Introduction to QCD and Jet I

Bo-Wen Xiao
Pennsylvania State University
and Institute of Particle Physics, Central China Normal University

Jet Summer School
McGill June 2012

Overview of the Lectures

- Lecture 1 - Introduction to QCD and Jet
- QCD basics
- Sterman-Weinberg Jet in $e^{+} e^{-}$annihilation
- Collinear Factorization and DGLAP equation
- Basic ideas of k_{t} factorization
- Lecture 2- k_{t} factorization and Dijet Processes in pA collisions
- k_{t} Factorization and BFKL equation
- Non-linear small- x evolution equations.
- Dijet processes in pA collisions (RHIC and LHC related physics)
- Lecture 3- k_{t} factorization and Higher Order Calculations in pA collisions
- No much specific exercise. 1. filling gaps of derivation; 2. Reading materials.

Outline

(1) Introduction to QCD and Jet

- QCD Basics
- Sterman-Weinberg Jets
- Collinear Factorization and DGLAP equation
- Transverse Momentum Dependent (TMD or k_{t}) Factorization

References:

- R.D. Field, Applications of perturbative QCD A lot of detailed examples.
- R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics
- CTEQ, Handbook of Perturbative QCD
- CTEQ website.
- John Collins, The Foundation of Perturbative QCD Includes a lot new development.
- Yu. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troyan, Basics of Perturbative QCD More advanced discussion on the small-x physics.
- S. Donnachie, G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD
- V. Barone and E. Predazzi, High-Energy Particle Diffraction

QCD

QCD Lagrangian

$$
L=\bar{\psi}\left(i \gamma \cdot \partial-m_{q}\right) \psi-\frac{1}{4} F^{\mu \nu a} F_{\mu \nu a}-g_{s} \overline{\psi \gamma} \cdot A \psi
$$

with $F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g f_{a b c} A_{\mu}^{b} A_{\nu}^{c}$.

- Non-Abelian gauge field theory. Lagrangian is invariant under $\operatorname{SU}(3)$ gauge transformation.
- Basic elements:
- Quark Ψ^{i} with 3 colors, 6 flavors and spin $1 / 2$.
- Gluon $A^{a \mu}$ with 8 colors and spin 1.

QCD Feynman Rules

$$
\begin{aligned}
& \text { యб人б }\left[-g_{\mu \nu}+(1-\xi) \frac{p_{\mu} p_{\nu}}{p^{2}+i 0}\right] \frac{i}{p^{2}+i 0} \\
& \sigma \longrightarrow \rho \quad \frac{i\left(\not p+m_{f}\right)_{\rho \sigma}}{p^{2}-m_{f}^{2}+i 0} \\
& \text {-------------- } \frac{i}{p^{2}+i 0} \\
& -i g \mu^{\epsilon}\left(t^{\alpha}\right)_{a b} \gamma_{\rho \sigma}^{\mu} \\
& \alpha \quad \alpha^{-\cdots-\cdots} \quad q, \gamma \\
& -g \mu^{\epsilon} f_{\alpha \beta \gamma} q^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& -i g^{2} \mu^{2 \epsilon} f_{c \alpha \beta} f_{\epsilon \gamma \delta}\left(g^{\kappa \mu} g^{\lambda \nu}-g^{\kappa \nu} g^{\lambda \mu}\right) \\
& -i g^{2} \mu^{2 \epsilon} f_{\epsilon \alpha \gamma} f_{\epsilon \beta \delta}\left(g^{\kappa \lambda} g^{\mu \nu}-g^{\kappa \nu} g^{\lambda \mu}\right) \\
& -i g^{2} \mu^{2 \epsilon} f_{\epsilon \alpha \delta} f_{\epsilon \beta \gamma}\left(g^{\kappa \lambda} g^{\mu \nu}-g^{\kappa \mu} g^{\lambda \nu}\right)
\end{aligned}
$$

Color Structure

Fundamental representation: $T_{i j}^{a}$ and Adjoint representation: $t_{b c}^{a}=-i f_{a b c}$

The effective color charge:

- $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$
- $\operatorname{Tr}\left(T^{a} T^{b}\right)=T_{F} \delta^{a b}$
- $T^{a} T^{a}=C_{F} \times 1$
- $f^{a b c} f^{a b d}=C_{A} \delta^{c d}$

ζ_{e}	m$_{k}$	m
C_{F}	C_{A}	T_{F}
Symbol	$\mathrm{SU}(n)$	$\mathrm{SU}(3)$
T_{F}	$\frac{1}{2}$	$\frac{1}{2}$
C_{F}	$\frac{n^{2}-1}{2 n}$	$\frac{4}{3}$
C_{A}	n	3

Fierz identity and Large N_{c} limit

- Fierz identity: $T_{i j}^{a} T_{k l}^{a}=\frac{1}{2} \delta_{i l} \delta_{j k}-\frac{1}{2 N_{c}} \delta_{i j} \delta_{k l}$

- Large N_{c} limit: $3 \gg 1$

PENNSTATE

(c)

Evidence for colors

Triangle anomaly:

- The ratio between the $e^{+} e^{-} \rightarrow$ hadrons total cross section and the $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$cross section.

