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disclaimer

The purpose of this talk is to give a very brief introduction to the
mathematical aspects of Quantum Mechanics making special
emphasis on those points that are relevant for Fernando Barbero’s
mini-course on Quantum Geometry and Quantum Gravity. I will left
untouched many interesting mathematical results and all the physical
ones!

I will follow an approach that, although standard in certain
mathematical literature, it is not the standard in the physical one

The starting point in (most of the) physics books is the definition of
physical observables as self-adjoint operators on a certain Hilbert space
H and (pure) states of the system as vectors on H. The emphasis there
is on vector states
Here the starting point will be the C∗-algebra generated by the
(bounded) physical observables. In this approach the states of a system
are secondary (derived) objects
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plan of the talk

1 General considerations about physical systems: Observables and states

2 Classical kinematics: Observables and states in Classical Mechanics

3 The crisis of Classical Physics (very very brief!)

4 Quantum kinematics: Observables and states in Quantum Mechanics
(Segal approach)

5 The simplest quantum system:
The quantum point particle ≡ Weyl C∗-algebra

6 Quantum dynamics: Schrödinger and Heisenberg equations
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physical systems

Systems The ‘things’ of the physical world in which we will be interested
will be called physical systems (or systems)

A free point particle in Euclidean space

A point particle constrained to move on a smooth surface in
Euclidean space

Electric and magnetic fields without sources in Euclidean space

But if we try to give a more precise definition, we need to specify what is a
‘thing’?
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kinematical aspects of physical systems

Operational point of view: A system is defined by the physical
properties –observables O– that can be measured on it (by concrete
physical devices) and the relations between them

Observables: A system is defined by a set O of observables endowed
with certain algebraic and metrical properties

States: The set S of states is characterized by the results of the
measurements of all the observables in the following sense:
Given a state ω ∈ S , for any A ∈ O, the expectation value ω(A) is
the average over the results of measurements of the observable A.
Thus, a state of a system is a functional ω : O → R (that satisfies
some properties that we will specify later)
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observables in classical mechanics

A typical system in classical mechanics is described in the cotangent
bundle T∗C of a configuration space C

The configuration space C of the system is the space of all possible positions
q ∈ C that it can attain (possibly subject to external constraints)

A single particle moving in ordinary Euclidean 3-space: C = R3

A double planar pendulum: C = T2 = S1 × S1

A rigid body: C = R3 × SO(3)

The phase space of the system T∗C consists of all possible values of position
and momentum variables (q, pa). T∗C has a canonical symplectic form Ωαβ

Classical observables belong to some class of functions on T∗C, say

O = C∞(T∗C; R) ⊂ C∞(T∗C; C)

In this case O is a commutative and associative ∗-algebra (the elements of
O satisfy A = A∗)
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classical observables: Poisson structure

The symplectic structure of T∗C endows O with the structure of a Poisson
∗-algebra with Poisson bracket

{A, B} := Ωαβ(dA)α(dB)β , ∀A, B ∈ O .

This Poisson structure is relevant in many respects

The dynamical evolution of the system is defined through {·, ·} once
a special observable –the classical Hamiltonian of the system H ∈ O–
is given:

dA
dt

= {A, H}

As we will see, the Poisson bracket is the classical analogue of the
quantum commutator (quantum observables will define a non abelian
algebra)
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Configuration observables Q(f ): For any f ∈ C∞(C) let

Q(f )(q, pa) := f (q)

Momentum observables P(v): For any v ∈ X∞(C) let

P(v)(q, pa) := va(q)pa

This family of observables is closed under Poisson brackets

{Q(f1), Q(f2)} = 0, {Q(f ), P(v)} = Q(Lvf ), {P(v1), P(v2)} = −P(Lv1v2)

If C is the Euclidean 3-space we can choose Euclidean coordinates x, y,
z : C → R and consider the 6 Killing vector fields of the Euclidean metric:

the configuration observables X = Q(x), Y = Q(y), and Z = Q(z) are the
usual position observables

the momentum observables PX = P(∂x), PY = P(∂y), PZ = P(∂z) are the
components of the usual linear momenta, and LX = P(y∂z − z∂y),
LY = P(z∂x − x∂z), LZ = P(x∂y − y∂x) are the components of the familiar
angular momenta.
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states in classical mechanics

Pure states: Classical Physics assumes that canonical variables can be
simultaneously measured with infinite precision. This leads us to identify
the points of the phase space with the (pure) states of the system. If
γ = (q, pa) ∈ T∗C is determined with total precision, the expectation value
of any observable is given by

ωγ(A) = A(q, pa) .

