Introduction to Rough sets and Data mining

Nguyen Hung Son

http://www.mimuw.edu.pl/~son/

Outline

- 1. Knowledge discovery and data mining
 - 1. KDD processes
 - 2. Data mining techniques
 - 3. Data mining issues
- 2. Rough set theory
 - 1. Basic notions
 - 2. Applications of rough sets theory
 - 3. Rough set methodology to data mining

KDD

Data Mining: a KDD process

Data mining is not ...

- Generating multidimensional cubes of a relational table
- Searching for a phone number in a phone book
- Searching for keywords on Google
- Generating a histogram of salaries for different age groups
- Issuing SQL query to a database, and reading the reply

Data mining is ...

- Finding groups of people with similar hobbies
- Are chances of getting cancer higher if you live near a power line?

Why is Data Mining prevalent?

- Lots of data is collected and stored in data warehouses
 - Business: Wal-Mart logs nearly 20 million transactions per day
 - □ Astronomy: Telescope collecting large amounts of data (SDSS)
 - □ Space: NASA is collecting peta bytes of data from satellites
 - Physics: High energy physics experiments are expected to generate
 100 to 1000 tera bytes in the next decade
- Quality and richness of data collected is improving
 - □ Ex. Retailers, E-commerce, Science
- The gap between data and analysts is increasing
 - □ Hidden information is not always evident
 - High cost of human labor
 - Much of data is never analyzed at all

Steps of a KDD Process

- 1. Learning the application domain:
 - relevant prior knowledge and goals of application
- 2. Creating a target data set: data selection
- 3. Data cleaning and preprocessing: (may take 60% of effort!)
- 4. Data reduction and transformation:
 - Find useful features, dimensionality/variable reduction, invariant representation.
- 5. Choosing functions of data mining
 - summarization, classification, regression, association, clustering.
- 6. Choosing the mining algorithm(s)
- 7. Data mining: search for patterns of interest
- 8. Pattern evaluation and knowledge presentation
 - visualization, transformation, removing redundant patterns, etc.
- 9. Use of discovered knowledge

Data mining tasks

- Classification (predictive)
- Clustering (descriptive)
- Association Rule Discovery (descriptive)
- Sequential Pattern Discovery (descriptive)
- Regression (predictive)
- Deviation Detection (predictive)

Classification

- Modeling a class attribute, using other attributes
- Applications
 - Targeted marketing
 - Customer attrition

Source: Data Mining - Introductory and Advanced topics by Margaret Dunham

Name	Gender	Height	Output
Kristina	F	1.6 m	Medium
Jim	M	2 m	Medium
Maggie	F	1.9 m	Tall
Martha	F	1.88 m	Tall
Stephanie	F	1.7 m	Medium
Bob	M	1.85 m	Medium
Kathy	F	1.6 m	Medium
Dave	M	1.7 m	Medium
Worth	M	2.2 m	Tall
Steven	M	2.1 m	Tall
Debbie	F	1.8 m	Medium
Todd	M	1.95 m	Medium
Kim	F	1.9 m	Tall
Amy	F	1.8 m	Medium
Lynette	F	1.75 m	Medium

Applications of Classification

Marketing

- Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell phone product
- Approach:
 - Use the data collected for a similar product introduced in the recent past.
 - Use the profiles of customers along with their {buy, didn't buy} decision. The profile of the information may consist of demographic, lifestyle and company interaction.

Fraud Detection

- *Goal:* Predict fraudulent cases in credit card transactions
- Approach:
 - Use credit card transactions and the information on its account holders as attributes (important information: when and where the card was used)
 - Label past transactions as {fraud, fair} transactions to form the class attribute
 - Learn a model for the class of transactions and use this model to detect fraud by observing credit card transactions on an account

Application: Sky survey cataloging

- *Goal*: To predict class {star, galaxy} of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory)
 - □ 3000 images with 23,040 x 23,040 pixels per image
- Approach:
 - Segment the image
 - □ Measure image attributes (40 of them) per object
 - Model the class based on these features
- Success story: Could find 16 new high red-shift quasars (some of the farthest objects that are difficult to find) !!!

