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Overview: Regression Procedures
This chapter provides an overview of SAS/STAT procedures that perform regression analysis. The REG
procedure provides extensive capabilities for fitting linear regression models that involve individual numeric
independent variables. Many other procedures can also fit regression models, but they focus on more
specialized forms of regression, such as robust regression, generalized linear regression, nonlinear regression,
nonparametric regression, quantile regression, regression modeling of survey data, regression modeling of
survival data, and regression modeling of transformed variables. The SAS/STAT procedures that can fit
regression models include the ADAPTIVEREG, CATMOD, GAM, GENMOD, GLIMMIX, GLM, GLMSE-
LECT, LIFEREG, LOESS, LOGISTIC, MIXED, NLIN, NLMIXED, ORTHOREG, PHREG, PLS, PROBIT,
QUANTREG, QUANTSELECT, REG, ROBUSTREG, RSREG, SURVEYLOGISTIC, SURVEYPHREG,
SURVEYREG, TPSPLINE, and TRANSREG procedures. Several procedures in SAS/ETS software also fit
regression models.

Introduction
In a linear regression model, the mean of a response variable Y is a function of parameters and covariates in a
statistical model. The many forms of regression models have their origin in the characteristics of the response
variable (discrete or continuous, normally or nonnormally distributed), assumptions about the form of the
model (linear, nonlinear, or generalized linear), assumptions about the data-generating mechanism (survey,
observational, or experimental data), and estimation principles. Some models contain classification (or
CLASS) variables that enter the model not through their values but through their levels. For an introduction
to linear regression models, see Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software.”
For information that is common to many of the regression procedures, see Chapter 19, “Shared Concepts
and Topics.” The following procedures, listed in alphabetical order, perform at least one type of regression
analysis.

ADAPTIVEREG fits multivariate adaptive regression spline models. This is a nonparametric regression
technique that combines both regression splines and model selection methods. PROC
ADAPTIVEREG produces parsimonious models that do not overfit the data and thus
have good predictive power. PROC ADAPTIVEREG supports CLASS variables.
For more information, see Chapter 25, “The ADAPTIVEREG Procedure.”

CATMOD analyzes data that can be represented by a contingency table. PROC CATMOD fits
linear models to functions of response frequencies, and it can be used for linear
and logistic regression. PROC CATMOD supports CLASS variables. For more
information, see Chapter 8, “Introduction to Categorical Data Analysis Procedures,”
and Chapter 32, “The CATMOD Procedure.”

GAM fits generalized additive models. Generalized additive models are nonparametric in
that the usual assumption of linear predictors is relaxed. Generalized additive models
consist of additive, smooth functions of the regression variables. PROC GAM can
fit additive models to nonnormal data. PROC GAM supports CLASS variables. For
more information, see Chapter 41, “The GAM Procedure.”

GENMOD fits generalized linear models. PROC GENMOD is especially suited for responses
that have discrete outcomes, and it performs logistic regression and Poisson regres-
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sion in addition to fitting generalized estimating equations for repeated measures
data. PROC GENMOD supports CLASS variables and provides Bayesian analysis
capabilities. For more information, see Chapter 8, “Introduction to Categorical Data
Analysis Procedures,” and Chapter 44, “The GENMOD Procedure.”

GLIMMIX uses likelihood-based methods to fit generalized linear mixed models. PROC GLIM-
MIX can perform simple, multiple, polynomial, and weighted regression, in addition
to many other analyses. PROC GLIMMIX can fit linear mixed models, which have
random effects, and models that do not have random effects. PROC GLIMMIX
supports CLASS variables. For more information, see Chapter 45, “The GLIMMIX
Procedure.”

GLM uses the method of least squares to fit general linear models. PROC GLM can
perform simple, multiple, polynomial, and weighted regression in addition to many
other analyses. PROC GLM has many of the same input/output capabilities as PROC
REG, but it does not provide as many diagnostic tools or allow interactive changes
in the model or data. PROC GLM supports CLASS variables. For more information,
see Chapter 5, “Introduction to Analysis of Variance Procedures,” and Chapter 46,
“The GLM Procedure.”

GLMSELECT performs variable selection in the framework of general linear models. PROC
GLMSELECT supports CLASS variables (like PROC GLM) and model selection
(like PROC REG). A variety of model selection methods are available, including for-
ward, backward, stepwise, LASSO, and least angle regression. PROC GLMSELECT
provides a variety of selection and stopping criteria. For more information, see
Chapter 49, “The GLMSELECT Procedure.”

LIFEREG fits parametric models to failure-time data that might be right-censored. These
types of models are commonly used in survival analysis. PROC LIFEREG supports
CLASS variables and provides Bayesian analysis capabilities. For more information,
see Chapter 13, “Introduction to Survival Analysis Procedures,” and Chapter 69,
“The LIFEREG Procedure.”

LOESS uses a local regression method to fit nonparametric models. PROC LOESS is
suitable for modeling regression surfaces in which the underlying parametric form is
unknown and for which robustness in the presence of outliers is required. For more
information, see Chapter 71, “The LOESS Procedure.”

LOGISTIC fits logistic models for binomial and ordinal outcomes. PROC LOGISTIC provides
a wide variety of model selection methods and computes numerous regression diag-
nostics. PROC LOGISTIC supports CLASS variables. For more information, see
Chapter 8, “Introduction to Categorical Data Analysis Procedures,” and Chapter 72,
“The LOGISTIC Procedure.”

MIXED uses likelihood-based techniques to fit linear mixed models. PROC MIXED can
perform simple, multiple, polynomial, and weighted regression, in addition to many
other analyses. PROC MIXED can fit linear mixed models, which have random
effects, and models that do not have random effects. PROC MIXED supports CLASS
variables. For more information, see Chapter 77, “The MIXED Procedure.”

NLIN uses the method of nonlinear least squares to fit general nonlinear regression mod-
els. Several different iterative methods are available. For more information, see
Chapter 81, “The NLIN Procedure.”
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NLMIXED uses the method of maximum likelihood to fit general nonlinear mixed regression
models. PROC NLMIXED enables you to specify a custom objective function for
parameter estimation and to fit models with or without random effects. For more
information, see Chapter 82, “The NLMIXED Procedure.”

ORTHOREG uses the Gentleman-Givens computational method to perform regression. For ill-
conditioned data, PROC ORTHOREG can produce more-accurate parameter esti-
mates than procedures such as PROC GLM and PROC REG. PROC ORTHOREG
supports CLASS variables. For more information, see Chapter 84, “The OR-
THOREG Procedure.”

PHREG fits Cox proportional hazards regression models to survival data. PROC PHREG
supports CLASS variables and provides Bayesian analysis capabilities. For more
information, see Chapter 13, “Introduction to Survival Analysis Procedures,” and
Chapter 85, “The PHREG Procedure.”

PLS performs partial least squares regression, principal component regression, and re-
duced rank regression, along with cross validation for the number of components.
PROC PLS supports CLASS variables. For more information, see Chapter 88, “The
PLS Procedure.”

PROBIT performs probit regression in addition to logistic regression and ordinal logistic
regression. PROC PROBIT is useful when the dependent variable is either di-
chotomous or polychotomous and the independent variables are continuous. PROC
PROBIT supports CLASS variables. For more information, see Chapter 93, “The
PROBIT Procedure.”

QUANTREG uses quantile regression to model the effects of covariates on the conditional quantiles
of a response variable. PROC QUANTREG supports CLASS variables. For more
information, see Chapter 95, “The QUANTREG Procedure.”

QUANTSELECT provides variable selection for quantile regression models. Selection methods include
forward, backward, stepwise, and LASSO. The procedure provides a variety of
selection and stopping criteria. PROC QUANTSELECT supports CLASS variables.
For more information, see Chapter 96, “The QUANTSELECT Procedure.”

REG performs linear regression with many diagnostic capabilities. PROC REG produces
fit, residual, and diagnostic plots; heat maps; and many other types of graphs. PROC
REG enables you to select models by using any one of nine methods, and you can
interactively change both the regression model and the data that are used to fit the
model. For more information, see Chapter 97, “The REG Procedure.”

ROBUSTREG uses Huber M estimation and high breakdown value estimation to perform robust
regression. PROC ROBUSTREG is suitable for detecting outliers and providing
resistant (stable) results in the presence of outliers. PROC ROBUSTREG supports
CLASS variables. For more information, see Chapter 98, “The ROBUSTREG
Procedure.”

RSREG builds quadratic response-surface regression models. PROC RSREG analyzes the
fitted response surface to determine the factor levels of optimum response and
performs a ridge analysis to search for the region of optimum response. For more
information, see Chapter 99, “The RSREG Procedure.”

SURVEYLOGISTIC uses the method of maximum likelihood to fit logistic models for binary and ordinal
outcomes to survey data. PROC SURVEYLOGISTIC supports CLASS variables.
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For more information, see Chapter 14, “Introduction to Survey Procedures,” and
Chapter 111, “The SURVEYLOGISTIC Procedure.”

SURVEYPHREG fits proportional hazards models for survey data by maximizing a partial pseudo-
likelihood function that incorporates the sampling weights. The SURVEYPHREG
procedure provides design-based variance estimates, confidence intervals, and
tests for the estimated proportional hazards regression coefficients. PROC SUR-
VEYPHREG supports CLASS variables. For more information, see Chapter 14,
“Introduction to Survey Procedures,” Chapter 13, “Introduction to Survival Analysis
Procedures,” and Chapter 113, “The SURVEYPHREG Procedure.”

SURVEYREG uses elementwise regression to fit linear regression models to survey data by gen-
eralized least squares. PROC SURVEYREG supports CLASS variables. For more
information, see Chapter 14, “Introduction to Survey Procedures,” and Chapter 114,
“The SURVEYREG Procedure.”

