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Preface

Our purpose in writing this book is to provide a gentle introduction to a subject
that is enjoying a surge in interest. We believe that the subject is fascinating in its
own right, but the increase in interest can be attributed to several factors. One fac-
tor is the realization that networks are “everywhere”. From social networks such
as Facebook, the World Wide Web and the Internet to the complex interactions
between proteins in the cells of our bodies, we face the challenge of understand-
ing their structure and development. By and large natural networks grow in an
unpredictable manner and this is often modeled by a random construction. An-
other factor is the realization by Computer Scientists that NP-hard problems are
often easier to solve than their worst-case suggests and that an analysis of running
times on random instances can be informative.

History

Random graphs were used by Erdds [286] to give a probabilistic construction of
a graph with large girth and large chromatic number. It was only later that Erd6s
and Rényi began a systematic study of random graphs as objects of interest in their
own right. Early on they defined the random graph G, ,, and founded the subject.
Often neglected in this story is the contribution of Gilbert [383] who introduced
the model G, but clearly the credit for getting the subject off the ground goes to
Erd6s and Rényi. Their seminal series of papers [287], [289], [290], [291] and in
particular [288], on the evolution of random graphs laid the groundwork for other
mathematicians to become involved in studying properties of random graphs.

In the early eighties the subject was beginning to blossom and it received a
boost from two sources. First was the publication of the landmark book of Béla
Bollobas [136] on random graphs. Around the same time, the Discrete Mathemat-
ics group in Adam Mickiewicz University began a series of conferences in 1983.
This series continues biennially to this day and is now a conference attracting
more and more participants.

The next important event in the subject was the start of the journal Random
Structures and Algorithms in 1990 followed by Combinatorics, Probability and

vii
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Computing a few years later. These journals provided a dedicated outlet for work
in the area and are flourishing today.

Scope of the book

We have divided the book into four parts. Part one is devoted to giving a detailed
description of the main properties of Gy, ,, and G, ,. The aim is not to give best
possible results, but instead to give some idea of the tools and techniques used in
the subject, as well to display some of the basic results of the area. There is suffi-
cient material in part one for a one semester course at the advanced undergraduate
or beginning graduate level. Once one has finished the content of the first part,
one is equipped to continue with material of the remainder of the book, as well as
to tackle some of the advanced monographs such as Bollobds [136] and the more
recent one by Janson, Luczak and Rucinski [450].

Each chapter comes with a few exercises. Some are fairly simple and these are
designed to give the reader practice with making some the estimations that are so
prevalent in the subject. In addition each chapter ends with some notes that lead
through references to some of the more advanced important results that have not
been covered.

Part two deals with models of random graphs that naturally extend G, ,, and
G, p- Part three deals with other models. Finally, in part four, we describe some
of the main tools used in the area along with proofs of their validity.

Having read this book, the reader should be in a good position to pursue re-
search in the area and we hope that this book will appeal to anyone interested in
Combinatorics or Applied Probability or Theoretical Computer Science.
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Conventions/Notation

Often in what follows, we will give an expression for a large positive integer. It
might not be obvious that the expression is actually an integer. In which case, the
reader can rest assured that he/she can round up or down and obtained any required
property. We avoid this rounding for convenience and for notational purposes.

In addition we list the following notation:
Mathematical Relations

* f(x) =0(g(x)): | f(x)| < K|g(x)| for some constant K > 0 and all x € R.

* f(x) =0(g(x)): f(n) =0(g(x)) and g(x) = O(f(x)).
e f(x)=o0(g(x)) asx —a: f(x)/g(x) > 0asx—a.

* AKB:A/B— 0asn—oo.

* A> B: A/B — o0 asn — oo,
* A~ B: A/B — 1 as some parameter converges to 0 or co or another limit.
e ASBorBZ AifA<(1+40(1))B.

* [n]: This is {1,2,...,n}. In general, if a < b are positive integers, then
[a,b] ={a,a+1,...,b}.

* If S is a set and k is a non-negative integer then (i) denotes the set of k-
element subsets of S. In particular, ([Z}) dnotes the set of k-sets of {1,2,...,n}.
Furthermore, ( <Sk) = ];':0 (i)

Graph Notation
» G=(V,E): V=V(G) is the vertex set and E = E(G) is the edge set.

* ¢(G)=|E(G)| and for S CV we have eg(S) = |{e € E: e C S}|.
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* N(S)=Ng(S)={w ¢ S:3Jve Ssuchthat {v,w} € E}anddg(S) = |[Ng(S)|
for S CV(G).
* Ng(S,X)=Ng(S)NX forX,SCV.
o ds(x)=|{yeS:{x,y}€E}|forxeV,SCV.
* For sets X,Y CV(G) we let Ng(X,Y) ={yeY:IxeX {x,y} €E(G)}
and eg(X,Y) = |[Ng(X,Y)]|.
* For a graph H, aut(H) denotes the number of automorphisms of H.
Random Graph Models

[n]: The set {1,2,...,n}.

%, m: The family of all labeled graphs with vertex setV = [n] ={1,2,...,n}
and exactly m edges.

Gp,m:A random graph chosen uniformly at random from %, ;.
Eum=E(Gym).

Gy,p: A random graph on vertex set [n] where each possible edge occurs
independently with probability p.

Evp=E(Gy)).
G;?;j‘ : Gy m, conditioned on having minimum degree at least .

Gpyn,p: A random bipartite graph with vertex set consisting of two disjoint
copies of [n] where each of the n? possible edges occurs independently with
probability p.

Gy,r: A random r-regular graph on vertex set [n].

%, a: The set of graphs with vertex set [1] and degree sequence
d=(d,ds,....dy).

Gp,a: A random graph chosen uniformly at random from ¥, 4.

H,, m:k: A random k-uniform hypergraph on vertex set [1] and m edges of
size k.

H, p.x: A random k-uniform hypergraph on vertex set [n] where each of the
(7) possibles edge occurs independently with probability p.
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Gk—ow: A random digraph on vertex set [n] where each v € [n] indepen-
dently chooses k random out-neighbors.

Gy —_our: The graph obtained from @k_(,ut by ignoring orientation and coa-
lescing multiple edges.

