var

#To access functions and values with 'var' in the module

NPTEL ONLINE CERTIFICATION COURSES

Modules in Python (contd..)

Example:

import random

for i in range(1,10):
 val = random.randint(1,10)
 print (val)

Output:: varies with each execution

Modules in Python (contd..)

- We can also access only a particular function from a module.
- Example: from math import pi
 - print (pi)
 - Output:: 3.14159

Exception Handling in Python

- An error that is generated during execution of a program, is termed as exception.
- Syntax:
 - try: statements except _Exception_: statements else: statements

Exception Handling in Python (contd..)

Example: while True: try: n = input ("Please enter an integer: ") n = int(n)break except ValueError: print "No valid integer! " print "It is an integer!"

NPTEL ONLINE CERTIFICATION COURSES

Example Code: to check number is prime or not

```
x = int (input("Enter a number: "))
def prime (num):
           if num > 1:
             for i in range(2,num):
                       if (num % i) == 0:
                                  print (num,"is not a prime number")
                                  print (i, "is a factor of", num)
                                  break
             else:
                       print(num,"is a prime number")
           else:
              print(num,"is not a prime number")
prime (x)
```


NPTEL ONLINE CERTIFICATION COURSES

Thank You!!

NPTEL ONLINE CERTIFICATION COURSES

Introduction to Python Programming – Part II

Dr. Sudip Misra Associate Professor Department of Computer Science and Engineering IIT KHARAGPUR Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

File Read Write Operations

- Python allows you to read and write files
- No separate module or library required
- Three basic steps
 - Open a file
 - Read/Write
 - Close the file

Opening a File:

- Open() function is used to open a file, returns a file object open(file_name, mode)
- Mode: Four basic modes to open a file
 - r: read mode
 - w: write mode
 - a: append mode
 - r+: both read and write mode

Read from a file:

 read(): Reads from a file file=open('data.txt', 'r') file.read()

Write to a file:

Write(): Writes to a file
 file=open('data.txt', 'w')
 file.write('writing to the file')

Closing a file:

 Close(): This is done to ensure that the file is free to use for other resources file.close()

Using WITH to open a file:

- Good practice to handle exception while file read/write operation
- Ensures the file is closed after the operation is completed, even if an exception is encountered

with open("data.txt","w") as file: file.write("writing to the text file") file.close()

File Read Write Operations code + image

```
with open("PythonProgram.txt","w") as file:
    file.write("Writing data")
file.close()
```

```
with open("PythonProgram.txt","r") as file:
    f=file.read()
    print('Reading from the file\n')
    print (f)
file.close()
```

Reading from the file Writing data >>>

NPTEL ONLINE CERTIFICATION COURSES

Comma Separated Values Files

CSV module supported for CSV files

Read:

```
with open(file, "r") as csv_file:
  reader = csv.reader(csv_file)
  print("Reading from the CSV File\n")
  for row in reader:
     print(" ".join(row))
  csv_file.close()
```

Write:

```
data = ["1,2,3,4,5,6,7,8,9".split(",")]
file = "output.csv"
with open(file, "w") as csv_file:
    writer = csv.writer(csv_file, delimiter=',')
    print("Writing CSV")
    for line in data:
        writer.writerow(line)
csv_file.close()
```


import csv

```
#writing a csv file
data = ["1,2,3,4,5,6,7,8,9".split(",")]
file = "output.csv"
with open(file, "w") as csv_file:
    writer = csv.writer(csv_file, delimiter=',')
    print("Writing CSV")
    for line in data:
        writer.writerow(line)
csv_file.close()
```

```
#reading from a csv file
with open(file, "r") as csv_file:
    reader = csv.reader(csv_file)
    print("Reading from the CSV File\n")
    for row in reader:
        print(" ".join(row))
csv_file.close()
```

Writing CSV Reading from the CSV File 1 2 3 4 5 6 7 8 9 >>>

NPTEL ONLINE CERTIFICATION COURSES

Image Read/Write Operations

- Python supports PIL library for image related operations
- Install PIL through PIP

sudo pip install pillow

PIL is supported till python version 2.7. Pillow supports the 3x version of python.