TPSPLINE uses penalized least squares to fit nonparametric regression models. PROC TP-
SPLINE makes no assumptions of a parametric form for the model. For more
information, see Chapter 116, “The TPSPLINE Procedure.”

TRANSREG fits univariate and multivariate linear models, optionally with spline, Box-Cox, and
other nonlinear transformations. Models include regression and ANOVA, conjoint
analysis, preference mapping, redundancy analysis, canonical correlation, and penal-
ized B-spline regression. PROC TRANSREG supports CLASS variables. For more
information, see Chapter 117, “The TRANSREG Procedure.”

Several SAS/ETS procedures also perform regression. The following procedures are documented in the
SAS/ETS User’s Guide:

ARIMA uses autoregressive moving-average errors to perform multiple regression analysis.
For more information, see Chapter 8, “The ARIMA Procedure” (SAS/ETS User’s
Guide).

AUTOREG implements regression models that use time series data in which the errors are
autocorrelated. For more information, see Chapter 9, “The AUTOREG Procedure”
(SAS/ETS User’s Guide).

COUNTREG analyzes regression models in which the dependent variable takes nonnegative
integer or count values. For more information, see Chapter 12, “The COUNTREG
Procedure” (SAS/ETS User’s Guide).

MDC fits conditional logit, mixed logit, heteroscedastic extreme value, nested logit, and
multinomial probit models to discrete choice data. For more information, see
Chapter 25, “The MDC Procedure” (SAS/ETS User’s Guide).

MODEL handles nonlinear simultaneous systems of equations, such as econometric models.
For more information, see Chapter 26, “The MODEL Procedure” (SAS/ETS User’s
Guide).

PANEL analyzes a class of linear econometric models that commonly arise when time series
and cross-sectional data are combined. For more information, see Chapter 27, “The
PANEL Procedure” (SAS/ETS User’s Guide).

PDLREG fits polynomial distributed lag regression models. For more information, see Chap-
ter 28, “The PDLREG Procedure” (SAS/ETS User’s Guide).
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QLIM analyzes limited dependent variable models in which dependent variables take dis-
crete values or are observed only in a limited range of values. For more information,
see Chapter 29, “The QLIM Procedure” (SAS/ETS User’s Guide).

SYSLIN handles linear simultaneous systems of equations, such as econometric models.
For more information, see Chapter 36, “The SYSLIN Procedure” (SAS/ETS User’s
Guide).

VARMAX performs multiple regression analysis for multivariate time series dependent vari-
ables by using current and past vectors of dependent and independent variables as
predictors, with vector autoregressive moving-average errors, and with modeling
of time-varying heteroscedasticity. For more information, see Chapter 42, “The
VARMAX Procedure” (SAS/ETS User’s Guide).

Introductory Example: Linear Regression
Regression analysis models the relationship between a response or outcome variable and another set of
variables. This relationship is expressed through a statistical model equation that predicts a response variable
(also called a dependent variable or criterion) from a function of regressor variables (also called independent
variables, predictors, explanatory variables, factors, or carriers) and parameters. In a linear regression
model, the predictor function is linear in the parameters (but not necessarily linear in the regressor variables).
The parameters are estimated so that a measure of fit is optimized. For example, the equation for the ith
observation might be

Yi D ˇ0 C ˇ1xi C �i

where Yi is the response variable, xi is a regressor variable, ˇ0 and ˇ1 are unknown parameters to be
estimated, and �i is an error term. This model is called the simple linear regression (SLR) model, because it
is linear in ˇ0 and ˇ1 and contains only a single regressor variable.

Suppose you are using regression analysis to relate a child’s weight to the child’s height. One application
of a regression model that contains the response variable Weight is to predict a child’s weight for a known
height. Suppose you collect data by measuring heights and weights of 19 randomly selected schoolchildren.
A simple linear regression model that contains the response variable Weight and the regressor variable Height
can be written as

Weighti D ˇ0 C ˇ1Heighti C �i

where

Weighti is the response variable for the ith child

Heighti is the regressor variable for the ith child

ˇ0, ˇ1 are the unknown regression parameters

�i is the unobservable random error associated with the ith observation

The data set Sashelp.class, which is available in the Sashelp library, identifies the children and their observed
heights (the variable Height) and weights (the variable Weight). The following statements perform the
regression analysis:
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ods graphics on;
proc reg data=sashelp.class;

model Weight = Height;
run;

Figure 4.1 displays the default tabular output of PROC REG for this model. Nineteen observations are read
from the data set, and all observations are used in the analysis. The estimates of the two regression parameters
are b̌0 D �143:02692 and č1 D 3:89903. These estimates are obtained by the least squares principle. For
more information about the principle of least squares estimation and its role in linear model analysis, see
the sections “Classical Estimation Principles” and “Linear Model Theory” in Chapter 3, “Introduction to
Statistical Modeling with SAS/STAT Software.” Also see an applied regression text such as Draper and
Smith (1998); Daniel and Wood (1999); Johnston and DiNardo (1997); Weisberg (2005).

Figure 4.1 Regression for Weight and Height Data

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

The REG Procedure
Model: MODEL1

Dependent Variable: Weight

Number of Observations Read 19

Number of Observations Used 19

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001

Error 17 2142.48772 126.02869

Corrected Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705

Dependent Mean 100.02632 Adj R-Sq 0.7570

Coeff Var 11.22330

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004

Height 1 3.89903 0.51609 7.55 <.0001

Based on the least squares estimates shown in Figure 4.1, the fitted regression line that relates height to
weight is described by the equation

2Weight D �143:02692C 3:89903 �Height

The “hat” notation is used to emphasize that 2Weight is not one of the original observations but a value
predicted under the regression model that has been fit to the data. In the least squares solution, the following
residual sum of squares is minimized and the achieved criterion value is displayed in the analysis of variance
table as the error sum of squares (2142.48772):

SSE D
19X
iD1

.Weighti � ˇ0 � ˇ1Heighti /
2
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Figure 4.2 displays the fit plot that is produced by ODS Graphics. The fit plot shows the positive slope of the
fitted line. The average weight of a child changes by b̌1 D 3:89903 units for each unit change in height. The
95% confidence limits in the fit plot are pointwise limits that cover the mean weight for a particular height
with probability 0.95. The prediction limits, which are wider than the confidence limits, show the pointwise
limits that cover a new observation for a given height with probability 0.95.

Figure 4.2 Fit Plot for Regression of Weight on Height

Regression is often used in an exploratory fashion to look for empirical relationships, such as the relationship
between Height and Weight. In this example, Height is not the cause of Weight. You would need a controlled
experiment to confirm the relationship scientifically. For more information, see the section “Comments on
Interpreting Regression Statistics” on page 99. A separate question from whether there is a cause-and-effect
relationship between the two variables that are involved in this regression is whether the simple linear
regression model adequately describes the relationship among these data. If the SLR model makes the usual
assumptions about the model errors �i , then the errors should have zero mean and equal variance and be
uncorrelated. Because the children were randomly selected, the observations from different children are not
correlated. If the mean function of the model is correctly specified, the fitted residuals Weighti �2Weighti
should scatter around the zero reference line without discernible structure. The residual plot in Figure 4.3
confirms this.
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Figure 4.3 Residual Plot for Regression of Weight on Height

The panel of regression diagnostics in Figure 4.4 provides an even more detailed look at the model-data
agreement. The graph in the upper left panel repeats the raw residual plot in Figure 4.3. The plot of the
RSTUDENT residuals shows externally studentized residuals that take into account heterogeneity in the
variability of the residuals. RSTUDENT residuals that exceed the threshold values of ˙2 often indicate
outlying observations. The residual-by-leverage plot shows that two observations have high leverage—that is,
they are unusual in their height values relative to the other children. The normal-probability Q-Q plot in the
second row of the panel shows that the normality assumption for the residuals is reasonable. The plot of the
Cook’s D statistic shows that observation 15 exceeds the threshold value, indicating that the observation for
this child has a strong influence on the regression parameter estimates.
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Figure 4.4 Panel of Regression Diagnostics

For more information about the interpretation of regression diagnostics and about ODS statistical graphics
with PROC REG, see Chapter 97, “The REG Procedure.”

SAS/STAT regression procedures produce the following information for a typical regression analysis:

� parameter estimates that are derived by using the least squares criterion
� estimates of the variance of the error term
� estimates of the variance or standard deviation of the sampling distribution of the parameter estimates
� tests of hypotheses about the parameters
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SAS/STAT regression procedures can produce many other specialized diagnostic statistics, including the
following:

� collinearity diagnostics to measure how strongly regressors are related to other regressors and how this
relationship affects the stability and variance of the estimates (REG procedure)

� influence diagnostics to measure how each individual observation contributes to determining the
parameter estimates, the SSE, and the fitted values (GENMOD, GLM, LOGISTIC, MIXED, NLIN,
PHREG, REG, and RSREG procedures)

� lack-of-fit diagnostics that measure the lack of fit of the regression model by comparing the error
variance estimate to another pure error variance that does not depend on the form of the model
(CATMOD, LOGISTIC, PROBIT, and RSREG procedures)

� diagnostic plots that check the fit of the model (GLM, LOESS, PLS, REG, RSREG, and TPSPLINE
procedures)

� predicted and residual values, and confidence intervals for the mean and for an individual value
(GLIMMIX, GLM, LOESS, LOGISTIC, NLIN, PLS, REG, RSREG, TPSPLINE, and TRANSREG
procedures)

� time series diagnostics for equally spaced time series data that measure how closely errors might be
related across neighboring observations. These diagnostics can also measure functional goodness of fit
for data that are sorted by regressor or response variables (REG and SAS/ETS procedures).