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=N_{c} \sum_{u, d, s, \ldots} e_{i}^{2}\left[1+\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right]
$$

- $N_{c} \sum_{u, d, s} e_{i}^{2}=2$
- $N_{c} \sum_{u, d, s, c} e_{i}^{2}=\frac{10}{3}$
- $N_{c} \sum_{u, d, s, c, b} e_{i}^{2}=\frac{11}{3}$.
- The decay rate is given by the quark triangle loop:

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=N_{c}^{2}\left(e_{u}^{2}-e_{d}^{2}\right)^{2} \frac{\alpha^{2} m_{\pi}^{3}}{64 \pi^{3} f_{\pi}^{2}}=7.7 \mathrm{eV}
$$

- $f_{\pi}=92.4 \mathrm{MeV}$ is $\pi^{-} \rightarrow \mu^{-} \nu$ decay constant.
- The data give $\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.7 \pm 0.6 \mathrm{eV}$.
- Nonrenormalization of the anomaly. [Adler, Bardeen, 69]

QCD beta function and running coupling
[Gross, Wilczek and Politzer, 73]

- The QCD running coupling

$$
\alpha_{s}(Q)=\frac{2 \pi}{\left(\frac{11}{6} N_{c}-\frac{2}{3} T_{F} n_{f}\right) \ln Q^{2} / \Lambda^{2}}
$$

- QED has only fermion loop contributions, thus its coupling runs in opposite direction.

QED like contribution
gluon contribution

PENNSTATE
5

QCD beta function and running coupling

The QCD running coupling

$$
\alpha_{s}(Q)=\frac{2 \pi}{\left(\frac{11}{6} N_{c}-\frac{2}{3} T_{F} n_{f}\right) \ln Q^{2} / \Lambda^{2}}
$$

Quark loop QED like contribution

Anti-Screening

Non-Abelian gluon contribution

Brief History of QCD beta function

- 1954 Yang and Mills introduced the non-Abelian gauge thoery.
- 1965 Vanyashin and Terentyev calculated the beta function for a massive charged vector field theory.
- 1971 't Hooft computed the one-loop beta function for $\mathrm{SU}(3)$ gauge theory, but his advisor (Veltman) told him it wasn't interesting.
- 1972 Gell-Mann proposed that strong interaction is described by $\mathrm{SU}(3)$ gauge theory, namely QCD.
- 1973 Gross and Wilczek, and independently Politzer, computed the 1-loop beta-function for QCD.
- 1999 't Hooft and Veltman received the 1999 Nobel Prize for proving the renormalizability of QCD.
- 2004 Gross, Wilczek and Politzer received the Nobel Prize.

Confinement

- Non-perturbative QCD
- Linear potential \Rightarrow constant force.
- Intuitively, confinement is due to the force-carrying gluons having color charge, PENNSTATE as compared to photon which does not carry electric charge.
- Color singlet hadrons : no free quarks and gluons in nature

How to test QCD ?

- Non-perturbative part:
- Hadron mass (Lattice QCD)

- Parton distributions (No free partons in the initial state)
- Fragmentation function (No free quarks and gluons in the final state)
- Perturbative QCD: needs to have Factorization to separate the short distances (perturbative) physics from the long distance (non perturbative) physics.
- $e^{+} e^{-}$annihilation.
- Deep inelastic scattering.
- Hadron-hadron collisions, such as Drell-Yan processes.

- Collinear factorization demonstrates that collinear parton distribution and fragmentation function are universal.
- k_{t} factorization is more complicated.

