UNESCO-NIGERIA TECHNICAL & VOCATIONAL —~
EDUCATION REVITALISATION PROJECT-PHASE I || N [s [: []

Introduction to Scientific Programming Using Java

COURSE CODE: COM121
THEORY BOOK

Version 1: December 2008

Introduction to Scientific Programming Using Java Page 1

Table of Contents

Week 1: Java Programming BasiCS.|.......ccccovivveviniecieneseeieie e
A Brief HISTOIY Of JAVAL.......coiiiiiee ettt sttt st sre s e aesbeesnesesraesnens 6
RTAT Y = AV S 6
TYPES Of JAVA PrOQIAMIS......oiiiieiieiieiieieie ettt ettt et e bt e stetesse e st ensesaeeneesnsessesneensessesneenes 7
Introduction to Java APPICALIONS.........ccciiieiii et b e st ereeneenes 7
Components of a Java Application Programm..........ccceeceviieecene ettt se e seas 8
Compilation and Execution Of Java ProgramsS........c.ccceeeeverineeieniiseeeesiee e seeesestesreesessesseessesseens 12
Week 2: Java Programming BasiCS.ll......cccccooeeveninennenineeee,
Using Simple Graphical INtEITACE...........co i 15
WEEK 3. e
DT = Y/ 01T T T T A7 USRS 18
Integers and Floating POINLS........cccioieiiiieeeceeese ettt st b e reenne s 19
F N 11T TeT (o @] 1= = 1o] €YU 20
Precedence of ArithmetiC OPEratOrS........cceouriririirieieietee et 21
Reference (NON-primitive DAta TYPES).....cceeieeereririereeseeetesteste s eeee e seeesaesseseeeneessesneensessesneensesees 22
Variable DECIAIALION.ccooiriiieieieee ettt 24
Using Graphical USEr INEITACES.........ccivvieieiiieeeestesete ettt st s re et e e s sreenaeneas 28
Week 4: Program Development Techniques.........ccccceeeveveeciennenne.
Program DeVelOPMENT STAGES.ccviieierieeeteiieeete sttt e rte e e et e st a e te e e e e stesreesaesesreessaessessesssenses 33
[(0 0] =T 0 0T =T0 AV, o RSP 33
Week5: Understand Insatiable Classes..........ccoeveveenenenenicnicenen.
Classes, Objects, Methods and Instance Varialles...........ocoooevirieieneneeeeeeee e 40
INSALIADIE CIASSES.......c.iiiiiieiiicie bbbttt 41
Declaring a Class with a Method and Instantiating an Object of a.Class......c.ccccoovveeviveevenenne. 42
Class CIICIE .o ettt bbbttt b e bbb e e et e s be st et et e st ese e bt sbenbe s eneens 43
Class CIFCIETEST ettt ettt b e bbb b e e et ebenb b e 44
Week 6: INtroduction t0 APPIELS.......viiiieieie e e et e s e e e e e e nreas
Week7: Know the Use of Conditional Statements.............cccccoeu..... 49
ALGOTIENIMS.....ceeeee et et sttt et e st e e be et e s beete e st e sbe e sbeeasesbesbeesbabesssensesbesasensents 50

Introduction to Scientific Programming Using Java Page 2

=Y U o oY ol o Yo [T 50

SEQUENCE STIUCTUIE IN JAVA ..t eeeee e s eaeeeeeeeansnnnnnnnnnnsnsnsnsnsnsnsnsnsnsnsnnnnnnns 52
Selection STAatemMENTS IN JAVAcoiiiiiieee ettt e s s s s 52
Y [= oYY =Tt 4o T B €= €= 1 1 =1 4 L TR 53
if ...else Double-Selection StAateMENL...........ccoccviiiiniiincce et 53
CoNItioNal OPEIALON (2) curiiiiieeiie ettt ete e ertee ettt ere e e te e e s be e et eeseteeesbaeesabeesaseesnbesensseesaresesseeesnreesases 54
Nested if ...eISE STATEMENTSoci et sttt ae e e ste e seeeneeseeseeneenes 55
DANGHNG-BISE PrOBIEM ..cueiiiicie ettt ettt ettt e e eeveeabeebeenbeebesesbeesteesaeesasensnesaneas 56
2] oY ol << PP PPV SPPPIN 57
Week8: Know the Use of Selection Statementis...........c.cceceeveeenenee.
Thewhile Repetition StAtEMENL..........ccccciii et sre e sbe e s aenes 60
Formulating Algorithms: Counter-Controlled Repetitionccceeeeecieiiiciee e 61
WEEKD: RECUISION.....ccuiiiirieieieieeieetesteeeee ettt
RECUISIVE CONCEPES ... cvviiiiiiiiie it e ettt e sttt e st e e e e e stee e e s sbeeeesaateeeesbteeesasseeeesantaeessssseaeesanseneesansenessnes 65
Example Using RecUrsion: FACIOMALS..........coeoieiiirirereceeee et 66
Week10: Characters and StringS........ccoceevveveieeceneneecene e
Fundamentals of Characters and StHIGS.......cccveveiieieieceeeerece e s 70
WRAL GIrE STHNGS 2.ttt sttt et st e et et e s teesa e besbe e s e stesbeesraestesseeseensesreessessennes 70
] o TR 0o o1 ¥ T oY TSRS 71
String Methods length , charAt and getChars ... 72
(000 a0 o X= T 4T 1 T =43Pt 73
General Learning Objectives for WEEKLL: AITAYS......ccceveieieeresieceeiesieeieestesteseesaesteseesessesreesesseens
LT B R Y o - 1YL OSSR
Declaring and Creating AITAYSueiiiciuiieieiireeeeiireeesstreeessreeessbreeessbeee s e sbeeeaesssseaeesssseessssseeessnssenessnsees 81
EXAMPIES USING ATTAYSueiiieieiiiieceiiee e ettt e ettt e e e ettt e e esataeeeesataeeesaseeeesnsseeseeeassaeeeesseeseanssaeeennsaesesnssenens 83
USING aN Array INIAliZEr .o e et e e e te e e e e te e e e abee e e enbaeesennteeeeennens 84
Calculating a Value to Store in Each Array EIEmMentc..ooeiiiiii it 86
Summing the EIEmMENtS OF &N ANTAY......c.cocvriiireieieiereeee et e 87
Week12 Event Driven Programs........c.coceevererieneeeienesenenesennens
Overview Of SWING COMPONENTS......uiiiiiiiiie ettt ettt e et e e s st e e e ssateeeeessbteeessbeeeesastaeessnseeeesns 89
Displaying Text and IMages in @ WINAOWcooicuiiiiiiiiiieciiee ettt e e esvre e e e e aree e e saae e e eearaee s ennes 90

Introduction to Scientific Programming Using Java Page 3

Labeling GUI COMPONENTES ...ciiiiieiiiiiiiie ettt e e e e e e iree e e e e e e eeattae e e e e e e e e anbeeebraaeeaeseeannssseeasaesesanntsnneananas 90

Text Fields and an Introduction to Event Handling with Nested Classes..........cccccecevenenicnnene. 92
Creating the GUL... ...t e e e et e e e e et e e e e s bt teeeeeabtaeesastaeeesntaeeesnseeeesansaeessnns 96
Steps Required to Set Up Event Handling for a GUI COMPONENtcceecuvieeiiiiieeeiiiee e 96
Using a Nested Class to Implement an Event Handlercoooiviiiiiiiii it 97
Registering the Event Handler for Each Text Field.........cuvviiiiiiiecceeee et 98
Details of Class TextFieldHandler 's actionPerformed Method.....c.coeeveinicicicece. 98

Week14: INNErItANCE........ccccvviirieinicincecree e

INtroduction to INREILANCEooiiiie et sne s 101
Y0 o1 ol IS Y Lo YU o Tol = T TSP URP 102
Relationship between Superclasses and SubCIasSesS..........cocoiiirinincncie e 104
Creating and Using @ COMMISSIONEMPIOYEE Classceeueeuiriiriinieieieiinesenteree e 105
CommissionEmployeeBasePlusCommissionEmployee Inheritance Hierarchy Using private Instance
VAIADIES ...ttt 111

Week15: PolymorphiSm..........ccooveieiiininccceee e

L oY AV 0 Vo T o] o1 1Y o SRR 116
POIYMOIPRISIN EXGMIPIES ..eeiiiii ittt e e e e et e e e e e e e st taaesaeeeaeesesnsataeeeaeeessnranneeaanan 118
Demonstrating Polymorphic BENAVIOT..........ciiiiiiiii ettt rtre e e aee e e are e e 119
Abstract Classes and MethOOScc.eiiieriiiiiieeeeee e et 122
Creating Abstract Superclass EMPIOYEE ..ot 125
Creating Concrete Subclass SalariedEMPIOYEE ..o 128

Introduction to Scientific Programming Using Java Page 4

WEEK 1

General Learning Objectives for Week 1: Java Programming Basics |

Specific Learning Objectives:

Brief History of Java

Features of Java Programming Language

Identify basics of OOP (Object Oriented Programming)
Identify the types of Java Programs

Identify the components of a Java Program

®oo o

Introduction to Scientific Programming Using Java Page 5

A Brief History of Java
Java is an Object Oriented Programmiamgguage developed by the team of James Gosling,

Pdrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun Microsystems in 1991. This
language was initially called “Oak” but was renamed “Java” in 1995. The name Java came about
when some Suns people went for a cup of coffee and the name Java was suggested and it struck.

Java was developed out of the rich experiences of the professionals who came together to design
the programming language thus, it is an excellent programming language. It has similar syntax to
C/C++ programming languages but without it complexities. Java is an elegant programming

language.

Java was initially developed for programming intelligent electronic devices such as TVs, cell
phones, pagers, smart cards etc. Unfortunately the expectations of the Suns team in this area did
not develop as they envisaged. With the advent of the in the boomlofd¢hestand the World

Wide Web (WWW) the team changed their focus and Java was developddveloping web

based applications. It is currently being used to develop a variety of applications.

Why Java?
Thousands of programmers are embracing Java as the programming language of choice and

several hundred more will joining before the end of the decade. Why is this so? The basic
reasons for these are highlighted below:

a. Portability: Java is a highly portable programming language because it is not designed
for any specific hardware or software platform. Java programs once written are translated
into an intermediate form called bytecod®e bytecode is then translated by the Java
Virtual Machine (JVM)nto the native object code of the processor thaptiogram is
been executed on. JVMs exist for several computer platforms; hence the term Write Once
Run Anywhere(WORA).

b. Memory Management: Java is very conservative with memory; once a resource is no
longer referenced the garbage collector is called to reclaim the resource. This is one of
the elegant features that distinguishes Java from C/C++ where the programmer has to

“manually” reclaim memory.

Introduction to Scientific Programming Using Java Page 6

c. Extensibility: The basic unit of Java programs is the class. Every program written in
Java is a class that specifies the attributes and behaviors of objects of that class. Java
APIs (Application Programmers Interfaceontains a rich set reusable classes that is
made available to the programmers. These classes are grouped together as packages from
which the programmer can build new enhanced classes. One of the key terms of object
oriented programming is reuse.

d. Secure:Java is a very secure programming language. Java codes (applets) may not
access the memory on the local computer that they are downloaded upon. Thus it
provides a secure means of developing internet applications.

e. Simple: Java’s feature makes it a concise programming language that is easy to learn and
understand. It is a serious programming language that easily depicts the skill of the
programmer.

f. RobustnessJava is a strongly typed programming language and encourages the

development of error free applications.