Probability

P(A): The probability of event A.

[EZ: The expected value of random variable Z.

h(Z): The entropy of random variable Z.

Po(A): A random variable with the Poisson distribution with mean A.

N(0,1): A random variable with the normal distribution, mean 0 and vari-
ance 1.

Bin(n, p): A random variable with the binomial distribution with parameters
n, the number of trials and p, the probability of success.

EXP(A): A random variable with the exponential distribution, mean A i.e.
P(EXP(A) > x) = e~ **. We sometimes say rate 1/2 in place of mean A.

w.h.p.: A sequence of events 7,,n = 1,2,..., is said to occur with high
probability (w.h.p.) if lim, . P(<7,) = 1.

d . d . .

—: We write X,, — X to say that a random variable X,, converges in distribu-
. . . . d

tion to a random variable X, as n — o. Occasionally we write X, — N(0, 1)

(resp. X, 4 Po(1)) to mean that X has the corresponding normal (resp.
Poisson) distribution.
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Chapter 1

Random Graphs

Graph theory is a vast subject in which the goals are to relate various graph prop-
erties i.e. proving that Property A implies Property B for various properties A,B.
In some sense, the goals of Random Graph theory are to prove results of the form
“Property A almost always implies Property B”. In many cases Property A could
simply be “Graph G has m edges”. A more interesting example would be the fol-
lowing: Property A is “G is an r-regular graph, » > 3” and Property B is “G is
r-connected”. This is proved in Chapter 11.

Before studying questions such as these, we will need to describe the basic
models of a random graph.

1.1 Models and Relationships

The study of random graphs in their own right began in earnest with the seminal
paper of Erd6s and Rényi [288]. This paper was the first to exhibit the threshold
phenomena that characterize the subject.

Let ¢, », be the family of all labeled graphs with vertex set V = [n]| =
{1,2,...,n} and exactly m edges, 0 < m < (5). To every graph G € %, ,, we

assign a probability
n —1
P — (2) )
@-(")

Equivalently, we start with an empty graph on the set [n], and insert m edges

in such a way that all possible (%)) choices are equally likely. We denote such a
random graph by G, ,, = ([n], E,;») and call it a uniform random graph.

We now describe a similar model. Fix0 < p <1. Thenfor0 <m < (g) , assign
to each graph G with vertex set [n] and m edges a probability

P(G) = p"(1—p)&)—,

3



4 CHAPTER 1. RANDOM GRAPHS

where 0 < p < 1. Equivalently, we start with an empty graph with vertex set [n]
and perform (g) Bernoulli experiments inserting edges independently with proba-
bility p. We call such a random graph, a binomial random graph and denote it by
Gy,p = ([n],Ey,p). This was introduced by Gilbert [383]

As one may expect there is a close relationship between these two models of
random graphs. We start with a simple observation.

Lemma 1.1. A random graph G, p,, given that its number of edges is m, is equally

likely to be one of the (@) graphs that have m edges.

Proof. Let Gy be any labeled graph with m edges. Then since

{Gn,p = GO} - {|En,p| = m}
we have

I[DG :G();E =m
P(Gop = Go | [Enpl = m) = one = CorEnp| =)

P(Enp| =m)
_ P(Guyp = Go)
P(|En,p| = m)

p(1—p)B)

_ (@)){

Thus G, , conditioned on the event {G,, , has m edges} is equal in distribu-
tion to G, the graph chosen uniformly at random from all graphs with m edges.
Obviously, the main difference between those two models of random graphs is that
in G, ,, we choose its number of edges, while in the case of G, , the number of
edges is the Binomial random variable with the parameters (;) and p. Intuitively,
for large n random graphs G, ,, and G,, , should behave in a similar fashion when
the number of edges m in G, ,, equals or is “close” to the expected number of
edges of G, p, i.e., when

]

2
n n°p
= ~ — 1 . 1
m (2) PR (1.1)
or, equivalently, when the edge probability in G, ,
2m
PR —. (1.2)

n



1.1. MODELS AND RELATIONSHIPS 5

Throughout the book, we will use the notation f ~ g to indicate that f = (1 +
o(1))g, where the o(1) term will depend on some parameter going to 0 or oo.

We next introduce a useful “coupling technique” that generates the random
graph G, , in two independent steps. We will then describe a similar idea in
relation to Gy, ,,. Suppose that p; < p and p; is defined by the equation

1—p=(1-p1)(1-p2), (1.3)

or, equivalently,
P =P1+p2—pip2-

Thus an edge is not included in G, ,, if it is not included in either of G, ,,, or G, p,.
It follows that

Gn,p = Gn,p, UGn,p,,

where the two graphs G, ,,, G, p, are independent. So when we write
Gnapl g G”vP’

we mean that the two graphs are coupled so that G, is obtained from G, ,, by
superimposing it with G, ,, and replacing eventual double edges by a single one.
We can also couple random graphs G, ,,, and G,, ,,, where my > m; via

Gn’mz - Gn7m1 UH-

Here H is the random graph on vertex set [n] that has m = my —m; edges chosen
uniformly at random from (@) \Enm,-
Consider now a graph property & defined as a subset of the set of all labeled

graphs on vertex set [n], i.e., & C 2(’21) . For example, all connected graphs (on n
vertices), graphs with a Hamiltonian cycle, graphs containing a given subgraph,
planar graphs, and graphs with a vertex of given degree form a specific “graph
property”.

We will state below two simple observations which show a general relation-
ship between G, ,, and G, in the context of the probabilities of having a given
graph property . The constant 10 in the next lemma is not best possible, but in
the context of the usage of the lemma, any constant will suffice.