Many SAS/STAT procedures produce general and specialized statistical graphics through ODS Graphics
to diagnose the fit of the model and the model-data agreement, and to highlight observations that strongly
influence the analysis. Figure 4.2, Figure 4.3, and Figure 4.4, for example, show three of the ODS statistical
graphs that are produced by PROC REG by default for the simple linear regression model. For general
information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information
about the ODS statistical graphs available with a SAS/STAT procedure, see the PLOTS option in the “Syntax”
section for the PROC statement and the “ODS Graphics” section in the “Details” section of the individual
procedure documentation.

Model Selection Methods
Statistical model selection (or model building) involves forming a model from a set of regressor variables
that fits the data well but without overfitting. Models are overfit when they contain too many unimportant
regressor variables. Overfit models are too closely molded to a particular data set. As a result, overfit models
have unstable regression coefficients and are quite likely to have poor predictive power. Guided, numerical
variable selection methods offer one approach to building models in situations where many potential regressor
variables are available for inclusion in a regression model.

Both the REG and GLMSELECT procedures provide extensive options for model selection in ordinary
linear regression models.1 PROC GLMSELECT provides the most modern and flexible options for model
selection. PROC GLMSELECT provides more selection options and criteria than PROC REG, and PROC

1The QUANTSELECT, PHREG, and LOGISTIC procedures provide model selection for quantile, proportional hazards, and
logistic regression, respectively.
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GLMSELECT also supports CLASS variables. For more information about PROC GLMSELECT, see
Chapter 49, “The GLMSELECT Procedure.” For more information about PROC REG, see Chapter 97, “The
REG Procedure.”

SAS/STAT procedures provide the following model selection options for regression models:

NONE performs no model selection. This method uses the full model given in the MODEL
statement to fit the model. This selection method is available in the GLMSELECT,
LOGISTIC, PHREG, QUANTSELECT, and REG procedures.

FORWARD uses a forward-selection algorithm to select variables. This method starts with no variables
in the model and adds variables one by one to the model. At each step, the variable that
is added is the one that most improves the fit of the model. You can also specify groups
of variables to treat as a unit during the selection process. An option enables you to
specify the criterion for inclusion. This selection method is available in the GLMSELECT,
LOGISTIC, PHREG, QUANTSELECT, and REG procedures.

BACKWARD uses a backward-elimination algorithm to select variables. This method starts with a full
model and eliminates variables one by one from the model. At each step, the variable that
makes the smallest contribution to the model is deleted. You can also specify groups of
variables to treat as a unit during the selection process. An option enables you to specify
the criterion for exclusion. This selection method is available in the GLMSELECT,
LOGISTIC, PHREG, QUANTSELECT, and REG procedures.

STEPWISE uses a stepwise-regression algorithm to select variables; it combines the forward-selection
and backward-elimination steps. This method is a modification of the forward-selection
method in that variables already in the model do not necessarily stay there. You can
also specify groups of variables to treat as a unit during the selection process. Again,
options enable you to specify criteria for entering the model and for remaining in the
model. This selection method is available in the GLMSELECT, LOGISTIC, PHREG,
QUANTSELECT, and REG procedures.

LASSO adds and deletes parameters by using a version of ordinary least squares in which the
sum of the absolute regression coefficients is constrained. If the model contains CLASS
variables, then these CLASS variables are split. This selection method is available in the
GLMSELECT and QUANTSELECT procedures.

LAR uses least angle regression to select variables. Like forward selection, this method starts
with no effects in the model and adds effects. The parameter estimates at any step are
“shrunk” when compared to the corresponding least squares estimates. If the model
contains CLASS variables, then these CLASS variables are split. This selection method
is available in PROC GLMSELECT.

MAXR uses maximum R-square improvement to select models. This method tries to find the best
one-variable model, the best two-variable model, and so on. The MAXR method differs
from the STEPWISE method in that it evaluates many more models. The MAXR method
considers all possible variable exchanges before making any exchange. The STEPWISE
method might remove the “worst” variable without considering what the “best” remaining
variable might accomplish, whereas MAXR considers what the “best” remaining variable
might accomplish. Consequently, model building based on the maximum R-square
improvement usually takes much longer than stepwise model building. This selection
method is available in PROC REG.
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MINR uses minimum R-square improvement to select models. This method closely resembles
MAXR, but the switch that is chosen is the one that produces the smallest increase in R
square. This selection method is available in PROC REG.

RSQUARE selects a specified number of models that have the highest R square in each of a range of
model sizes. This selection method is available in PROC REG.

CP selects a specified number of models that have the lowest Cp within a range of model
sizes. This selection method is available in PROC REG.

ADJRSQ selects a specified number of models that have the highest adjusted R square within a
range of model sizes. This selection method is available in PROC REG.

SCORE selects models based on a branch-and-bound algorithm that finds a specified number of
models that have the highest likelihood score for all possible model sizes, from one up to
a model that contains all the explanatory effects. This selection method is available in
PROC LOGISTIC and PROC PHREG.

Linear Regression: The REG Procedure
PROC REG is a general-purpose procedure for linear regression that does the following:

� handles simple and multiple regression models
� provides nine model selection methods
� allows interactive changes both in the model and in the data that are used to fit the model
� allows linear equality restrictions on parameters
� tests linear hypotheses and multivariate hypotheses
� produces collinearity diagnostics, influence diagnostics, and partial regression leverage plots
� saves estimates, predicted values, residuals, confidence limits, and other diagnostic statistics in output

SAS data sets
� generates plots of fit, of data, and of various statistics
� uses data, correlations, or crossproducts for input

Regression with the REG and GLM Procedures

The REG and GLM procedures are closely related; they make the same assumptions about the basic model
and use the same estimation principles. Both procedures estimate parameters by ordinary or weighted least
squares and assume homoscedastic, uncorrelated model errors with zero mean. An assumption of normality
of the model errors is not necessary for parameter estimation, but it is implied in confirmatory inference
based on the parameter estimates—that is, the computation of tests, p-values, and confidence and prediction
intervals.

PROC GLM provides a CLASS statement for the levelization of classification variables; see the section
“Parameterization of Model Effects” on page 391 in Chapter 19, “Shared Concepts and Topics,” on the
parameterization of classification variables in statistical models. In most cases, you should directly use PROC
GLM, PROC GLMSELECT, or some other procedure when you fit models that have classification variables.
However, you can fit models that have classification variables in PROC REG by first coding the classification
variables by using PROC GLMSELECT, PROC TRANSREG, PROC GLMMOD, or some other method,
and then including the coded variables in the MODEL statement in PROC REG.
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Most of the statistics based on predicted and residual values that are available in PROC REG are also available
in PROC GLM. However, PROC REG provides more diagnostic information. In addition, PROC GLM
allows only one model and does not provide model selection.

Both PROC REG and PROC GLM are interactive, in that they do not stop after processing a RUN statement.
Both procedures accept statements until a QUIT statement is submitted. For more information about
interactive procedures, see the section “Interactive Features in the CATMOD, GLM, and REG Procedures”
on page 87.

Model Selection: The GLMSELECT Procedure
PROC GLMSELECT performs model selection in the framework of general linear models. A variety of
model selection methods are available, including forward, backward, stepwise, the LASSO method of
Tibshirani (1996), and the related least angle regression method of Efron et al. (2004). The GLMSELECT
procedure offers extensive capabilities for customizing the selection by providing a wide variety of selection
and stopping criteria, including significance level–based and validation-based criteria. The procedure also
provides graphical summaries of the selection process.

PROC GLMSELECT compares most closely with PROC REG and PROC GLM. PROC REG supports
a variety of model selection methods but does not provide a CLASS statement. PROC GLM provides a
CLASS statement but does not provide model selection methods. PROC GLMSELECT fills this gap. PROC
GLMSELECT focuses on the standard general linear model for univariate responses with independently
and identically distributed errors. PROC GLMSELECT provides results (tables, output data sets, and macro
variables) that make it easy to explore the selected model in more detail in a subsequent procedure such as
PROC REG or PROC GLM.

Response Surface Regression: The RSREG Procedure
PROC RSREG fits a quadratic response-surface model, which is useful in searching for factor values
that optimize a response. The following features in PROC RSREG make it preferable to other regression
procedures for analyzing response surfaces:

� automatic generation of quadratic effects
� a lack-of-fit test
� solutions for critical values of the surface
� eigenvalues of the associated quadratic form
� a ridge analysis to search for the direction of optimum response

Partial Least Squares Regression: The PLS Procedure
PROC PLS fits models by using any of a number of linear predictive methods, including partial least squares
(PLS). Ordinary least squares regression, as implemented in the GLM or REG procedure, has the single goal
of minimizing sample response prediction error by seeking linear functions of the predictors that explain
as much variation in each response as possible. The techniques that are implemented in PROC PLS have
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the additional goal of accounting for variation in the predictors under the assumption that directions in
the predictor space that are well sampled should provide better prediction for new observations when the
predictors are highly correlated. All the techniques that are implemented in PROC PLS work by extracting
successive linear combinations of the predictors, called factors (also called components or latent vectors),
which optimally address one or both of these two goals—explaining response variation and explaining
predictor variation. In particular, the method of partial least squares balances the two objectives, seeking
factors that explain both response variation and predictor variation.

Generalized Linear Regression
As outlined in the section “Generalized Linear Models” on page 33 in Chapter 3, “Introduction to Statistical
Modeling with SAS/STAT Software,” the class of generalized linear models generalizes the linear regression
models in two ways:

� by allowing the data to come from a distribution that is a member of the exponential family of
distributions

� by introducing a link function, g.�/, that provides a mapping between the linear predictor � D x0ˇ and
the mean of the data, g.EŒY �/ D �. The link function is monotonic, so that EŒY � D g�1.�/; g�1.�/ is
called the inverse link function.

