Introduction to Safety for Collaborative Robotics

Carole Franklin Director of Standards Development Robotic Industries Association

Collaborative Robotics

What is it ??

Collaborative Robotics

What is it ??

- Aren't "Collaborative" Robots safe "right out of the box"?
- It's "Collaborative" and that means "inherently safe" right?
- Because it's "Collaborative" I won't need any of those safety fences and light curtains – right?

Why do we need this presentation?

Why do we need this presentation?

- Aren't "Collaborative" Robots safe "right out of the box"?
- It's "Collaborative" and that means "inherently safe" right?
- Because it's "Collaborative" I won't need any of those safety fences and light curtains – right?

Today's Topics:

- About Standards
- RIA's Foundational Standard: Safety Requirements for Industrial Robots and Robot Systems
- New Guidance on Collaborative Robot System Safety
- Resources

Today's Topics:

- About Standards
- RIA's Foundational Standard: Safety Requirements for Industrial Robots and Robot Systems
- New Guidance on Collaborative Robot System Safety
- Resources

What Is A Standard?

Voluntary Industry Consensus Standards

- National and International Standards Organizations
- ANSI, ISO, IEC, ASTF, etc.
- Standards help create, grow, and stabilize markets

Today's Topics:

- About Standards
- RIA's Foundational Standard:

Safety Requirements for Industrial Robots and Robot Systems

- Additional Guidance on Collaborative Robot System Safety
- Resources

RIA's Standard: Industrial Robot Safety

ANSI/RIA R15.06-2012, Industrial Robots & Robot Systems – Safety Requirements

- U.S. National Adoption of ISO 10218-1,2:2011
 - 10218 Part 1: Safety Requirements for Industrial ROBOTS
 - 10218 Part 2: Safety Requirements for Industrial ROBOT SYSTEMS and Systems Integration

RIA's Standard: Industrial Robot Safety

R15.06 = 10218

= CSA Z434 etc.

Why do we need this presentation?

Why do I need to know about the basic standard?

- Aren't "Collaborative" Robots safe "right out of the box"?
- It's "Collaborative" and that means "inherently safe" right?
- Because it's "Collaborative" I won't need any of those safety fences and light curtains – right?

...Because Collaborative Safety = TS 15066

- ISO/TS 15066:2016 an ISO Technical Specification
 - RIA TR R15.606-2016 An ANSI-registered Technical Report
 - Shorthand: "15066" or "TR 606"
- Order & download PDF from RIA Webstore
- Important! Supplemental to ISO 10218 / R15.06
 - "Industrial Robots and Robot Systems Safety Requirements"

"This Technical Specification is <u>relevant only in conjunction</u> with the safety requirements for collaborative industrial robot operation described in ISO 10218-1 and ISO 10218-2."

Robot Definition from ISO 10218 / R15.06

- Industrial Robot: Automatically controlled, reprogrammable multipurpose manipulator, programmable in three or more axes, which can be **either** fixed in place or mobile for use in industrial automation applications
 - NOTE 1: The industrial robot includes: the manipulator, including actuators; the controller, including teach pendant and any communication interface (hardware and software).
- Industrial Robot System: System comprising: Industrial robot; end-effector(s); any machinery, equipment, devices, external auxiliary axes or sensors supporting the robot performing its task

Robot Definition from ISO 10218 / R15.06

- Industrial Robot = Robot Arm + Robot Controller
- Industrial Robot System = Robot + End-Effector + Workpiece

+ Ancillary Equipment

That make up a complete Robot *System*

- The End-effector and Workpiece are determined based on the Application or, what the robot system is intended to accomplish
- Might be a...?
 - Sealant applicator
 - Gripper
 - Cutter
 - Welder
 - •
 - ...

Source: R15.06-2012, Part 1, Clauses 3.10 and 3.11

Definitions: Robot

End-Effector, workpiece, ancillary equipment, etc.

Definitions: Robot System

Collaborative Robot SYSTEM

Definitions: Robot System

Collaborative Robot SYSTEM

Aren't "Collaborative" Robots safe "right out of the box"?

The "Collaborative" robot arm cannot do any work until it is integrated into a complete robot system – and it is the **ROBOT SYSTEM** that is (or is not) **COLLABORATIVE**

Traditional Safety Paradigm

- Old: Primary means of protecting people was to separate them from the robotic equipment
- Physical safeguards and protective devices

Robotic Industries Assoc

Paradigm Shift

 New: With the advent of Collaborative Robot Systems, now the human and robot system can interact safely in the shared workspace

Paradigm Shift

"Traditional" Robot (Safeguarded)

"Collaborative" Robot (PFL, "Inherently Safe," etc.)

It's "Collaborative" and that means "inherently safe" –

Right?

"Inherently safe" describes some specific design factors that help the robot arm be **safER** for human contact.

"Inherently Safe" Design Factors

Today's Topics:

- About Standards
- RIA's Foundational Standard: Safety Requirements for Industrial Robots and Robot Systems
- Additional Guidance on Collaborative Robot System Safety
- Resources

Unique strengths of humans (creative problem-solving)

Unique strengths of robot systems (power and precision in repetitive tasks)

Increased productivity

- Integrates key information together in one document:
 - Definition of collaborative robotic operation
 - Characteristics of safety-related control systems for collaborative operation
 - Factors for the design of a collaborative robot system*
 - Built-in safety-related systems for collaborative operation, and requirements for their use;
 - How to implement a collaborative application using the following techniques:
 - Safety-rated monitored stop
 - Hand guiding
 - Speed and Separation Monitoring
 - Guidance on speeds, protective distances, formula for protective separation distance*
 - Power and Force Limiting
 - Threshold limit values for power and force to avoid pain*

* New Information in 15066/ TR 606!