Lemma 1.2. Let & be any graph property and p = m/ (g) where m = m(n)— oo,
(g) —m — oo, Then, for large n,

P(Gpm € ) < 10m'?P(G,, € 2).
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Proof. By the law of total probability,

(2)

P(G,,c &) = P(Gy,p € P | |Enp| =k)P(|Es,p| = k)
k=0
(5)
= Z P(Gux € P)P(|Eyp| = k) (1.4)
k=0

> P(Gume P)P(|Eyp| =m).
To justify (1.4), we write

P(Gpp € P NI|E, | =k)
B(Gop€ P | |Enpl=k) = Lon2 d

P(|En,p| = k)
_ Z pk(l _p)N_k
i ()P —pN+k
|E(G)|=k
1
- Z Ny
Ge )
|E(G)|=k
= P(Gn,k S gZ)

Next recall that the number of edges |E, ,| of a random graph G,, , is a random
variable with the Binomial distribution with parameters () and p. Applying Stir-
ling’s Formula:

k
k!' = (140(1)) (g) V2rik, (1.5)

and putting N = (g) , we get, after substituting (1.5) for the factorials in (Zn\i ) ,

P(|Enpl =m) = <Z>pm(1_p)(§)—m
_ NN27N p™(1—p)N—m
N
- (1%(0)%,
Hence 1
P(|Enp| =m) > 10y/m’

SO
P(Gpm € ) < 10m'?P(G,, € 2).
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]

We call a graph property &2 monotone increasing if G € &2 implies G+e € &,

1.e., adding an edge e to a graph G does not destroy the property. For example,
connectivity and Hamiltonicity are monotone increasing properties. A monotone
increasing property is non-trivial if the empty graph K,, ¢ & and the complete
graph K,, € Z.
A graph property is monotone decreasing if G € &2 implies G —e € &, i.e., re-
moving an edge from a graph does not destroy the property. Properties of a graph
not being connected or being planar are examples of monotone decreasing graph
properties. Obviously, a graph property & is monotone increasing if and only
if its complement is monotone decreasing. Clearly not all graph properties are
monotone. For example having at least half of the vertices having a given fixed
degree d is not monotone.

From the coupling argument it follows that if &7 is a monotone increasing
property then, whenever p < p’ orm < n?/,

P(Gppc &) <P(G,y € 2), (1.7)

and
P(Gpm € P) <P(Gyw € ), (1.8)

respectively.
For monotone increasing graph properties we can get a much better upper bound
on P(G,, € &), in terms of P(G,, , € &), than that given by Lemma 1.2.

Lemma 1.3. Let & be a monotone increasing graph property and p = %. Then,
for large n and p = o(1) such that Np,N(1 — p)/(Np)'/? — oo,

P(Gum e P) <3P(Gyp € £2).

Proof. Suppose & is monotone increasing and p = §;, where N = (g) Then

N
P(Gppe &) = Z P(Gui € P)P(|Enp| =k)
k=0
N
> Y P(Gux€ P)P(|Enp| =k)
k=m

However, by the coupling property we know that for &k > m,

P(Gux € P) > P(Gpp € P).
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The number of edges |E, | in G, , has the Binomial distribution with parameters
N, p. Hence

N
P(Gup € D) >P(Gym € P) Z P(|Enp| = k)

k=m

N
=P(Gume P) Y (1.9)
k=m

where N
U = (k)Pk(l -p)N k.
Now, using Stirling’s formula,

NYp"(A—pNT" _ 1+o(1)
m™(N —m)N-m(2xm)V /2~ (2mm)1/2"

= (1+0(1))

Furthermore, if k =m+t where 0 <t < m!/? then

Uk+1 (N—k)p —1_NtTm>eXp{— t _l—l—l}

o —p) +1 —m—
we  (k+1)(1-p) 14 N—m—t m

after using Lemma 23.1(a),(b) to obtain the inequality. and our assumptions on
N, p to obtain the second.
It follows that for 0 <r < ml/z,

1+o(1) = s s+1
> TR _ _ >
Umtt = (2mm)1/2 exp{ s;’) N—m—s m -

(27m)1/2 ’
where we have used the fact that m = o(N).
It follows that
miml o1 |
Y w> —05/2)/ e dx > 5
k=m (277:) x=0 3
and the lemma follows from (1.9). L]

Lemmas 1.2 and 1.3 are surprisingly applicable. In fact, since the G, , model
is computationally easier to handle than G,, ,,, we will repeatedly use both lemmas
to show that P(G,, , € &) — 0 implies that P(G,,,, € &) — 0 when n — co. In
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other situations we can use a stronger and more widely applicable result. The
theorem below, which we state without proof, gives precise conditions for the
asymptotic equivalence of random graphs G, , and G, ;. It is due to Luczak
[557].

Theorem 1.4. Let 0 < py < 1, s(n) =n+/p(1 — p) — oo, and ®(n) — oo arbitrarily
slowly as n — oo,

(i) Suppose that & is a graph property such that P(G,, , € &) — py for all

me KZ) p—o(n)s(n), (;) p+ a)(n)s(n)} .

Then P(G,p € ) — po asn — oo,

(i) Let p— = p— w(n)s(n)/n* and p = p+ w(n)s(n)/n* Suppose that P is
a monotone graph property such that P(G, , € &) — po and P(G, ), €
P) = po. Then P(Gpyn € ) — po, as n — oo, where m = | (5) p|.

1.2 Thresholds and Sharp Thresholds

One of the most striking observations regarding the asymptotic properties of ran-
dom graphs is the “abrupt” nature of the appearance and disappearance of certain
graph properties. To be more precise in the description of this phenomenon, let us
introduce threshold functions (or just thresholds) for monotone graph properties.
We start by giving the formal definition of a threshold for a monotone increasing
graph property Z.

Definition 1.5. A function m* = m*(n) is a threshold for a monotone increasing
property & in the random graph G,, ,, if

lim P(G,,, € &) =

n—soo

0 ifm/m*— 0,
1 ifm/m" — oo,

as n — oo,

A similar definition applies to the edge probability p = p(n) in a random graph
Gn7p0
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Definition 1.6. A function p* = p*(n) is a threshold for a monotone increasing
property & in the random graph G, , if

lim P(G, , € ) =

n—oo

0 ifp/p*—0,
1 if p/p* — oo,

as n — oo,

It is easy to see how to define thresholds for monotone decreasing graph prop-
erties and therefore we will leave this to the reader.

Notice also that the thresholds defined above are not unique since any function
which differs from m*(n) (resp. p*(n)) by a constant factor is also a threshold for
P

A large body of the theory of random graphs is concerned with the search for
thresholds for various properties, such as containing a path or cycle of a given
length, or, in general, a copy of a given graph, or being connected or Hamiltonian,
to name just a few. Therefore the next result is of special importance. It was
proved by Bollobds and Thomason [157].