One of the most commonly used generalized linear regression models is the logistic model for binary or
binomial data. Suppose that Y denotes a binary outcome variable that takes on the values 1 and 0 with the
probabilities � and 1 � � , respectively. The probability � is also referred to as the “success probability,”
supposing that the coding Y D 1 corresponds to a success in a Bernoulli experiment. The success probability
is also the mean of Y, and one of the aims of logistic regression analysis is to study how regressor variables
affect the outcome probabilities or functions thereof, such as odds ratios.

The logistic regression model for � is defined by the linear predictor � D x0ˇ and the logit link function:

logit.Pr.Y D 0// D log
� �

1 � �

�
D x0ˇ

The inversely linked linear predictor function in this model is

Pr.Y D 0/ D
1

1C exp.��/

The dichotomous logistic regression model can be extended to multinomial (polychotomous) data. Two
classes of models for multinomial data can be fit by using procedures in SAS/STAT software: models for
ordinal data that rely on cumulative link functions, and models for nominal (unordered) outcomes that rely on
generalized logits. The next sections briefly discuss SAS/STAT procedures for logistic regression. For more
information about the comparison of the procedures mentioned there with respect to analysis of categorical
responses, see Chapter 8, “Introduction to Categorical Data Analysis Procedures.”

The SAS/STAT procedures CATMOD, GENMOD, GLIMMIX, LOGISTIC, and PROBIT can fit generalized
linear models for binary, binomial, and multinomial outcomes.
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Contingency Table Data: The CATMOD Procedure

PROC CATMOD fits models to data that are represented by a contingency table by using weighted least
squares and a variety of link functions. Although PROC CATMOD also provides maximum likelihood
estimation for logistic regression, PROC LOGISTIC is more efficient for most analyses.

Generalized Linear Models: The GENMOD Procedure

PROC GENMOD is a generalized linear modeling procedure that estimates parameters by maximum
likelihood. It uses CLASS and MODEL statements to form the statistical model and can fit models to binary
and ordinal outcomes. The GENMOD procedure does not fit generalized logit models for nominal outcomes.
However, PROC GENMOD can solve generalized estimating equations (GEE) to model correlated data and
can perform a Bayesian analysis.

Generalized Linear Mixed Models: The GLIMMIX Procedure

PROC GLIMMIX fits generalized linear mixed models. If the model does not contain random effects, PROC
GLIMMIX fits generalized linear models by using the method of maximum likelihood. In the class of logistic
regression models, PROC GLIMMIX can fit models to binary, binomial, ordinal, and nominal outcomes.

Logistic Regression: The LOGISTIC Procedure

PROC LOGISTIC fits logistic regression models and estimates parameters by maximum likelihood. The
procedure fits the usual logistic regression model for binary data in addition to models with the cumulative
link function for ordinal data (such as the proportional odds model) and the generalized logit model for
nominal data. PROC LOGISTIC offers a number of variable selection methods and can perform conditional
and exact conditional logistic regression analysis.

Discrete Event Data: The PROBIT Procedure

PROC PROBIT calculates maximum likelihood estimates of regression parameters and the natural (or
threshold) response rate for quantal response data from biological assays or other discrete event data. PROC
PROBIT fits probit, logit, ordinal logistic, and extreme value (or gompit) regression models.

Correlated Data: The GENMOD and GLIMMIX Procedures

When a generalized linear model is formed by using distributions other than the binary, binomial, or
multinomial distribution, you can use the GENMOD and GLIMMIX procedures for parameter estimation
and inference.

Both PROC GENMOD and PROC GLIMMIX can accommodate correlated observations, but they use
different techniques. PROC GENMOD fits correlated data models by using generalized estimating equations
that rely on a first- and second-moment specification for the response data and a working correlation
assumption. With PROC GLIMMIX, you can model correlations between the observations either by
specifying random effects in the conditional distribution that induce a marginal correlation structure or by
direct modeling of the marginal dependence. PROC GLIMMIX uses likelihood-based techniques to estimate
parameters.

PROC GENMOD supports a Bayesian analysis through its BAYES statement.

With PROC GLIMMIX, you can vary the distribution or link function from one observation to the next.
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To fit a generalized linear model by using a distribution that is not available in the GENMOD or GLIMMIX
procedure, you can use PROC NLMIXED and use SAS programming statements to code the log-likelihood
function of an observation.

Ill-Conditioned Data: The ORTHOREG Procedure
PROC ORTHOREG performs linear least squares regression by using the Gentleman-Givens computational
method (Gentleman 1972, 1973), and it can produce more accurate parameter estimates for ill-conditioned
data. PROC GLM and PROC REG produce very accurate estimates for most problems. However, if you have
very ill-conditioned data, consider using PROC ORTHOREG. The collinearity diagnostics in PROC REG
can help you determine whether PROC ORTHOREG would be useful.

Quantile Regression: The QUANTREG and QUANTSELECT Procedures
PROC QUANTREG models the effects of covariates on the conditional quantiles of a response variable by
using quantile regression. PROC QUANTSELECT performs quantile regression with model selection.

Ordinary least squares regression models the relationship between one or more covariates X and the con-
ditional mean of the response variable EŒY jX D x�. Quantile regression extends the regression model to
conditional quantiles of the response variable, such as the 90th percentile. Quantile regression is particularly
useful when the rate of change in the conditional quantile, expressed by the regression coefficients, depends
on the quantile. An advantage of quantile regression over least squares regression is its flexibility in modeling
data that have heterogeneous conditional distributions. Data of this type occur in many fields, including
biomedicine, econometrics, and ecology.

Features of PROC QUANTREG include the following:

� simplex, interior point, and smoothing algorithms for estimation
� sparsity, rank, and resampling methods for confidence intervals
� asymptotic and bootstrap methods to estimate covariance and correlation matrices of the parameter

estimates
� Wald and likelihood ratio tests for the regression parameter estimates
� regression quantile spline fits

The QUANTSELECT procedure shares most of its syntax and output format with PROC GLMSELECT and
PROC QUANTREG. Features of PROC QUANTSELECT include the following:

� a variety of selection methods, including forward, backward, stepwise, and LASSO
� a variety of criteria, including AIC, AICC, ADJR1, SBC, significance level, testing ACL, and validation

ACL
� effect selection both for individual quantile levels and for the entire quantile process
� a SAS data set that contains the design matrix
� macro variables that enable you to easily specify the selected model by using a subsequent PROC

QUANTREG step
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Nonlinear Regression: The NLIN and NLMIXED Procedures
Recall from Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” that a nonlinear
regression model is a statistical model in which the mean function depends on the model parameters in a
nonlinear function. The SAS/STAT procedures that can fit general, nonlinear models are the NLIN and
NLMIXED procedures. These procedures have the following similarities:

� Nonlinear models are fit by iterative methods.
� You must provide an expression for the model by using SAS programming statements.
� Analytic derivatives of the objective function with respect to the parameters are calculated automati-

cally.
� A grid search is available to select the best starting values for the parameters from a set of starting

points that you provide.

The procedures have the following differences:

� PROC NLIN estimates parameters by using nonlinear least squares; PROC NLMIXED estimates
parameters by using maximum likelihood.

� PROC NLMIXED enables you to construct nonlinear models that contain normally distributed random
effects.

� PROC NLIN requires that you declare all model parameters in the PARAMETERS statement and assign
starting values. PROC NLMIXED determines the parameters in your model from the PARAMETER
statement and the other modeling statements. It is not necessary to supply starting values for all
parameters in PROC NLMIXED, but it is highly recommended.

� The residual variance is not a parameter in models that are fit by using PROC NLIN, but it is a
parameter in models that are fit by using PROC NLMIXED.

� The default iterative optimization method in PROC NLIN is the Gauss-Newton method; the default
method in PROC NLMIXED is the quasi-Newton method. Other optimization techniques are available
in both procedures.

Nonlinear models are fit by using iterative techniques that begin from starting values and attempt to iteratively
improve on the estimates. There is no guarantee that the solution that is achieved when the iterative algorithm
converges will correspond to a global optimum.

Nonparametric Regression
Parametric regression models express the mean of an observation as a function of the regressor variables
x1; : : : ; xk and the parameters ˇ1; : : : ; ˇp:

EŒY � D f .x1; : : : ; xkIˇ1; : : : ; ˇp/

Not only do nonparametric regression techniques relax the assumption of linearity in the regression parameters,
but they also do not require that you specify a precise functional form for the relationship between response
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and regressor variables. Consider a regression problem in which the relationship between response Y and
regressor X is to be modeled. It is assumed that EŒYi � D g.xi /C �i , where g.�/ is an unspecified regression
function. Two primary approaches in nonparametric regression modeling are as follows:

� Approximate g.xi / locally by a parametric function that is constructed from information in a local
neighborhood of xi .

� Approximate the unknown function g.xi / by a smooth, flexible function and determine the necessary
smoothness and continuity properties from the data.

The SAS/STAT procedures ADAPTIVEREG, LOESS, TPSPLINE, and GAM fit nonparametric regression
models by one of these methods.

Adaptive Regression: The ADAPTIVEREG Procedure

PROC ADAPTIVEREG fits multivariate adaptive regression splines as defined by Friedman (1991). The
method is a nonparametric regression technique that combines regression splines and model selection methods.
It does not assume parametric model forms and does not require specification of knot values for constructing
regression spline terms. Instead, it constructs spline basis functions in an adaptive way by automatically
selecting appropriate knot values for different variables and obtains reduced models by applying model
selection techniques. PROC ADAPTIVEREG supports models that contain classification variables.