Image Read/Write Operations

Reading Image in Python:

PIL: Python Image Library is used to work with image files

from PIL import Image

- Open an image file image=Image.open(image_name)
- Display the image image.show()

Image Read/Write Operations (contd..)

Resize(): Resizes the image to the specified size image.resize(255,255)

Rotate(): Rotates the image to the specified degrees, counter clockwise image.rotate(90)

- Format: Gives the format of the image
- Size: Gives a tuple with 2 values as width and height of the image, in pixels
- Mode: Gives the band of the image, 'L' for grey scale, 'RGB' for true colour image

print(image.format, image.size, image.mode)

NPTEL ONLINE CERTIFICATION COURSES

Image Read/Write Operations (contd..)

Convert image to different mode:

 Any image can be converted from one mode to 'L' or 'RGB' mode

conv_image=image.convert('L')

 Conversion between modes other that 'L' and 'RGB' needs conversion into any of these 2 intermediate mode

Output

Converting a sample image to Grey Scale

```
from PIL import Image
im = Image.open('/home/saswati/VRP_Linux/Images/i3.jpg')
im.show()
grey_image=im.convert('L')
grey_image.show()
grey_image.save('GreyScaleImage.jpg')
```


NPTEL ONLINE CERTIFICATION COURSES

Output

NPTEL ONLINE CERTIFICATION COURSES
Networking in Python

- Python provides network services for client server model.
- Socket support in the operating system allows to implement clients and servers for both connection-oriented and connectionless protocols.
- Python has libraries that provide higher-level access to specific application-level network protocols.

Networking in Python (contd..)

- Syntax for creating a socket:
 - s = socket.socket (socket_family, socket_type, protocol=0)

socket_family - AF_UNIX or AF_INET

```
socket_type - SOCK_STREAM or SOCK_DGRAM
```

```
protocol – default '0'.
```


Example - simple server

 The socket waits until a client connects to the port, and then returns a connection object that represents the connection to that client.

import socket import sys

Create a TCP/IP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the port
server_address = ('10.14.88.82', 2017)
print >>sys.stderr, 'starting up on %s port %s' % server_address
sock.bind(server_address)

Example - simple server (contd..)

Listen for incoming connections
sock.listen(1)

connection, client_address = sock.accept()

```
#Receive command
data = connection.recv(1024)
print(data)
sock.close()
```


Example - simple client

import socket import sys

Create a TCP/IP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#Connect to Listener socket
client_socket.connect(("10.14.88.82", 2017))
print>>sys.stderr,'Connection Established'

#Send command client_socket.send('Message to the server') print('Data sent successfully')

Code Snapshot

import socket import sys

Create a TCP/IP socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the port
server_address = ('10.14.88.82', 2017)
print >>sys.stderr, 'starting up on %s port %s' % server_address
sock.bind(server_address)

Listen for incoming connections
sock.listen(1)

connection, client_address = sock.accept()

#Receive command data = connection.recv(1024) print(data) sock.close()

Create a TCP/IP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#Connect to Listener socket
client_socket.connect(("10.14.88.82", 2017))
print>>sys.stderr,'Connection Established'

#Send command
client_socket.send('Message to the server')
print('Data sent successfully')

NPTEL ONLINE CERTIFICATION COURSES

Output

starting up on 10.14.88.82 port 2017 Message to the server saswati@saswati-BK361AA-ACJ-CQ3236IX:~/Desktop\$

Connection Established Data sent successfully saswati@saswati-BK361AA-ACJ-CQ3236IX:~/Desktop\$

NPTEL ONLINE CERTIFICATION COURSES

Thank You!!

NPTEL ONLINE CERTIFICATION COURSES

Introduction to Raspberry Pi – Part I

Dr. Sudip Misra Associate Professor Department of Computer Science and Engineering IIT KHARAGPUR Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

What is Raspberry Pi?