Theorem 1.7. Every non-trivial monotone graph property has a threshold.

Proof. Without loss of generality assume that & is a monotone increasing graph
property. Given 0 < € < 1 we define p(¢) by

P(Gn,p(s) € P)=¢.
Note that p(€) exists because
]P( np c ;@ Z p N |E(G|
Ge”

is a polynomial in p that increases from O to 1. This is not obvious from the
expression, but it is obvious from the fact that & is monotone increasing and that
increasing p increases the likelihood that G, , € .

We will show that p* = p(1/2) is a threshold for &. Let G|,G,...,Gy
be independent copies of G, ,. The graph G; UG, U ... UGy is distributed as
Gy 1—(1—pyr- Now 1 — (1 — p)* < kp, and therefore by the coupling argument

Gpi—(1-py € Gugps

and so G, x, ¢ & implies G1,G,...,Gy & &. Hence

P(Gup ¢ ) < [B(Gup ¢ 2))".



1.2. THRESHOLDS AND SHARP THRESHOLDS 11

Let @ be a function of n such that @ — oo arbitrarily slowly as n — oo, @® <
loglogn. (We say that f(n) < g(n) or f(n) =o(g(n)) if f(n)/g(n) — 0 asn —
0. Of course in this case we can also write g(n) > f(n).) Suppose also that
p=p*=p(1/2) and k = ®. Then

P(Gpop € P) <27% =0(1).

On the other hand for p = p*/ o,
1
5 =PGop ¢ P) < [PCrpra ¥ )"

So
B(Goprjo ¢ 2) 270 =1-0(1).

O
In order to shorten many statements of theorems in the book we say that a
sequence of events &, occurs with high probability (w.h.p.) if
lim P(&,) = 1.
n—soo
Thus the statement that says p* is a threshold for a property & in G,, , is the same
as saying that G, , ¢ & w.h.p.if p < p*, while G, , € & w.h.p. if p> p*.
In many situations we can observe that for some monotone graph properties
more “subtle” thresholds hold. We call them “sharp thresholds”. More precisely,

Definition 1.8. A function m* = m*(n) is a sharp threshold for a monotone in-
creasing property & in the random graph G, ,, if for every € > 0,

| [0 if mmr<i-e

A similar definition applies to the edge probability p = p(n) in the random
graph G, .

Definition 1.9. A function p* = p*(n) is a sharp threshold for a monotone in-
creasing property & in the random graph G, , if for every € > 0

, _J O if p/pr<l-e
J%P(G”’peﬁ)_{l if p/p*>1+e¢.

We will illustrate both types of threshold in a series of examples dealing with
very simple graph properties. Our goal at the moment is to demonstrate basic
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techniques to determine thresholds rather than to “discover” some “striking” facts
about random graphs.
We will start with the random graph G,, , and the property

2 = {all non-empty (non-edgeless) labeled graphs on n vertices}.

This simple graph property is clearly monotone increasing and we will show be-
low that p* = 1/n? is a threshold for a random graph Gp,p of having at least one
edge (being non-empty).

Lemma 1.10. Let & be the property defined above, i.e., stating that G,, , contains
at least one edge. Then

lim P(G, , € ) =

n—soo

0 if p<n?

1 if p>n2.
Proof. Let X be arandom variable counting edges in G, ,. Since X has the Bino-
mial distribution, then EX = (}) p, and VarX = (5) p(1—p) = (1—p)EX.

A standard way to show the first part of the threshold statement, i.e. that w.h.p.
arandom graph G, ,, is empty when p = o(n=?), is a very simple consequence of
the Markov inequality, called the First Moment Method, see Lemma 22.2. It states
that if X is a non-negative integer valued random variable, then

P(X >0) <EX.

Hence, in our case
2

MX>®§%¢%O
as n — oo, since p < n” 2.

On the other hand, if we want to show that P(X > 0) — 1 as n — oo then
we cannot use the First Moment Method and we should use the Second Moment
Method, which is a simple consequence of the Chebyshev inequality, see Lemma
22.3. We will use the inequality to show concentration around the mean. By this
we mean that wh.p. X ~ EX. The Chebyshev inequality states that if X is a
non-negative integer valued random variable then

VarX
(Ex)?

PX>0)>1-—

Hence P(X > 0) — 1 as n — oo whenever VarX /(EX)? — 0 as n — . (For
proofs of both of the above Lemmas see Section 22.1 of Chapter 22.)
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Now, if p > n~2 then EX — oo and therefore

VarX  1-p
(EX)2  EX

—0

as n — oo, which shows that the second statement of Lemma 1.10 holds, and so
p* = 1/n? is a threshold for the property of Gp,p being non-empty. ]

Let us now look at the degree of a fixed vertex in both models of random
graphs. One immediately notices that if deg(v) denotes the degree of a fixed vertex
in Gy, p, then deg(v) is a binomially distributed random variable, with parameters
n—1and p,ie., ford=0,1,2....,n—1,

paee) =)= (") o1 pr

while in G, , the distribution of deg(v) is Hypergeometric, i.e.,

e ()
((’z’) ’

m

B(deg(v) = d) =

Consider the monotone decreasing graph property that a graph contains an isolated
vertex, i.e. a vertex of degree zero:

& = {all labeled graphs on n vertices containing isolated vertices}.

We will show that m* = %nlogn is the sharp threshold function for the above
property & in Gy, .

Lemma 1.11. Let & be the property that a graph on n vertices contains at least
one isolated vertex and let m = 3n(logn+ o(n)). Then

lim P(Gpn € &) =

n—oo

{1 if o(n)— —oo

0 if o(n)— oo,

Proof. To see that the second statement of Lemma 1.11 holds we use the First
Moment Method. Namely, let Xy = X, o be the number of isolated vertices in the
random graph G, ,,. Then Xj can be represented as the sum of indicator random

variables
Xo=Y L,
vev

where

V:

1 if v is an isolated vertex in Gy,
0 otherwise.
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”(ngz)m 01 (1‘n<n—1><n—42i>—2i<n—z>) B

—2\™ 1 2
n(” ) (1+0(M)>, (1.10)
n n
assuming that @ = o(logn).