Types of Java Programs
Java programs may be developed in three ways. They will be mentioned briefly here:

a. Java Applications: These are stand-alone applications such word processors, inventory
control systems etc.

b. Java Applets: These programs that are executed within a browser. They are executed on
the client computer.

c. Java Serverlets:These are server side programs that are executed within a browser.

In this course we will limit ourselves to only the first two mentioned types of Java programs —

applications and applets.

Introduction to Java Applications
As earlier described Java applications are stand alone programs that can be executed to solve

specific problems. Before delving into the details of writing Java applications (and applets) we
will consider the concept on which the language is based upon being: Object Oriented

Programming (OOP).

Introduction to Scientific Programming Using Java Page 7

Object Oriented Programmirng a methodology which has greatly revolutionized lppograms
are designed and developed as the complexities involved in programming are increasing. The

following are the basic principles of OOP.

a. Encapsulation: Encapsulation is a methodology that binds together data and the codes
that it manipulates thus keeping it safe from external interference and misuse. An object
oriented program contains codes that may have private members that are directly
accessible to only the members of that program. Also it may have program codes
(method$ that will enable other programs to access theteiga uniform and controlled
fashion.

b. Polymorphism: Polymorphism is a concept whereby a particular “thing” may be
employed in many forms and the exact implementation is determined by the specific
nature of the situation (or problem). As an example, consider how a frog, lizard and a fish
move (“the interface”) from one place to another. A frog may leap ten centimeters, a
lizard in a single movement moves two centimeters and a shark may swim three meters in
a single movement. All these animals exhibit a common ability — movement — expressed
differently.

c. Inheritance: Inheritance is the process of building new classes based on existing classes.
The new class inherits the properties and attributes of the existing class. Object oriented
programs models real world concepts of inheritance. For example children inherit
attributes and behaviors from their parents. The attributes such as color of eyes,
complexion, facial features etc represent the fields in an java. Behaviors such as being a
good dancer, having a good sense of humor etc represent the methods. The child may

have other attributes and behaviors that differentiate them from the parents.

Components of a Java Application Program
Every Java application program comprises of a daskaration header, fields (instance

variables — which is optional), the main method and several other methods as required for
solving the problem. The methods and fields are members of the class. In order to explore these

components let us write our first Java program.

Introduction to Scientific Programming Using Java Page 8

/*
* HelloWorld.java
* Displays Hello world!!! to the output window

*

*/
public class Helloworld /Il class definition header
{

public static void main(String[] args)

{

System.out.printin(“Hello World!!! “); // print text
} // end method main

} // end class Helloworld

Listing 1.0 HelloWorld.java

The above program is a simple yet complete program containing the basic features of all Java
application programs. We will consider each of these features and explain them accordingly.
The first few lines of the program are comments.

/*
* HelloWorld.java
* Displays Hello world!!! to the output window

*

*/

The comments are enclosed between the /* */ symbols.

Comments are used for documenting a program, that is, for passing across vital information
concerning the program — such as the logic being applied, name of the program and any other
relevant information etc. Comments are not executed by the computer.

Comments may also be created by using the // symbols either at the beginning of a line:

/I This is a comment

Or on the same line after with an executable statement. To do this the comment must be written
after the executable statement and not before else the program statement will be ignored by the
computer:

System.out.printin(“Hello World!"! “); // in-line comment.

Introduction to Scientific Programming Using Java Page 9

This type of comment is termed as an in-line comment.
The rest of the program is the class declaration, starting with the class definition header:

public class HelloWorld, followed by a pair of opening and closing curly brackets.

{
}

The class definition header class definition header starts witictiess modifigpublic
followed by the keyword claghen the name of the class HelloWorlthe access modifier tells
the Java compiler that the class can be accessed outside the program file that it is declared in.

The keywordclasstells Java that we want to define a class using the name HelloWorld.

Note: The file containing this class must be saved using the name HelloWorld.java. The name of
the file and the class name must be the same both in capitalization and sequence. Java is very
case sensitive thus HelloWorld is different from helloworld and also different from
HELLOWORLD.

The next part of the program is the declaration of the main method. Meaifeodsed for

carying out the desired tasks in a Java program, they are akin to functions used in C/C++
programming languages. The listing:

public static void main(String[] args)

{
}

is the main method definition header. It starts with the access modifier public, followed by the
keyword static which implies that the methodin{) may be called before an object of the class
has been created. The keyword vinplies that the method will not return any value on
completion of its task. These keywords public, static, and void should always be placed in the

sequenced shown.

Any information that you need to pass to a method is received by variables specified within the
set of parentheses that follow the name of the method. These variables are called pafameters
no parameters are required for a given method, you still need to include the empty parentheses.

In main() there is only one parameter, String[] argshich declares a parameter named args

Introduction to Scientific Programming Using Java Page 10

This is an array of objects of type Strin@rrays are collections of similar objects.) Objects of
type String store sequences of characters. In this caserezgwes any command-line

arguments present when the program is executed. Note that the parameters could have been
written as String args[] This is perfectly correct.

The instructions (statements) enclosed within the curly braces will be executed once the main
method is run. The above program contains the instruction that tells Java to display the output
“Hello World!"!” followed by a carriage return. This instruction is:

System.out.printin(“Hello World!"!"); //print text

This line outputs the string "Java drives the Web." followed by a new line on the screen.
Output is actually accomplished by the built-in printin(') method. In this case, printin()
displays the string which is passed to it. As you will see, printin() can be used to display
other types of information, too. The line begins with System.@thile too complicated to
explain in detail at this time, briefly, System is a predefined class that provides access to the
system, and out is the output stream that is connected to the consoleSyigtas).out is an

object that encapsulates console output. The fact that Java uses an object to define console

output is further evidence of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently in

real-world Java programs and applets. Since most modern computing environments are
windowed and graphical in nature, console I/O is used mostly for simple utility programs and for
demonstration programs. Later you will learn other ways to generate output using Java, but for
now, we will continue to use the console I/O methods. Notice that the printin() statement ends
with a semicolon. All statements in Java end with a semicolon. The reason that the other lines in

the program do not end in a semicolon is that they are not, technically, statements.

The first closing brace -}- in the program emdain(), and the last } ends the HelloWorld
class definition; it is a good practice to place a comment after the closing curly brace. The
opening and close brace are referred to as a block of code.

One last point: Java is case sensitive. Forgetting this can cause you serious problems. For

example, if you accidentally typdain instead of main or PrintLn instead of printin, the

Introduction to Scientific Programming Using Java Page 11

preceding program will be incorrect. Furthermore, although the Java comipileompile

classes that do not contaimain() method, it has no way to execute them. So, if you had
mistypedmain, the compiler would still compile your program. However, the Java interpreter
would report an error because it would be unable to finddna() method.

In the above program some lines where left blank,il@is done in order to make the program
readable. Furthermore, tabs (indentation) were used to within the body of a class or methods as
appropriate to spate characters and symbols. The blank spaces, tabs, and newline characters are

referred to as white spaces.

Compilation and Execution of Java Programs
As earlier mentioned in this text we will create only two types of Java programs — applications

and applets. In the next few paragraphs the steps for editing, compiling and executing a Java

programs. The procedures for Java application and Java applets are basically the same. The major

difference is that Java applets are executed within a browser.

The basic steps for compiling and executing a Java program are:

a. Enter the source code using a text editor. He file must be saved usiig ¢xéension.java.

b. Use the Java compiler to convert the source code to its bytecode equivalent. The byte code
will be saved in a file having the same name as the program file with an extension .class. To
compile our HelloWorld.java program, type the following instructions at the Windows
command prompt (c:\>): javac HelloWorld.java
The bytecodes (.class file) will be created only if there are no compilation errors.

c. Finally use the Java interpreter to execute the application, to do this at the Windows command
prompt (c:\>) type: java HelloWorld. (You need not type the .class extension)

e -, e ~ e -,

Text Editor Java Compiler Java Interpreter
7 B 7 B 7 B

e Enter Java e Converts source e Executes Java
Source Code code to Java Bytecodes by
Bytecodes converting it
to Machine
Codes
- v - v - v

Introduction to Scientific Programming Using Java Page 12

Figure 1.0 Java Compilation and execution process.

Note: Other programs, called Integrated Devel opment Environments (IDEs), have been created

to support the development of Java programs. IDEs combine an editor, compiler, and other Java
support tools into a single application. The specific tools you will use to develop your programs
depend on your environment. Examples of IDEs include NetBeans, Eclipse, BlueJ etc.

Introduction to Scientific Programming Using Java Page 13

WEEK 2

General Learning Objectives for Week 2: Java Programming Basics Il

Specific Learning Objectives:
Objectives

f. Using Simple Graphical User Interface
g. Apply Graphical Classes

Introduction to Scientific Programming Using Java Page 14

Using Simple Graphical Interface

This week we will employ simple graphical classes — JOptionPane to repeat the same programs
which we implemented in week one. In the program presented in week one the output was
presented to the windows command prompt.

The JOptionPane class (javax.swing package) enables the user to use its static methods
showInputDialog and showMessageDialog to accept data and display information graphically.

The HelloWorldGUI.java which implements JOptionPane static methods for displaying hello
world to the user is presented below:

Figure 2.1 HelloWorldGUI.java

1
2
3
4
5
6
7

import javax.swing.JOptionPane;

8

9 public class HelloWorldGUI {

10 public static void main(String[] args) {

11 String msg = "Hello Wolrd" :

12 String ans = "

13

14 JOptionPane.showMessageDialog(null , msg);

15

16

1 ans = JOptionPane.showlnputDialog(null , "Enter your Name Please"
);

1

19

20 JOptionPane.showMessageDialog(null , "Hello" +ans);
21

22 }

23

24}

Line 7 we imported he JOptionPane class so that the JVM will ensure that we use it promperly.
The class definition header is presented in line 9. This is followed by the main method header
which must be mus be written this way it is presented in line 10. Two string variables are used,

one for displaying output — msg — and the other for input —ans-. The Graphical message is

Introduction to Scientific Programming Using Java Page 15

displayed with “Hello World” and a command button labeled ok shown. The user is requested to

enter his/her name (line 17) and a hello message with the name enter is displayed —(line 20).

The outputs of the program are presented below.

Message

‘o | Enter your Name Please
Hello Wolrd i
\Babhy |

0K 0K Cancel

| Message ﬁ

@ Hello Bobby

oK

Figure 2.2 sample output of HelloWorldGUl.java program.

Introduction to Scientific Programming Using Java Page 16

WEEK 3

General Learning Objectives for Week 3:

Specific Learning Objectives:

h. Know Java Data Types.
Know Java ldentifiers and Reserved Words.
Know Memory Allocation Concepts.
Give the general format of arithmetic expression.
Know operator precedence rules.
. Be able to evaluate simple and complex arithmetic expression.
Understand the concept of Data Conversion.