- Computer in your palm.
- Single-board computer.
- Low cost.
- Easy to access.

Specifications

Key features	Raspberry pi 3 model B	Raspberry pi 2 model B	Raspberry Pi zero
RAM	1GB SDRAM	1GB SDRAM	512 MB SDRAM
CPU	Quad cortex A53@1.2GHz	Quad cortex A53@900MHz	ARM 11@ 1GHz
GPU	400 MHz video core IV	250 MHz video core IV	250 MHz video core IV
Ethernet	10/100	10/100	None
Wireless	802.11/Bluetooth 4.0	None	None
Video output	HDMI/Composite	HDMI/Composite	HDMI/Composite
GPIO	40	40	40

NPTEL ONLINE CERTIFICATION COURSES

Basic Architecture

NPTEL ONLINE CERTIFICATION COURSES

Raspberry Pi

Start up raspberry pi

Raspberry Pi GPIO

• Act as both digital output and digital input.

• **Output**: turn a GPIO pin high or low.

• **Input**: detect a GPIO pin high or low.

Raspberry Pi pin configuration

Source: Raspberry Pi PCB Pin Overview, Wikimedia Commons (Online)

Source: Raspberry Pi GPIO, Wikimedia Commons (Online)

Basic Set up for Raspberry Pi

- HDMI cable.
- Monitor.
- Key board.
- Mouse.
- 5volt power adapter for raspberry pi.
- LAN cable .
- Min- 2GB micro sd card

Basic Set up for Raspberry Pi

Operating System

Official Supported OS :

- Raspbian
- NOOBS

Some of the third party OS :

- UBUNTU mate
- Snappy Ubuntu core
- Windows 10 core
- Pinet
- Risc OS

Source: Downloads, Raspberry Pi Foundation

Raspberry Pi Setup

Download Raspbian:

- Download latest Raspbian image from raspberry pi official site: <u>https://www.raspberrypi.org/downloads/</u>
- Unzip the file and end up with an .img file.

Raspberry Pi OS Setup

Write Raspbian in SD card :

- Install "Win32 Disk Imager" software in windows machine .
- Run Win32 Disk Imager
- Plug SD card into your PC
- Select the "Device"
- Browse the "Image File" (Raspbian image)
- Write

Raspberry Pi OS Setup

👒 Win32 Disk Imager - 1.0 🚽 🗖 🗙					
Image File					
Hash None Generate Copy					
Read Only Allocated Partitions Progress					
Cancel Read Write Verify Only Exit Waiting for a task.					

Basic Initial Configuration

Enable SSH

<u>Step1</u>: Open command prompt and type **sudo raspi-config** and press enter.

<u>Step2</u>: Navigate to SSH in the Advance option.

Step3: Enable SSH

Basic Initial Configuration

File Edit Tabs Help		Raspberry Pi Soft	ware Configuration Tool (raspi-config) —
Raspberry Pi Software Con 1 Expand Filesystem 2 Change User Password 3 Boot Options 4 Internationalisation Options 5 Enable Camera 6 Overclock	Ensures that all of the SD card s Change password for the default u Configure options for start-up Set up language and regional sett Enable this Pi to work with the R Configure overclocking for your P	A1 Overscan A2 Hostname A3 Memory Split A4 SSH I A5 VNC A6 SPI A7 I2C	You may need to configure oversca Set the visible name for this Pi Change the amount of memory made Enable/Disable graphical remote a Enable/Disable graphical remote a Enable/Disable automatic loading Enable/Disable automatic loading
7 Advanced Options 8 About raspi-config	Information about this configurat	A8 Serial A9 Audio AA 1-Wire	Enable/Disable shell and kernel m Force audio out through HDMI or 3 Enable/Disable one-wire interface

NPTEL ONLINE CERTIFICATION COURSES

Basic Initial Configuration contd.

Expand file system :

<u>Step 1</u>: Open command prompt and type **sudo raspi-config** and press enter.