$e^{+} e^{-}$annihilation

- Born diagram ($m<$) gives $\sigma_{0}=\frac{4 \pi}{3} \frac{\alpha_{c m}^{2}}{q^{2}} N_{c} \sum_{q} e_{q}^{2}$
- NLO: real contribution (3 body final state)

$$
\begin{aligned}
\frac{d \sigma_{3}}{d x_{1} d x_{2}}= & C_{F} \frac{\alpha_{s}}{2 \pi} \sigma_{0} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \\
\text { with } & \frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)}=\frac{1}{x_{3}}\left[\frac{1}{\left(1-x_{1}\right)}+\frac{1}{\left(1-x_{2}\right)}\right]
\end{aligned}
$$

- Energy conservation $\Rightarrow x_{1}+x_{2}+x_{3}=2$.
- $\left(p_{1}+p_{3}\right)^{2}=2 p_{1} \cdot p_{3}=\left(Q-p_{2}\right)^{2}=Q^{2}\left(1-x_{2}\right)$
- $x_{2} \rightarrow 1 \Rightarrow \vec{p}_{3} \| \vec{p}_{1} \Rightarrow$ Collinear Divergence (Similarly $x_{1} \rightarrow 1$)
- $x_{3} \rightarrow 0 \Rightarrow$ Soft Divergence.

Dimensional Regularization

To generate a finite contribution to the total cross section, use the standard procedure dimensional regularization:

- Analytically continue in the number of dimensions from $d=4$ to $d=4-2 \epsilon$.
- Convert the soft and collinear divergence into poles in ϵ.
- To keep g_{s} dimensionless, substitue $g_{s} \rightarrow g_{s} \mu^{\epsilon}$ with renormalization scale μ. At the end of the day, one finds

$$
\begin{aligned}
\sigma_{r} & =\sigma_{0} \frac{\alpha_{s}(\mu)}{2 \pi} C_{F}\left(\frac{Q^{2}}{4 \pi \mu^{2}}\right)^{-\epsilon} \frac{\Gamma[1-\epsilon]}{\Gamma[1-2 \epsilon]}\left[\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}-\frac{2 \pi^{2}}{3}\right] \\
\sigma_{v} & =\sigma_{0} \frac{\alpha_{s}(\mu)}{2 \pi} C_{F}\left(\frac{Q^{2}}{4 \pi \mu^{2}}\right)^{-\epsilon} \frac{\Gamma[1-\epsilon]}{\Gamma[1-2 \epsilon]}\left[-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\frac{2 \pi^{2}}{3}\right]
\end{aligned}
$$

and the $\operatorname{sum} \sigma=\sigma_{0}\left(1+\frac{\alpha_{s}(\mu)}{\pi}\right)$.

- Cancellation between real and virtual for total cross section. Bloch-Nordsieck theorem
- For more exclusive observables, the cancellation is not always complete. One needs to do subtractions of $\frac{1}{\epsilon}+\ln 4 \pi-\gamma_{E}(\overline{\mathrm{MS}}$ scheme).

PENNSTATE

- Sterman-Weinberg Jets.

Sterman-Weinberg Jets

Definition: We define, an event contributes if we can find two cones of opening angle δ that contain all of the energy of the event, excluding at most a fraction ϵ of the total, as the production of a pair of Sterman Weinberg jets.

- Jets in experiments are defined as a collimated distribution of hadrons with total energy E within the jet cone size $R \equiv \sqrt{\delta \phi^{2}+\delta \eta^{2}}$.
- Jets in QCD theory are defined as a collimated distribution of partons. Need to assume the parton-hadron duality.
- Jet finding algorithm: $\left(k_{t}\right.$, cone and anti- $\left.k_{t}\right)$ See other lecture.

$e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow$ jets

- a. The Born contribution: σ_{0}
- b. The virtual contribution: $-\sigma_{0} C_{F} \frac{\alpha_{s}}{2 \pi} \int_{0}^{E} \frac{d l}{l} \int_{0}^{\pi} \frac{4 \mathrm{~d} \cos \theta}{(1-\cos \theta)(1+\cos \theta)}$
- c. The soft real contribution: $\sigma_{0} C_{F} \frac{\alpha_{s}}{2 \pi} \int_{0}^{\epsilon E} \frac{d l}{l} \int_{0}^{\pi} \frac{4 \mathrm{~d} \cos \theta}{(1-\cos \theta)(1+\cos \theta)}$
- d. The hard real contribution: $\sigma_{0} C_{F} \frac{\alpha_{s}}{2 \pi} \int_{\epsilon E}^{E} \frac{d l}{l}\left[\int_{0}^{\delta}+\int_{\pi-\delta}^{\pi}\right] \frac{4 \mathrm{~d} \cos \theta}{(1-\cos \theta)(1+\cos \theta)}$
- $\operatorname{sum}=\sigma_{0}\left[1-C_{F} \frac{\alpha_{s}}{2 \pi} \int_{\epsilon E}^{E} \frac{d l}{l} \int_{\delta}^{\pi-\delta} \frac{4 \mathrm{~d} \cos \theta}{1-\cos ^{2} \theta}\right]=\sigma_{0}\left[1-\frac{4 C_{F} \alpha_{s}}{\pi} \ln \epsilon \ln \delta\right]$