Introduction to Scientific Programming Using Java Page 17

Data Types in Java
A data typedefines a set of values and the operations thateaefned on those values. Data

types in Java can be divided into two groups:
a. Primitive Data Types
b. Reference Data Types (or Non-Primitives)

Data types are especially important in Java because it is a strongly typed language. This means
that all operations are type checked by the compiler for type compatibility. Illegal operations

will not be compiled. Thus, strong type checking helps prevent errors and enhances reliability.
To enable strong type checking, all variables, expressions, and values have a type. There is no
concept of a “type-less” variable, for example. Furthermore, the type of a value determines what

operations are allowed on it. An operation allowed on one type might not be allowed on.another

Primitive Data Types
The term primitives used here to indicate that these types are @ttshn an object-oriented
sense, but rather, normal binary values. These primitive types are not objects because of

efficiency concerns. All of Java’s other data types are constructed from these primitive types.

Java strictly specifies a range and behavior for each primitive type, which all implementations
of the Java Virtual Machine must support. Because of Java’s portability requirement, Java is
uncompromising on this account. For example, an int is the same in all execution environments.
This allows programs to be fully portable. There is no need to rewrite code to fit a specific
platform. Although strictly specifying the size of the primitive types may cause a small loss of

performance in some environments, it is necessary in order to achieve portability.

There are eight primitive data types in Java: fainssts of integers, two subsets of floating
point numbers, a charactdata type, and a booledata type. Everything else is represented

usng objects. Let’'s examine these eight primitive data types in some detail.

Introduction to Scientific Programming Using Java Page 18

Integers and Floating Points
Java has two basic kinds of numeric values: integdrighvhave no fractional part, and floating

points, which do. There are four integer data typgte(short int, and long and two floating

point data typesfloat and double All of the numeric types differ by the amount oémory

space used to store a value of that type, which determines the range of values that can be
represented. The size of each data type is the same for all hardware platforms. All numeric types
are signed, meaning that both positive and negative values can be stored in them. Figure 3.0

summarizes the numeric primitive types.

Type Storage Minimum Value Maximum Value
byte 8 bits -128 127
short 16 bits -32,768 32,767
int 32 bits —-2,147,483,648 2,147,483,647
long 64 bits -9,223,372,036,854,775,808 9,223,372,036,854,775,807
float 32 bits Approximately —3.4E+38 Approximately 3.4E+38
with 7 significant digits with 7 significant digits
double 64 bits Approximately —1.7E+308 | Approximately 1.7E+308
with 15 significant digits with 15 significant digits

Table 3.0 List of Java’s in-built numeric primitive data types.

When designing a program, we sometimes need to b&utabout picking variables of
appropriate size so that memory space is not wasted. For example, if a value will not vary
outside of a range of 1 to 1000, then a two-byte integjen{ is large enough to accommodate

it. On the other hand, when it’'s not clear what the range of a particular variable will be, we
should provide a reasonable, even generous, amount of space. In most situations memory space
IS not a serious restriction, and we can usually afford generous assumptions. Note that even
though &loat value supports very large (and very small) numbeosily has seven significant
digits. Therefore if it is important to accurately maintain a value such as 50341.2077, we need
to use a double

A literal is an explicit data value used in a program. The various numbers used in programs

such as Facts and Addition and Piano Keys are all integer literals.

Introduction to Scientific Programming Using Java Page 19

Java assumes all integer literals are of typeuintess an L or | is appended to the end of the
value to indicate that it should be considered a literal of type sunch as 45L.

Likewise, Java assumes that all floating point literals are of typeble If we need to treat a
floating point literal as #oat, we append an F or f to the end of the value, as/ib8F or
23.45f. Numeric literals of type double can be followed by a D or d if desired.

The following are examples of numeric variable declarations in Java:

int marks = 100;

byte smallNo1, smallNo2;

long totalStars = 86827263927L;

float ratio = 0.2363F;

double mega = 453.523311903;

Arithmetic Operators
Arithmetic operators are special symbols for cagynt calculations. These operators enable

programmers to write arithmetic expressions. An expressian algebraic like term that
evaluates to a value; it comprises of one or more operands (values) joined together by one or
more operators. Below is a summary of Java arithmetic operators in their order of precedence

that is, the order in which the arithmetic expression are evaluated.

Introduction to Scientific Programming Using Java Page 20

Order of Algebraic Java
Precedence Operator Symbo| Expression Expression Association
Multiplication * axc a*c Left to Right
Division / xlyorx+yor | xly Left to Right
First x
v
Modulus or % w mod 3 w % 3 Left to Right
Remainder
Addition + d+p d+p Right to Left
Second : : : :
Subtraction - j—2 j-2 Right to Left

Table 3.1 Operators, precedence and association of operators.

Precedence of Arithmetic Operators
The order in which arithmetic operators are appliedlata values (operand) is termed rules of

operator precedence. These rules are similar to that of algebra. They enable Java to evaluate
arithmetic expressions consistently and correctly.

The rules can be summarized thus:

a. Multiplication, division and modulus are applied first. Arithmetic expressions with

several of these operators are evaluated from the left to the right.

b. Addition and subtraction are applied next. In the situation that an expression contains
several of these operators they are evaluated from right to left.

The order in which the expressions are evaluated is referred to as their association. Now let us
consider some examples in the light of the rules of operator precedence; we will list both the

algebraic expression and the equivalent java expression.

X+y+z
Algebra : 3
Java: (x+y+2)3;

This expression calculates the average of three values. The parentheses is required so that the
values represented by x, y and z will be added and the result divided by three. If the parentheses
is omitted only z will be divided by three because division has a higher precedence over
addition.

Algebra: y=mx+c

Introduction to Scientific Programming Using Java Page 21

Java: y=m*X+c;

In this case the parentheses is not required because multiplication has higher precedence over
addition.

Algebra: z=pr%q+wx-y

Java: z=p*r%q+w/x-y;

In this example, the expression contains the operators *, % followed by +, / and -. The order of
execution is listed below:

b P 1 k
S % q by S by
sstepd ssteps

Note: the order of precedence may be overwritten by using parentheses, that is to say if we

desire addition before multiplication or division for example we can include the that part of the
expression in parentheses. In the above expression, if x - y is written as (x —y), then the value
represented by the y will be subtracted from that of x then the result will be divided by w.

Exercises
Show the order of execution the following arithmetic expressions and write their Java

equivalents:

+ \
a= ——{4+1x)
2

c=w—2d*-

il f+2
iii. r=2c 4 Wi ,2

iv. y=mx +3b

V. T=4r+d mod 4

Reference (Non-primitive Data Types)
Reference or non-primitive type data is used toaspnt objects. An object is defined by a

class, which can be thought of as the data type of the object. The operations that can be

Introduction to Scientific Programming Using Java Page 22

performed on the object are defined by the methods in the class. The attributes or qualities of
the objects of a class are defined by the fields — which in essence are primitive type data values.
Every object belongs to a class and can be referencedidsitigiers An identifier is a name

which is used to identify programming elements such as memory location, names of classes,
Java statements and so on. The names used for identifying memory locations are commonly
referred to as memory variables or variables for short.

Variable names are created by the programmer for representing values to be stored in the
computer memory. Each memory location is associated with a type, a value, and a name.
primitive data such as int (integer) can hold a single value and that value must correspond to the
data type specified by the programmer. Reference data types on the other hand contain not the
objects in memory but the addresses of where the objects (their method and fields etc) are stored
in memory. Examples of reference data types include arrays, strings and objects of any class

declared by the programmer.

Pertinent data about any object can be gathered and used to represent attributes (fields) and
tasks the objects can perform (methods) by using a well defined interface. Once a class has been
declared several objects can be created from it. The objects protect their own data and it cannot

be directly accessed by other objects.

In the next section we will summarized the rules for creating variables in Java.

a. Variables names may start with and alphabet (a-z / A-Z) and he remaining characters may
be, an underscore () or a dollar sign, or a number for example sum, counter, firstName, bar2x
amount_Paid are all valid variable names. 9x, Ovalue are invalid.

b. Embedded blank spaces may not be included in variable names though an underscore
may be used to join variable names that comprises of compound words. Example x 10 is not
valid, it could be written as x_10 or x10.

C. Reserved words (words defined for specific use in Java) may not be employed as
variables names. Example loop, do, for, while, switch are reserved.

d. Special symbols such as arithmetic operators, comma (,), ?, /, ! are not allowed.

e. Variable name may be of any length.

Introduction to Scientific Programming Using Java Page 23

It is a good programming practice to use names that indicate the meaning of the value it
represents. For amountPaid, or amt_paid can be easily remembered that it represent an amount
paid value. Though if the programmer had used x or y as the variable name it would still have
been valid.

Java is a case sensitive programming language thus the programmer must be very careful and
consistent when giving and using variable names. Java distinguishes between upper case
(capital) letters and lower case letters (small letters) hence ‘a’ is different from ‘A’ as far as Java

is concerned.

Exercises: Study the variable names below and indicate whether they are valid or not. If invalid
give reasons.

&maxium

X

a

b

C. Absolute temperature
d

e

f.

Money

30yearold

initVolume

Variable Declaration
Variable may represent values that are expecteldaioge or not during the execution of a

computer program. When declaring variable names the scope (visibility) of variables from other
part of the program may be specified, the type of data that should be stored in the area of

memory.

Variable names may also represent either primitive data or reference data. The general form for

creating or declaring variable is presented below.

accessModifier dataType variableList
Where:
accessModifierdetermines the visibility of the variable to other part of the program e.g. public

or private.

Introduction to Scientific Programming Using Java Page 24

dataType represents either primitive (int, char, float) or reference type data (array, String).
variableList is one or more valid variables separated using commas.

Examples:

a. private int x, vy, z;

In this example the access modifier is private, the data type is int and the variables that are
permitted to hold integer values are the identifiers x, y and z. similar pattern is applied in other
examples below.

b. private float balance, initTemperature;

C. private boolean alreadyPaid;

d. public long population;

Alternatively the initial values to be stored in the memory may be specified when declaring the
variables. The general form for declaring and initializing the variables is presented below:

accessModifier dataType variablel= valuel, variable2 = value2, ... , variable = valuen;
We will illustrate with examples.

private int x = 10;

private inta=0, b=0, c =0;

public double amountLoaned = 100;

Note: we declaring variables in a method (e.g. main method) do not include the access
modifiers because all variables declared in methods are implicitly private hence localized to that

method. The examples given above can be used to create instance variables

Now let us write a program to put together all that we have learnt. The program listing below
demonstrates how to create primitive variables (int) and non-primitive variable (of type
Scanner). It demonstrates how to write arithmetic expressions, input and output data from the

user.

/~k

* AddTwoNo.java

* Add any two integer numbers
*/

Introduction to Scientific Programming Using Java Page 25

import java.util.Scanner;
public class AddTwoNo {

public static void main(String[] args) {
I/l declare primitive variables
int firstNumber = 10;
int secondNumber = 20;
int sum = 0;

sum = firstNumber + secondNumber;

system.out.printin("Sum of " + firstNumber + " and " +
secondNumber +"is " + sum);

/l declare reference variable of type Scanner
Scanner input = new Scanner(System.in);

/I Accept values from the user
System.out.printin("Enter first integer number please ");
firstNumber = input.nextint();

System.out.printin("Enter second integer number please ");
secondNumber = input.nextint();

/[calculate sum and display result
sum = firstNumber + secondNumber;

System.out.printin("Sum of " + firstNumber + " and " +
secondNumber +"is " + sum);

} // end of method main

} // end of class AddTwoNos

Listing 3.1 — AddTwoNos.java
Now let us dissect the program. We will only pay particular attention to parts of the program

that were introduced.