Step 2: Navigate to Expand Filesystem

Step 3: Press enter to expand it.

Basic Initial Configuration contd.

Raspberry Pi Software Configuration Tool (raspi-config)				
<pre>1 Expand Filesystem</pre>	Ensures that all of the SD card s			
2 Change User Password	Change password for the default u			
3 Boot Options	Configure options for start-up			
4 Internationalisation Options	Set up language and regional sett			
5 Enable Camera	Enable this Pi to work with the R			
6 Overclock	Configure overclocking for your P			
7 Advanced Options	Configure advanced settings			
8 About raspi-config	Information about this configurat			

NPTEL ONLINE CERTIFICATION COURSES

Programming

Default installed :

- Python
- C
- C++
- Java
- Scratch
- Ruby

Note : Any language that will compile for ARMv6 can be used with raspberry pi.

TIFICATION COURSES

Source: Programming languages for Raspberry Pi, eProseed, Lonneke Dikmans, August 07, 2015

Popular Applications

- Media streamer
- Home automation
- Controlling BOT
- VPN
- Light weight web server for IOT
- Tablet computer

Thank You!!

Introduction to Internet of Things²¹

Introduction to Raspberry Pi – Part II

Dr. Sudip Misra Associate Professor Department of Computer Science and Engineering IIT KHARAGPUR Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Topics Covered

- Using GPIO pins
- Taking pictures using PiCam

Blinking LED

- Requirement:
- Raspberry pi
- LED
- 100 ohm resistor
- Bread board
- Jumper cables

NPTEL ONLINE CERTIFICATION COURSES

Installing GPIO library:

- Open terminal
- Enter the command "sudo apt-get install python-dev" to install python development

IFICATION COURSES

• Enter the command "sudo apt-get install python-rpi.gpio" to install GPIO library.

Connection:

- Connect the negative terminal of the LED to the ground pin of Pi
- Connect the positive terminal of the LED to the output pin of Pi

NPTEL ONLINE CERTIFICATION COURSES

Basic python coding:

Open terminal enter the command

sudo nano filename.py

- This will open the nano editor where you can write your code
- Ctrl+O : Writes the code to the file
- Ctrl+X : Exits the editor

Code: import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.OUT) for i in range (0,5): GPIO.output(11,True) time.sleep(1) GPIO.output(11,False) time.sleep(2) GPIO.output(11,True) GPIO.cleanup()

#GPIO library

Set the type of board for pin numbering # Set GPIO pin 11as output pin

Turn on GPIO pin 11

Blinking LED (contd..)

GNU nano 2.2.6

File: BLINK LED.py

```
import RPi.GPIO as GPIO ## GPIO library
import time
GPIO.setmode(GPIO.BOARD) ## Set the type of board for pin numbering
GPIO.setup(11, GPIO.OUT) ## Set GPIO pin 11 as output pin
for i in range (0,5):
    GPIO.output(11,True) ## Turn on GPIO pin 11
    time.sleep(1)
    GPIO.output(11,False)
    time.sleep(2)
    GPIO.output(11,True)
```


Blinking LED (contd..)

The LED blinks in a loop with delay of 1 and 2 seconds.

NPTEL ONLINE CERTIFICATION COURSES

Capture Image using Raspberry Pi

NPTEL ONLINE CERTIFICATION COURSES

Requirement

- Raspberry Pi
- Raspberry Pi Camera

NPTEL ONLINE CERTIFICATION COURSES

Raspberry Pi Camera

- Raspberry Pi specific camera module
- Dedicated CSI slot in Pi for connection
- The cable slot is placed between Ethernet port and HDMI port

NPTEL ONLINE CERTIFICATION COURSES

Connection

Boot the Pi once the camera is connected to Pi

NPTEL ONLINE CERTIFICATION COURSES

Configuring Pi for Camera

- In the terminal run the command "sudo raspi-config" and press enter.
- Navigate to "Interfacing Options" option and press enter.
- Navigate to "Camera" option.
- Enable the camera.
- Reboot Raspberry pi.

