
Introduction to

Scala and Spark

Bradley (Brad) S. Rubin, PhD

Director, Center of Excellence for Big Data

Graduate Programs in Software

University of St. Thomas, St. Paul, MN

bsrubin@stthomas.edu

1

SATURN 2016

Scala

Spark

Scala/Spark Examples

Classroom Experience

2

What is Scala?
• JVM-based language that can call, and be called, by Java

New: Scala.js (Scala to JavaScript compiler)

Dead: Scala.Net

• A more concise, richer, Java + functional programming

• Blends the object-oriented and functional paradigms

• Strongly statically typed, yet feels dynamically typed

• Stands for SCAlable LAnguage

Little scripts to big projects, multiple programming paradigms, start small
and grow knowledge as needed, multi-core, big data

• Developed by Martin Odersky at EPFL (Switzerland)

Worked on Java Generics and wrote javac

• Released in 2004

3

Scala and Java

4

JVM

ScalaJavajavac scalac

Scala Adoption (TIOBE)

5

Scala is 31st

on the list

Freshman

Computer Science

6

Job Demand

Functional Languages

7

Scala Sampler

Syntax and Features

• Encourages the use of immutable state

• No semicolons

unless multiple statements per line

• No need to specify types in all cases

types follow variable and parameter names after a colon

• Almost everything is an expression that returns a value of a type

• Discourages using the keyword return

• Traits, which are more powerful Interfaces

• Case classes auto-generate a lot of boilerplate code

• Leverages powerful pattern matching

8

Scala Sampler

Syntax and Features

• Discourages null by emphasizing the Option pattern

• Unit, like Java void

• Extremely powerful (and complicated) type system

• Implicitly converts types, and lets you extend closed classes

• No checked exceptions

• Default, named, and variable parameters

• Mandatory override declarations

• A pure OO language

all values are objects, all operations are methods

9

Language Opinions

10

There are only two kinds of languages:

the ones people complain about and the ones nobody uses.

— Bjarne Stroustrup

I Like…

• Concise, lightweight feel

• Strong, yet flexible, static typing

• Strong functional programming support

• Bridge to Java and its vast libraries

• Very powerful language constructs, if you need them

• Strong tool support (IntelliJ, Eclipse, Scalatest, etc)

• Good books and online resources

11

I Don’t Like…

• Big language, with a moderately big learning curve

• More than one way to do things

• Not a top 10 language

• Not taught to computer science freshman

12

Java 8:

Threat or Opportunity?

• Java 8 supports more functional features, like lambda
expressions (anonymous functions), encroaching on Scala’s
space

• Yet Scala remains more powerful and concise

• The Java 8 JVM offers Scala better performance

Release 2.12 will support this

• My prediction: Java 8 will draw more attention to functional
programming, and drive more Scala interest

• I don’t know any Scala programmers who have gone back to
Java (willingly)

13

Scala Ecosystem

• Full Eclipse/IntelliJ support

• REPL Read Evaluate Print Loop interactive shell

• Scala Worksheet interactive notebook

• ScalaTest unit test framework

• ScalaCheck property-based test framework

• Scalastyle style checking

• sbt Scala build tool

• Scala.js Scala to JavaScript compiler

14

Functional Programming and 
Big Data

• Big data architectures leverage parallel disk, memory, and CPU
resources in computing clusters

• Often, operations consist of independently parallel operations
that have the shape of the map operator in functional
programming

• At some point, these parallel pieces must be brought together to
summarize computations, and these operations have the shape
of aggregation operators in functional programming

• The functional programming paradigm is a great fit with big data
architectures

15

The Scala Journey

16

Java
Scala OO features

Enough Scala functional features
to use use the Scala API in
Apache Spark

Full-blown functional programming: Lambda calculus,
category theory, closures, monads, functors, actors,
promises, futures, combinators, functional design patterns,
full type system, library construction techniques, reactive
programming, test/debug/performance frameworks,
experience with real-world software engineering problems …