After the main comments at the beginning of the program, just before the class declaration we
have the statement import statement. This statement is always placed before the class

declaration:

Introduction to Scientific Programming Using Java Page 26

import java.util.Scanner;

This statement instructs Java to include the Scanner as part of our program so that it will be able
to ensure that we use the elements of this class properly. A collection of classes are grouped
together in Java for ease of usage and to facilitate software reuse. A collection of classes
grouped together are referred to as a package. The Scanner class is a member of the java.util
package. By importing classed and using them in our classes makes Java a robust programming

language.

Next is the class definition header, then the main method definition header both of which we
have discussed earlier. Within the main method tloes variableof type int (integer) are
declared. It is advisable to declare individual variables on separate tine as this enhances
readability, a plus during debugging.

I/l declare primitive variables

int firstNumber = 10;

int secondNumber = 20;
int sum = 0;

The next instruction is an arithmetic expression that calculates the sum of the first and second

numbers and assigns the resulting values to sum.

sum = firstNumber + secondNumber;

In order for our program to permit the user to enter values via the standard input stream using an

object the Scanner class (input).

Scanner input = new Scanner(System.in);

Let us tarry a little while and study this statement in depth. The first part of the expression:
Scanner input; declares an object reference input of class Scanner; the second part of the
expression instructs Java to create the object in memory using the new keyword that calls a
special methodcpnstructoy to initialize fields of the class to initial valsierhis single

statement may be broken down into two:

Introduction to Scientific Programming Using Java Page 27

Scanner input; /Il declares the variable

input = new Scanner(System.in); // creates an instance (object) of the Scanner class.

Before the user enters any value, he is prompted accordingly; this is achieved through the use of
the println statement. The first and second println statements prompts the user for the first and
second integer numbers respectively.

The statement

firstNumber = input.nextint();

instructs the computer to read an integer value from the keyboard. To achieve this, the nextint()
method of the Scanner class was invoked using an object reference input.
After accepting the integer numbers from the user the sum is calculated as before and then

displayed to the output window.

Using Graphical User Interfaces
The entire program we have written so far has induitadisplayed prompts to the user via the

output window. In most real world programs, this will not be the case. Most modern
applications display messages to the user using windows — dialog boxes — and use same to
accept data from the user. In our next example, we will improve on the addition program by

using dialog boxes.

/*

* AddTwoNoDialog.java

* Add any two integer numbers
*/

import javax.swing.JOptionPane;
public class AddTwoNoDialog {

public static void main(String[] args) {
/I declare primitive variables
int firstNumber = 10;
int secondNumber = 20;
int sum = 0;

Introduction to Scientific Programming Using Java Page 28

String input; // for accepting input from the user
String output; // for displaying output

/I Accept values from the user
input = JOptionPane.showlInputDialog(null, "Enter first integer number",
"Adding Integers", JOptionPane.QUESTION_MESSAGE);

firstNumber = Integer.parselnt(input);

input = JOptionPane.showInputDialog(null, "Enter second integer number”,
"Adding Integers", JOptionPane.QUESTION MESSAGE);

secondNumber = Integer.parselnt(input);

/I calculate sum and display result
sum = firstNumber + secondNumber;

// build output string
output = "Sum of " + firstNumber + " and " + secondNumber + " is "
+ sum;

/I display output
JOptionPane.showMessageDialog(null, output, "Adding two integers",
JOptionPane.INFORMATION_MESSAGE);

} // end of method main
} // end of class AddTwoNos

Listing 3.2 AddTwoNoDialog.java

In this program, we imported the JOptionPane class (package javax.swing). JOptionPane
contains several static methaaisd static fieldssome of which was implemented in the listing

3.2

Let us go through the program and see how it works. We will only emphasize new concepts that
were introduced. In the program we imported the JOptionPane class (javax.swing package).
This will ensure Java loads the class and that we make use of the features of the class properly.

This class enables us to create objects that displays dialog boxes for both input and output.

Two string variables for handling both input and output were declared using the statements:

String input; // for accepting input from the user

Introduction to Scientific Programming Using Java Page 29

String output; // for displaying output

To accept the input from the user we employed the static method showlnputDiafdbé
class JOptionPane. The code is represented below:

/I Accept values from the user
input = JOptionPane.showInputDialog(null, "Enter first integer number",
"Adding Integers”, JOptionPane.QUESTION_MESSAGE);

showlnputDialog method always returns a string value thus we have to assign it return value to
the string variable input. The first parameter has a null value which implies that the dialog box
will be displayed in the middle of the computer screen. The next parameter is the prompt-
message- in this case “Enter first integer number”, followed by the title that will be displayed as
the title of the dialog box see figures 3.1a and 3.1b. the final parameter specifies the icon to be
displayed.

Each value entered by the user and assigned to the variable input is the wrapped into an integer
using the wrapper class Integer. This is one of the wrapper classes that is useérto co

primitives to their object equivalent and vice versa were entered by the user is assigned

r N ki | g Tl
Adding Integers Lﬁ Adding Integers ﬁ
? Enter first integer number < | Enter second integer number
12 | : 23] |
OK Cancel OK Cancel |
e | - "
Figure 3.1a Figure 3.1b
Adding two integers Iﬁ
'(D Sum of 12 and 23 is 35
OK
Figure 3.3c

/Il display output
JOptionPane.showMessageDialog(null, output, "Adding two integers",
JOptionPane.INFORMATION_MESSAGE);

Introduction to Scientific Programming Using Java Page 30

Introduction to Scientific Programming Using Java Page 31

WEEK 4

General Learning Objectives for Week 4: Program Development Techniques

Specific Learning Objectives:

0. Understand the concept developmental techniques of program development.
p. Know how to input and output data using graphical user interfaces
g. Apply arithmetic operators in manipulating input data

Introduction to Scientific Programming Using Java Page 32

Program Development Stages
Programming in any programming language is not a task that should be trivialized as mere entry

of code into the computer. In order to develop robust and efficient applications the
developer/programmer must follow certain steps. Most beginning programmers simply start
keying in code, for simple applications this may be ok, for most real life applications that may
include hundreds of classes and codes spanning thousands of line such an approach to

programming is as good as a Mission Impossible.

In this chapter we will introduce the basic steps that are to be employed when developing a Java
program. Programming basically involves problem solving — that is we write programs to

efficiently and effectively meet the needs of the users.

Problem solving
The purpose of writing a program is to solve a pawblProblem solving, in general, consists of

multiple steps:

Understanding the problem.
Breaking the problem into manageable pieces.

a.
b

c. Designing a solution.
d. Considering alternatives to the solution and refining the solution.
e. Implementing the solution.

f.

Testing the solution and fixing any problems that exist.

The first step, understanding the problem, may sound obvious, but a lack of attention to this
step has been the cause of many misguided efforts. If we attempt to solve a problem we don’t
completely understand, we often end up solving the wrong problem or at least going off on
improper tangents. We must understand the needs of the people who will use the solution.

These needs often include subtle nuances that will affect our overall approach to the solution.

Introduction to Scientific Programming Using Java Page 33

After we thoroughly understand the problem, we then break the problem into manageable pieces
and design a solution. These steps go hand in hand. A solution to any problem can rarely be
expressed as one big activity. Instead, it is a series of small cooperating tasks that interact to
perform a larger task. When developing software, we don’t write one big program. We design
separate pieces that are responsible for certain parts of the solution, subsequently integrating

them with the other parts.

Ouir first inclination toward a solution may not be the best one. We must always consider
alternatives and refine the solution as necessary. The earlier we consider alternatives, the easier it

is to modify our approach.

Implementing the solution is the act of taking the design and putting it in a usable form. When
developing a software solution to a problem, the implementation stage is the process of actually
writing the program. Too often programming is thought of as writing code. But in most cases,

the final implementation of the solution is one of the last and easiest steps. The act of designing
the program should be more interesting and creative than the process of implementing the design

in a particular programming language.

Finally, we test our solution to find any errors that exist so that we can fix them and improve the
quality of the software. Testing efforts attempt to verify that the program correctly represents the

design, which in turn provides a solution to the problem.

Throughout this text we explore programming techniques that allow us to elegantly design and
implement solutions to problems. Although we will often delve into these specific techniques in
detail, we should not forget that they are just tools to help us solve problems.

Let us consider a simple problem and use it to explain these concepts in some detail. Let us
design and write a program to calculate the sum of any three integer numbers and calculate their

average.

The task before us is quite simple enough to understand. To know what we are to do we can
begin by asking ourselves the ‘what’ question. What are we (or in effect the program) expected
to do? What are the major processes involved in calculating the sum and average of any three

numbers? These could be summarized as follows:

Introduction to Scientific Programming Using Java Page 34

a. First we must be able to accept any three numbers from the user.
b. Calculate the average.

c. Display average.

Next, we look at each of these steps and see if we break them and refine them as necessary; from
there onwards we plan how we will implement our solution. This is sometimes described as
asking the how question. How can we achieve the tasks we have identified and if necessary

refine the step.

Considering step ‘a’ we do not need to break it down. Let us implement this in our program

using dialog boxes.

Then step ‘b’ - calculate the average — how do we calculate average of three integer numbers?

This can be broken down into two steps that is:
i. Add up the three numbers to calculate their sum.
sum = firstNumber + secondNumber + thirdNumber

ii. Divide the sum by three to calculate the average.

SUTm
average = ——
3
The resulting value — average — may be an integer value or a floating point value. This being the

case we would declare average as double.

Finally, we consider the step c, that is, displaying the result. We will display the numbers added

and then the average using dialog boxes also.
The entire processing stedgorithm) are rewritten as:

First we must be able to accept any three numbers from the user.
b. Calculate the average.

I. Add up the three numbers to calculate their sum.

il. Divide the sum by three to calculate the average.

c. Display average.

Introduction to Scientific Programming Using Java Page 35

Now we proceed to write the Java program, correct any errors and test with sample data. The

source code for the program is presented below:

/*

* AverageThreelntegers

* Calculates the sumand average of any three integer numbers
*/

import javax.swing.JOptionPane;

public class AverageThreelntegers

{

public static void main(String args|])
{
int firstNumber; // first integer number
int secondNumber; // second integer number
int thirdNumber; // third integer number
int sum; /I sum of the three numbers

double average; // average of the three numbers

String input; /[input values
String result; // output generating string

Il Accept inteher numbers from he user
input = JOptionPane.showInputDialog(null, "Enter first number: ");
firstNumber = Integer.parselnt(input); // wrap input to integer

input = JOptionPane.showlInputDialog(null, "Enter second number: ");
secondNumber = Integer.parselnt(input); // wrap input to integer

input = JOptionPane.showInputDialog(null, "Enter third number: ");
thirdNumber = Integer.parselnt(input); // wrap input to integer

/I Calculate sum
sum = firstNumber + secondNumber + thirdNumber;

/I Calculate average
average = sum/3.0;

// Build output string and display output
result = "Average of " + firstNumber + ", " + secondNumber + "and " +
thirdNumber + " is =" + average;

JOptionPane.showMessageDialog(null, result, "Average of 3 Integers”,
JOptionPane.INFORMATION_MESSAGE);

Introduction to Scientific Programming Using Java Page 36

} // end method main

} /l end class AverageThreelntegers

Listing 4.1 AverageThreelntegers.java

Input) S 5
"@ Enter first number: E Enter second number:
3 | | |
OK Cancel OH Cancel
=4
m Average of 3 Integers m
Enter third number:
|5| | ® Average of 3, 4and 5is=4.0
0K cancel A
]
Figure 4.1
a'| Enter first number: , || Enter second number:
la = s

Enter third number:
1]

Figure 4.2

Introduction to Scientific Programming Using Java Page 37

The program listing 4.1 needs no elaborate explanation; all the material presented has been
explained earlier. Figures 4.1 and 4.2 shows the sample input and output results obtained when

the program is executed.