Configuring Pi for Camera (contd..)

ondinge ober rabbwera	change password for the default u
Hostname	Set the visible name for this Pi
Boot Options	Configure options for start-up
Localisation Options	Set up language and regional sett
Interfacing Options	Configure connections to peripher
Overclock	Configure overclocking for your P
Advanced Options	Configure advanced settings
Update	Update this tool to the latest ve
About raspi-config	Information about this configurat

P1	Camera	Enable/Disable connection to the
P2	SSH	Enable/Disable remote command lin
P3	VNC	Enable/Disable graphical remote a
P4	SPI	Enable/Disable automatic loading
P5	12C	Enable/Disable automatic loading
P6	Serial	Enable/Disable shell and kernel m
27	1-Wire	Enable/Disable one-wire interface
P8	Remote GPIO	Enable/Disable remote access to G
	<select></select>	<back></back>

NPTEL ONLINE CERTIFICATION COURSES

Capture Image

Open terminal and enter the command-

raspistill -o image.jpg

This will store the image as 'image.jpg'

Capture Image (contd..)

PiCam can also be processed using Python camera module python-picamera

sudo apt-get install python-picamera

Python Code:

Import picamera camera = picamera.PiCamera() camera.capture('image.jpg')

Source: PYTHON PICAMERA, Raspberry Pi Foundation

NPTEL ONLINE CERTIFICATION COURSES

Capture Image (contd..)

pi@raspberrypi:~ \$ raspistill -o image.jpg pi@raspberrypi:~ \$ <mark>-</mark>

NPTEL ONLINE CERTIFICATION COURSES

Thank You!!

NPTEL ONLINE CERTIFICATION COURSES

Implementation of IoT with Raspberry Pi: Part 1

Dr. Sudip Misra Associate Professor Department of Computer Science and Engineering IIT KHARAGPUR Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Internet Of Things

- Creating an interactive environment
- Network of devices connected together

Sensor

- Electronic element
- Converts physical quantity into electrical signals
- Can be analog or digital

Actuator

- Mechanical/Electro-mechanical device
- Converts energy into motion
- Mainly used to provide controlled motion to other components

System Overview

- Sensor and actuator interfaced with Raspberry Pi
- Read data from the sensor
- Control the actuator according to the reading from the sensor
- Connect the actuator to a device

System Overview (contd..)

Requirements

- DHT Sensor
- 4.7K ohm resistor
- Relay
- Jumper wires
- Raspberry Pi
- Mini fan

NPTEL ONLINE CERTIFICATION COURSES

DHT Sensor

- Digital Humidity and Temperature Sensor (DHT)
- PIN 1, 2, 3, 4 (from left to right)
 - PIN 1- 3.3V-5V Power supply
 - PIN 2- Data
 - PIN 3- Null
 - PIN 4- Ground

Relay

- Mechanical/electromechanical switch
- 3 output terminals (left to right)
 - NO (normal open):
 - Common
 - NC (normal close)

Temperature Dependent Auto Cooling System

Sensor interface with Raspberry Pi

- Connect pin 1 of DHT sensor to the 3.3V pin of Raspberry Pi
- Connect pin 2 of DHT sensor to any input pins of Raspberry Pi, here we have used pin 11
- Connect pin 4 of DHT sensor to the ground pin of the Raspberry Pi

NPTEL ONLINE CERTIFICATION COURSES

Temperature Dependent Auto Cooling System (contd..)

Relay interface with Raspberry Pi

- Connect the VCC pin of relay to the 5V supply pin of Raspberry Pi
- Connect the GND (ground) pin of relay to the ground pin of Raspberry Pi
- Connect the input/signal pin of Relay to the assigned output pin of Raspberry Pi (Here we have used pin 7)

Temperature Dependent Auto Cooling System (contd..)