Infrared Safety

- We have encountered two kinds of divergences: collinear divergence and soft divergence.
- Both of them are of the Infrared divergence type.That is to say, they both involve long distance.
- According to uncertainty principle, soft \leftrightarrow long distance;
- Also one needs an infinite time in order to specify accurately the particle momenta, and therefore their directions.
- For a suitable defined inclusive observable (e.g., $\sigma_{e^{+}{ }_{e^{-}} \rightarrow \text { hadrons }}$), there is a cancellation between the soft and collinear singularities occurring in the real and virtual contributions. Kinoshita-Lee-Nauenberg theorem
- Any new observables must have a definition which does not distinguish between

$$
\begin{gathered}
\text { parton } \leftrightarrow \text { parton }+ \text { soft gluon } \\
\text { parton } \leftrightarrow \text { two collinear partons }
\end{gathered}
$$

- Observables that respect the above constraint are called infrared safe observables. Infrared safety is a requirement that the observable is calculable in pQCD.
- Other infrared safe observables, for example, Thrust: $T=\max \frac{\sum_{i}\left|p_{i} \cdot n\right|}{\sum_{i}\left|p_{i}\right|} \ldots$

Fragmentation function

Factorization of single inclusive hadron production:

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma\left(e^{+} e^{-} \rightarrow h+X\right)}{\mathrm{d} x}=\sum_{i} \int_{x}^{1} C_{i}\left(z, \alpha_{s}\left(\mu^{2}\right), s / \mu^{2}\right) D_{h / i}\left(x / z, \mu^{2}\right)+\mathcal{O}(1 / s)
$$

- $D_{h / i}\left(x / z, \mu^{2}\right)$ encodes the probability that the parton i fragments into a hadron h carrying a fraction z of the parton's momentum.

- Heavy quark fragmentation function: ${ }^{f(z) \propto} \frac{1}{z\left(1-\frac{1}{z}-\frac{\epsilon_{0}}{1-z}\right)^{2}}$.

Deep inelastic scattering and Drell-Yan process

Light Cone coordinates and gauge

For a relativistic hadron moving in the $+z$ direction

- In this frame, the momenta are defined

$$
P^{+}=\frac{1}{\sqrt{2}}\left(P^{0}+P^{3}\right) \quad \text { and } \quad P^{-}=\frac{1}{\sqrt{2}}\left(P^{0}-P^{3}\right) \rightarrow 0
$$

- $P^{2}=2 P^{+} P^{-}-P_{\perp}^{2}$
- Light cone gauge for a gluon with momentum $k^{\mu}=\left(k^{+}, k^{-}, k_{\perp}\right)$, the polarization vector reads

$$
k^{\mu} \epsilon_{\mu}=0 \Rightarrow \quad \epsilon=\left(\epsilon^{+}=0, \epsilon^{-}=\frac{\epsilon_{\perp} \cdot k_{\perp}}{k^{+}}, \epsilon_{\perp}^{ \pm}\right) \quad \text { with } \quad \epsilon_{\perp}^{ \pm}=\frac{1}{\sqrt{2}}(1, \pm i)
$$

Deep inelastic scattering

Summary of DIS:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} E^{\prime} \mathrm{d} \Omega}=\frac{\alpha_{\mathrm{em}^{2}}}{Q^{4}} \frac{E^{\prime}}{E} L_{\mu \nu} W^{\mu \nu}
$$

with $L_{\mu \nu}$ the leptonic tensor and $W^{\mu \nu}$ defined as

$$
\begin{aligned}
W^{\mu \nu}= & \left(-g^{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) W_{1} \\
& +\frac{1}{m_{p}^{2}}\left(P^{\mu}-\frac{P \cdot q}{q^{2}} q^{\mu}\right)\left(P^{\nu}-\frac{P \cdot q}{q^{2}} q^{\nu}\right) W_{2}
\end{aligned}
$$

Introduce the dimensionless structure function:

$$
\begin{gathered}
F_{1} \equiv W_{1} \quad \text { and } \quad F_{2} \equiv \frac{Q^{2}}{2 m_{p} x} W_{2} \\
\Rightarrow \frac{\mathrm{~d} \sigma}{\mathrm{~d} x \mathrm{~d} y}=\frac{\alpha_{4 \pi s \mathrm{sem}}}{Q^{4}}\left[(1-y) F_{2}+x y^{2} F_{1}\right] \quad \text { with } \quad y=\frac{P \cdot q}{P \cdot k} .
\end{gathered}
$$

Quark Parton Model: Callan-Gross relation

$$
F_{2}(x)=2 x F_{1}(x)=\sum_{q} e_{q}^{2} x\left[f_{q}(x)+f_{\bar{q}}(x)\right] .
$$

Callan-Gross relation

Figure 8.10 The ratio $2.2 F_{1} / F_{\text {2 }}$, measured in SLAC electron-rucleon scautering experiment
For spin- $\frac{-1}{2}$ partons. puith $4=2$, a tatio of unity is expected in the limit of large $q^{2}-$ the

\Rightarrow Siver in anis $1 / 2$!