Introduction to Scientific Programming Using Java Page 38

WEEK 5

General Learning Objectives for Week5: Understand Insatiable Classes

Specific Objectives:

Define Insatiable Classes.

Understand the concepts of Class Members
Differentiate between Instance and Local Variables
Understand the concepts of declaring methods
Describe parameter passing in method definitions
Differentiate between public and private data

~0 o0 o

Introduction to Scientific Programming Using Java Page 39

Classes, Objects, Methods and Instance Variables

Let's begin with a simple analogy to help you un@ergtclasses and their contents. Suppose you
want to drive a car and make it go faster by pressing down on its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design the car.
A car typically begins as engineering drawings, similar to the blueprints used to design a house.
These engineering drawings include the design for an accelerator pedal to make the car go faster.
The pedal "hides" the complex mechanisms that actually make the car go faster, just as the brake
pedal "hides" the mechanisms that slow the car and the steering wheel "hides" the mechanisms
that turn the car. This enables people with little or no knowledge of how engines work to drive a

car easily.

Unfortunately, you cannot drive the engineering drawings of a car. Before you can drive a car,
the car must be built from the engineering drawings that describe it. A completed car will have
an actual accelerator pedal to make the car go faster, but even that's not enough the car will not

accelerate on its own, so the driver must press the accelerator pedal.

Now let's use our car example to introduce the key programming concepts of this section.
Performing a task in a program requires a method. The method describes the mechanisms that
actually perform its tasks. The method hides from its user the complex tasks that it performs, just
as the accelerator pedal of a car hides from the driver the complex mechanisms of making the car
go faster. In Java, we begin by creating a program unit called a class to house a method, just as a
car's engineering drawings house the design of an accelerator pedal. In a class, you provide one
or more methods that are designed to perform the class's tasks. For example, a class that
represents a bank account might contain one method to deposit money to an account, another to

withdraw money from an account and a third to inquire what the current balance is.

Just as you cannot drive an engineering drawing of a car, you cannot "drive" a class. Just as
someone has to build a car from its engineering drawings before you can actually drive a car, you

must build an object of a class before you can get a program to perform the tasks the class

Introduction to Scientific Programming Using Java Page 40

describes how to do. That is one reason Java is known as an object-oriented programming

language.

When you drive a car, pressing its gas pedal sends a message to the car to perform a taskthat is,
make the car go faster. Similarly, you senessages to an object each message is known as a

method calland tells a method of the object to perform it&.tas

Thus far, we have used the car analogy to introduce classes, objects and methods. In addition to
the capabilities a car provides, it also has many attributes, such as its color, the number of doors,
the amount of gas in its tank, its current speed and its total miles driven (i.e., its odometer
reading). Like the car's capabilities, these attributes are represented as part of a car's design in its
engineering diagrams. As you drive a car, these attributes are always associated with the car.
Every car maintains its own attributes. For example, each car knows how much gas is in its own
gas tank, but not how much is in the tanks of other cars. Similarly, an object has attributes that
are carried with the object as it is used in a program. These attributes are specified as part of the
object's class. For example, a bank account object has a balance attribute that represents the
amount of money in the account. Each bank account object knows the balance in the account it
represents, but not the balances of the other accounts in the bank. Attributes are specified by the

class's instance variables

The remainder of this chapter presents examples that demonstrate the concepts we introduced in

the context of the car analogy.

Insatiable Classes

Insatiable classes can be permits users to creasmoes — objects of the class. Each object of
the class will have its own set of variables — instance varithatsepresent the current state of
the object and methods that defines the task that object can perform. Technically each method

should perform only a single task, and it is permitted to call other methods to assist it.

Instance variables are declared outside any method inside the class and usually immediately after
the class definition header. See line 8 of figure 5.1. the access modifier is used to ensure that

each object maintains it own set of variables and thus not visible to any other object of the class

Introduction to Scientific Programming Using Java Page 41

or any other class. Variables declared inside a method are not visible to any other member of that
class or outside that class. Such variables are termed local varinstasce variables are

visible to all members of the class, but not to members of another class. To enable other classes
to access instance variables in order to reflect a change in the state of the objects we use public
service methods — set and get — methods to facilitate this through a well defined mechanism. The

set methods enables changes while get methods gives the current state of the object.

Declaring a Class with a Method and Instantiatingbject of a Class

We begin with an example that consists of classer (Fig. 5.1) and CircleTest (Fig. 5.2.

Class circle (declared in filecirclejava) will be used to define the properties of a Circle

object and tasks which each object of the class will be able to perform — in this case calculate the
area of a Circle instance. ClasgleTest (declared in file CircleTest.java) is an

application class in which th@ain method will use classircle . Each class declaration that

begins with keyword public must be stored in a file that has the same name as the class and
ends with the java file-name extension. Thus, classi@sle andcCircleTest must be

declared in separate files, because each class is dealared .

public class Circle {

private double radius;

@CXJ\I@U‘I#OOI\JH

10 public Circle() {

11 radius = 0;

12}

13

14

15

16 public Circle(double r){
17 setRadius(r);

18 }

19

20

21

22 public void setRadius(double r){
23 radius =r;

24

25 }

Introduction to Scientific Programming Using Java Page 42

26

27

28 public double getRadius(){

29 return radius;

30

31 }

32

33

34 public double calcArea(){

35 return Math.PI * Math.pow(radius, 2);

36

37}
38}

ClassCircle

Thecircle class declaratior=(g. 3.1 contains a two constructor methods, a no argument
constructorcircle)method (lines 10-12) that initializes the radius of a Circle object to its

default value of zero (0. The second constructor method is a programmer declared constructor
Circle(double r) method (lines 16-18) that that initializes a Circle object using the values
specified by the user.

The methodsetRadius() and setRadius() are public service methods that enables the
Instance variableadius (declared in line 8) to be visible to other classes. The class declaration

also contains calcAr@athat calculates the area of the circle.

So far, each class we declared had one method namieda special method that is always
called automatically by the Java Virtual Machine (JVM) when you execute an application). Most
methods do not get called automatically. As you will soon see, you must call matroeh

to tell it to perform its task.

The method declaration begins with keywpudiic to indicate that the method is "available to

the public" that is, it can be called from outside the class declaration's body by methods of other
classes. Keyword doubleindicates that this method will perform a task and will return (i.e., give
back) a value of type double to its calling methathen it completes its task. Method

setRadius on the other hand does not return any value to its calling method thus the keyword

void.

Introduction to Scientific Programming Using Java Page 43

The name of the methockicArea, follows the return type. By convention, method names begin

with a lowercase first letter and all subsequent words in the name begin with a capital letter. The
parentheses after the method name indicate that this is a method. An empty set of parentheses, as
shown in line 34, indicates that this method does not require additional information to perform its
task. Line 7 is commonly referred to as thethod header Every method's body is delimited by

left and right braceq (and}), as in lines 34 and 37.

The body of a method contains statement(s) that perform the method's task. In this case, the
method contains one statement (line 35) that calculates the area of a cicle. After this statement
executes, the method has completed its task.

Next, we'd like to use class Circlein an application. As earlier stated methath begins the
execution of every application. A class that contains metiad is a Java application. Such a
class is special because the JVM cannusie to begin execution. Clagdrcle is not an
application because it does not contaiin . Therefore, if you try to execut@rcle by typing

java Circle in the command window, you will get the error message:

Exception in thread "main" java.lang.NoSuchMethodError: main
Class Circl eTest

ThecCircleTest class declaration (Fig. 5.2 contains thenain method that will control our
application's execution. Any class that contaiagh declared as shown on line 7 can be used to
execute an application. This class declaration begins at line 4 and ends at line 16. The class

contains only anain method, which is typical of many classes that begin an application's

execution.
Circle1 |2 Circle2 . =X
,:D Radius = 0.0 (j) Radius=50
Area=0.0 =~ Area=78.53981633974493
oK | ox | |
Figure 5.1a Figure 5.1b

Introduction to Scientific Programming Using Java Page 44

[Input ﬁ Circle2 ﬁ
9| Enter Radius: ® Radius = 5.0
== |T| | Area = 78.53931633974433
OK Cancel oK
!
Figure 5.1c Figure5.1d
1 /*
2 * CircleTest.java
3 *
4 *
5
6 package MyTrig;
7
8 import javax.swing.JOptionPane;
9
10 public class CircleTest
11 {
12
13 public static void main(String[] args)
14 |
15 /I Declare local variables

16 String input;
17 String output;

18

19 double newRadius = 0;

20

21 /I Create Circle object using the no-argument constru ctor
22 Circle circlel = new Circle();

23

24 Il create another Circle instance class using the Pro grammer
25 /I declared constructor

26 Circle circle2 = new Circle(5); /I circle has a radius of 5
27

28 /Il display state of Circle objects

29 output = "Radius =" + circlel.getRadius() +

30 "\nArea =" + circlel.calcArea();

31 JOptionPane.showMessageDialog(null , output, "Circlel"”,

32 JOptionPane.INFORMATION_MESSAGE);

33

34 output = "Radius =" + circle2.getRadius() +

35 “\nArea =" + circle2.calcArea();

36 JOptionPane.showMessageDialog(null , output, "Circle2",

37 JOptionPane.INFORMATION_MESSAGE);

38

39 /I Allow user to alter the state of circlel object

40 input = JOptionPane.showlInputDialog(null , "Enter Radius: ");
41 newRadius = Double.parseDouble(input);

42

43 circlel.setRadius(newRadius); Il reset radius variable

44

45 /I display current radius and area of circlel

Introduction to Scientific Programming Using Java Page 45

46 output = "Radius =" + circle2.getRadius() +

a7 "\n Area =" + circle2.calcArea();

48 JOptionPane.showMessageDialog(null , output, "Circle2",
49 JOptionPane.INFORMATION_MESSAGE);

50

51 }

52

53}

Fi gure 5.2

Lines 13-51 declare methathin . Recall that thenain header must appear as shown in line 13;
otherwise, the application will not execute. A key part of enabling the JVM to locate and call
methodmain to begin the application's execution is theic keyword (line 13), which
indicates thatain is astatic method. Astatic method is special because it can be called

without first creating an object of the class in which the method is declared.

In this application, we'd like to call classcle 'scalcArea method to calculate the area of any

Circle object. Typically, you cannot call a method that belongs to another class until you create

an object of that class, as shown in lines 30 and 47. We begin by declaring two variables

circlel andcircle2 . Note that the variable's typedscle the class we declared in Fig. 5.1.