(For the product we use 1 > H;”:_Ol(l —xi)>1- Zl’.”:_ol x; which is valid for all
O S XO,XI,. t 7xm71 S 1)
Hence,

n—2\" _m g
EXo<n|—— <ne n =e ",
n

form = %n(logn + w(n)).
(14x < €* is one of the basic inequalities stated in Lemma 23.1.)

So EXy — 0 when @(n) — o as n — oo and the First Moment Method implies
that Xo = 0 w.h.p.

To show that Lemma 1.11 holds in the case when @ — —co we first observe
from (1.10) that in this case

> (1= o(pmexp {2 |
>(1—0(1))e™® — oo, (1.11)

The second inequality in the above comes from Lemma 23.1(b), and we have once
again assumed that @ = o(logn) to justify the first equation.

We caution the reader that EXy — o does not prove that Xop > 0 w.h.p. In
Chapter 5 we will see an example of a random variable Xz, where [E Xy — o and
yet Xy = 0 w.h.p.

We will now use a stronger version of the Second Moment Method (for its
proof see Section 22.1 of Chapter 22). It states that if X is a non-negative integer
valued random variable then

Var X
EX?2 EX2’

P(X > 0) > (1.12)

Notice that
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2
EX; =E (Z Iv) = Y E(LL)

veV u,veVv

=Y PUl,=1,1,=1)

u,vev

=Y P(l,=1,1,=1)+ Y P(l,=1I,=1)

u#v u=v

=n(n—1)

2 n—2 "
<n +]EXO
n

TEX,

= (1+0(1))(EXo)* +EXp.

The last equation follows from (1.10).
Hence, by (1.12),

P(X() > 0) >

B (EXp)?
C1+0(1)((EXy)2+EXp)
1
(1+o0(1))+ (EXp)~!

=1 _0<1)7

on using (1.11). Hence P(Xp > 0) — 1 when @(n) — —eo as n — oo, and so we can
conclude that m = m(n) is the sharp threshold for the property that G, ,, contains
isolated vertices. U

For this simple random variable, we worked with G, ,,. We will in general
work with the more congenial independent model G,, , and translate the results to
Gy, m if so desired.

For another simple example of the use of the second moment method, we will
prove

Theorem 1.12. If m/n — oo then w.h.p. G, ,, contains at least one triangle.

Proof. Because having a triangle is a monotone increasing property we can prove
the result in G,, , assuming that np — o,

Assume first that np = @ <logn where ® = @(n) — oo and let Z be the number
of triangles in G, ,. Then

EZ= (;Z)ﬁ > (1 —0(1))%3 o,
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We remind the reader that simply having [EZ — o is not sufficient to prove that
Z >0 w.h.p.
Nextlet 71,13, ...,Tyy,M = (’31) denote the triangles of K,,. Then

M
'J*l

M

Z (T; € Gy p) Z (T; € Gup | T; € Gyp) (1.13)
M

=MP(T, € G,)) Z (T; € Gy | T1 € Gy p) (1.14)

=EZx Z P(T; € Gpp | T € Gpp).
j=1
Here (1.14) follows from (1.13) by symmetry.
Now suppose that T}, T; share o; edges. Then

M

Z P(T; € Gpp | Ti € Gy,p)

=1

=1+ Z P(Tj € Gup | Ti € Gy,p)+
Jj:oj=1

Z P(T; € Gpp | Ti € Gy,p)
jZGjZO

=1+43(n—3)p*+ ((Z) _3n+g) 7

302
<l+—+EZ.
n

It follows that

2
VarZ < (EZ) (1 MECE +IEZ> —(RZ)*<2EZ.
n

Applying the Chebyshev inequality we get

VarZ 2
P(Z=0)<P(|Z-EZ| >EZ) < < — =o0(1).
(2=0) < P(Z-BZ| > BZ) < o < g = o)
. logn
This proves the theorem for p < %. For larger p we can use (1.7). 0

We can in fact use the second moment method to show that if m/n — oo then
w.h.p. G, contains a copy of a k-cycle Cy for any fixed k > 3. See Theorem 5.3,
see also Exercise 1.4.7.
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1.3 Pseudo-Graphs

We sometimes use one of the two the following models that are related to G, ,
and have a little more independence. (We will use Model A in Section 7.3 and
Model B in Section 6.4).

Model A: We let x = (xq,x2,...,X2,) be chosen uniformly at random from
[H]Zm_

Model B: We let x = (x1,x3,...,X2,) be chosen uniformly at random from

The (multi-)graph GS@,X € {A,B} has vertex set [n] and edge set E,
{{x2i—1,%2:} : 1 <i < m}. Basically, we are choosing edges with replacement. In
Model A we allow loops and in Model B we do not. We get simple graphs from
by removing loops and multiple edges to obtain graphs GS,X,,? ) with m* edges. It
is not difficult to see that for X € {A, B} and conditional on the value of m* that
Gg(nf) is distributed as G, ,,+, see Exercise (1.4.11).

More importantly, we have that for G1, G2 € 9, .

P(Gn{(m =G | GS,X,% is simple) = ]P’(Gn{(m =G| GnXm is simple), (1.15)
for X =A,B.
This is because fori = 1,2,
A mi2m B m!2™
P(Gum = Gi) = o and P(G,m = G;) = (,,)sz
2
Indeed, we can permute the edges in m! ways and permute the vertices within

edges in 2" ways without changing the underlying graph. This relies on (Gr,(f(n)1

being simple.
Secondly, if m = cn for a constant ¢ > 0 then with N = (3), and using Lemma
23.2,

Y m
P(G,SX,Z is simple) > (N) mi2 >

m/) n2m —
N™ m*>  m? ) m2"
1—o(1))— —
(1ol rexp{ -3~ oo | "
= (1—-0(1))e" €9, (1.16)
It follows that if &7 is some graph property then

P(Gpm € &) = P(G;an €| G,SX,% is simple) <
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(1+0(1)e PG € 2). (1.17)

Here we have used the inequality P(A | B) < P(A)/P(B) for events A, B.

We will use this model a couple of times and (1.17) shows that if IP’((G,SXM)1 €
P) =o0(1) then P(G,,, € &) =0(1), for m = O(n).