Local Regression: The LOESS Procedure

PROC LOESS implements a local regression approach for estimating regression surfaces that was pioneered
by Cleveland, Devlin, and Grosse (1988). No assumptions about the parametric form of the entire regression
surface are made by PROC LOESS. Only a parametric form of the local approximation is specified by the
user. Furthermore, PROC LOESS is suitable when there are outliers in the data and a robust fitting method is
necessary.

Thin Plate Smoothing Splines: The TPSPLINE Procedure

PROC TPSPLINE decomposes the regressor contributions to the mean function into parametric components
and into smooth functional components. Suppose that the regressor variables are collected into the vector x
and that this vector is partitioned as x D Œx01 x02�

0. The relationship between Y and x2 is linear (parametric),
and the relationship between Y and x1 is nonparametric. PROC TPSPLINE fits models of the form

EŒY � D g.x1/C x02ˇ

The function g.�/ can be represented as a sequence of spline basis functions.

The parameters are estimated by a penalized least squares method. The penalty is applied to the usual least
squares criterion to obtain a regression estimate that fits the data well and to prevent the fit from attempting
to interpolate the data (fit the data too closely).

Generalized Additive Models: The GAM Procedure

Generalized additive models are nonparametric models in which one or more regressor variables are present
and can make different smooth contributions to the mean function. For example, if xi D Œxi1; xi2; : : : ; xik�



86 F Chapter 4: Introduction to Regression Procedures

is a vector of k regressor for the ith observation, then an additive model represents the mean function as

EŒY � D f0 C f1.xi1/C f2.xi2/C � � � C f3.xi3/

The individual functions fj can have a parametric or nonparametric form. If all fj are parametric, PROC
GAM fits a fully parametric model. If some fj are nonparametric, PROC GAM fits a semiparametric model.
Otherwise, the models are fully nonparametric.

The generalization of additive models is akin to the generalization for linear models: nonnormal data are
accommodated by explicitly modeling the distribution of the data as a member of the exponential family and
by applying a monotonic link function that provides a mapping between the predictor and the mean of the
data.

Robust Regression: The ROBUSTREG Procedure
PROC ROBUSTREG implements algorithms to detect outliers and provide resistant (stable) results in
the presence of outliers. The ROBUSTREG procedure provides four such methods: M estimation, LTS
estimation, S estimation, and MM estimation.

� M estimation, which was introduced by Huber (1973), is the simplest approach both computationally
and theoretically. Although it is not robust with respect to leverage points, it is still used extensively in
analyzing data for which it can be assumed that the contamination is mainly in the response direction.

� Least trimmed squares (LTS) estimation is a high breakdown value method that was introduced by
Rousseeuw (1984). The breakdown value is a measure of the proportion of observations that are
contaminated by outliers that an estimation method can withstand and still maintain its robustness.

� S estimation is a high breakdown value method that was introduced by Rousseeuw and Yohai (1984).
When the breakdown value is the same, it has a higher statistical efficiency than LTS estimation.

� MM estimation, which was introduced by Yohai (1987), combines high breakdown value estimation
and M estimation. It has the high breakdown property of S estimation but a higher statistical efficiency.

For diagnostic purposes, PROC ROBUSTREG also implements robust leverage-point detection based on the
robust Mahalanobis distance. The robust distance is computed by using a generalized minimum covariance
determinant (MCD) algorithm.

Regression with Transformations: The TRANSREG Procedure
PROC TRANSREG fits linear models to data. In addition, PROC TRANSREG can find nonlinear transfor-
mations of the data and fit a linear model to the transformed data. This is in contrast to PROC REG and
PROC GLM, which fit linear models to data, and PROC NLIN, which fits nonlinear models to data. PROC
TRANSREG fits a variety of models, including the following:

� ordinary regression and ANOVA
� metric and nonmetric conjoint analysis



Interactive Features in the CATMOD, GLM, and REG Procedures F 87

� metric and nonmetric vector and ideal point preference mapping
� simple, multiple, and multivariate regression with optional variable transformations
� redundancy analysis with optional variable transformations
� canonical correlation analysis with optional variable transformations
� simple and multiple regression models with a Box-Cox (1964) transformation of the dependent variable
� regression models with penalized B-splines (Eilers and Marx 1996)

Interactive Features in the CATMOD, GLM, and REG Procedures
The CATMOD, GLM, and REG procedures are interactive: they do not stop after processing a RUN statement.
You can submit more statements to continue the analysis that was started by the previous statements. Both
interactive and noninteractive procedures stop if a DATA step, a new procedure step, or a QUIT or ENDSAS
statement is submitted. Noninteractive SAS procedures also stop if a RUN statement is submitted.

Placement of statements is critical in interactive procedures, particularly for ODS statements. For example, if
you submit the following steps, no ODS OUTPUT data set is created:

proc reg data=sashelp.class;
model weight = height;

run;

ods output parameterestimates=pm;
proc glm data=sashelp.class;

class sex;
model weight = sex | height / solution;

run;

You can cause the PROC GLM step to create an output data set by adding a QUIT statement to the PROC
REG step or by moving the ODS OUTPUT statement so that it follows the PROC GLM statement. For
more information about the placement of RUN, QUIT, and ODS statements in interactive procedures, see
Example 20.6 in Chapter 20, “Using the Output Delivery System.”

Statistical Background in Linear Regression
The remainder of this chapter outlines the way in which many SAS/STAT regression procedures calculate
various regression quantities. The discussion focuses on the linear regression models. For general statistical
background about linear statistical models, see the section “Linear Model Theory” in Chapter 3, “Introduction
to Statistical Modeling with SAS/STAT Software.”

Exceptions and further details are documented for individual procedures.

Linear Regression Models
In matrix notation, a linear model is written as

Y D Xˇ C �
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where X is the .n� k/ design matrix (rows are observations and columns are the regressors), ˇ is the .k � 1/
vector of unknown parameters, and � is the .n � 1/ vector of unobservable model errors. The first column of
X is usually a vector of 1s and is used to estimate the intercept term.

The statistical theory of linear models is based on strict classical assumptions. Ideally, you measure the
response after controlling all factors in an experimentally determined environment. If you cannot control the
factors experimentally, some tests must be interpreted as being conditional on the observed values of the
regressors.

Other assumptions are as follows:

� The form of the model is correct (all important explanatory variables have been included). This
assumption is reflected mathematically in the assumption of a zero mean of the model errors, EŒ�� D 0.

� Regressor variables are measured without error.

� The expected value of the errors is 0.

� The variance of the error (and thus the dependent variable) for the ith observation is �2=wi , where wi
is a known weight factor. Usually, wi D 1 for all i and thus �2 is the common, constant variance.

� The errors are uncorrelated across observations.

When hypotheses are tested, or when confidence and prediction intervals are computed, an additional
assumption is made that the errors are normally distributed.

Parameter Estimates and Associated Statistics

Least Squares Estimators

Least squares estimators of the regression parameters are found by solving the normal equations�
X0WX

�
ˇ D X0WY

for the vector ˇ, where W is a diagonal matrix of observed weights. The resulting estimator of the parameter
vector is

b̌D �X0WX
��1 X0WY

This is an unbiased estimator, because

E
hb̌i D �X0WX

��1 X0WEŒY�

D
�
X0WX

��1 X0WXˇ D ˇ

Notice that the only assumption necessary in order for the least squares estimators to be unbiased is that of a
zero mean of the model errors. If the estimator is evaluated at the observed data, it is referred to as the least
squares estimate,

b̌D �X0WX
��1 X0WY
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If the standard classical assumptions are met, the least squares estimators of the regression parameters are the
best linear unbiased estimators (BLUE). In other words, the estimators have minimum variance in the class
of estimators that are unbiased and that are linear functions of the responses. If the additional assumption of
normally distributed errors is satisfied, then the following are true:

� The statistics that are computed have the proper sampling distributions for hypothesis testing.

� Parameter estimators are normally distributed.

� Various sums of squares are distributed proportional to chi-square, at least under proper hypotheses.

� Ratios of estimators to standard errors follow the Student’s t distribution under certain hypotheses.

� Appropriate ratios of sums of squares follow an F distribution for certain hypotheses.

When regression analysis is used to model data that do not meet the assumptions, you should interpret
the results in a cautious, exploratory fashion. The significance probabilities under these circumstances are
unreliable.

Box (1966) and Mosteller and Tukey (1977, Chapters 12 and 13) discuss the problems that are encountered
in regression data, especially when the data are not under experimental control.

Estimating the Precision

Assume for the present that X0WX has full column rank k (this assumption is relaxed later). The variance of
the error terms, VarŒ�i � D �2, is then estimated by the mean square error,

s2 D MSE D
SSE
n � k

D
1

n � k

nX
iD1

wi
�
yi � x0iˇ

�2
where x0i is the ith row of the design matrix X. The residual variance estimate is also unbiased: EŒs2� D �2.

The covariance matrix of the least squares estimators is

Var
hb̌i D �2 �X0WX

��1
An estimate of the covariance matrix is obtained by replacing �2 with its estimate, s2 in the preceding
formula. This estimate is often referred to as COVB in SAS/STAT modeling procedures:

COVB DbVar
hb̌i D s2 �X0WX

��1
The correlation matrix of the estimates, often referred to as CORRB, is derived by scaling the covariance

matrix: Let S D diag
��

X0WX
��1�� 1

2
. Then the correlation matrix of the estimates is

CORRB D S
�
X0WX

��1 S

The estimated standard error of the ith parameter estimator is obtained as the square root of the ith diagonal
element of the COVB matrix. Formally,

STDERR
�b̌

i

�
D

q�
s2.X0WX/�1

�
i i
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The ratio

t D
b̌
i

STDERR
�b̌

i

�
follows a Student’s t distribution with .n � k/ degrees of freedom under the hypothesis that ˇi is zero and
provided that the model errors are normally distributed.