Each new class you create becomes a new type in Bavaan be used to declare variables and
create objects. Programmers can declare new class types as needed; this is one reason why Java

is known as an extensible language

Variablescirclel and circle2 are initialized with the result of the class instamceation
expressionnew Circle()and circle2(5) respectively . Keywordnew creates a new object

of the class specified to the right of the keyword (Cecle). The parentheses to the right of

the Circle are required. Those parentheses in combination with a class name represent a call to
aconstructor, which is similar to a method, but is used only at the time an object is created to
initialize the object's data.

Just as we can use objsgstem.out to call methods print , printf andprintin ~, we can now
use Circle objects to call methodsalcArea, setRadius and getRadius . Line 30 calls

the methocdalcArea (declared at lines 34-37 ofrig. 5.1) using variableircle1 followed by a

dot separator (.), the method nameaicArea and an empty set of parentheses. This call causes

the calcArea method to perform its task. In line 29¢irclel " indicates thainain should use

Introduction to Scientific Programming Using Java Page 46

the Circle object that was created on line 22. Line 34 of Figindicates that method

calcArea has an empty parameter list that isalcArea does not require additional information

to perform its task. For this reason, the method call (line 29 of Fipspetifies an empty set of
paentheses after the method name to indicate that no arguments are being passed to method
calcArea. When method calcArea completes its task, methodnain continues executing at line

51. This is the end of methaahin , so the program terminates. See Figures 5.1a-brisafmple

run output.

Methods and Constructors a Deeper Look

As we earlier mentioned, methods are used for spegifhe tasks that objects of the class can
perform. Constructors are special methods that are used for initializing objects when they are
created. In order to see the differences between the constructors and regular (non-constructor)

methods, we have presented below the structure of a method:

accessModifer returnType methodName(parameterList)

{
statements
return statement
}
Where:

accessModifer(access modifier) specifies the visibility of the method to other classes — the
access modifier may be specified public or private. Public specifies that the method is visible to
other classes “that is visible to the public” while private is the exact opposite. Private methods

cannot be accessed outside the class from which it is defined and thus it cannot be inherited.

returnType specifies the “nature” of the value the method gives back to its calling method (if
any) when it completes its task. The return type could a primitive type value or reference type
value as the case may be.

methodName(method name) is an identifier used to make reference to the method.

parameterList is an optional list of identifiers representing the values (arguments) to be passed

into the method. The parameters —often referred to as formal parameters — are used by methods

Introduction to Scientific Programming Using Java Page 47

in carrying out of their tasks. They must have a type followed by an identifier. Several

parameters must be separated using commas.
statements — instructions that enable the method to carry out its tasks.

return statementis used to return (send) data back to the calling method. When the return
statement is implemented without a value following it, then the returnType must be specified as

void.

Both regular methods and constructors are perntittbdve parameters (formal parameters).
Note: values passed into methods and constructors are referred to as actual pawhichtare

copies of the actual data except when the data are of type reference.
Differences between Methods and Constructors

a. Constructors must have the same name as the class - both in capitalization and in
sequence - in which it is declared.

b. Constructors do not have a return type in its method definition header.
c. The return statement is not required.

d. Constructors are only executed when an object is created, they may not be invoked if
the state of the object alters. In such a situation that the state of the object changes, public

service methods will be required to assist in reflecting the change.

e. Constructors may not be declaredsagicas they are involved in the creation and

initialization of the objects themselves.

Introduction to Scientific Programming Using Java Page 48

General Learning Objectives for Week 6: Introduction to Applets

Specific Learning Objectives:

i.
ii.
iii.
iv.

Know the structure of an Applet program.
Write simple applet programs

Accept input data using applets
Implement the “this” keyword.

Introduction to Scientific Programming Using Java

Page 1

6.0 Introduction to Applets

There are two kinds of Java programs: Java applets and Java applications. A Java applet is a Java
program that is intended to be embedded into an HTML document, transported across a network,

and executed using a Web browser.

A Java application is a stand-alone program that can be executed using the Java interpreter. All
programs presented thus far have been Java applications The Web enables users to send and
receive various types of media, such as text, graphics, and sound, using a point-and-click
interface that is extremely convenient and easy to use. A Java applet was the first kind of
executable program that could be retrieved using Web software. Java applets are considered just

another type of media that can be exchanged across the Web.

Though Java applets are generally intended to be transported across a network, they don’t have
to be. They can be viewed locally using a Web browser. For that matter, they don’t even have to
be executed through a Web browser at all. A tool in Sun’s Java Software Development Kit called
appletviewer can be used to interpret and execute an applet. We use appletviewer to display most
of the applets in the book. However, usually the point of making a Java applet is to provide a link
to it on a Web page and allow it to be retrieved and executed by Web users anywhere in the orld.
Java bytecode (not Java source code) is linked to an HTML document and sent across the Web.
A version of the Java interpreter embedded in a Web browser is used to execute the applet once
it reaches its destination. A Java applet must be compiled into bytecode format before it can be
used with the Web.

There are some important differences between the structure of a Java applet and the structure of a
Java application. Because the Web browser that executes an applet is already running, applets
can be thought of as a part of a larger program. As such they do not have a main method where

execution starts. The paint method in an applet is automatically invoked by the applet.

Consider the program in Listing 6.1, though trivial, is used to show the processing stages of
execution of applets. The program displays to the status bar of the applet window the name of the
method in its currently in and then draw the users attention to it by displaying a dialog box. The
three import statements at the beginning of the program explicitly indicate the packages that are

used in the program. In this example, we need the JApplet class, which is part of the java.JApplet

Introduction to Scientific Programming Using Java Page 2

package, the JOptionPane from the javax.swing package and various graphics capabilities

defined in the java.awt package.

A class that defines an applet extends the JApplet class, as indicated in the header line of the
class declaration. This process is making use of the object oriented concept of inheritance, which

we explore in more detail later.
JApplet classes must also be declared as public.

The paint method is one of several applet methods that have particular significance. It is invoked
automatically whenever the graphic elements of the applet need to be painted to the screen, such

as when the applet is first run or when another window that was covering it is moved.

We will create a JApplet class — MyFirstApplet.java — to demonstrate how a simple applet can be

created and the life-cycle of an applet. The complete code listing is presented below.

/*
* MyFirstApplet.java

*/

import java.awt.Graphics;
import javax.swing.JOptionPane;
import javax.swing.JApplet;

public class MyFirstApplet extends JApplet

public void init()
{
showsStatus("we are in init() method ");
JOptionPane.showMessageDialog(null,
"Check the status bar we are in init() ");
} /'end method init

public void start()
{
showsStatus("we are in start() method ");
JOptionPane.showMessageDialog(null,
"Check the status bar we are in start() ");
} // end method start

public void paint(Graphics g)

Introduction to Scientific Programming Using Java Page 3

{
super.paint(g);
showStatus("we are in paint() method ");
JOptionPane.showMessageDialog(null,
"Check the status bar we are in paint() ");
} /I end method paint

public void stop()
{
showsStatus("we are in stop() method ");
JOptionPane.showMessageDialog(null,
"Check the status bar we are in stop() ");
} //'end method stop

public void destroy()
{
showStatus("we are in destroy() method ");
JOptionPane.showMessageDialog(null,
"Check the status bar we are in destroy() ");
} // end method destroy
} /'end JApplet class

Listing 6.1

- Message ﬁ

Applet

@ Check the status har we are in init()

OK

we are in init() method

A

Fig 6.1a Fig 6.1b

Introduction to Scientific Programming Using Java Page 4

Message u

Applet

® Check the status bar we are in start()

oK

|we are in start() method

==

® Check the status har we are in paint()

| oK

l we are in paint() method

Fig 6.1e Fig 6.1f

: Message |£|

® Check the status bar we are in stop()

oK

we are in stop() method

Fig 6.1g Fig 6.1h

Introduction to Scientific Programming Using Java Page 5

@ _.;pplet Viewer: MyTi

Applet — S - rI‘--’Ins*ss-zhg;e [&T

T
'\L,J Check the status har we are in destroy)

OK

we are in destroy() method

Fig 6.1i Fig 6.1]

Applet Life-Cycle Methods

Now that you have created an applet, let's consider the five applet methods that are called by the
applet container from the time the applet is loaded into the browser to the time that the applet is
terminated by the browser. These methods correspond to various aspects of an applet's life cycle.
The table below lists these methods, which are inherited into your applet classes from class
JApplet. The table specifies when each method gets called and explains its purpose. Other than
method paint, these methods have empty bodies by default. If you would like to declare any of
these methods in your applets and have the applet container call them, you must use the method
headers shown in the table. If you modify the method headers (e.g., by changing the method
names or by providing additional parameters), the applet container will not call your methods.
Instead, it will call the superclass methods inherited from JApplet.

Method ' When the method is called and its purpose
public void init()

Called once by the applet container when an applet is loaded for execution. This
method initializes an applet. Typical actions performed here are initializing fields,
creating GUI components, loading sounds to play, loading images to display etc

public void start()

Called by the applet container after method init completes execution. In addition, if
the user browses to another Web site and later returns to the applet's HTML page,
method start is called again. The method performs any tasks that must be completed
when the applet is loaded for the first time and that must be performed every time the

Introduction to Scientific Programming Using Java Page 6

applet's HTML page is revisited. Actions performed here might include starting an
animation

public void paint(Graphics g)

Called by the applet container after methods init and start. Method paint is also
called when the applet needs to be repainted. For example, if the user covers the
applet with another open window on the screen and later uncovers the applet, the
paint method is called. Typical actions performed here involve drawing with the
Graphics object g that is passed to the paint method by the applet container.

public void stop()

This method is called by the applet container when the user leaves the applet's Web
page by browsing to another Web page. Since it is possible that the user might return
to the Web page containing the applet, method stop performs tasks that might be
required to suspend the applet's execution, so that the applet does not use computer
processing time when it is not displayed on the screen. Typical actions performed
here would stop the execution of animations and threads.

public void destroy()

This method is called by the applet container when the applet is being removed from
memory. This occurs when the user exits the browsing session by closing all the
browser windows and may also occur at the browser's discretion when the user has
browsed to other Web pages. The method performs any tasks that are required to
clean up resources allocated to the applet.

Executing Applets Using the Web

In order for the applet to be transmitted over the Web and executed by a browser, it must be
referenced in a HyperText Markup Language (HTML) document. An HTML document contains
tags that specify formatting instructions and identify the special types of media that are to be
included in a document. A Java program is considered a specific media type, just as text,

graphics, and sound are.
An HTML tag is enclosed in angle brackets. The following is an example of an applet
tag:

<applet code="MyFirstApplet.class” width=350 height=175>
</applet>

Introduction to Scientific Programming Using Java Page 7

This tag dictates that the bytecode stored in the file MyFirstApplet.class should be transported
over the network and executed on the machine that wants to view this particular HTML

document. The applet tag also indicates the width and height of the applet.

Note that the applet tag refers to the bytecode file of the MyFirstApplet applet, not to the source
code file. Before an applet can be transported using the Web, it must be compiled into its

bytecode format.
A JApplet Addition Program

We now present a JApplet program that accept from the user any two numbers (integer or
floating point values) and calculate the sum. In this program we use the graphic object to draw
the output of the sum inside a rectangle by using the graphics method drawRect() and the

drawsString() respectively.

The complete source code is presented below in listing 6.2 followed by the output generated
when the program is executed.