- The relation $\left(F_{L}=F_{2}-2 x F_{1}\right)$ follows from the fact that a spin- $\frac{1}{2}$ quark cannot absorb a longitudinally polarized vector boson.
- In contrast, spin-0 quark cannot absorb transverse bosons and so would give $F_{1}=0$.

Parton Density

The probabilistic interpretation of the parton density.

$$
\Rightarrow \quad f_{q}(x)=\int \frac{\mathrm{d} \zeta^{-}}{4 \pi} e^{i x P^{+} \zeta^{-}}\langle P| \bar{\psi}(0) \gamma^{+} \psi\left(0, \zeta^{-}\right)|P\rangle
$$

Comments:

- Gauge link \mathcal{L} is necessary to make the parton density gauge invariant.

$$
\mathcal{L}\left(0, \zeta^{-}\right)=\mathcal{P} \exp \left(\int_{0}^{\zeta^{-}} \mathrm{d} s_{\mu} A^{\mu}\right)
$$

- Choose light cone gauge $A^{+}=0$ and right path, one can eliminate the gauge link.
- Now we can interpret $f_{q}(x)$ as parton density in the light cone frame.
- Evolution of parton density: Change of resolution

b)

Large x : valence quarks

PENNSTATE
5

- At low- x, dominant channels are different.

Drell-Yan process

For lepton pair productions in hadron-hadron collisions:

the cross section is

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} M^{2} \mathrm{~d} Y}=\sum_{q} x_{1} f_{q}\left(x_{1}\right) x_{2} f_{\bar{q}}\left(x_{2}\right) \frac{1}{3} e_{q}^{2} \frac{4 \pi \alpha^{2}}{3 M^{4}} \quad \text { with } \quad Y=\frac{1}{2} \ln \frac{x_{1}}{x_{2}}
$$

- Collinear factorization proof shows that $f_{q}(x)$ involved in DIS and Drell-Yan process are the same.
- At low- x and high energy, the dominant channel is $q g \rightarrow q \gamma^{*}\left(l^{+} l^{-}\right)$.

Splitting function

$$
\begin{aligned}
& \mathcal{P}_{q q}^{0}(\xi)=\frac{1+\xi^{2}}{(1-\xi)_{+}}+\frac{3}{2} \delta(1-\xi) \\
& \mathcal{P}_{g q}^{0}(\xi)=\frac{1}{\xi}\left[1+(1-\xi)^{2}\right] \\
& \mathcal{P}_{q g}^{0}(\xi)=\left[(1-\xi)^{2}+\xi^{2}\right] \\
& \mathcal{P}_{g g}^{0}(\xi)=2\left[\frac{\xi}{(1-\xi)_{+}}+\frac{1-\xi}{\xi}+\xi(1-\xi)\right]+\left(\frac{11}{6}-\frac{2 N_{f} T_{R}}{3 N_{c}}\right) \delta(1-\xi)
\end{aligned}
$$

- $\xi=z=\frac{x}{y}$.
- $\int_{0}^{1} \frac{\mathrm{~d} \xi f(\xi)}{(1-\xi)_{+}}=\int_{0}^{1} \frac{\mathrm{~d} \xi[f(\xi)-f(1)]}{1-\xi} \Rightarrow \int_{0}^{1} \frac{\mathrm{~d} \xi}{(1-\xi)_{+}}=0$

Derivation of $\mathcal{P}_{q q}^{0}(\xi)$

The real contribution:

$$
\begin{aligned}
& k_{1}=\left(P^{+}, 0,0_{\perp}\right) ; \quad k_{2}=\left(\xi P^{+}, \frac{k_{\perp}^{2}}{\xi P^{+}}, k_{\perp}\right) \\
& k_{3}=\left((1-\xi) P^{+}, \frac{k_{\perp}^{2}}{(1-\xi) P^{+}},-k_{\perp}\right) \quad \epsilon_{3}=\left(0,-\frac{2 k_{\perp} \cdot \epsilon_{\perp}^{(3)}}{(1-\xi) P^{+}}, \epsilon_{\perp}^{(3)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|V_{q \rightarrow q g}\right|^{2}=\frac{1}{2} \operatorname{Tr}\left(k_{2} \gamma_{\mu} k_{1} \gamma_{\nu}\right) \sum \epsilon_{3}^{* \mu} \epsilon_{3}^{\nu}=\frac{2 k_{\perp}^{2}}{\xi(1-\xi)} \frac{1+\xi^{2}}{1-\xi} \\
\Rightarrow \quad & \mathcal{P}_{q q}(\xi)=\frac{1+\xi^{2}}{1-\xi} \quad(\xi<1)
\end{aligned}
$$