Days ➞ Weeks

Weeks ➞ Months

Years

Scala

Spark

Scala/Spark Examples

Classroom Experience

17

Apache Spark
• Apache Spark is an in-memory big data platform that performs

especially well with iterative algorithms

• 10-100x speedup over Hadoop with some algorithms, especially

iterative ones as found in machine learning

• Originally developed by UC Berkeley starting in 2009

Moved to an Apache project in 2013

• Spark itself is written in Scala, and Spark jobs can be written in
Scala, Python, and Java (and more recently R and SparkSQL)

• Other libraries (Streaming, Machine Learning, Graph Processing)

• Percent of Spark programmers who use each language

88% Scala, 44% Java, 22% Python

Note: This survey was done a year ago. I think if it were done today, we
would see the rank as Scala, Python, and Java

18
Source: Cloudera/Typesafe

Spark Architecture

[KARA15]

19

Figure 1-1. The Spark stack

Spark Core
Spark Core contains the basic functionality of Spark, including components for task
scheduling, memory management, fault recovery, interacting with storage systems,
and more. Spark Core is also home to the API that defines resilient distributed data‐
sets (RDDs), which are Spark’s main programming abstraction. RDDs represent a
collection of items distributed across many compute nodes that can be manipulated
in parallel. Spark Core provides many APIs for building and manipulating these
collections.

Spark SQL
Spark SQL is Spark’s package for working with structured data. It allows querying
data via SQL as well as the Apache Hive variant of SQL—called the Hive Query Lan‐
guage (HQL)—and it supports many sources of data, including Hive tables, Parquet,
and JSON. Beyond providing a SQL interface to Spark, Spark SQL allows developers
to intermix SQL queries with the programmatic data manipulations supported by
RDDs in Python, Java, and Scala, all within a single application, thus combining SQL
with complex analytics. This tight integration with the rich computing environment
provided by Spark makes Spark SQL unlike any other open source data warehouse
tool. Spark SQL was added to Spark in version 1.0.

Shark was an older SQL-on-Spark project out of the University of California, Berke‐
ley, that modified Apache Hive to run on Spark. It has now been replaced by Spark
SQL to provide better integration with the Spark engine and language APIs.

Spark Streaming
Spark Streaming is a Spark component that enables processing of live streams of data.
Examples of data streams include logfiles generated by production web servers, or
queues of messages containing status updates posted by users of a web service. Spark

A Unified Stack | 3

created for you as the variable called sc. Try printing out sc to see its type, as shown
in Example 2-3.

Example 2-3. Examining the sc variable

>>> sc
<pyspark.context.SparkContext object at 0x1025b8f90>

Once you have a SparkContext, you can use it to build RDDs. In Examples 2-1 and
2-2, we called sc.textFile() to create an RDD representing the lines of text in a file.
We can then run various operations on these lines, such as count().

To run these operations, driver programs typically manage a number of nodes called
executors. For example, if we were running the count() operation on a cluster, differ‐
ent machines might count lines in different ranges of the file. Because we just ran the
Spark shell locally, it executed all its work on a single machine—but you can connect
the same shell to a cluster to analyze data in parallel. Figure 2-3 shows how Spark
executes on a cluster.

Figure 2-3. Components for distributed execution in Spark

Finally, a lot of Spark’s API revolves around passing functions to its operators to run
them on the cluster. For example, we could extend our README example by filtering
the lines in the file that contain a word, such as Python, as shown in Example 2-4 (for
Python) and Example 2-5 (for Scala).