[%) Applet Viewer: MyT
Applet

[Input ﬁ]

| Enmter First Number:
111.93 |

oK Cancel

Applet loaded.
.

Figure 6.2a Figure 6.2b

i In ut ﬁ“ i | £ Applet Viewer: l\."l:,,'Trig,-'Surr'."l'\.'\.'c:I"vlurr1t:rers.c...LEIEIQ1
p Applet
Cr] Enter Second Number: [The Sum =: o757 |
[45.64] |
OK Cancel
.

Applet started.
—

Figure 6.2c Figure 6.2d

Introduction to Scientific Programming Using Java Page 8

Introduction to Scientific Programming Using Java Page 9

WEEK 7

General Learning Objectives for Week7: Know the Use of Conditional Statements

Specific Objectives:

Understand algorithm
Understand pseudocodes
Know and identify relational and logical operators
Know how to write simple relational and logical expressions
Know the structure of the if-statement
Apply the if-statement
. Know and apply the switch statement
Apply nested if-statements

S3 T RTTSQ

Introduction to Scientific Programming Using Java Page 49

Algorithms

Any computing problem can be solved by executingi@sef actions in a specific order. A

procedure for solving a problem in terms of

1. the actionsto execute and
2. the ordein which these actions execute
3. is called an algorithm The following example demonstrates that corregibcgying the

order in which the actions execute is important.

Consider the "rise-and-shine algorithm" followed by one executive for getting out of bed and
going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get dressed; (5) eat
breakfast; (6) carpool to work. This routine gets the executive to work well prepared to make
critical decisions. Suppose that the same steps are performed in a slightly different order: (1) Get
out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower; (5) eat breakfast; (6) carpool

to work. In this case, our executive shows up for work soaking wet.

Pseudocode

Pseudocodas an informal language that helps programmersldevagorithms without having

to worry about the strict details of Java language syntax. The pseudocode we present is
particularly useful for developing algorithms that will be converted to structured portions of Java
programs. Pseudocode is similar to everyday Englishit is convenient and user friendly, but it is

not an actual computer programming language.

Pseudocode does not execute on computers. Rather, it helps the programmer "think out” a
program before attempting to write it in a programming language, such as Java. This chapter

provides several examples of how to use pseudocode to develop Java programs.

The style of pseudocode we present consists purely of characters, so programmers can type
pseudocode conveniently, using any text-editor program. A carefully prepared pseudocode
program can easily be converted to a corresponding Java program. In many cases, this simply

requires replacing pseudocode statements with Java equivalents.

Introduction to Scientific Programming Using Java Page 50

Pseudocode normally describes only statements representing the actions that occur after a
programmer converts a program from pseudocode to Java and the program is run on a computer.
Such actions might include input, output or a calculation. We typically do not include variable
declarations in our pseudocode. However, some programmers choose to list variables and

mention their purposes at the beginning of their pseudocode

Specifying the order in which statements (actions) execute in a program is called program
control. Normally, statements in a program are executed fv@ethe other in the order in which
they are written. This process is called sequential execuMarious Java statements, which we
will soon discuss, enable the programmer to specify that the next statement to execute is not
necessarily the next one in sequence. This is caedfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control was the root
of much difficulty experienced by software development groups. The blame was pointed at the
goto statenent (used in most programming languages of the time), which allows the
programmer to specify a transfer of control to one of a very wide range of possible destinations
in a program. The notion of so-callstfuctured programming became almost synonymous

with "goto elimination.” [Note: Java does not havgoa statement; however, the wagoto is

reserved by Java and should not be used as an identifier in programs.]

The research of Bohm and Jacopiki@MSITStore:C:\java\Java%20-

%20How%20T0%20Program,%206th%20Edition%20(2004).chm::/0131483986/ch04levlsec4.html -

cho4fn1 had demonstrated that programs could be written withoujamystatements. The

challenge of the era for programmers was to shift their stylegto -less programming.” Not

until the 1970s did programmers start taking structured programming seriously. The results were
impressive. Software development groups reported shorter development times, more frequent on-
time delivery of systems and more frequent within-budget completion of software projects. The
key to these successes was that structured programs were clearer, easier to debug and modify,

and more likely to be bug free in the first place.

Bohm and Jacopini's work demonstrated that all programs could be written in terms of only three

control structuresthe sequence structuthe selection structureand the repetition structure

Introduction to Scientific Programming Using Java Page 51

The term "control structures” comes from the field of computer science. When we introduce
Java's implementations of control structures, we will refer to them in the terminology of the Java

Language Specification as "control statements."

Sequence Structure in Java

The sequence structure is built into Java. Unless directed otherwise, the computer executes Java
statements one after the other in the order in which they are written, that is, in sequence. In Fig.

7.1 illustrates a typical sequence structure in which two calculations are performed in order. Java
lets us have as many actions as we want in a sequence structure. As we will soon see, anywhere a

single action may be placed, we may place several actions in sequence.

Fig. 7.1 Sequence of instruction executed one after the other.

Selection Statements in Java

Java has three types of selection statementsif Te@atement either performs (selects) an action
if a condition is true or skips the action, if the condition is falseifThelse statement

performs an action if a condition is true and performs a different action if the condition is false.
Theswitch statement performs one of many different actions, depending on the value of an

expression.

Theif statement is a single-selection stateméetcause it selects or ignores a single action (or,
aswe will soon see, a single group of actions). Thedfse statement is called a double-

sdection statementbecause it selects between two different actiongr@ips of actions). The

Introduction to Scientific Programming Using Java Page 52

switch statement is calledraultiple-selection statementbecause it selects among many

different actions (or groups of actions).

i f Single-Selection Statement

Programs use selection statements to choose among alternative courses of action. For example,

suppose that the passing grade on an exam is 60. The pseudocode statement

If student's grade is greater than or equal to 60
Print "Passed"
determines whether the condition "student's grade is greater than or equal to 60" is true or false.
If the condition is true, "Passed" is printed, and the next pseudocode statement in order is
"performed." (Remember that pseudocode is not a real programming language.) If the condition
is false, the Print statement is ignored, and the next pseudocode statement in order is performed.
The indentation of the second line of this selection statement is optional, but recommended,

because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in Java as

i f (studentGrade >= 60)
System.out.printin("Passed");

Note that the Java code corresponds closely to the pseudocode. This is one of the properties of

pseudocode that makes it such a useful program development tool.

if ...else Double-Selection Statement

Theif single-selection statement performs an indicated action only when the conditian;is
otherwise, the action is skipped. Tihe..else double-selection statement allows the
programmer to specify an action to perform when the condition is true and a different action

when the condition is false. For example, the pseudocode statement

Introduction to Scientific Programming Using Java Page 53

If student's grade is greater than or equal to 60
Print "Passed"
Else
Print "Failed"
prints "Passed" if the student's grade is greater than or equal to 60, but prints "Failed" if it is less
than 60. In either case, after printing occurs, the next pseudocode statement in sequence is

"performed.”

The preceding If...Else pseudocode statement can be written in Java as

i f (grade >= 60)

System.out.printin("Passed");
else

System.out.printin("Failed");

Note that the body of these is also indented. Whatever indentation convention you choose
should be applied consistently throughout your programs. It is difficult to read programs that do

not obey uniform spacing conventions.

Conditional Operator (?:)

Java provides the conditional opergfar) that can be used in place ofiain..else statement.
This is Java's only ternary operator this means that it takes three operands. Together, th
operands and the symbol form a conditional expression. The first operand (to the left of the
?) is a bool eanexpression (i.e., a condition that evaluatestieo&an valuarue orf al se), the
second operand (between thand:) is the value of the conditional expression if thelean
expression igRue and the third operand (to the right of thas the value of the conditional

expression if theoolean expression evaluatestose . For example, the statement

System.out.printin(studentGrade >= 60 ? "Passed" : '"Failed");

prints the value ofrintin ‘s conditional-expression argument. The conditional expression in

this statement evaluates to the strirgssed” if the boolean expressiontudentGrade >= 60

Introduction to Scientific Programming Using Java Page 54

is true and evaluates to the strifgiled" if the boolean expression is false. Thus, this

statement with the conditional operator performs essentially the same functionfas.téise

statement shown earlier in this section. The precedence of the conditional operator is low, so the
entire conditional expression is normally placed in parentheses. We will see that conditional

expressions can be used in some situations \ifherelse statements cannot.

Nested i f ...el se Statements

A program can test multiple cases by pladging.else statements inside othier...else

statements to creatested i f. .. el se statenments. For example, the following pseudocode
represents a nestéd...else that printsa for exam grades greater than or equal ta890r

grades in the range 80 to &9for grades in the range 70 to 7%ob grades in the range 60 to 69

andF for all other grades:

If student's grade is greater than or equal to 90
Print "A"
else if student's grade is greater than or equad to 8
Print "B"
else
If student's grade is greater than or equal to 70
Print "C"
else
If student's grade is greater than or equal to 60
Print "D"
else
Print "F"

This pseudocode may be written in Java as

i f (studentGrade >= 90)
System.out.printin("A);
else
if (studentGrade >= 80)
System.out.printin("B");
else
if (studentGrade >= 70)
System.out.printin("C");
else
if (studentGrade >= 60)
System.out.printin(D");
else
System.out.printin("FO);

Introduction to Scientific Programming Using Java Page 55

If studentGrade is greater than or equal to 90, the first four conditions will be true, but only the
statement in th& -part of the firsif ...else statement will execute. After that statement
executes, thelse -part of the "outermosif ...else statement is skipped. Most Java

programmers prefer to write the preceding..else statement as

i f (studentGrade >= 90)
System.out.printin(AT,
else if (studentGrade >= 80)
System.out.printin("B"),
else if (studentGrade >= 70)
System.out.printin("C" o)
else if (studentGrade >= 60)
System.out.printin(D"),
else

System.out.printin("FO);

The two forms are identical except for the spacing and indentation, which the compiler ignores.
The latter form is popular because it avoids deep indentation of the code to the right. Such
indentation often leaves little room on a line of code, forcing lines to be split and decreasing

program readability.

Dangling-el se Problem

The Java compiler always associatesissn with the immediately preceding unless told to
do otherwise by the placement of bradesufd}). This behavior can lead to what is referred to

as the dangl i ng- el se probl emFor example,

if (x> 5)
if (y> 5)
System.out.printin("x and y are > 5");
else
System.out.printin("X is <= 5");

appears to indicate thatxfis greater thas, the nested if statement determines whetlgas
also greater thaa. If so, the string "x and y are > 5" is output. Otherwise, it appears that if

IS not greater tham theelse part of the if...else outputs the stringk is <= 5"

Introduction to Scientific Programming Using Java Page 56

Beware! This nesteid ...else statement does not execute as it appears. The compiler actually

interprets the statement as

if (x> 5)
if (y> 5)

System.out.printin("x and y are > 5");
else

System.out.printin("X is <= 5");

in which the body of the first is a nested it..else . The outeif statement tests whethers

greater thars. If so, execution continues by testing whethé also greater thas If the second

condition is true, the proper stringand y are > 5" is displayed. However, if the second
condition is false, the string is <= 5" is displayed, even though we know thas greater
than 5

To force the nesteddl ...else statement to execute as it was originally intended, we must write it

as follows:

if (x> 5)
{
if (y> 5)

System.out.printin("x and y are > 5");

}

else

System.out.printin("X is <= 5");

The braces{)) indicate to the compiler that the secandstatement is in the body of the first

and that the else is associated with the first .