- Including the virtual graph

$$
\text { , use } \int_{a}^{1} \frac{\mathrm{~d} \xi g(\xi)}{(1-\xi)_{+}}=\int_{a}^{1} \frac{\mathrm{~d} \xi g(\xi)}{1-\xi}-g(1) \int_{0}^{1} \frac{\mathrm{~d} \xi}{1-\xi}
$$

$$
\begin{aligned}
& \frac{\alpha_{s} C_{F}}{2 \pi}\left[\int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} q(x / \xi) \frac{1+\xi^{2}}{1-\xi}-q(x) \int_{0}^{1} \mathrm{~d} \xi \frac{1+\xi^{2}}{1-\xi}\right] \\
= & \frac{\alpha_{s} C_{F}}{2 \pi}[\int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} q(x / \xi) \frac{1+\xi^{2}}{(1-\xi)_{+}}-q(x) \underbrace{\left.\int_{0}^{1} \mathrm{~d} \xi \frac{1+\xi^{2}}{(1-\xi)_{+}}\right]}_{\square}
\end{aligned}
$$

Derivation of $\mathcal{P}_{q q}^{0}(\xi)$

The real contribution:

$$
\begin{aligned}
& k_{1}=\left(P^{+}, 0,0_{\perp}\right) ; \quad k_{2}=\left(\xi P^{+}, \frac{k_{\perp}^{2}}{\xi P^{+}}, k_{\perp}\right) \\
& k_{3}=\left((1-\xi) P^{+}, \frac{k_{\perp}^{2}}{(1-\xi) P^{+}},-k_{\perp}\right) \quad \epsilon_{3}=\left(0,-\frac{2 k_{\perp} \cdot \epsilon_{\perp}^{(3)}}{(1-\xi) P^{+}}, \epsilon_{\perp}^{(3)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|V_{q \rightarrow q g}\right|^{2}=\frac{1}{2} \operatorname{Tr}\left(k_{2} \gamma_{\mu} \not k_{1} \gamma_{\nu}\right) \sum \epsilon_{3}^{* \mu} \epsilon_{3}^{\nu}=\frac{2 k_{\perp}^{2}}{\xi(1-\xi)} \frac{1+\xi^{2}}{1-\xi} \\
\Rightarrow \quad & \mathcal{P}_{q q}(\xi)=\frac{1+\xi^{2}}{1-\xi} \quad(\xi<1)
\end{aligned}
$$

- Regularize $\frac{1}{1-\xi}$ to $\frac{1}{(1-\xi)_{+}}$by including the divergence from the virtual graph.
- Probability conservation:

$$
\begin{aligned}
& P_{q q}+\mathrm{d} P_{q q}=\delta(1-\xi)+\frac{\alpha_{s} C_{F}}{2 \pi} \mathcal{P}_{q q}^{0}(\xi) d t \quad \text { and } \quad \int_{0}^{1} \mathrm{~d} \xi \mathcal{P}_{q q}(\xi)=0 \\
& \quad \Rightarrow \mathcal{P}_{q q}(\xi)=\frac{1+\xi^{2}}{(1-\xi)_{+}}+\frac{3}{2} \delta(1-\xi)=\left(\frac{1+\xi^{2}}{1-\xi}\right)
\end{aligned}
$$