Pure states play a fundamental role in non-statistical mechanic: An experiment

performed on a system described by a pure state will attain maximal theoretical

accuracy

Mixed states: In many situations it is not possible to determine the pure
state of the system. If a system is in a state ω1 with probability α and in a
state ω2 with probability 1− α the effective state of the system w is

ω(A) = α ω1(A) + (1− α) ω2(A) .
The state ω is the mixture of the states ω1 and ω2.
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States: In dealing with a system of a very large (say 1023) number of
particles it is impossible in practice to determine all the positions and all
the velocities of the particles. Classically we always assume that the
system is in a pure state but we may be unable to determine it. This is
the usual situation in Classical Statistical Mechanics.

Classical states S are probability measures µ on T∗C

ωµ(A) =
∫

T∗C
A dµ

Pure states corresponds to Dirac measures

Variance: The variance of an observable A relative to the state ω

∆2
ω(A) := ω(A2)−ω(A)2

In classical physics, ω is a pure state iff ∆ω(A) = 0 for all A ∈ O
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logical structure of classical mechanics

A proposition in Classical Mechanics is of the form

p(S) :=“the pure state (q, pa) of the systems lies in S ⊂ T∗C”

Typically S = {A ∈ ∆ ⊂ R} for some A ∈ O
Classically, these propositions are either true or false and can be evaluated
if the pure state of the system is known. In general, if we are given a state
ωµ ∈ S , we can only measure the plausibility of a proposition to be true:

Prob(p({A ∈ ∆}) |ωµ) = µ({A ∈ ∆}) =
∫
{A∈∆}⊂T∗C

dµ

By associating propositions with subsets of T∗C it is clear that the logical
structure of Classical Physics is the standard Boolean logic

p(S1) ∨ p(S2) = p(S1 ∪ S2) , p(S1) ∧ p(S2) = p(S1 ∩ S2) , ¬p(S) = p(T∗C \ S) ,
p1 ∧ (p2 ∨ p3) = (p1 ∧ p2) ∨ (p1 ∧ p3) , p1 ∨ (p2 ∧ p3) = (p1 ∨ p2) ∧ (p1 ∨ p3)
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the crisis of classical mechanics

Classical Mechanics is a beautiful and natural way to model physical
systems. However it suffers from one serious problem: Nature is not
classical...
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atomic physics

Atoms (10−8cm) are made of a nucleus (neutrons and protons) and
electrons. Electrons and protons are charged particles. The electrons are
bound to the nucleus thought the Coulomb interaction

Atoms are obviously stable (we are here!). However, the stability of
electron orbits is incompatible with the laws of EM (accelerated
charges emits EM radiation ⇒ energy loss)

Experimental results show that the radiation absorbed or emitted by
an atom can have only a discrete set of sharply defined wavelengths
(only a discrete set of ‘orbits’ –energy levels– seem to be allowed)
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Particle-Wave duality

A beam of photons (electrons, or atoms) produces interference patterns

The interference pattern still results even if only one electron traverses the

apparatus at a time (right figure)
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quantum logic is not classical logic

Consider the following propositions
p :=“interference pattern is produced by the particle on the screen”
s1 :=“the particle has passed through the slit 1”
s2 := ¬s1 =“the particle has passed through the slit 2”