Classifying galaxies

Early

Class:

Stages of Formation

Intermediate

Attributes:

- Image features,
- Characteristics of light waves received, etc.

Late

Data Size:

- 72 million stars, 20 million galaxies
- Object Catalog: 9 GB
- Image Database: 150 GB

Source: Minnesota Automated Plate Scanner Catalog, http://aps.umn.edu

Regresion

- Linear regression
 - Data is modeled using a straight line of a form Y = a + bX
- Non-linear regression
 - Data is modeled using a nonlinear function $Y = a + b \cdot f(X)$

Association rules

Source: Data Mining - Introductory and Advanced topics by Margaret Dunham

Transaction	Items	Transaction	Items
T1	Blouse	T11	T-Shirt
T2	Shoes, Skirt, T-Shirt	T12	Blouse, Jeans, Shoes, Skirt, T-Shirt
Т3	Jeans, T-Shirt	T13	Jeans, Shoes, Shorts, T-Shirt
T4	Jeans, Shoes, T-Shirt	T14	Shoes, Skirt, T-Shirt
T5	Jeans, Shorts	T15	Jeans, T-Shirt
Т6	Shoes, T-Shirt	T16	Skirt, T-Shirt
T7	Jeans, Skirt	T17	Blouse, Jeans, Skirt
Т8	Jeans, Shoes, Shorts, T-Shirt	T18	Jeans, Shoes, Shorts, T-Shirt
Т9	Jeans	T19	Jeans
T10	Jeans, Shoes, T-Shirt	T20	Jeans, Shoes, Shorts, T-Shirt

{Jeans, T-Shirt, Shoes} → { Shorts} Support: 20% Confidence: 100%

Application of association analysis

- Marketing and sales promotion
 - □ *Item as a consequent*: can be used to determine what products will boost its sales
 - □ *Item as an antecedent*: can be used to see which products will be impacted if the store stops selling an item (e.g. cheap soda is a "loss leader" for many grocery stores.)
 - □ $Item_1 => Item_2$: can be used to see what products should be stocked along with $Item_1$ to promote the sale of $Item_2$
- Super market shelf management
 - Example
 - If a customer buys Jelly, then he is very likely to buy Peanut Butter.
 - So don't be surprised if you find Peanut Butter next to Jelly on an aisle in the super market.
- Inventory Management

Clustering

- Determine object groupings such that objects within the same cluster are similar to each other, while objects in different groups are not
- Problem with similarity measures:
 - Euclidean distance if attributes are continuous
 - Other problem-specific measures
- Example: Euclidean distance based clustering in 3D space
 - □ Intra cluster distances are minimized
 - Inter cluster distances are maximized

Application of Clustering

- Market Segmentation:
 - □ To subdivide a market into distinct subset of customers where each subset can be targeted with a distinct marketing mix
- Document Clustering
 - □ To find groups of documents that are similar to each other based on important terms appearing in them
- Stock market:
 - Observe stock movements everyday
 - □ Clustering points: Stock {UP / DOWN}
 - □ Similarity measure: Two points are more similar if the events described by them frequently happen together on the same day
- Deviation/Anomaly Detection: detect significant deviations from normal behavior
 - Ex. detection of fraudulent credit card transactions
 - □ Detection of intrusion of a computer network

Sequential Pattern Discovery:

- Given is a set of objects, with each object associated with its own timeline of events, find rules that predict strong sequential dependencies among different events
- Applications:
 - □ Telecommunication alarm logs
 - (Inverter_Problem Excessive_Line_Current) (Rectifier_Alarm) → (Fire_Alarm)
 - □ Point of sale transaction sequences
 - (Intro_to_Visual_C) (C++ Primer) → (Perl_For_Dummies, Tcl_Tk)
 - (Shoes) (Racket, Racket ball) → (Sports_Jacket)

Summary on KDD and data mining

• Knowledge discovery in databases is the process of identifying valid, novel, potentially useful, and ultimately understandable patterns/models in data.

■ Data mining is a step in the knowledge discovery process consisting of particular data mining algorithms that, under some acceptable computational efficiency limitations, finds patterns or models in data.