Example 2-4. Python filtering example

>>> lines = sc.textFile("README.md")

>>> pythonLines = lines.filter(lambda line: "Python" in line)

Introduction to Core Spark Concepts | 15

Basic Programming Model
• Spark’s data model is called a Resilient Distributed Dataset (RDD)

• Two operations

Transformations: Transform an RDD into another RDD (i.e. Map)

Actions: Process an RDD into a result (i.e. Reduce)

• Transformations are lazily processed, only upon an action

• Transformations might trigger an RDD repartitioning, called a shuffle

• Intermediate results can be manually cached in memory/on disk

• Spill to disk can be handled automatically

• Application hierarchy

An application consists of 1 or more jobs (an action ends a job)

A job consists of 1 or more stages (a shuffle ends a stage)

A stage consists of 1 or more tasks (tasks execute parallel computations)

20

Wordcount in Java MapReduce
(1/2)

21

public class SumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
IntWritable intWritable = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)

throws IOException, InterruptedException {
int wordCount = 0;
for (IntWritable value : values) {

wordCount += value.get();
}
intWritable.set(wordCount);
context.write(key, intWritable);

}}

public class WordMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
IntWritable intWritable = new IntWritable(1);
Text text = new Text();
@Override
public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {
String line = value.toString();
for (String word : line.split("\\W+")) {

if (word.length() > 0) {
text.set(word);
context.write(text, intWritable);

}}}}

Wordcount in Java MapReduce
(2/2)

22

public class WordCount extends Configured implements Tool {

public int run(String[] args) throws Exception {

Job job = Job.getInstance(getConf());
job.setJarByClass(WordCount.class);
job.setJobName("Word Count");

FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(WordMapper.class);
job.setReducerClass(SumReducer.class);
job.setCombinerClass(SumReducer.class);
//job.setNumReduceTasks(48);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

return (job.waitForCompletion(true) ? 0 : 1);
}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}
}

Wordcount in Java

23

JavaRDD<String> file = spark.textFile(“hdfs://...");

JavaRDD<String> words = file.flatMap(new FlatMapFunction<String, String>() {

 public Iterable<String> call(String s) { return Arrays.asList(s.split(" ")); }

});

JavaPairRDD<String, Integer> pairs = words.map(new PairFunction<String, String, Integer>() {

 public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); }

});

JavaPairRDD<String, Integer> counts = pairs.reduceByKey(new Function2<Integer, Integer>() {

 public Integer call(Integer a, Integer b) { return a + b; }

});

counts.saveAsTextFile("hdfs://...");

JavaRDD<String> lines = sc.textFile(“hdfs://…”);

JavaRDD<String> words =

 lines.flatMap(line -> Arrays.asList(line.split(" ")));

JavaPairRDD<String, Integer> counts =

 words.mapToPair(w -> new Tuple2<String, Integer>(w, 1))

 .reduceByKey((x, y) -> x + y);

counts.saveAsTextFile(“hdfs://…”);

Java 7

Java 8

Wordcount in Python

24

file = spark.textFile("hdfs://...")

counts = file.flatMap(lambda line: line.split(" ")) \

 .map(lambda word: (word, 1)) \

 .reduceByKey(lambda a, b: a + b)

counts.saveAsTextFile("hdfs://...")

Wordcount in Scala

25

val file = spark.textFile("hdfs://...")

val counts = file.flatMap(line => line.split(" "))

 .map(word => (word, 1))

 .reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Spark Shells

• A shell is a kind of REPL (Run Evaluate Print Loop), commonly
found in several languages to support interactive development

• Python is supported via “pyspark” and iPython notebooks

• Scala is supported via “spark-shell”

• Let’s look at an example of interactive development using the

Spark Scala shell

26

Scala

Spark

Scala/Spark Examples

Classroom Experience

27

Reading in the Data

• We created an RDD out of the input files, but nothing really
happens until we do an action, so let’s call collect(), which
gathers all the distributed pieces of the RDD and brings them
together in our memory (dangerous for large amounts of data)

28

scala> sc.textFile(“/SEIS736/TFIDFsmall”)

res0: org.apache.spark.rdd.RDD[String] =

 /SEIS736/TFIDFsmall MapPartitionsRDD[1] at textFile at <console>:22

scala> sc.textFile(“/SEIS736/TFIDFsmall”).collect

res1: Array[String] = Array(The quick brown fox jumps over the lazy brown dog.,

 Waltz, nymph, for quick jigs vex Bud.,

 How quickly daft jumping zebras vex.)