Experimentally, the interference pattern does not appear if we close one of
the slits so that we known for sure that the particle passes through the
other

p∧ s1 = p∧ s2 = ∅ ⇒ (p∧ s1) ∨ (p∧ s1) = ∅

On the other hand the particle has passed through one of the slits so

s1 ∨ s2 = 1 ⇒ p∧ (s1 ∨ s2) = p

Then p∧ (s1 ∨ s2) 6= (p∧ s1) ∨ (p∧ s1) so we cannot use the classical
Boolean logic to deal with these microscopic systems
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Heisenberg uncertainty ‘principle’

When dealing with systems at atomic scales (atoms 10−8cm; nucleus 10−23cm)
any attempt to measure the position of a particle with sharper and sharper
precision will produce a larger and larger variance in the momentum

In more mathematical terms: Let C the Euclidean 3-space and X = Q(x),
PX = P(∂x) the canonical position and linear momenta in the x direction

∆ω(PX) · ∆ω(X) ≥ h̄
2

(h̄ ∼ 10−34J · s)

In general, for the configuration and momentum observables

∆ω(P(v)) · ∆ω(Q(f )) ≥ h̄
2
|ω(Q(Lvf ))|

This implies that no states exist with the properties of the pure states of Classical
Physics (@ω such that ∆ω(A) = 0, ∀A)

If we accept the Heisenberg principle, we need to reconsider the mathematical
structure of O and S . This required the development of a new
mathematical framework for Mechanics –Quantum Mechanics– in which O
no longer is an abelian algebra
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postulates of quantum mechanics

By the early 1930s the mathematical theory of quantum mechanics was
firmly founded by von Neumann (and Stone). The basic rules could be
summarized as follows:

(1) an observable is a self-adjoint operator Â on a Hilbert space H;
(2) a (pure) state is a unit vector in ψ ∈ H;
(3) the expected value of Â in the state ψ is given by 〈ψ | Âψ〉;
(4) the dynamical evolution of the system is determined by the
specification of a self-adjoint operator Ĥ through one of the following
rules: ψ 7→ ψt = exp(itĤ)ψ or Â 7→ Ât = exp(itĤ)A exp(−itĤ)

In this talk we will follow the Segal approach to Quantum Mechanics
because it is an operational formalism that can be generalized to QFT in a
straightforward way
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Segal’s postulates (kinematics)

Segal’s postulates try to encode the minimal set of properties that the
class of observables for any physical theory should satisfy

Definition: Segal system

1 O is a linear space over R

2 (O, || · ||) is a real Banach space

3 O 3 A 7→ A2 ∈ O is a continuous function on (O, || · ||)
4 ||A2|| = ||A||2 , and ||A2 − B2|| ≤ max(||A2||, ||B2||)

From an operational point of view, only bounded observables play a
fundamental role. The norm of an observable is to be thought as its
maximum numerical value. If A1 and A2 are bounded observables, it is
possible to justify that λ1A1 + λ2A2 is also an observable
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It is possible to characterize the mathematical systems satisfying these
postulates

Special Segal systems: there exists an asociative C∗-algebra A with
identity, 1 ∈ A, such that

O = {A ∈ A |A = A∗ (i.e. A is self-adjoint)}
A is generated by O

Exceptional Segal systems if this is not the case. Exceptional Segal
systems are difficult to construct and, so far, no one has been able to
give an interesting physical application of these systems
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Summarizing, for special Segal’s systems:

A physical system is defined by its C∗-algebra A with identity 1
The states S are normalized positive linear functionals that separate
the observables

A state is call pure if it cannot be written as a nontrivial convex
combination of other states

Positive: ω positive in A if ω(A∗A) ≥ 0 , ∀A ∈ A. All positive
functionals are continuous on (A, || · ||)
Normalized: ω is normalized if ω(1) = 1
Notice that the set of states over A is a convex subset of A∗ (the
topological dual of A)

Functional separates the observables: If A1 6= A2 then ∃ω such that
ω(A1) 6= ω(A2) (full set of states)