Rough sets: Introduction

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Pioneering Publications:
 - Z. Pawlak, "Rough Sets", International Journal of Computer and Information Sciences, Vol.11, 341-356 (1982).
 - □ Z. Pawlak, Rough Sets Theoretical Aspect of Reasoning about Data, Kluwer Academic Pubilishers (1991).

Rough sets: Introduction

- The main goal of the rough set analysis is induction of (learning) approximations of concepts.
- Rough sets constitutes a sound basis for KDD. It offers mathematical tools to discover patterns hidden in data.
- It can be used for feature selection, feature extraction, data reduction, decision rule generation, and pattern extraction (templates, association rules) etc.
- identifies partial or total dependencies in data, eliminates redundant data, gives approach to null values, missing data, dynamic data and others.

Rough sets: Introduction

- Recent extensions of rough set theory:
 - Rough mereology
 - Ontology-based rough sets

have developed new methods for

- decomposition of large data sets,
- data mining in distributed and multi-agent systems, and
- granular computing.

Basic Concepts of Rough Sets

- Information/Decision Systems (Tables)
- Indiscernibility
- Set Approximation
- Reducts and Core
- Rough Membership
- Dependency of Attributes

Information Systems/Tables

	Age	LEMS
x1	16-30	50
x2	16-30	0
х3	31-45	1-25
x4	31-45	1-25
x5	46-60	26-49
хб	16-30	26-49
x7	46-60	26-49

- IS is a pair (U, A)
- *U* is a non-empty finite set of objects.
- A is a non-empty finite set of attributes such that

$$a: U \to V_a$$

for every $a \in A$

• V_a is called the value set of a.

Decision Systems/Tables

	Age	LEMS	Walk
X1	16-30	50	yes
x2	16-30	0	no
x 3	31-45	1-25	no
x4	31-45	1-25	yes
x5	46-60	26-49	no
x6	16-30	26-49	yes
x7	46-60	26-49	no

- DS: $T = (U, A \cup \{d\})$
- $d \notin A$ is the *decision* attribute (instead of one we can consider more decision attributes).
- The elements of *A* are called the *condition* attributes.

Issues in the Decision Table

- The same or indiscernible objects may be represented several times.
- Some of the attributes may be superfluous.

Indiscernibility

- The equivalence relation
 - A binary relation $R \subseteq X \times X$ which is
 - \Box reflexive (xRx for any object x),
 - \square symmetric (if xRy then yRx), and
 - \Box transitive (if xRy and yRz then xRz).
- The equivalence class $[x]_R$ of an element $x \in X$ consists of all objects $y \in X$ such that xRy.

Indiscernibility (2)

Let IS = (U, A) be an information system, then with any $B \subseteq A$ there is an associated equivalence relation:

$$IND_{IS}(B) = \{(x, x') \in U^2 \mid \forall a \in B, a(x) = a(x')\}$$
 where $IND_{IS}(B)$ is called the *B-indiscernibility relation*.

- If $(x, x') \in IND_{IS}(B)$, then objects x and x' are indiscernible from each other by attributes from B.
- The equivalence classes of the *B-indiscernibility relation* are denoted by $[x]_{R}$.

An Example of Indiscernibility

	Age	LEMS	Walk
x 1	16-30	50	yes
x2 x3	16-30 31-45	0 1-25	no no
x4	31-45	1-25	yes
x5 x6	46-60 16-30	26-49 26-49	no yes
x7	46-60	26-49	no

- The non-empty subsets of the condition attributes are {Age}, {LEMS}, and {Age, LEMS}.
- $IND(\{Age\}) = \{\{x1, x2, x6\}, \{x3, x4\}, \{x5, x7\}\}\$
- $IND(\{LEMS\}) = \{\{x1\}, \{x2\}, \{x3,x4\}, \{x5,x6,x7\}\}$
- $IND(\{Age, LEMS\}) = \{\{x1\}, \{x2\}, \{x3,x4\}, \{x5,x7\}, \{x6\}\}.$

Observations

- An equivalence relation induces a partitioning of the universe.
- The partitions can be used to build new subsets of the universe.
- Subsets that are most often of interest have the same value of the decision attribute.