Getting the Words
• Next, we want to split out the words. To do this, let’s try the map

function, which says to consider each item in the RDD array (a
line) and transform it to the line split into words with W+

• We read the map as “for each input x, replace it with x split into
an array of words”, where x is just a dummy variable

• Note, however, that we end up with an array of arrays of words
(one array for each input file)

• To flatten this into just a single array of words, we need to use
flatMap() instead of map()

29

scala> sc.textFile("/SEIS736/TFIDFsmall").map(x => x.split(“\\W+")).collect

res3: Array[Array[String]] = Array(Array(The, quick, brown, fox, jumps, over,

 the, lazy, brown, dog), Array(Waltz, nymph, for, quick, jigs, vex, Bud),

 Array(How, quickly, daft, jumping, zebras, vex))

flatMap
• This looks better!

30

scala> sc.textFile("/SEIS736/TFIDFsmall").flatMap(x => x.split(“\\W+")).collect

res4: Array[String] = Array(The, quick, brown, fox, jumps, over, the, lazy, brown,

 dog, Waltz, nymph, for, quick, jigs, vex, Bud, How, quickly, daft, jumping, zebras, vex)

Creating Key and Value
• Now, we want to make the output look like the wordcount

mapper, so we do a map to take each word as input and
transform it to (word,1)

• While we are at it, let’s lower case the word

31

sc.textFile("/SEIS736/TFIDFsmall").flatMap(x => x.split(“\\W+")).

map(x => (x.toLowerCase, 1)).collect

res5: Array[(String, Int)] = Array((the,1), (quick,1), (brown,1), (fox,1),

 (jumps,1), (over,1), (the,1), (lazy,1), (brown,1), (dog,1), (waltz,1),

 (nymph,1), (for,1), (quick,1), (jigs,1), (vex,1), (bud,1), (how,1),

 (quickly,1), (daft,1), (jumping,1), (zebras,1), (vex,1))

Sum Reducing
• Now, let’s do the sum reducer function with reduceByKey, which

says to run through all the elements for each unique key, and
sum them up, two at a time

• The underscores are Scala shorthand for “first number, second
number”

32

scala> sc.textFile("/SEIS736/TFIDFsmall").flatMap(x => x.split(“\\W+")).

map(x => (x.toLowerCase, 1)).reduceByKey(_ + _).collect

res6: Array[(String, Int)] = Array((fox,1), (bud,1), (vex,2), (jigs,1), (over,1),

 (for,1), (brown,2), (the,2), (jumps,1), (jumping,1), (daft,1), (quick,2), (nymph,1),

 (how,1), (lazy,1), (zebras,1), (waltz,1), (dog,1), (quickly,1))

Sorting
• For fun, let’s sort by key

33

scala> sc.textFile("/SEIS736/TFIDFsmall").flatMap(x => x.split(“\\W+")).

map(x => (x.toLowerCase, 1)).reduceByKey(_ + _).sortByKey().collect

res7: Array[(String, Int)] = Array((brown,2), (bud,1), (daft,1), (dog,1), (for,1),

 (fox,1), (how,1), (jigs,1), (jumping,1), (jumps,1), (lazy,1), (nymph,1), (over,1),

 (quick,2), (quickly,1), (the,2), (vex,2), (waltz,1), (zebras,1))

Writing to HDFS
• Finally, let’s write the output to HDFS, getting rid of the collect

• Why 3 output files?