Eduardo J. S. Villaseñor (UC3M) Introduction to Quantum Mechanics September 2007 20 / 44



simultaneous observability

An observable A is said to have a definite value in a state ω if
∆2

ω(A) := ω(A2)−ω(A)2 = 0

A class of observables are called simultaneously observable if there exists a
sufficient large number of states in which they simultaneously have definite values

A collection C of observables is simultaneously observable if the system
generated by C, A(C) has a full set of states in each of which every
observable in A(C) has a definite value

Theorem

C is simultaneously observable if and only if it is commutative
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Gelfand-Naimark characterization of abelian C∗-algebras

An abelian C∗-algebra A with identity is isometrically isomorphic to the
C∗-algebra of continuous functions on a compact Hausdorff topological
space (which is the Gelfand spectrum of A, sp(A), with the topology
induced by the weak ∗ topology)

If A is abelian with identity there exists an isomorphism A → C(sp(A)),
A 7→ fA. The Riesz-Markov theorem tells us that there is a measure µ on
sp(A) associated to every sate ω

ω(A) =
∫

sp(A)
fAdµ

If C is simultaneously observable class then it is isomorphic to the system of all
real valued continuous functions on a compact Hausdorff space sp(A(C)). In this
case

ω(A) =
∫

sp(A(C))
fA(s)dµ(s) , ∀A ∈ sp(A(C))

The situation for C is exactly the same as in Classical Mechanics. In order to
incorporate de Heisenberg uncertainty principle A is required to be a
non-abelian C∗-algebra
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statistical interpretation of QM

If A ∈ A is normal (AA∗ = A∗A) the C∗-algebra A(A) generated by 1,
A, and A∗ is abelian and it is possible to show that

sp(A(A)) = σ(A) = {λ ∈ C | λ1−A does not have a two-sided inverse}

Then, given any state ω, we can applying the GN-theorem

ω(B) =
∫

σ(A)
fB(λ)dµω,A(λ) , ∀B ∈ A(A) .

In particular ω(A) =
∫

σ(A)
λdµω,A(λ) . If we remember that ω(A) is the

expectation value of A on ω, the interpretation is clear. If A is an
observable (A = A∗)

The possible values that A can take in any experiment belong to σ(A)
When the state is ω, the probability that A takes values on some
subset of σ(A) is defined in terms of µω,A

For pure states µω,A is not, in general, a Dirac measure. Pure states
in Quantum Mechanics have statistical interpretation!
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Heisenberg uncertainty relations

Theorem (Heisenberg uncertainty relations)

Given two observables A = A∗ and B = B∗ and a state ω

∆ω(A) · ∆ω(B) ≥ 1
2
|ω([A, B])|

where
[A, B] := AB− BA .

Proof: For simplicity consider A and B such that ω(A) = ω(B) = 0 and
let Cλ := A− iλB, λ ∈ R. Then, the positivity of ω implies

0 ≤ ω(C∗
λCλ) = ω(A2) + λ2ω(B2) + iλω([A, B]) , ∀λ ∈ R

i.e.

∆ω(A) · ∆ω(B) ≥ 1
2
|ω([A, B])| .
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representations of C∗-algebras

Representations provide concrete realizations of C∗-algebras and also allow
the implementation of the superposition principle of wave mechanics

Definition

A representation (A, $, H), or simply $, of a C∗-algebra A in a Hilbert
space H is a ∗-homomorphism $ of A into the C∗-algebra B(H) of
bounded linear operators in H

We will be interested in faithful and irreducible representations:

$ is faithful if ker($) = {0}
$ is irreducible if {0} and H are the only closed subspaces invariant
under $(A)
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Theorem (Gelfand-Naimark)

A C∗-algebra is isomorphic to an algebra of bounded operators in a Hilbert space

Theorem

(Gelfand-Naimark-Segal) Given a C∗-algebra A with identity and a state ω,
there is a Hilbert space Hω and a representation

$ω : A → B(H)

such that
1. Hω contains a cyclic vector ψω (i.e. $(A)ψω = Hω)
2. ω(A) = 〈ψω | $ω(A)ψω〉 for all A ∈ A
3. every other representation $ in a Hilbert space H with a cyclic vector ψ such
that