Derivation of $\mathcal{P}_{g g}^{0}(\xi)$

$$
\begin{aligned}
& k_{1}=\left(P^{+}, 0,0_{\perp}\right) \quad \epsilon_{1}=\left(0,0, \epsilon_{\perp}^{(1)}\right) \quad \text { with } \quad \epsilon_{\perp}^{ \pm}=\frac{1}{\sqrt{2}}(1, \pm i) \\
& k_{2}=\left(\xi P^{+}, \frac{k_{\perp}^{2}}{\xi P^{+}}, k_{\perp}\right) \quad \epsilon_{2}=\left(0, \frac{2 k_{\perp} \cdot \epsilon_{\perp}^{(2)}}{\xi P^{+}}, \epsilon_{\perp}^{(2)}\right) \\
& k_{3}=\left((1-\xi) P^{+}, \frac{k_{\perp}^{2}}{(1-\xi) P^{+}},-k_{\perp}\right) \quad \epsilon_{3}=\left(0,-\frac{2 k_{\perp} \cdot \epsilon_{\perp}^{(3)}}{(1-\xi) P^{+}}, \epsilon_{\perp}^{(3)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{g \rightarrow g g}=\left(k_{1}+k_{3}\right) \cdot \epsilon_{2} \epsilon_{1} \cdot \epsilon_{3}+\left(k_{2}-k_{3}\right) \cdot \epsilon_{1} \epsilon_{2} \cdot \epsilon_{3}-\left(k_{1}+k_{2}\right) \cdot \epsilon_{3} \epsilon_{1} \cdot \epsilon_{2} \\
\Rightarrow & \left|V_{g \rightarrow g g}\right|^{2}=\left|V_{+++}\right|^{2}+\left|V_{+-+}\right|^{2}+\left|V_{++-}\right|^{2}=4 k_{\perp}^{2} \frac{[1-\xi(1-\xi)]^{2}}{\xi^{2}(1-\xi)^{2}} \\
\Rightarrow & \mathcal{P}_{g g}(\xi)=2\left[\frac{1-\xi}{\xi}+\frac{\xi}{1-\xi}+\xi(1-\xi)\right] \quad(\xi<1)
\end{aligned}
$$

- Regularize $\frac{1}{1-\xi}$ to $\frac{1}{(1-\xi)_{+}}$
- Momentum conservation:

$$
\int_{0}^{1} \mathrm{~d} \xi \xi\left[\mathcal{P}_{q q}(\xi)+\mathcal{P}_{g q}(\xi)\right]=0 \quad \int_{0}^{1} \mathrm{~d} \xi \xi\left[2 \mathcal{P}_{q g}(\xi)+\mathcal{P}_{g g}(\xi)\right]=0, \text { PENNSTATE }
$$

\Rightarrow the terms which is proportional to $\delta(1-\xi)$.

- HW: derive other splitting functions.

DGLAP equation

In the leading logarithmic approximation with $t=\ln \mu^{2}$, the parton distribution and fragmentation functions follow the DGLAP[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1972-1977] evolution equation as follows:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
q(x, \mu) \\
g(x, \mu)
\end{array}\right]=\frac{\alpha(\mu)}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[\begin{array}{ll}
C_{F} P_{q q}(\xi) & T_{R} P_{q g}(\xi) \\
C_{F} P_{g q}(\xi) & N_{c} P_{g g}(\xi)
\end{array}\right]\left[\begin{array}{l}
q(x / \xi, \mu) \\
g(x / \xi, \mu)
\end{array}\right]
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
D_{h / q}(z, \mu) \\
D_{h / g}(z, \mu)
\end{array}\right]=\frac{\alpha(\mu)}{2 \pi} \int_{z}^{1} \frac{d \xi}{\xi}\left[\begin{array}{ll}
C_{F} P_{q q}(\xi) & C_{F} P_{g q}(\xi) \\
T_{R} P_{q g}(\xi) & N_{c} P_{g g}(\xi)
\end{array}\right]\left[\begin{array}{c}
D_{h / q}(z / \xi, \mu) \\
D_{h / g}(z / \xi, \mu)
\end{array}\right]
$$

Comments:

- In the double asymptotic limit, $Q^{2} \rightarrow \infty$ and $x \rightarrow 0$, the gluon distribution can be solved analytically and cast into

$$
\begin{aligned}
& x g\left(x, \mu^{2}\right) \simeq \exp \left(2 \sqrt{\frac{\alpha_{s} N_{c}}{\pi} \ln \frac{1}{x} \ln \frac{\mu^{2}}{\mu_{0}^{2}}}\right) \quad \text { Fixed coupling } \\
& x g\left(x, \mu^{2}\right) \simeq \exp \left(2 \sqrt{\frac{N_{c}}{\pi b} \ln \frac{1}{x} \ln \frac{\ln \mu^{2} / \Lambda^{2}}{\ln \mu_{0}^{2} / \Lambda^{2}}}\right) \quad \text { Running coupling PENNSTATE }
\end{aligned}
$$

- The full DGLAP equation can be solved numerically.