We had 3 partitions when we originally read in the 3 input files, and
nothing subsequently changed that

34

scala> sc.textFile("/SEIS736/TFIDFsmall").flatMap(x => x.split(“\\W+")).

map(x => (x.toLowerCase, 1)).reduceByKey(_ + _).sortByKey().saveAsTextFile(“swc")

scala> exit

[brad@hc ~]$ hadoop fs -ls swc

Found 4 items

-rw-r--r-- 3 brad supergroup 0 2015-10-24 06:46 swc/_SUCCESS

-rw-r--r-- 3 brad supergroup 59 2015-10-24 06:46 swc/part-00000

-rw-r--r-- 3 brad supergroup 59 2015-10-24 06:46 swc/part-00001

-rw-r--r-- 3 brad supergroup 59 2015-10-24 06:46 swc/part-00002

Seeing Our Output

35

[brad@hc ~]$ hadoop fs -cat swc/part-00000

(brown,2)

(bud,1)

(daft,1)

(dog,1)

(for,1)

(fox,1)

(how,1)

[brad@hc ~]$ hadoop fs -cat swc/part-00001

(jigs,1)

(jumping,1)

(jumps,1)

(lazy,1)

(nymph,1)

(over,1)

[brad@hc ~]$ hadoop fs -cat swc/part-00002

(quick,2)

(quickly,1)

(the,2)

(vex,2)

(waltz,1)

(zebras,1)

An Alternative Style
• While the on-liner style (also known as a fluent style) is concise,

it is often easier to develop and debug by assigning each
functional block to a variable

• Note that nothing really happens until the the actions
(reduceByKey and saveAsTextFile) are executed

36

scala> val lines = sc.textFile(“/SEIS736/TFIDFsmall”)

scala> val words = lines.flatMap(x => x.split(“\\W+"))

scala> val mapOut = words.map(x => (x.toLowerCase, 1))

scala> val reduceOut =mapOut.reduceByKey(_ + _)

scala> val sortedOut = reduceOut.sortByKey()

scala> sortedOut.saveAsTextFile("swc")

Make it a Standalone Program

37

package edu.stthomas.gps.spark 
 
import org.apache.spark.{SparkConf, SparkContext} 
 
object SparkWordCount { 
 
 def main(args: Array[String]) { 
 
 val sparkConf = new SparkConf().setAppName("Spark WordCount")  
 val sc = new SparkContext(sparkConf) 
 
 sc.textFile("/SEIS736/TFIDFsmall")  
 .flatMap(x => x.split("\\W+"))  
 .map(x => (x.toLowerCase, 1)) 
 .reduceByKey(_ + _) 
 .sortByKey() 
 .saveAsTextFile("swc")  
 
 System.exit(0)  
 } 
}

spark-submit \
 --class edu.stthomas.gps.spark.SparkWordCount \
 --master yarn-cluster \
 --executor-memory 512M \
 --num-executors 2 \
 /home/brad/spark/spark.jar

Dataframes

• Dataframes are like RDDs, but they are used for structured data

• They were introduced to support SparkSQL, where a data frame

is like a relational table

• But, they are starting to see more general use, outside of

SparkSQL, because of the higher-level API and optimization
opportunities for performance

38

Dataframe Example

39

scala> val stocks = List(“NYSE,BGY,2010-02-08,10.25,10.39,9.94,10.28,600900,10.28",

“NYSE,AEA,2010-02-08,4.42,4.42,4.21,4.24,205500,4.24",

“NYSE,CLI,2010-02-12,30.77,31.30,30.63,31.30,1020500,31.30")

scala> case class Stock(exchange: String, symbol: String, date: String, open: Float, high:
Float, low: Float, close: Float, volume: Integer, adjClose: Float)

scala> val Stocks = stocks.map(_.split(“,")).map(x=>Stock(

x(0),x(1),x(2),x(3).toFloat,x(4).toFloat,x(5).toFloat,x(6).toFloat,x(7).toInt,x(8).toFloat))

scala> val StocksRDD = sc.parallelize(Stocks)

scala> val StocksDF = StocksRDD.toDF

Dataframe Example

40

scala> StocksDF.count

res0: Long = 3

scala> StocksDF.first

res1: org.apache.spark.sql.Row = [NYSE,BGY,2010-02-08,10.25,10.39,9.94,10.28,600900,10.28]