ω(A) = 〈ψ | $(A)ψ〉 ∀A ∈ A

is unitarily equivalent to $ω, i.e. there exists an isometry U : H → Hω such that
Uψ = ψω , U$(A)U−1 = $ω(A) for all A ∈ A
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Given (A, $, H), the unit vectors ψ ∈ H define states ωψ on A:

ωψ(A) := 〈ψ | $(A)ψ〉 , 〈ψ |ψ〉 = 1

These states are called state vectors of the representation

The converse is also true (GNS theorem). However, if a state is not
pure, the representation (Hω, $ω, ψω) is reducible

Theorem. Let ω a state over the C∗-algebra A and (Hω, $ω, ψω) the associate
cyclic representation. Then (Hω, $ω, ψω) is irreducible iff ω is pure

Given a positive trace class operator b on H with trace equal to one

ωb(A) := tr(b$(A))

is a state over A. These states are called density matrices

Notice that ωb is of the form ωb(A) = ∑i λi〈ψi | $(A)ψi〉 , λi ≥ 0 , ∑i λi = 1 ,
〈ψi |ψi〉 = 1. Then ωb is a pure state iff b is a one dimensional projection
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abstract special Segal’s system:

A physical system is defined by its C∗-algebra A with identity 1
The states S are normalized positive linear functionals that separates
the observables

For a given irreducible representation (A, $, H)

representations of special Segal’s system:

Observables are bounded self-adjoint operators on H

Vector states ψ ∈ H, ||ψ|| = 1, define pure states
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Dirac quantum conditions

How can we describe specific Quantum Systems?

Usually one begins with a certain Classical System and follows some kind
of ‘quantization procedure’

Dirac’s quantum conditions

There exists a map ˆ : Oclassical ⊂ C∞(T∗C; R) → Oquantum such that

A 7→ Â is linear over R

If A is a constant function, then Â is the corresponding multiplication
operator

If {A1, A2} = A3 then [Â1, Â2] = −ih̄Â3 (notice that Oclassical must
be closed under {·, ·}). The commutator is the quantum
analogue of the classical Poisson bracket
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The quantum particle: Heisenberg algebra

The simplest example of a physical system is the quantum particle

How can one construct a C∗-algebra for the quantum particle?

Heisenberg Lie algebra: The basic ‘observables’ are position X and
momentum P = PX so, naively, one can try to consider the algebra of
observables generated by X and P which satisfy the Heisenberg
commutation relations (h̄ = 1)

[P, X] = i , [X, X] = 0 , [P, P] = 0

However, the Heisenberg algebra does not fall into the Segal scheme: X
and P cannot be self-adjoint elements of any C∗-algebra because ||X|| and
||P|| cannot both be finite (X and P are not observables in the operational
sense)

[P, Xn] = −inXn−1 ⇒ ||X||||P|| ≥ n/2 , ∀n ∈ N
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Consider the polynomial algebra generated by

U(α) = exp(iαX) , V(β) = exp(iβP)

Weyl algebra: The Weyl algebra is generated (trough complex linear
combinations and products) by the elements U(α) and V(β), where α, β ∈ R,
satisfy

U(α1)U(α2) = U(α1 + α2) , V(β1)V(β2) = V(β1 + β2) ,
U(α)V(β) = V(β)U(α) exp(−iαβ) .

U(0) = V(0) = 1

U(α)∗ = U(−α) , V(β)∗ = V(−β)

U(α)∗U(α) = U(α)U(α)∗ = 1 = V(β)∗V(β) = V(β)V(β)∗

||U(α)|| = ||V(β)|| = ||U(α)V(β)|| = 1 (these fix the norm of any
complex linear combinations and products of U’s and V′s)

Weyl C∗-algebra AWeyl is the || · ||-completion of the Weyl algebra

The quantum particle is the physical system characterized by AWeyl
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von Neumann uniqueness theorem

The classification of the representations of AWeyl is solved by the following
theorem due to von Neumann