It may happen, however, that a concept such as "Walk" cannot be defined in a crisp manner.

Set Approximation

Let T = (U, A) and let $B \subseteq A$ and $X \subseteq U$. We can approximate X using only the information contained in B by constructing the B-lower and B-upper approximations of X, denoted BX and BX respectively, where

$$\underline{B}X = \{x \mid [x]_B \subseteq X\},$$

$$\overline{B}X = \{x \mid [x]_B \cap X \neq \emptyset\}.$$

Set Approximation (2)

- B-boundary region of X, $BN_B(X) = BX \underline{B}X$, consists of those objects that we cannot decisively classify into X in B.
- B-outside region of X, $U \overline{B}X$, consists of those objects that can be with certainty classified as not belonging to X.
- A set is said to be *rough* if its boundary region is non-empty, otherwise the set is crisp.

Upper Approximation:

$$\overline{R}X = \bigcup \{Y \in U / R : Y \cap X \neq \emptyset\}$$

Lower Approximation:

$$\underline{R}X = \bigcup \{Y \in U / R : Y \subseteq X\}$$

$oldsymbol{U}$	Headache	Temp.	Flu
<i>U1</i>	Yes	Normal	No
<i>U2</i>	Yes	High	Yes
<i>U3</i>	Yes	Very-high	Yes
<i>U4</i>	No	Normal	No
U 5	No	High	No
U6	No	Very-high	Yes
<i>U7</i>	No	High	Yes
<i>U8</i>	No	Very-high	No

The indiscernibility classes defined by $R = \{Headache, Temp.\}$ are $\{u1\}, \{u2\}, \{u3\}, \{u4\}, \{u5, u7\}, \{u6, u8\}.$

$$XI = \{u \mid Flu(u) = yes\}$$

= $\{u2, u3, u6, u7\}$
 $\underline{R}XI = \{u2, u3\}$
 $\overline{R}XI = \{u2, u3, u6, u7, u8, u5\}$

$$X2 = \{u \mid Flu(u) = no\}$$

= $\{u1, u4, u5, u8\}$
 $\underline{R}X2 = \{u1, u4\}$
 $\overline{R}X2 = \{u1, u4, u5, u8, u7, u6\}$

$$R = \{Headache, Temp.\}$$

 $U/R = \{\{u1\}, \{u2\}, \{u3\}, \{u4\}, \{u5, u7\}, \{u6, u8\}\}\}$
 $XI = \{u \mid Flu(u) = yes\} = \{u2, u3, u6, u7\}$
 $X2 = \{u \mid Flu(u) = no\} = \{u1, u4, u5, u8\}$

$$\underline{\underline{RX1}} = \{u2, u3\}$$

 $\underline{RX1} = \{u2, u3, u6, u7, u8, u5\}$

$$\underline{\underline{RX2}} = \{u1, u4\}$$

 $\underline{RX2} = \{u1, u4, u5, u8, u7, u6\}$

Properties of Approximations

$$\underline{B}(X) \subseteq X \subseteq \overline{B}X$$

$$\underline{B}(\phi) = \overline{B}(\phi) = \phi, \quad \underline{B}(U) = \overline{B}(U) = U$$

$$\overline{B}(X \cup Y) = \overline{B}(X) \cup \overline{B}(Y)$$

$$\underline{B}(X \cap Y) = \underline{B}(X) \cap \underline{B}(Y)$$

$$X \subseteq Y \text{ implies } \underline{B}(X) \subseteq \underline{B}(Y) \text{ and } \overline{B}(X) \subseteq \overline{B}(Y)$$

Properties of Approximations (2)

$$\underline{B}(X \cup Y) \supseteq \underline{B}(X) \cup \underline{B}(Y)$$

$$\overline{B}(X \cap Y) \subseteq \overline{B}(X) \cap \overline{B}(Y)$$

$$\underline{B}(-X) = -\overline{B}(X)$$

$$\overline{B}(-X) = -\underline{B}(X)$$

$$\underline{B}(\underline{B}(X)) = \overline{B}(\underline{B}(X)) = \underline{B}(X)$$

$$\overline{B}(\overline{B}(X)) = \underline{B}(\overline{B}(X)) = \overline{B}(X)$$
where $-X$ denotes $U - X$.