Regression procedures display the t ratio and the significance probability, which is the probability under the
hypothesis H Wˇi D 0 of a larger absolute t value than was actually obtained. When the probability is less
than some small level, the event is considered so unlikely that the hypothesis is rejected.

Type I SS and Type II SS measure the contribution of a variable to the reduction in SSE. Type I SS measure
the reduction in SSE as that variable is entered into the model in sequence. Type II SS are the increment
in SSE that results from removing the variable from the full model. Type II SS are equivalent to the Type
III and Type IV SS that are reported in PROC GLM. If Type II SS are used in the numerator of an F test,
the test is equivalent to the t test for the hypothesis that the parameter is zero. In polynomial models, Type I
SS measure the contribution of each polynomial term after it is orthogonalized to the previous terms in the
model. The four types of SS are described in Chapter 15, “The Four Types of Estimable Functions.”

Coefficient of Determination

The coefficient of determination in a regression model, also known as the R-square statistic, measures the
proportion of variability in the response that is explained by the regressor variables. In a linear regression
model with intercept, R square is defined as

R2 D 1 �
SSE
SST

where SSE is the residual (error) sum of squares and SST is the total sum of squares corrected for the mean.
The adjusted R-square statistic is an alternative to R square that takes into account the number of parameters
in the model. The adjusted R-square statistic is calculated as

ADJRSQ D 1 �
n � i

n � p

�
1 �R2

�
where n is the number of observations that are used to fit the model, p is the number of parameters in the
model (including the intercept), and i is 1 if the model includes an intercept term, and 0 otherwise.

R-square statistics also play an important indirect role in regression calculations. For example, the proportion
of variability that is explained by regressing all other variables in a model on a particular regressor can
provide insights into the interrelationship among the regressors.

Tolerances and variance inflation factors measure the strength of interrelationships among the regressor
variables in the model. If all variables are orthogonal to each other, both tolerance and variance inflation
are 1. If a variable is very closely related to other variables, the tolerance approaches 0 and the variance
inflation gets very large. Tolerance (TOL) is 1 minus the R square that results from the regression of the other
variables in the model on that regressor. Variance inflation (VIF) is the diagonal of .X0WX/�1, if .X0WX/ is
scaled to correlation form. The statistics are related as

VIF D
1

TOL
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Explicit and Implicit Intercepts

A linear model contains an explicit intercept if the X matrix contains a column whose nonzero values do not
vary, usually a column of ones. Many SAS/STAT procedures automatically add this column of ones as the
first column in the X matrix. Procedures that support a NOINT option in the MODEL statement provide the
capability to suppress the automatic addition of the intercept column.

In general, models without an intercept should be the exception, especially if your model does not contain
classification (CLASS) variables. An overall intercept is provided in many models to adjust for the grand
total or overall mean in your data. A simple linear regression without intercept, such as

EŒYi � D ˇ1xi C �i

assumes that Y has mean zero if X takes on the value zero. This might not be a reasonable assumption.

If you explicitly suppress the intercept in a statistical model, the calculation and interpretation of your results
can change. For example, the exclusion of the intercept in the following PROC REG statements leads to
a different calculation of the R-square statistic. It also affects the calculation of the sum of squares in the
analysis of variance for the model. For example, the model and error sum of squares add up to the uncorrected
total sum of squares in the absence of an intercept.

proc reg;
model y = x / noint;

quit;

Many statistical models contain an implicit intercept, which occurs when a linear function of one or more
columns in the X matrix produces a column of constant, nonzero values. For example, the presence of a
CLASS variable in the GLM parameterization always implies an intercept in the model. If a model contains
an implicit intercept, then adding an intercept to the model does not alter the quality of the model fit, but it
changes the interpretation (and number) of the parameter estimates.

The way in which the implicit intercept is detected and accounted for in the analysis depends on the procedure.
For example, the following statements in PROC GLM lead to an implied intercept:

proc glm;
class a;
model y = a / solution noint;

run;

Whereas the analysis of variance table uses the uncorrected total sum of squares (because of the NOINT
option), the implied intercept does not lead to a redefinition or recalculation of the R-square statistic
(compared to the model without the NOINT option). Also, because the intercept is implied by the presence
of the CLASS variable a in the model, the same error sum of squares results whether the NOINT option is
specified or not.

A different approach is taken, for example, by PROC TRANSREG. The ZERO=NONE option in the CLASS
parameterization of the following statements leads to an implicit intercept model:

proc transreg;
model ide(y) = class(a / zero=none) / ss2;

run;

The analysis of variance table or the regression fit statistics are not affected in PROC TRANSREG. Only the
interpretation of the parameter estimates changes because of the way in which the intercept is accounted for
in the model.
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Implied intercepts not only occur when classification effects are present in the model. They also occur with
B-splines and other sets of constructed columns.

Models Not of Full Rank

If the X matrix is not of full rank, then a generalized inverse can be used to solve the normal equations to
minimize the SSE:

b̌D �X0WX
��X0WY

However, these estimates are not unique, because there are an infinite number of solutions that correspond to
different generalized inverses. PROC REG and other regression procedures choose a nonzero solution for
all variables that are linearly independent of previous variables and a zero solution for other variables. This
approach corresponds to using a generalized inverse in the normal equations, and the expected values of the
estimates are the Hermite normal form of X0WX multiplied by the true parameters:

E
hb̌i D �X0WX

��
.X0WX/ˇ

Degrees of freedom for the estimates that correspond to singularities are not counted (reported as zero). The
hypotheses that are not testable have t tests displayed as missing. The message that the model is not of full
rank includes a display of the relations that exist in the matrix.

For information about generalized inverses and their importance for statistical inference in linear models,
see the sections “Generalized Inverse Matrices” and “Linear Model Theory” in Chapter 3, “Introduction to
Statistical Modeling with SAS/STAT Software.”

Predicted and Residual Values
After the model has been fit, predicted and residual values are usually calculated, graphed, and output. The
predicted values are calculated from the estimated regression equation; the raw residuals are calculated
as the observed value minus the predicted value. Often other forms of residuals, such as studentized or
cumulative residuals, are used for model diagnostics. Some procedures can calculate standard errors of
residuals, predicted mean values, and individual predicted values.

Consider the ith observation, where x0i is the row of regressors, b̌ is the vector of parameter estimates, and s2

is the estimate of the residual variance (the mean squared error). The leverage value of the ith observation is
defined as

hi D wix0i .X
0WX/�1xi

where X is the design matrix for the observed data, x0i is an arbitrary regressor vector (possibly but not
necessarily a row of X), W is a diagonal matrix of observed weights, and wi is the weight corresponding to
x0i .

Then the predicted mean and the standard error of the predicted mean are

byi D x0ib̌
STDERR.byi / Dqs2hi=wi
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The standard error of the individual (future) predicted value yi is

STDERR.yi / D
q
s2.1C hi /=wi

If the predictor vector xi corresponds to an observation in the analysis data, then the raw residual for that
observation and the standard error of the raw residual are defined as

RESIDi D yi � x0ib̌
STDERR.RESIDi / D

q
s2.1 � hi /=wi

The studentized residual is the ratio of the raw residual and its estimated standard error. Symbolically,

STUDENTi D
RESIDi

STDERR.RESIDi /

Two types of intervals provide a measure of confidence for prediction: the confidence interval for the mean
value of the response, and the prediction (or forecasting) interval for an individual observation. As discussed
in the section “Mean Squared Error” in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT
Software,” both intervals are based on the mean squared error of predicting a target based on the result
of the model fit. The difference in the expressions for the confidence interval and the prediction interval
occurs because the target of estimation is a constant in the case of the confidence interval (the mean of an
observation) and the target is a random variable in the case of the prediction interval (a new observation).

For example, you can construct a confidence interval for the ith observation that contains the true mean value
of the response with probability 1 � ˛. The upper and lower limits of the confidence interval for the mean
value are

LowerM D x0ib̌� t˛=2;�qs2hi=wi
UpperM D x0ib̌C t˛=2;�qs2hi=wi

where t˛=2;� is the tabulated t quantile with degrees of freedom equal to the degrees of freedom for the mean
squared error, � D n � rank.X/.

The limits for the prediction interval for an individual response are

LowerI D x0ib̌� t˛=2;�qs2.1C hi /=wi
UpperI D x0ib̌C t˛=2;�qs2.1C hi /=wi

Influential observations are those that, according to various criteria, appear to have a large influence on the
analysis. One measure of influence, Cook’s D, measures the change to the estimates that results from deleting
an observation,

COOKDi D
1

k
STUDENT2i

�
STDERR.byi /

STDERR.RESIDi /

�2
where k is the number of parameters in the model (including the intercept). For more information, see Cook
(1977, 1979).
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The predicted residual for observation i is defined as the residual for the ith observation that results from
dropping the ith observation from the parameter estimates. The sum of squares of predicted residual errors is
called the PRESS statistic:

PRESIDi D
RESIDi
1 � hi

PRESS D
nX
iD1

wiPRESID2i

Testing Linear Hypotheses
Testing of linear hypotheses based on estimable functions is discussed in the section “Test of Hypotheses” on
page 59 in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” and the construction
of special sets of estimable functions corresponding to Type I–Type IV hypotheses is discussed in Chapter 15,
“The Four Types of Estimable Functions.” In linear regression models, testing of general linear hypotheses
follows along the same lines. Test statistics are usually formed based on sums of squares that are associated
with the hypothesis in question. Furthermore, when X is of full rank—as is the case in many regression
models—the consistency of the linear hypothesis is guaranteed.