Theorem (von Neumann)

All the regular irreducible representations of AWeyl in separable Hilbert
spaces are unitarily equivalent

Here ‘regular’ means that $(U(α)) and $(V(β)) are strongly continuous
in α and β respectively.
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Scrödinger representation

Schrödinger representation (AWeyl, $, H) is a regular irreducible

representation of AWeyl in the separable Hilbert space H = L2(R)

Denoting Û(α) := $(U(α)) and V̂(β) := $(V(β)), the representation is
defined by(

Û(α)ψ
)
(x) := eiαxψ(x) ,

(
V̂(β)ψ

)
(x) := ψ(x + β) , ∀ψ ∈ H

By using the Stone theorem, the Schrödinger representation provides also
a representation of the Heisenberg algebra

(X̂ψ)(x) = xψ(x) , D(X̂) = {ψ |
∫

R
|xψ(x)|2 dx < ∞}

(P̂ψ)(x) = iψ′(x) , D(P̂) = {ψ |ψ is abs. cont. and
∫

R
|ψ′(x)|2 dx < ∞}

Notice that the position operator acts as a multiplicative operator whereas
momentum operator acts as a derivative operator over the vector states of
the Schrödinger representation
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Scrödinger representation on C

Given an orientable configuration space C choose a Riemannian metric gab, with
conection ∇a and canonical volume-form ε, and let H = L2(C, ε)

〈ψ1 |ψ2〉 :=
∫
C

ψ1ψ2 ε , ψ1, ψ2 ∈ H

We can define (densely) configuration and momentum operators

Q̂(f )ψ := f ψ

P̂(v)ψ := −ih̄
(
Lvψ +

1
2
(divε(v))ψ

)
These operators satisfy the canonical commutation relations

[Q̂(f1), Q̂(f2)] = 0, [Q̂(f ), P̂(v)] = ih̄Q̂(Lvf ), [P̂(v1), P̂(v2)] = −ih̄P̂(Lv1v2)
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Notice that there is a correspondence between the Poisson algebra of the classical
configuration and momentum observables and the Lie algebra (under [·, ·]) of
these quantum operators

{Q(f1), Q(f2)} = 0, {Q(f ), P(v)} = Q(Lvf ), {P(v1), P(v2)} = −P(Lv1v2)

[Q̂(f1), Q̂(f2)] = 0, [Q̂(f ), P̂(v)] = ih̄Q̂(Lvf ), [P̂(v1), P̂(v2)] = −ih̄P̂(Lv1v2)

For the class of configuration and momentum observables (and only for this class)
the correspondence is given by

[A, B] = ih̄{̂A, B}

For a large class of classical mechanical systems on C the classical Hamiltonian
takes the form

H(q, pa) =
1
2

gab(q)papb + va(q)pa + V(q) .

For this it class is natural to identify the ‘quantum Hamiltonian’ (up to Ricci
curvature terms of gab) as

Ĥψ = − h̄2

2
gab∇a∇bψ− i

(
Lvψ +

1
2
(divε(v))ψ

)
+ Vψ
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algebraic dynamics

We are now interested in describing the relations between measurements
at different times for non-dissipative systems. In this case it it plausible to
demand the following

The relations between the measurements at times t1 and t2 depends
only on the difference t2 − t1

If an observable A is defined by some experimental device at a given
time, say t = 0, the same type of measurements performed at time t
defines an observable At

The algebra A generated by the observables is the same at any time

The time translation A 7→ αt(A) = At is a ∗-automorphism
(preserves the algebraic properties)

For any state ω and any observable A, the real function
t 7→ ω(αt(A)) is a continuous function
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Algebraic Dynamical Systems

A dynamical system is a triplet

(A, R, α)

where A is a C∗-algebra and, for each t ∈ R, αt is an automorphism of A
and α satisfies

α0 = id , αt1 ◦ αt2 = αt1+t2

α is weakly continuous i.e. t 7→ ω(αt(A)) is continuous ∀ω and A
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dynamics and representations

Given a representation (A, $,H) of the C∗-algebra of observables we will
say that $ is stable under the evolution αt if $ and $ ◦ αt are unitarily
equivalent. In other words

$(αt(A)) = Û−1(t)$(A)Û(t) , ∀A ∈ O
for some unitary operator

Û(t) : H → H .