Four Basic Classes of Rough Sets

- X is roughly B-definable, iff $\underline{B}(X) \neq \emptyset$ and $B(X) \neq U$,
- X is internally B-undefinable, iff $\underline{B}(X) = \emptyset$ and $B(X) \neq U$
- X is externally B-undefinable, iff $\underline{B}(X) \neq \emptyset$ and B(X) = U
- \blacksquare X is totally B-undefinable, iff $\underline{B}(X) = \emptyset$ and B(X) = U.

Accuracy of Approximation

$$\alpha_B(X) = \frac{|\underline{B}(X)|}{|\overline{B}(X)|}$$

where |X| denotes the cardinality of $X \neq \emptyset$ Obviously $\alpha_R(X) < 1$,

If $\alpha_B(X) = 1$, X is *crisp* with respect to B.

If $0 \le \alpha_B \le 1$. X is rough with respect to B.

Rough Membership

The rough membership function quantifies the degree of relative overlap between the set X and the equivalence class $[x]_B$ to which x belongs.

$$\mu_X^B : U \to [0,1] \qquad \mu_X^B = \frac{|[x]_B \cap X|}{|[x]_B|}$$

The rough membership function can be interpreted as a frequency-based estimate of $P(x \in X \mid u)$, where u is the equivalence class of IND(B).

Rough Membership (2)

The formulae for the lower and upper approximations can be generalized to some arbitrary level of precision $\pi \in (0.5,1]$ by means of the rough membership function

$$\frac{B_{\pi}X}{B_{\pi}X} = \{x \mid \mu_X^B(x) \ge \pi\}$$

$$\overline{B}_{\pi}X = \{x \mid \mu_X^B(x) > 1 - \pi\}.$$

Note: the lower and upper approximations as originally formulated are obtained as a special case with $\pi = 1$.

Issues in the Decision Table

- The same or indiscernible objects may be represented several times.
- Some of the attributes may be superfluous (redundant).

That is, their removal cannot worsen the classification.

Reducts

- Keep only those attributes that preserve the indiscernibility relation and, consequently, set approximation.
- There are usually several such subsets of attributes and those which are minimal are called *reducts*.

Dispensable & Indispensable

Attributes

Let $c \in C$.

Attribute c is dispensable in T if $POS_{c}(D) = POS_{(c-\{c\})}(D)$, otherwise attribute c is indispensable in T.

The *C*-positive region of *D*:

$$POS_C(D) = \bigcup_{X \in U/D} \underline{C}X$$

Independent

■ T = (U, C, D) is independent if all $c \in C$ are indispensable in T.

Reduct & Core

The set of attributes $R \subseteq C$ is called a *reduct* of C, if T' = (U, R, D) is independent and

$$POS_R(D) = POS_C(D).$$

■ The set of all the condition attributes indispensable in *T* is denoted by *CORE(C)*.

$$CORE(C) = \bigcap RED(C)$$

where RED(C) is the set of all *reducts* of C.

An Example of Reducts & Core

U	Headache	Muscle pain	Temp.	Flu
U1	Yes	Yes	Normal	No
<i>U</i> 2	Yes	Yes	High	Yes
U3	Yes	Yes	Very-high	Yes
<i>U4</i>	No	Yes	Normal	No
<i>U</i> 5	No	No	High	No
U6	No	Yes	Very-high	Yes

U	Muscle pain	Temp.	Flu
<i>U1,U4</i>	Yes	Normal	No
<i>U2</i>	Yes	High	Yes
<i>U3,U6</i>	Yes	Very-high	Yes
1/5	No	High	No

 $Reduct1 = \{Muscle-pain, Temp.\}$

$Reduct2 = \{Headache, Temp.\}$

$oldsymbol{U}$	Headache	Temp.	Flu
U1	Yes	Norlmal	No
<i>U</i> 2	Yes	High	Yes
U3	Yes	Very-high	Yes
<i>U4</i>	No	Normal	No
<i>U5</i>	No	High	No
<i>U6</i>	No	Very-high	Yes