Model G,(f% was introduced independently by Bollobds and Frieze [147] and
by Chvatal [196].

1.4 Exercises

We point out here that in the following exercises, we have not asked for best pos-
sible results. These exercises are for practise. You will need to use the inequalities
from Section 23.1.

1.4.1 Suppose that p = d/n where d = o(n'/3). Show that w.h.p. G, , has no
copies of Kjy.

1.4.2 Suppose that p = d/n where d > 1. Show that w.h.p. G, , contains an
induced path of length (logn)'/2.

1.4.3 Suppose that p = d/n where d = O(1). Prove that wh.p., in G, p, for all
S C [n],|S| < n/logn, we have e(S) < 2|S|, where e(S) is the number of
edges contained in S.

1.4.4 Suppose that p = logn/n. Let a vertex of G, , be small if its degree is less
than logn/100. Show that w.h.p. there is no edge of G, , joining two small
vertices.

1.4.5 Suppose that p = d/n where d is constant. Prove that w.h.p., in G, ,, no
vertex belongs to more than one triangle.

1.4.6 Suppose that p = d /n where d is constant. Prove that w.h.p. G, , contains
a vertex of degree exactly {(log n)Y/ 2} :

1.4.7 Suppose that k > 3 is constant and that np — . Show that w.h.p. G,
contains a copy of the k-cycle, Cy.

1.4.8 Suppose that 0 < p < 1 is constant. Show that w.h.p. G, , has diameter
two.

1.4.9 Let f : [n] — [n] be chosen uniformly at random from all n" functions from
[n] = [n]. Let X = {j: Ais.t. f(i) = j}. Show that w.h.p. |X|~ e !n.
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1.4.10 Prove Theorem 1.4.

1.4.11 Show that conditional on the value of m** that G\, is distributed as Gy, -,
where X = A, B.

1.5 Notes

Friedgut and Kalai [330] and Friedgut [331] and Bourgain [161] and Bourgain
and Kalai [160] provide much greater insight into the notion of sharp thresholds.
Friedgut [329] gives a survey of these aspects. For a graph property <7 let i (p, <)
be the probability that the random graph G, , has property </. A threshold is

coarse if it is not sharp. We can identify coarse thresholds with p%f{) < Cfor
some absolute constant O < C. The main insight into coarse thresholds is that to
exist, the occurrence of &7 can in the main be attributed to the existence of one
of a bounded number of small subgraphs. For example, Theorem 2.1 of [329]
states that there exists a function K(C, €) such that the following holds. Let .2 be
a monotone property of graphs that is invariant under automorphism and assume

that p%f@ < C for some constant 0 < C. Then for every € > 0 there exists a

finite list of graphs G, G, ...,G,, all of which have no more than K(€,C) edges,
such that if # is the family of graphs having one of these graphs as a subgraph
then u(p, /AAB) < €.
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Chapter 2

Evolution

Here begins our story of the typical growth of a random graph. All the results up
to Section 2.3 were first proved in a landmark paper by Erdés and Rényi [288].
The notion of the evolution of a random graph stems from a dynamic view of a
graph process: viz. a sequence of graphs:

Go = ([n],@),@l,Gz,...,Gm,...,GN:Kn.

where G, 1 is obtained from G,, by adding a random edge ¢,,. We see that there

are (’21) I such sequences and G,, and G, ,, have the same distribution.

In process of the evolution of a random graph we consider properties possessed

by G, or G, ,, w.h.p., when m = m(n) grows from 0 to (g), while in the case of

Gy, we analyse its typical structure when p = p(n) grows from 0 to 1 as n — oo.
In the current chapter we mainly explore how the typical component structure

evolves as the number of edges m increases.

2.1 Sub-Critical Phase

The evolution of Erdds-Rényi type random graphs has clearly distinguishable
phases. The first phase, at the beginning of the evolution, can be described as
a period when a random graph is a collection of small components which are
mostly trees. Indeed the first result in this section shows that a random graph G, ,,
is w.h.p. a collection of tree-components as long as m = o(n), or, equivalently, as
long as p = o(n™!) in Gp,p. For clarity, all results presented in this chapter are
stated in terms of G, ;. Due to the fact that computations are much easier for G, ,
we will first prove results in this model and then the results for G, ,, will follow
by the equivalence established either in Lemmas 1.2 and 1.3 or in Theorem 1.4.
We will also assume, throughout this chapter, that @ = @ (n) is a function growing
slowly with n, e.g. @ =loglogn will suffice.

21
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Theorem 2.1. If m < n, then G, is a forest w.h.p.

Proof. Suppose m =n/® and let N = (3), so p=m/N < 3/(wn). Let X be the
number of cycles in G, ,. Then

Therefore, by the First Moment Method, (see Lemma 22.2),
P(Gy,, is not a forest) = P(X > 1) <EX = o(1),
which implies that
P(Gy,p is a forest) — 1 as n — oo.

Notice that the property that a graph is a forest is monotone decreasing, so by
Lemma 1.3
P(G,, is a forest) — 1 as n — oo.

(Note that we have actually used Lemma 1.3 to show that P(G,, , is not a forest)=0(1)
implies that P(G,, is not a forest)=0(1).) O

We will next examine the time during which the components of G,, are isolated
vertices and single edges only, w.h.p.

Theorem 2.2. If m < n'/2 then G,, is the union of isolated vertices and edges
w.h.p.

Proof. Let p=m/N, m=n'/? /o and let X be the number of paths of length two
in the random graph G, ,. By the First Moment Method,

4
n 2 n

P(X >0) <EX = < T

X>0)=< 3(3)" <ot 0
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as n — o. Hence
P(Gy,,p contains a path of length two) = o(1).

Notice that the property that a graph contains a path of a given length two is
monotone increasing, so by Lemma 1.3,

P(G,, contains a path of length two) = o(1),

and the theorem follows. [
Now we are ready to describe the next step in the evolution of G,,.

Theorem 2.3. If m > n'/2, then G,, contains a path of length two w.h.p.