Recall from Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” that the general
form of a linear hypothesis for the parameters is H WLˇ D d, where L is q � k, ˇ is k � 1, and d is q � 1. To
test this hypothesis, you take the linear function with respect to the parameter estimates: Lb̌� d. This linear
function in b̌ has variance

Var
h
Lb̌i D LVarŒb̌�L0 D �2L

�
X0WX

�� L0

The sum of squares due to the hypothesis is a simple quadratic form:

SS.H/ D SS.Lb̌� d/ D
�

Lb̌� d
�0 �

L
�
X0WX

�� L0
��1 �Lb̌� d

�
If this hypothesis is testable, then SS.H/ can be used in the numerator of an F statistic:

F D
SS.H/=q

s2
D

SS.Lb � d/=q
s2

If b̌ is normally distributed, which follows as a consequence of normally distributed model errors, then this
statistic follows an F distribution with q numerator degrees of freedom and n� rank.X/ denominator degrees
of freedom. Note that it was assumed in this derivation that L is of full row rank q.

Multivariate Tests
Multivariate hypotheses involve several dependent variables in the form

H WLˇM D d
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where L is a linear function on the regressor side, ˇ is a matrix of parameters, M is a linear function on
the dependent side, and d is a matrix of constants. The special case (handled by PROC REG) in which the
constants are the same for each dependent variable is expressed as

.Lˇ � cj/M D 0

where c is a column vector of constants and j is a row vector of 1s. The special case in which the constants
are 0 is then

LˇM D 0

These multivariate tests are covered in detail in Morrison (2004); Timm (2002); Mardia, Kent, and Bibby
(1979); Bock (1975); and other works cited in Chapter 9, “Introduction to Multivariate Procedures.”

Notice that in contrast to the tests discussed in the preceding section, ˇ here is a matrix of parameter estimates.
Suppose that the matrix of estimates is denoted as B. To test the multivariate hypothesis, construct two
matrices, H and E, that correspond to the numerator and denominator of a univariate F test:

H DM0.LB � cj/0.L.X0WX/�L0/�1.LB � cj/M
E DM0

�
Y0WY � B0.X0WX/B

�
M

Four test statistics, based on the eigenvalues of E�1H or .ECH/�1H, are formed. Let �i be the ordered
eigenvalues of E�1H (if the inverse exists), and let �i be the ordered eigenvalues of .ECH/�1H. It happens
that �i D �i=.1C �i / and �i D �i=.1 � �i /, and it turns out that �i D

p
�i is the ith canonical correlation.

Let p be the rank of .HC E/, which is less than or equal to the number of columns of M. Let q be the rank
of L.X0WX/�L0. Let v be the error degrees of freedom, and let s D min.p; q/. Let m D .jp � qj � 1/=2,
and let n D .v � p � 1/=2. Then the following statistics test the multivariate hypothesis in various ways, and
their p-values can be approximated by F distributions. Note that in the special case that the rank of H is 1, all
these F statistics are the same and the corresponding p-values are exact, because in this case the hypothesis is
really univariate.

Wilks’ Lambda

If

ƒ D
det.E/

det.HC E/
D

nY
iD1

1

1C �i
D

nY
iD1

.1 � �i /

then

F D
1 �ƒ1=t

ƒ1=t
�
rt � 2u

pq

is approximately F distributed, where

r Dv �
p � q C 1

2

u D
pq � 2

4

t D

( q
p2q2�4

p2Cq2�5
ifp2 C q2 � 5 > 0

1 otherwise

The degrees of freedom are pq and rt � 2u. The distribution is exact if min.p; q/ � 2. (See Rao 1973, p.
556.)
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Pillai’s Trace

If

V D trace
�
H.HC E/�1

�
D

nX
iD1

�i

1C �i
D

nX
iD1

�i

then

F D
2nC s C 1

2mC s C 1
�
V

s � V

is approximately F distributed with s.2mC s C 1/ and s.2nC s C 1/ degrees of freedom.

Hotelling-Lawley Trace

If

U D trace
�
E�1H

�
D

nX
iD1

�i D

nX
iD1

�i

1 � �i

then for n > 0

F D .U=c/..4C .pq C 2/=.b � 1//=.pq//

is approximately F distributed with pq and 4C .pq C 2/=.b � 1/ degrees of freedom, where b D .p C

2n/.q C 2n/=.2.2nC 1/.n � 1// and c D .2C .pq C 2/=.b � 1//=.2n/; while for n � 0

F D
2.snC 1/U

s2.2mC s C 1/

is approximately F with s.2mC s C 1/ and 2.snC 1/ degrees of freedom.

Roy’s Maximum Root

If ‚ D �1, then

F D ‚
v � r C q

r

where r D max.p; q/ is an upper bound on F that yields a lower bound on the significance level. Degrees of
freedom are r for the numerator and v � r C q for the denominator.

Tables of critical values for these statistics are found in Pillai (1960).

Exact Multivariate Tests

If you specify the MSTAT=EXACT option in the appropriate statement, p-values for three of the four tests
(Wilks’ lambda, the Hotelling-Lawley trace, and Roy’s greatest root) are computed exactly, and the p-values
for the fourth test (Pillai’s trace) are based on an F approximation that is more accurate (but occasionally
slightly more liberal) than the default. The exact p-values for Roy’s greatest root benefit the most, because in
this case the F approximation provides only a lower bound for the p-value. If you use the F-based p-value for
this test in the usual way, declaring a test significant if p < 0.05, then your decisions might be very liberal. For
example, instead of the nominal 5% Type I error rate, such a procedure can easily have an actual Type I error
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rate in excess of 30%. By contrast, basing such a procedure on the exact p-values results in the appropriate
5% Type I error rate, under the usual regression assumptions.

The MSTAT=EXACT option is supported in the ANOVA, CANCORR, CANDISC, GLM, and REG proce-
dures.

The exact p-values are based on the following sources:

� Wilks’ lambda: Lee (1972); Davis (1979)

� Pillai’s trace: Muller (1998)

� Hotelling-Lawley trace: Davis (1970, 1980)

� Roy’s greatest root: Davis (1972); Pillai and Flury (1984)

Note that, although the MSTAT=EXACT p-value for Pillai’s trace is still approximate, it has “substantially
greater accuracy” than the default approximation (Muller 1998).

Because most of the MSTAT=EXACT p-values are not based on the F distribution, the columns in the
multivariate tests table that correspond to this approximation—in particular, the F value and the numerator
and denominator degrees of freedom—are no longer displayed, and the column that contains the p-values
is labeled “P Value” instead of “Pr > F.” Suppose, for example, that you use the following PROC ANOVA
statements to perform a multivariate analysis of an archaeological data set:

data Skulls;
input Loc $20. Basal Occ Max;
datalines;

Minas Graes, Brazil 2.068 2.070 1.580
Minas Graes, Brazil 2.068 2.074 1.602
Minas Graes, Brazil 2.090 2.090 1.613
Minas Graes, Brazil 2.097 2.093 1.613
Minas Graes, Brazil 2.117 2.125 1.663
Minas Graes, Brazil 2.140 2.146 1.681
Matto Grosso, Brazil 2.045 2.054 1.580
Matto Grosso, Brazil 2.076 2.088 1.602
Matto Grosso, Brazil 2.090 2.093 1.643
Matto Grosso, Brazil 2.111 2.114 1.643
Santa Cruz, Bolivia 2.093 2.098 1.653
Santa Cruz, Bolivia 2.100 2.106 1.623
Santa Cruz, Bolivia 2.104 2.101 1.653
;

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc;
ods select MultStat;

run;

The default multivariate tests, based on the F approximations, are shown in Figure 4.5
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Figure 4.5 Default Multivariate Tests

The ANOVA Procedure
Multivariate Analysis of Variance

The ANOVA Procedure
Multivariate Analysis of Variance

MANOVATest Criteria and F Approximations for the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc

E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value F Value Num DF Den DF Pr > F

Wilks' Lambda 0.60143661 0.77 6 16 0.6032

Pillai's Trace 0.44702843 0.86 6 18 0.5397

Hotelling-Lawley Trace 0.58210348 0.75 6 9.0909 0.6272

Roy's Greatest Root 0.35530890 1.07 3 9 0.4109

NOTE: F Statistic for Roy's Greatest Root is an upper bound.

NOTE: F Statistic for Wilks' Lambda is exact.

If you specify MSTAT=EXACT in the MANOVA statement, as in the following statements, then the displayed
output is the much simpler table shown in Figure 4.6:

proc anova data=Skulls;
class Loc;
model Basal Occ Max = Loc / nouni;
manova h=Loc / mstat=exact;
ods select MultStat;

run;

Figure 4.6 Multivariate Tests with MSTAT=EXACT

The ANOVA Procedure
Multivariate Analysis of Variance

The ANOVA Procedure
Multivariate Analysis of Variance

MANOVATests for the Hypothesis of No Overall Loc Effect
H = Anova SSCP Matrix for Loc

E = Error SSCP Matrix

S=2 M=0 N=3

Statistic Value P-Value

Wilks' Lambda 0.60143661 0.6032

Pillai's Trace 0.44702843 0.5521

Hotelling-Lawley Trace 0.58210348 0.6337

Roy's Greatest Root 0.35530890 0.7641

Notice that the p-value for Roy’s greatest root is substantially larger in the new table and correspondingly
more in line with the p-values for the other tests.