Collinear Factorization at NLO

Use $\overline{\mathrm{MS}}$ scheme $\left(\frac{1}{\hat{\epsilon}}=\frac{1}{\epsilon}+\ln 4 \pi-\gamma_{E}\right)$ and dimensional regularization, DGLAP equation reads
$\left[\begin{array}{l}q(x, \mu) \\ g(x, \mu)\end{array}\right]=\left[\begin{array}{l}q^{(0)}(x) \\ g^{(0)}(x)\end{array}\right]-\frac{1}{\hat{\epsilon}} \frac{\alpha(\mu)}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left[\begin{array}{ll}C_{F} P_{q q}(\xi) & T_{R} P_{q g}(\xi) \\ C_{F} P_{g q}(\xi) & N_{c} P_{g g}(\xi)\end{array}\right]\left[\begin{array}{l}q(x / \xi) \\ g(x / \xi)\end{array}\right]$,
and
$\left[\begin{array}{l}D_{h / q}(z, \mu) \\ D_{h / g}(z, \mu)\end{array}\right]=\left[\begin{array}{c}D_{h / q}^{(0)}(z) \\ D_{h / g}^{(0)}(z)\end{array}\right]-\frac{1}{\hat{\epsilon}} \frac{\alpha(\mu)}{2 \pi} \int_{z}^{1} \frac{d \xi}{\xi}\left[\begin{array}{ll}C_{F} P_{q q}(\xi) & C_{F} P_{g q}(\xi) \\ T_{R} P_{q g}(\xi) & N_{c} P_{g g}(\xi)\end{array}\right]\left[\begin{array}{l}D_{h / q}(z / \xi) \\ D_{h / g}(z / \xi)\end{array}\right]$.

- Soft divergence cancels between real and virtual diagrams;
- Gluon collinear to the initial state quark \Rightarrow parton distribution function; Gluon collinear to the final state quark \Rightarrow fragmentation function. KLN theorem does not apply. PENNSTATE
- Other kinematical region of the radiated gluon contributes to the $\mathrm{NLO}\left(\mathcal{O}\left(\alpha_{s}\right)\right.$ correction) hard factor.

DGLAP evolution

H1 and ZEUS

5

DGLAP evolution

- NLO DGLAP fit yields negative gluon distribution at low Q^{2} and low x.
- Does this mean there is no gluons in that region? No

Phase diagram in QCD

- Low Q^{2} and low x region \Rightarrow saturation region.
- Use BFKL equation and BK equation instead of DGLAP equation.
- BK equation is the non-linear small- x evolution equation which describes the saturation physics.

Collinear Factorization vs k_{\perp} Factorization

Collinear Factorization

k_{\perp} Factorization(Spin physics and saturation physics)

- The incoming partons carry no k_{\perp} in the Collinear Factorization.
- In general, there is intrinsic k_{\perp}. It can be negligible for partons in protons, but should be taken into account for the case of nucleus target with large number of nucleons $(A \rightarrow \infty)$.
- k_{\perp} Factorization: High energy evolution with k_{\perp} fixed.
- Initial and final state interactions yield different gauge links. (Process dependent)
- In collinear factorization, gauge links all disappear in the light cone gauge, and PDFs are univerian
- Other approaches, such as nuclear modification and higher twist approach. (See last year's lecture.)

k_{t} dependent parton distributions

The unintegrated quark distribution

$$
f_{q}\left(x, k_{\perp}\right)=\int \frac{\mathrm{d} \xi^{-} \mathrm{d}^{2} \xi_{\perp}}{4 \pi(2 \pi)^{2}} e^{i x P^{+} \xi^{-}+i \xi_{\perp} \cdot k_{\perp}}\langle P| \bar{\psi}(0) \mathcal{L}^{\dagger}(0) \gamma^{+} \mathcal{L}\left(\xi^{-}, \xi_{\perp}\right) \psi\left(\xi_{\perp}, \xi^{-}\right)|P\rangle
$$

as compared to the integrated quark distribution

$$
f_{q}(x)=\int \frac{\mathrm{d} \xi^{-}}{4 \pi} e^{i x P^{+} \xi^{-}}\langle P| \bar{\psi}(0) \gamma^{+} \mathcal{L}\left(\xi^{-}\right) \psi\left(0, \xi^{-}\right)|P\rangle
$$

- The dependence of ξ_{\perp} in the definition.
- Gauge invariant definition.
- Light-cone gauge together with proper boundary condition \Rightarrow parton density interpretation.
- The gauge links come from the resummation of multiple gluon interactions.
- Gauge links may vary among different processes.

TMD factorization

One-loop factorization:

For gluon with momentum k

- k is collinear to initial quark \Rightarrow parton distribution function;
- k is collinear to the final state quark \Rightarrow fragmentation function.
- k is soft divergence (sometimes called rapidity divergence) \Rightarrow Wilson lines (Soft factor) or small- x evolution for gluon distribution.
- Other kinematical region of the radiated gluon contributes to the NLO $\left(\mathcal{O}\left(\alpha_{s}\right)\right.$ correction) hard factor.
- See new development in Collins' book.