Proof. Letp=1%,m= on'/? and X be the number of paths of length two in G, .
Then

EX:3(Z)p2%2w2—>oo’

as n — oo. This however does not imply that X > 0 w.h.p.! To show that X > 0
w.h.p. we will apply the Second Moment Method

Let &, be the set of all paths of length two in the complete graph K),, and let
X be the number of isolated paths of length two in Gp,p i.e. paths that are also
components of G, ,. We will show that w.h.p. G, , contains such an isolated
path. Now,

X= ) Ircc,,
Pe,

We always use /¢ to denote the indicator for an event &. The notation C; indicates
that P is contained in G, , as a component (i.e. P is isolated). Having a path of
length two is a monotone increasing property. Therefore we can assume that m =
o(n) and so np = o(1) and the result for larger m will follow from monotonicity
and coupling. Then

EX —3 (Z)pz(l _p)3(n73)+1

n3 40*n

> (1-0(1) 57

(1 =3np) — oo,

as n — oo,
In order to compute the second moment of the random variable X notice that,

A2 o _ *
X*= Z Z Ipc G, ,10C Gy = ZP7Q€92IP§iGn,pIQ§iGn,p7
PePH Qe Py
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where the last sum is taken over P,Q € &7, such that either P = Q or P and Q are
vertex disjoint. The simplification that provides the last summation is precisely
the reason that we introduce path-components (isolated paths). Now

EX? = Y {ZP(Q CiGnp| P S Gn,p)}P(P Ci Gnp)-
P {0

The expression inside the brackets is the same for all P and so

EX*=EX 1+ Y P(QCiGuplPuas SiGup) |
ONF1 23)=0

where P, 3y denotes the path on vertex set [3] = {1,2,3} with middle vertex
2. By conditioning on the event Fj 5 3) C; Gn,p, 1., assuming that P 3) is a
component of G, ;,, we see that all of the nine edges between Q and F(; 5 3) must
be missing. Therefore

n

3)p2(1 _p)3(n6)+1) <EX (1 +(1 —p)’9]E)A() .

So, by the Second Moment Method (see Lemma 22.5),

EX><EX <1+3<

. (E

P(X >0)> (EX)"
E

EX (14 (1-p)EX)

X)?
>
) C

1
RT3

as n — oo, since p — 0 and EX — oo. Thus
P(Gy,p, contains an isolated path of length two) — 1,

which implies that ’(G,, , contains a path of length two) — 1. As the property of
having a path of length two is monotone increasing it in turn implies that

P(G,y contains a path of length two) — 1

for m > n'/? and the theorem follows. 0
From Theorems 2.2 and 2.3 we obtain the following corollary.

Corollary 2.4. The function m*(n) = n'/2 is the threshold for the property that a

random graph G, contains a path of length two, i.e.,

o(1) if m<nl/?.

P(G,, contains a path of length two) =
(G path of lensth two) {1—0(1) if m>n'/2.
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As we keep adding edges, trees on more than three vertices start to appear.
Note that isolated vertices, edges and paths of length two are also trees on one,
two and three vertices, respectively. The next two theorems show how long we
have to “wait” until trees with a given number of vertices appear w.h.p.

k—

Theorem 2.5. Fix k > 3. If m < nk1, then w.h.p. G,, contains no tree with k
vertices.

k=2
Proof. Letm = ntT /@ and then p = {; ~ wnk/z(kq) < a)nk/3(k*1)' Let X denote the

number of trees with k vertices in G, ,. Let T1,T3,...,Ty be an enumeration of
the copies of k-vertex trees in K. Let

A; = {T; occurs as a subgraph in G, ,,}.

The probability that a tree T occurs in Gy, , is p*T), where e(T) is the number of
edges of T'. So,

M
EX =Y P(A)=Mp* .
t=1

ButM = (Z) kk=2 since one can choose a set of k vertices in (Z) ways and then by
Cayley’s formula choose a tree on these vertices in k¥~ ways. Hence

EX, — (Z) J=2 k=1 2.1

Noting also that (see Lemma 23.1(c))

(1) <(2)

ne k k—2 3 k=1
< (2 -
EXe< () & <wnk/<k—1>)

k=1 k
T okl

as n — oo, seeing as k is fixed.
Thus we see by the first moment method that,

we see that

— 0,

P(G,,, contains a tree with k vertices) — 0.
This property is monotone increasing and therefore

P(G,, contains a tree with k vertices) — 0.
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]

Let us check what happens if the number of edges in G,, is much larger than
k—
nk-t,

S}

—2

Theorem 2.6. Fix k > 3. If m> nllifl, then w.h.p. G,, contains a copy of every
fixed tree with k vertices.

k=2

Proof. Let p = §,m = @wni-T where @ = o(logn) and fix some tree T with k
vertices. Denote by X; the number of isolated copies of T (T-components) in
Gy,p. Let aut(H) denote the number of automorphisms of a graph H. Note that
there are k!/aut(T') copies of T in the complete graph Kj. To see this choose a
copy of T with vertex set [k]. There are k! ways of mapping the vertices of T to
the vertices of K. Each map f induces a copy of T and two maps f1, f> induce
the same copy iff f, f]_] is an automorphism of 7.

So,
o (" kU i, k(n—k)+(5) —k+1
Exk—(k>—am<T>p (1—p)kr=0+G) (2.2)
2 k—1
:<1+0(1))(ab(:;zT) -

In (2.2) we have approximated (Z) < 2‘—]: and used the fact that @ = o(logn) in

order to show that (1 —p)k("*k)*(é()*'@rl =1-o0(1).
Next let 7 be the set of copies of T in K, and T} be a fixed copy of T on
vertices [k| of K,,. Then, arguing as in (2.3),

EXY) = Y P(TCiGup| Ti Ci Gp)P(Ti i Gy p)

T, heT

=EX; |1+ )  P(BCiGupl Ty CiGay)

Notice that the (1 — p)_k2 factor comes from conditioning on the event
T[k} C; Gp,p which forces the non-existence of fewer than k> edges.
Hence, by the Second Moment Method,

. EX;)?
P(X, > 0) > — (EX) —
EXk(1+(1—p)_k ]EXk)
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Then, by a similar reasoning to that in the proof of Theorem 2.3,
P(G,, contains a copy of T) — 1,

as n — oo, ]

Combining the two above theorems we arrive at the following conclusion.