scala> StocksDF.show

+--------+------+----------+-----+-----+-----+-----+-------+--------+
|exchange|symbol| date| open| high| low|close| volume|adjClose|
+--------+------+----------+-----+-----+-----+-----+-------+--------+
NYSE	BGY	2010-02-08	10.25	10.39	9.94	10.28	600900	10.28
NYSE	AEA	2010-02-08	4.42	4.42	4.21	4.24	205500	4.24
NYSE	CLI	2010-02-12	30.77	31.3	30.63	31.3	1020500	31.3
+--------+------+----------+-----+-----+-----+-----+-------+--------+

Dataframe Example

41

scala> StocksDF.printSchema

root

 |-- exchange: string (nullable = true)

 |-- symbol: string (nullable = true)

 |-- date: string (nullable = true)

 |-- open: float (nullable = false)

 |-- high: float (nullable = false)

 |-- low: float (nullable = false)

 |-- close: float (nullable = false)

 |-- volume: integer (nullable = true)

 |-- adjClose: float (nullable = false)

scala> StocksDF.groupBy("date").count.show

+----------+-----+
| date|count|
+----------+-----+
|2010-02-08| 2|
|2010-02-12| 1|
+----------+-----+

scala> StocksDF.groupBy("date").count.filter("count > 1").rdd.collect

res2: Array[org.apache.spark.sql.Row] = Array([2010-02-08,2])

Dataframe Using SQL

42

scala> StocksDF.registerTempTable("stock")

scala> sqlContext.sql("SELECT symbol, close FROM stock WHERE close > 5 ORDER BY symbol").show

+------+-----+
|symbol|close|
+------+-----+
| BGY|10.28|
| CLI| 31.3|
+------+-----+

Dataframe Read/Write Interface
• The read/write interface makes it very easy to read and write

common data formats

43

Dataframe Read/Write Interface
• Reading in a JSON file as a Dataframe

44

scala> val df = sqlContext.read.format(“json").load("json/zips.json")

scala> df.printSchema

root

 |-- _id: string (nullable = true)

 |-- city: string (nullable = true)

 |-- loc: array (nullable = true)

 | |-- element: double (containsNull = true)

 |-- pop: long (nullable = true)

 |-- state: string (nullable = true)

scala> df.count

res0: Long = 29467

scala> df.filter("_id = 55105").show

+-----+----------+--------------------+-----+-----+
| _id| city| loc| pop|state|
+-----+----------+--------------------+-----+-----+
|55105|SAINT PAUL|[-93.165148, 44.9...|26216| MN|
+-----+----------+--------------------+-----+-----+

Dataframe Read/Write Interface
• Converting the Dataframe to Parquet format, and then querying it

as a Hive table

45

scala> val options = Map("path" -> “/user/hive/warehouse/zipcodes")

scala> df.select(“*").write.format("parquet").options(options).saveAsTable("zipcodes")

hive> DESCRIBE zipcodes;

OK

_id 	 string 	

city 	 string 	

loc 	 array<double> 	

pop 	bigint 	

state 	 string

hive> SELECT city FROM zipcodes WHERE (`_id` == '55105');

SAINT PAUL

Scala

Spark

Scala/Spark Examples

Classroom Experience

46

Classroom Experience
• After a 1/2 semester of Hadoop Java MapReduce programming,

I introduce Scala and Spark in two 3-hour lectures/demos

• Almost all students are able to successfully complete two

homework assignments (one heavily guided, one without
direction)

• Students enjoy the interactive shell style of development,
concise API, expressiveness, and easier/faster overall
development time/effort

About 50% of students change their course project proposals to use
Scala/Spark after this experience

• Two major hurdles

Spark is lazy, so errors are initially attributed to actions, yet the root
cause is often a preceding transformation

Students often confuse the Spark and Scala APIs

47