If you reference the underlying ODS output object for the table of multivariate statistics, it is important to
note that its structure does not depend on the value of the MSTAT= option. In particular, it always contains
columns that correspond to both the default MSTAT=FAPPROX and the MSTAT=EXACT tests. Moreover,
because the MSTAT=FAPPROX tests are relatively cheap to compute, the columns that correspond to them
are always filled in, even though they are not displayed when you specify MSTAT=EXACT. On the other
hand, for MSTAT=FAPPROX (which is the default), the column of exact p-values contains missing values
and is not displayed.
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Comments on Interpreting Regression Statistics
In most applications, regression models are merely useful approximations. Reality is often so complicated
that you cannot know what the true model is. You might have to choose a model more on the basis of what
variables can be measured and what kinds of models can be estimated than on a rigorous theory that explains
how the universe really works. However, even in cases where theory is lacking, a regression model can
be an excellent predictor of the response if the model is carefully formulated from a large sample. The
interpretation of statistics such as parameter estimates might nevertheless be highly problematic.

Statisticians usually use the word “prediction” in a technical sense. Prediction in this sense does not refer
to “predicting the future” (statisticians call that forecasting) but rather to guessing the response from the
values of the regressors in an observation taken under the same circumstances as the sample from which the
regression equation was estimated. If you developed a regression model for predicting consumer preferences
in 1997, it might not give very good predictions in 2017 no matter how well it did in 1997. If you want
to predict the future, your model must include whatever relevant factors might change over time. If the
process that you are studying does in fact change over time, you must take observations at several, perhaps
many, different times. Analysis of such data is the province of SAS/STAT procedures such as MIXED and
GLIMMIX and SAS/ETS procedures such as AUTOREG and STATESPACE. For more information about
modeling serial correlation in longitudinal, repeated measures, or time series data with SAS/STAT mixed
modeling procedures, see Chapter 45, “The GLIMMIX Procedure,” and Chapter 77, “The MIXED Procedure.”
For more information about the AUTOREG and STATESPACE procedures, see the SAS/ETS User’s Guide.

The comments in the rest of this section are directed toward linear least squares regression. For more detailed
discussions of the interpretation of regression statistics, see Darlington (1968); Mosteller and Tukey (1977);
Weisberg (1985); Younger (1979).

Interpreting Parameter Estimates from a Controlled Experiment

Parameter estimates are easiest to interpret in a controlled experiment in which the regressors are manipulated
independently of one another. In a well-designed experiment, such as a randomized factorial design with
replications in each cell, you can use lack-of-fit tests and estimates of the standard error of prediction to
determine whether the model describes the experimental process with adequate precision. If so, a regression
coefficient estimates the amount by which the mean response changes when the regressor is changed by one
unit while all the other regressors are unchanged. However, if the model involves interactions or polynomial
terms, it might not be possible to interpret individual regression coefficients. For example, if the equation
includes both linear and quadratic terms for a given variable, you cannot change the value of the linear
term without also changing the value of the quadratic term. Sometimes it might be possible to recode the
regressors, such as by using orthogonal polynomials, to simplify the interpretation.

If the nonstatistical aspects of the experiment are also treated with sufficient care (such as by using placebos
and double-blind procedures), then you can state conclusions in causal terms; that is, this change in a regressor
causes that change in the response. Causality can never be inferred from statistical results alone or from an
observational study.

If the model that you fit is not the true model, then the parameter estimates can depend strongly on the
particular values of the regressors that are used in the experiment. For example, if the response is actually a
quadratic function of a regressor but you fit a linear function, then the estimated slope can be a large negative
value if you use only small values of the regressor, a large positive value if you use only large values of the
regressor, or near zero if you use both large and small regressor values. When you report the results of an
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experiment, it is important to include the values of the regressors. It is also important to avoid extrapolating
the regression equation outside the range of regressors in the sample.

Interpreting Parameter Estimates from an Observational Study

In an observational study, parameter estimates can be interpreted as the expected difference in response of
two observations that differ by one unit on the regressor in question and that have the same values for all other
regressors. You cannot make inferences about “changes” in an observational study because you have not
actually changed anything. It might not be possible even in principle to change one regressor independently
of all the others. Nor can you draw conclusions about causality without experimental manipulation.

If you conduct an observational study and you do not know the true form of the model, interpretation of
parameter estimates becomes even more convoluted. A coefficient must then be interpreted as an average
over the sampled population of expected differences in response of observations that differ by one unit on
only one regressor. The considerations that are discussed under controlled experiments for which the true
model is not known also apply.

Comparing Parameter Estimates

Two coefficients in the same model can be directly compared only if the regressors are measured in the same
units. You can make any coefficient large or small just by changing the units. For example, if you convert a
regressor from feet to miles, the parameter estimate is multiplied by 5,280.

Sometimes standardized regression coefficients are used to compare the effects of regressors that are
measured in different units. Standardized estimates are defined as the estimates that result when all variables
are standardized to a mean of 0 and a variance of 1. Standardized estimates are computed by multiplying
the original estimates by the sample standard deviation of the regressor variable and dividing by the sample
standard deviation of the dependent variable.

Standardizing the variables makes the standard deviation the unit of measurement. This makes sense only if
the standard deviation is a meaningful quantity, which usually is the case only if the observations are sampled
from a well-defined population. In a controlled experiment, the standard deviation of a regressor depends
on the values of the regressor that are selected by the experimenter. Thus, you can make a standardized
regression coefficient large by using a large range of values for the regressor.

In some applications you might be able to compare regression coefficients in terms of the practical range of
variation of a regressor. Suppose that each independent variable in an industrial process can be set to values
only within a certain range. You can rescale the variables so that the smallest possible value is 0 and the
largest possible value is 1. Then the unit of measurement for each regressor is the maximum possible range
of the regressor, and the parameter estimates are comparable in that sense. Another possibility is to scale the
regressors in terms of the cost of setting a regressor to a particular value so that comparisons can be made in
monetary terms.

Correlated Regressors

In an experiment, you can often select values for the regressors such that the regressors are orthogonal
(not correlated with one another). Orthogonal designs have enormous advantages in interpretation. With
orthogonal regressors, the parameter estimate for a given regressor does not depend on which other regressors
are included in the model, although other statistics such as standard errors and p-values might change.

If the regressors are correlated, it becomes difficult to disentangle the effects of one regressor from another,
and the parameter estimates can be highly dependent on which regressors are used in the model. Two
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correlated regressors might be nonsignificant when tested separately but highly significant when considered
together. If two regressors have a correlation of 1.0, it is impossible to separate their effects.

It might be possible to recode correlated regressors to make interpretation easier. For example, if X and Y are
highly correlated, they could be replaced in a linear regression by X C Y and X � Y without changing the
fit of the model or statistics for other regressors.

Errors in the Regressors

If the measurements of the regressors contain errors, the parameter estimates must be interpreted with respect
to the measured values of the regressors, not the true values. A regressor might be statistically nonsignificant
when measured with errors even though it would have been highly significant if measured accurately.

Probability Values (p-Values)

Probability values (p-values) do not necessarily measure the importance of a regressor. An important regressor
can have a large (nonsignificant) p-value if the sample is small, if the regressor is measured over a narrow
range, if there are large measurement errors, or if another closely related regressor is included in the equation.
An unimportant regressor can have a very small p-value in a large sample. Computing a confidence interval
for a parameter estimate gives you more useful information than just looking at the p-value, but confidence
intervals do not solve problems of measurement errors in the regressors or highly correlated regressors.

Interpreting R Square

R square is usually defined as the proportion of variance of the response that is predictable from (can be
explained by) the regressor variables. It might be easier to interpret

p
1 �R2, which is approximately the

factor by which the standard error of prediction is reduced by the introduction of the regressor variables.

R square is easiest to interpret when the observations, including the values of both the regressors and the
response, are randomly sampled from a well-defined population. Nonrandom sampling can greatly distort the
R square. For example, excessively large values of R square can be obtained by omitting from the sample
any observations that have regressor values near the mean.

In a controlled experiment, the R square depends on the values that are chosen for the regressors. A wide
range of regressor values generally yields a larger R square than a narrow range. In comparing the results of
two experiments on the same variables but with different ranges for the regressors, you should look at the
standard error of prediction (root mean square error) rather than the R square.

Whether a given R-square value is considered to be large or small depends on the context of the particular
study. A social scientist might consider an R square of 0.30 to be large, whereas a physicist might consider
an R square of 0.98 to be small.

You can always get an R square arbitrarily close to 1.0 by including a large number of completely unrelated
regressors in the equation. If the number of regressors is close to the sample size, the R square is very biased.
In such cases, the adjusted R square and related statistics discussed by Darlington (1968) are less misleading.

If you fit many different models and choose the model that has the largest R square, all the statistics are
biased and the p-values for the parameter estimates are not valid. You must use caution in interpreting the R
square for models that have no intercept term. As a general rule, no-intercept models should be fit only when
theoretical justification exists and the data appear to fit a no-intercept framework. R square in those cases is
measuring something different (see Kvalseth 1985).
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Incorrect Data Values

All regression statistics can be seriously distorted by a single incorrect data value. A decimal point in the
wrong place can completely change the parameter estimates, the R square, and other statistics. It is important
to check your data for outliers and influential observations. Residual and influence diagnostics are particularly
useful in this regard.

When a data point is declared as influential or as an outlier as measured by a particular model diagnostic,
this does not imply that the case should be excluded from the analysis. The label “outlier” does not have
a negative connotation. It means that the data point is unusual with respect to the model at hand. If your
data follow a strong curved trend and you fit a linear regression, then many data points might be labeled as
outliers not because they are “bad” or incorrect data values but because your model is not appropriate.
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