Adafruit provides a library to work with the DHT22 sensor

- Install the library in your Pi-
 - Get the clone from GIT git clone https://github.com/adafruit/Adafruit_Python_DHT.g...
 - Go to folder Adafruit_Python_DHT cd Adafruit_Python_DHT
 - Install the library
 sudo python setup.py install

Source: ADAFRUIT DHTXX SENSORS, Lady Ada, 2012-07-29

Program: DHT22 with Pi

import RPi.GPIO as GPIO from time import sleep import Adafruit_DHT

#importing the Adafruit library

GPIO.setmode(GPIO.BOARD) GPIO.setwarnings(False) sensor = Adafruit_DHT.AM2302 print ('Getting data from the sensor')

create an instance of the sensor type

#humidity and temperature are 2 variables that store the values received from the sensor

humidity, temperature = Adafruit_DHT.read_retry(sensor,17)
print ('Temp={0:0.1f}*C humidity={1:0.1f}%'.format(temperature, humidity))

NPTEL ONLINE CERTIFICATION COURSES

Program: DHT22 interfaced with Raspberry Pi

Code

GNU nano 2.2.6 Fil	e: IOTSR.py
impart DDi CDIO an CDIO	
import RP1.GP10 as GP10	
from time import sleep	
impart Idefunit DUT	
import Adalfuit_DHI	
GPIO.setmode(GPIO.BOARD)	
GPIO.setwarnings(False)	
<pre>sensor = Adafruit_DHT.AM2302 # create an i</pre>	nstance of the sensor type
print ([Catting data from the geneor])	
print (become data riom the sensor)	
<pre>#humidity and temperature are 2 variables t</pre>	hat store the values received from the sensor
humidity, temperature = Adafruit_DHT.read_r	etry(sensor,17)

print ('Temp={0:0.1f}*C humidity={1:0.1f}%'.format(temperature, humidity))

Output

pi@raspberrypi:~ \$ python IOTSR.py Getting data from the sensor Temp=26.1*C humidity=65.9% pi@raspberrypi:~ \$

NPTEL ONLINE CERTIFICATION COURSES

Connection: Relay

- Connect the relay pins with the Raspberry Pi as mentioned in previous slides
- Set the GPIO pin connected with the relay's input pin as output in the sketch GPIO.setup(13,GPIO.OUT)
- Set the relay pin high when the temperature is greater than 30
 if temperature > 30:
 GPIO.output(13,0) # Relay is active low
 print('Relay is on')
 sleep(5)
 GPIO.output(13,1) # Relay is turned off after delay of 5 seconds

Connection: Relay (contd..)

GNU nano 2.2.6 File: IOTSR.pv mport RPi.GPIO as GPIO from time import sleep import Adafruit DHT GPIO.setmode (GPIO.BOARD) GPIO.setwarnings(False) GPIO.setup(7,GPIO.OUT) sensor = Adafruit_DHT.AM2302 # create an instance of the sensor type print ('Getting data from the sensor') humidity and temperature are 2 variables that store the values received from the sensor humidity, temperature = Adafruit DHT.read retry(sensor, 17) print ('Temp={0:0.1f}*C humidity={1:0.1f}%'.format(temperature, humidity)) if temperature > 20: GPIO.output(7,0) # Relay is active low print('Relay is on') sleep(5) GPIO.output(7,1) # Relay is turned off after delay of 5 seconds

NPTEL ONLINE CERTIFICATION COURSES

Connection: Fan

- Connect the Li-po battery in series with the fan
 - NO terminal of the relay -> positive terminal of the Fan.
 - Common terminal of the relay -> Positive terminal of the battery
 - Negative terminal of the battery -> Negative terminal of the fan.
- Run the existing code. The fan should operate when the surrounding temperature is greater than the threshold value in the sketch

Connection: Fan (contd..)

Result

The fan is switched on whenever the temperature is above the threshold value set in the code.

Notice the relay indicator turned on.

NPTEL ONLINE CERTIFICATION COURSES

Thank You!!

NPTEL ONLINE CERTIFICATION COURSES