The weak continuity of αt implies the weak continuity of Û(t). Then
applying Stone’s theorem we have

Û(t) = exp(−itĤ) , ∀t ∈ R

for some self-adjoint operator Ĥ, with dense domain D(Ĥ) ⊂ H

Ĥ is called the Quantum Hamiltonian (in the representation $)
The Hamiltonian is a representation dependent concept. In general it
is also an unbounded operator and does not belong to the C∗-algebra
generated by O.
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Schrödinger equation

Let ψ0 a vector state of a stable representation. Then

ω0(αt(A)) = 〈ψ0 | Û(t)−1$(A)Û(t)ψ0〉 = 〈Û(t)ψ0 | $(A)Û(t)ψ0〉 = ωt(A)

where ωt is the pure state defined by

ψ(t) := Û(t)ψ0 ∈ H

By choosing ψ0 ∈ D(Ĥ), we can differentiate ψ(t) with respect to t to get
the Schrödinger equation

Schrödinger equation

The Scrödinger equation is the time evolution equation for pure states

i
dψ

dt
= Ĥψ , ψ(0) = ψ0 ∈ D(Ĥ) .

where Ĥ is the (self-adjoint) quantum Hamiltonian of the system
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Heisenberg equation

The evolution can be equivalently formulated in terms of observables.
Given an observable represented by

Â0 := $(A0)

and defining
Â(t) := U(t)−1Â0U(t) ,

we get the Heisenberg equation:

Heisenberg equation

The evolution equation for an observable (in a certain representation) is

dÂ
dt

= i[Ĥ,Â] , A(0) = A0 ∈ B(H)
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example: quantum particle in a potential

For the Scrhödinger representation, given a Hamiltonian Ĥ, the Heisenberg
equations are the analog of the classical Hamilton equations:

˙̂X = i[Ĥ, X̂] , ˙̂P = i[Ĥ, P̂]

In particular, for the class of Hamiltonians

Ĥ = H(X̂, P̂) , where H(X, P) =
P2

2
+ V(X)

these are (formally)

Heisenberg equations for a particle in a potential

˙̂X =
∂H
∂P

(X̂, P̂) = P̂ ,

˙̂P = −∂H
∂X

(X̂, P̂) = V′(X̂)
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Is the ‘quantum Hamiltonian’

Ĥ =
P̂2

2
+ V(X̂)

well defined in the Schrödinger representation?

It is easy to show that 1
2 P̂2 + V(X̂) defines a symmetric operator... but

symmetric operators have several or none self-adjoint extensions!!

The taste of Kato’s theorems: For a potential V in a Kato class, the
Cauchy problem for the Scrödinger equation

i
∂ψ

∂t
(x, t) = −1

2
∂2ψ

∂x2 (x, t) + V(x)ψ(x, t)

ψ(x, 0) = ψ0(x) ∈ D(P̂2)

is well possed and the corresponding Cauchy problem has a unique
solution global in time.
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summary

We have provided a description of Quantum Mechanics in which, for systems
whose classical configuration space C is finite dimensional

Physical observables can be represented as bounded self-adjoint operators Â
in the Schrödinger representation on L2(C, ε)

Canonical variables do not commute. They cannot be simultaneously
measured

Pure states are vector states ψ ∈ L2(C, ε), ||ψ|| = 1

In contrast with classical mechanics, the observables do not have
well-defined values on pure states

When C is infinite dimensional there are important differences

The Schrödinger representation cannot be defined on C but on a more
general space L2(C, dµ)

The von Neumann uniqueness theorem cannot be applied. In fact, one
usually finds an infinite number of inequivalent representations of the
C∗-algebra of elementary variables. In this case, some additional input is
needed to fix a representation (symmetries can be used for this)
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