New information:

- Annex A: "The Body Model" incorporates important data from a study of pain thresholds for Power and Force Limiting applications
- Study conducted at the University of Mainz in Germany
- 100 human test subjects; both sexes and wide range of ages and body dimensions
- Maximum permissible pressure values shown in Annex A represent the 75th percentile

Robotic Industries Associa

New information:

• Annex A: "The Body Model"

Source: ISO/TS 15066:2016, Fig. 4, Fig A.1

Transient and Quasi-Static Contact

Transient Contact:

Human body part is capable of recoiling from impact

Quasi-Static Contact:

Human body part is at risk of being clamped or entrapped

Source: ISO/TS 15066:2016. Graphic Source: B. Matthias, NRSC 2015 Presentation. Used with permission.

How Can TS 15066 / TR 606 Help You?

- Guidance primarily for suppliers and integrators for the safe design and operation of collaborative robot systems.
- Four types of collaborative operation:
 - Safety-rated monitored stop
 - Hand guiding
 - Speed and separation monitoring
 - Power and force limiting

Four Types of Collaborative Operation (1)

Safety-Rated Monitored Stop

- A stop is assured while maintaining power to the robot
- Operator may interact with robot
- Automatic operation may resume when the human leaves the collaborative workspace (requires safeguarding)
- Either the person OR the robot system may move, but NOT at the same time.

Robot stops when a person enters the work cell, courtesy ABB Inc.

Four Types of Collaborative Operation (2)

Hand guiding

- Operator is in direct contact with the robot and is using hand controls to direct the robot where to go and what to do
- Robot system under manual control
- Both the person and the robot may move at the same time; motion controlled by the person

Four Types of Collaborative Operation (3)

Speed and separation monitoring

- Robot/hazard speed is reduced the closer an operator is to the hazard area
- · Protective stop is issued when operator is in potential contact
- Person and robot may move at the same time

Four Types of Collaborative Operation (4)

Power and force limiting

- Speed, torque, motion of the robot is controlled so that incidental contact between robot and operator will not cause harm
 - Since contact is permitted, it must be controlled and its risks understood
- Person and robot can move at the same time
- Possible risk reduction measures:
 - Robot design factors (e.g., rounded shape, compliant materials)
 - Appropriate application selection & robot cell design (e.g., end-effector, workpiece, motion path, etc.)
 - Consult biomechanical power and force guidance (Annex A)
 - Transient Contact (human body part can usually recoil or "bounce away")
 - Quasi-Static Contact (clamping; entrapment risk)

Four Types of Collaborative Operation

Collaborative type	Benefit	High Risk Applications?	Low Risk Applications
Safety-rated monitored stop	Quicker resumption of operation (power retained)	Yes safeguarding required	Yes
Hand-guided	Personal control & responsibility by operator; high variability of programs & quick changes	Yes	Yes
Speed & Separation Monitoring	Reduced space for application; Immediate resumption of higher speeds	Yes safeguarding required for intrusion/ approach	Yes safeguarding required for intrusion/ approach
Power & Force Limiting (without protective devices)	Reduced space for application; if easy to program, then personal control by operator	Yes, but LOW speed (might be <u>VERY</u> SLOW)	Yes

Robotic Industries Association

Source: ISO/TS 15066:2016. Graphic Source: R. Nelson Shea, NRSC 2016 Presentation. Used with permission.

Four Types of Collaborative Operation

Source: ISO/TS 15066:2016. Graphic Source: R. Nelson Shea, NRSC 2016 Presentation. Used with permission. Price Industries Association

MYTH Because it's "Collaborative" I won't need any of those safety fences and light curtains –

Right?

REALL Depending on your risk assessment (and yes, the RA is still required), you might find you do need **safeguarding**

Today's Topics:

- About Standards
- RIA's Foundational Standard: Safety Requirements for Industrial Robots and Robot Systems
- New Guidance on Collaborative Robot System Safety

- Resources

Practical Steps for Collaborative Safety

1. Get to know your Standards

• R15.06 / 10218; TR 606 / TS 15066

2. Think in terms of the Robot SYSTEM

Not just the robot arm!

3. Select Other Equipment with Care

• Avoid end-effectors (etc.) that are sharp, pointed, jagged, hot...

4. Do your Risk Assessment

• TR 306

5. Watch your Poses and Paths

 Avoid those that might cause contact with face/ head/ neck, or clamping/ pinching (quasi-static contact)

Resources: Robotics.org

- Feature Articles
- Safety Resources
- Webinars
- Supplier Information
- Certified Integrators Program
- Industry Event
 Schedule
- More!

Resources: Robotics.org/ CRAV.ai

Resources: Robotics.org/ Safety Page

- Standards
 Documents
- Safety Seminars
- Webinars
- Risk Assessment Software

Resources: Robotics.org/ Standards

- Standards Newsletter
 - Upcoming Standards Meetings Schedule
- Committee
 Application

Questions About Standards?

Robotic Industries Association

Carole Franklin

Director of Standards Development

Robotic Industries Association (RIA)

Ann Arbor, MI USA

cfranklin@robotics.org

734-994-6088 www.robotics.org