Corollary 2.7. The function m*(n) = = is the threshold for the property that a
random graph G, contains a tree with k > 3 vertices, i.e.,

k—

S}

1 ; =
]P)(Gm 2 k-vertex—tree) = O< ) lf m <K I’lk_2
1—o(1) if m>niT

In the next theorem we show that “on the threshold” for k vertex trees, i.e., if
k—2 . .
m = cnk=T, where c is a constant, ¢ > 0, the number of tree components of a given
order asymptotically follows the Poisson distribution. This time we will formulate
both the result and its proof in terms of G,,.
k=2

Theorem 2.8. If m = cn*—1, where ¢ > 0, and T is a fixed tree with k > 3 vertices,
then

P(G,, contains an isolated copy of tree T) — 1 — et
here A = 2
as n— oo, where A = i

More precisely, the number of copies of T is asymptotically distributed as the
Poisson distribution with expectation A.

Proof. Let T1,T;,...,Ty be an enumeration of the copies of some k vertex tree T
in K,,.
Let

A; = {T; occurs as a component in G, }.

Suppose J C [M] = {1,2,...,M} with |J| =, where ¢ is fixed. Let Ay = A}
We have P(A;) = 0 if there are i, j € J such that T;,T; share a vertex. Suppose
T;,i € J are vertex disjoint. Then

( (29
m—(k—1)t
(w)
Note that in the numerator we count the number of ways of choosing m edges so
that Ay occurs.
If, say, t <logn, then

()= (=) (=25) = (-0 (7))

P(A;) =
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and so

Then from Lemma 23.1(f),

n—kt —
(, () = o EC

and so

P(A)) = (1 +o(1))#’_1)m1\,(u)z _(14+o(1)) <%)(k—1)t‘

Thus, if Z7 denotes the number of components of G, that are copies of T, then,

! ! k—1
E Zr %l n k! (@)( )t
t ' \k,k,k,...,k) \aut(T) N

ok (et
Tk \ aut (T) N

Al‘

Nt_!7

where
(ZC)k_l

aut(T) "

So by Theorem 22.11 the number of copies of T-components is asymptotically
distributed as the Poisson distribution with expectation A given above, which com-
bined with the statements of Theorem 2.1 and Corollary 2.7 proves the theorem.

Note that Theorem 2.1 implies that w.h.p. there are no non-component copies of
T. ]
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We complete our presentation of the basic features of a random graph in its
sub-critical phase of evolution with a description of the order of its largest com-
ponent.

Theorem 2.9. [fm = %cn, where 0 < ¢ < 1 is a constant, then w.h.p. the order of
the largest component of a random graph G, is O(logn).

The above theorem follows from the next three lemmas stated and proved in
terms of G, , with p =c¢/n, 0 < ¢ < 1. In fact the first of those three lemmas
covers a little bit more than the case of p =c¢/n, 0 <c < 1.

Lemma 2.10. If p < % — n“%’ where @ = ®(n) — oo, then w.h.p. every component
in G, , contains at most one cycle.

Proof. Suppose that there is a pair of cycles that are in the same component.
If such a pair exists then there is minimal pair C1,C;, i.e., either C| and C, are
connected by a path (or meet at a vertex) or they form a cycle with a diagonal path
(see Figure 2.1). Then in either case, C; UC; consists of a path P plus another two
distinct edges, one from each endpoint of P joining it to another vertex in P. The
number of such graphs on k labeled vertices can be bounded by k’k!.

s O SN
S ORI

Figure 2.1: C{ UG,
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Let X be the number of subgraphs of the above kind (shown in Figure 2.1) in the
random graph G, ,. By the first moment method (see Lemma 22.2),

PX >0)<EX < Z (Z) Kk pFH! (2.3)
k=4
n k k+1
n 2 1 w
< ;;ﬁk K (1 - n1/3)

</°°x2 wx d
=, nexp VE X

2
3
=o(1).
O
We remark for later use that if p = ¢/n, 0 < ¢ < 1 then (2.3) implies
n
Px>0)< Y 2 =0on™). (2.4)

k=4

Hence, in determining the order of the largest component we may concentrate
our attention on unicyclic components and tree-components (isolated trees). How-
ever the number of vertices on unicyclic components tends to be rather small, as
is shown in the next lemma.

Lemma 2.11. If p = c¢/n, where ¢ # 1 is a constant, then in G,, , w.h.p. the number
of vertices in components with exactly one cycle, is O(®) for any growing function
.

Proof. Let X; be the number of vertices on unicyclic components with k vertices.

Then
EX, < <Z) K2 (];) kpk(1 — pykn=i+(5)—k, (2.5)

The factor k%2 (];) in (2.5) is the number of choices for a tree plus an edge on k
vertices in [k]. This bounds the number C(k, k) of connected graphs on [k] with k
edges. This is off by a factor O(kl/ 2) from the exact formula which is given below
for completeness:

_ < (k (r—1)! k—r—lN\/E k—1/2
C(k,k)_§<r)Trk ~ gk : (2.6)

r
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The remaining factor, other than (']:) , in (2.5) is the probability that the k edges of
the unicyclic component exist and that there are no other edges on G, ;, incident
with the k chosen vertices.

Noting also that by Lemma 23.1(d),

n nk _ k(k=1)
< —e
k k!

Assume next that ¢ < 1 and then we get

k - k k(1)
EXp < oS pht1C gk g, 2.7)
k! nk
k _ _ .
< & o gkt chomekt M 2.8)
k ¢
<k (celfc) ez.
So,
n n k
EY X< Y k(ce' ) e2 =0(1), (2.9)

since ce! ¢ < 1 for ¢ # 1. By the Markov inequality, if @ = ®(n) — oo, (see

Lemma 22.1)
1 1
PlY X>w :0(—)—>Oasn—>oo,
k=3 @

and the Lemma follows for ¢ < 1. If ¢ > 1 then we cannot deduce (23.19) from
(23.18). If however k = o(n) then this does not matter, since then o /n = gok),
Now we show in the proof of Theorem 2.14 below that when ¢ > 1 there is
w.h.p. a unique giant component of size Q(n) and all other components are of
size O(logn). Thi