Blocks

Theif statement normally expects only one statement in its body. To include several statements
in the body of an if (or the body of amise for anif ..else statement), enclose the statements
in braces{(and}). A set of statements contained within a pair of braces is called a Block

block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in #lge -part of anf ...else statement:

Introduction to Scientific Programming Using Java Page 57

if (grade >= 60)

System.out.printin("Passed");

else
{
System.out.printin("Failed");

System.out.printin("You must take this course again.");
}

In this case, ifrade is less than 60, the program executes both statements in the body of the

else and prints

Failed.

You must take this course again.

Note the braces surrounding the two statements iadtieclause. These braces are important.
Without the braces, the statement

System.out.printin(" You must take this course again.");

would be outside the body of thee -part of theif ...else statement and would execute

regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught by the
compiler. Alogic error (e.g., when both braces in a block are left ouhefprogram) has its
effect at execution time. A fatal logic erratauses a program to fail and terminate prematurely.
A nonfatal logic error allows a program to continue executing, but causegtogram to

produce incorrect results.

Introduction to Scientific Programming Using Java Page 58

WEEK 8

General Learning Objectives for Week8: Know the Use of Selection Statements

Specific Objectives:

Apply the while statement

Apply the do statement

Write simple programs to implement the while and do statements

Develop algorithms for solving simple repetitive problems — counter controlled and
sentinel-controlled algorithms.

e. Applies a JTextArea and a JScrollPane class to display the numbers.

oo op

Introduction to Scientific Programming Using Java Page 59

Thewhile Repetition Statement

A repetition statement(also called a looping statement or a lpafjows the programmer to
specify that a program should repeat an action while some condition remains true. The

pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition "there are more items
on my shopping list" may be true or false. If it is true, then the action "Purchase next item and
cross it off my list" is performed. This action will be performed repeatedly while the condition
remains true. The statement(s) contained in the While repetition statement constitute the body of
the While repetition statement, which may be a single statement or a block. Eventually, the
condition will become false (when the last item on the shopping list has been purchased and
crossed off the list). At this point, the repetition terminates, and the first statement after the

repetition statement executes.

As an example of Javaiile repetition statement, consider a program segment designed to
find the first power of 3 larger than 100. Suppose thabhthevariableproduct s initialized to

3. When the following while statement finishes executingeduct contains the result:

i nt product = 3;
while (product <= 100)
product = 3 * product;

When thiswhile statement begins execution, the value of varigdl#ict is 3. Each iteration
of the while statement multipliesroduct by 3, soroduct takes on the values 9, 27, 81 and
243 successively. When varialpe@duct becomes 243, the whilestatement conditiguoduct

<= 100 becomes false. This terminates the repetition, so the final vajuedoét is 243. At this

point, program execution continues with the next statement aftehibe statement.

Introduction to Scientific Programming Using Java Page 60

Formulating Algorithms: Counter-Controlled Repetition

To illustrate how algorithms are developed, we will create a Thas®s (declared in
TenNos.java) to generate and sum the first ten integer numbers from 1 to 10 by default. Below is
the algorithm (pseudocode for generating and calculating the sum of ten numbers from 1 to 10.

Pseudocode: Generate an calculate the sum of the first ten numbers from 1 to 10

First Pseudocode:

Stepl: Initialize variables

Step2: Generate numbers from 1 to 10
Step3: Calculate sum of the numbers
Step4: Display numbers and sum
Step5: Stop.

The algorithm may be refined further, for exampl@$tmay be broken down such that the
variables to be initialize will be specified thus; stepl becomes:

Stepl: counter =1, sum =0, n =10

counter is set to 1 because we will start the cagritom 1, sum will start from zero so the
summation of the numbers will be accurate. The variable n is set to 10 because the Ist number in

the sequence is ten.

Step2: Generate numbers from 1 to 10
Step3: Calculate sum of the numbers

Steps 2 and 3 will be simplified and expanded furtAsreach number is generate the sum will

be calculated and updated. The number will continuously be generated as long as the number
generated does not exceed ten. When this happens we will terminate the loop. Hence steps 2 and
3 becomes:

Step2: while counter is less than or equal to n
Step3: add counter to sum

Step4: increment counter by 1

Step5 return to Step 2

The original step 4 and 5 from the first pseudodeet®mes Step 6 and 7 repectively. The final
refinement is presented below:

Introduction to Scientific Programming Using Java Page 61

Final Refined Pseudocode:

Stepl: counter=1,sum=0,n =10

Step2: while counter is less than or equal to n
Step3: add counter to sum

Step4: increment counter by 1

Step5 return to Step 2

Step6: Display numbers and sum

Step7:Stop

Based on this algorithm the Java program in declasdtenNos.java was developed. The code

listing is presented below:

1 /*

2 *TenNos.Java

3 * Generates the First Ten Numbers and Calculate thei r Sum
4 *

5 7

6

7

8 import javax.swing.JOptionPane;

9 import javax.swing.JTextArea,;

10 import javax.swing.JScrollPane;

11

12 public class TenNos

13 {

14

15 public static void main(String[] args)

16 {

17 int sum =0;

18 int counter = 1;

19 int n=10;

20 String nos = B

21

22 Il Create JTextArea for displaying numbers

23 JTextArea output = new JTextArea(5, 20);

24

25 /I Generate numbersn

26 while (counter <=n){

27 output.append(counter + "\n"); // add numbers to the JTextarea
28 sum += counter; /Il calculate sum
29 counter++; /I increment counter by 1
30 } /I end while i <= n

31

32 nos = “\nSum ="+ sum;

33 output.append(nos);

34

35 /I Append a JScrollpane to the JTextArea object

36 JScrollPane outputArea = new JScrollPane(output);
37

38 /I Display numbers and their sum

39 JOptionPane.showMessageDialog(null , outputArea,

Introduction to Scientific Programming Using Java Page 62

40 "Generate and Sums Numbers 1 - 10" ,

41 JOptionPane.INFORMATION_MESSAGE);
42

43 } // end method main

44

451} /I end of class TenNos

Fi gure 8.1 TenNos.java

Lines 8 — 10 contains the import declaration of the classes we need to build our class
TenNos.java. The local variables representing the counter, the nth value and the sum are
initialized in lines 17 — 20. An object reference of class JText{package javax.swing) was

created in line 23. The while loop was declared from lines 26 — 30. The while statement will
continue to iterate as long as the variablerter is less than or equal to the variabléVith

each iteration of the while statement, the value of counter is added to the text area object (output)
—line 2, sums the number in stores the result in the variable sum and increments the counter by
one and then control is returned to the while statement for re-evaluation if the value of counter is
greater the ten, the loop terminates and control is transferred to the first executable statement

after the closing curly brace enclosing the body of the while loop (at line 32)..

The sum of the numbers is then added to the string variebl@ine32) and appended to the
JTextArea objecbutput (lines 33). The entire numbers generated and their sum is displayed
using the static object showMessageDialog of the JOptionPane class (lines 39-41). See figures

8.1a and 8.1b for a sample output run.

[Generate and Sums Numbers 1 - 10 @r Generate and Sums Mumbers 1 - 10 @
- I
=] T (T 5 ES
@ 7 ;i \!/) !g =
] Ho
|5 - [Sum = 55 |w
OK OK
b -
Figure 8.1a Figure 8.1b

Introduction to Scientific Programming Using Java Page 63

WEEK 9

General Learning Objectives for Week9: Recursion

Specific Objectives:

a. Understand the concepts of recursion
b. Write simple recursive methods

Introduction to Scientific Programming Using Java Page 64

Recursive Concepts

The programs we have discussed thus far are genstalbtured as methods that call one
another in a disciplined, hierarchical manner. For some problems, however, it is useful to have a
method call itself. Such a method is known as a recursive metAaeécursive method can be

called either directly or indirectly through another method.

Recursive problem-solving approaches have a number of elements in common. When a recursive
method is called to solve a problem, the method actually is capable of solving only the simplest
case(s), or base case(H)the method is called with a base case, the ndetbturns a result. If

the method is called with a more complex problem, the method typically divides the problem

into two conceptual piecesa piece that the method knows how to do and a piece that the method
does not know how to do. To make recursion feasible, the latter piece must resemble the original
problem, but be a slightly simpler or smaller version of it. Because this new problem looks like
the original problem, so the method calls a fresh copy of itself to work on the smaller problem
this is referred to as a recursive calhd is also called the recursion stephe recursion step

normally includes aeturn statement, because its result will be combined with the portion of the
problem the method knew how to solve to form a result that will be passed back to the original

caller.

The recursion step executes while the original call to the method is still active (i.e., while it has
not finished executing). The recursion step can result in many more recursive calls as the method
divides each new sub-problem into two conceptual pieces. For the recursion to eventually
terminate, each time the method calls itself with a simpler version of the original problem, the
sequence of smaller and smaller problems must converge on a base case. At that point, the
method recognizes the base case and returns a result to the previous copy of the method. A

sequence of returns ensues until the original method call returns the final result to the caller.

A recursive method may call another method, which may in turn make a call back to the
recursive method. Such a process is known as an indirect recursigeindirect recursion.

For example, method calls method pwhich makes a call back to methadrhis is still

Introduction to Scientific Programming Using Java Page 65

considered recursion, because the second call to meisadade while the first call to method
Ais active that is, the first call to methadhas not yet finished executing (because it is waiting

on methodB to return a result to i) and has not returned to mettsodriginal caller.

Example Using Recursion: Factorials

Let us write a recursive program to perform a popolathematical calculation. Consider the

factorial of a positive integer n, written n! (and pronounced "n factorial"), which is the product

nin—1n—2) .. 1

with 1! equal to 1 and 0! defined to be 1. For example, 5! is the product5 -4 -3 -2 - 1, which is
equal to 120.

The factorial of integefiumber (where number> 0) can be calculated iterativelgon-
recursively) using @r statement as follows:
factorial = 1;

for (int counter = number; counter >= 1; counter--)
factorial *= counter;

A recursive declaration of the factorial method is arrived at by observing the following

relationship:

nl =n(n— 10
For example, 5! is clearly equal to 5 - 4!, as issshby the following equations:

51=5.4.3.2.1
51=5.(4.3.2.1)
51=5.41

The evaluation of 5! would proceed as shown in Fig. 9.1a and Fig 9.1b shows how the
succession of recursive calls proceeds until 1! (the base case) is evaluated to be 1, which
terminates the recursion. Fig 9.1c shows the values returned from each recursive call to its caller

until the final value is calculated and returned.

Introduction to Scientific Programming Using Java Page 66

Final value 120

51=5*24=120 is returned

5* 4l
41=4*6=24 is returned

31=3*2=6 is returned

21=2*1=2 is returned

1is returned

EEEEES

Figure 9.1a Sequence of Figure9.1b values returned from Figure 9.1c
Recursive calls each recursive calls

Figure 9.2 uses recursion to calculate and print the factorials of the integers from 010. The recursive
method factorial (lines 8-14) first tests to determine whether a terminating condition (line 10) is

True . If number is less than or equal to 1 (the base case), factorial returns 1, no further recursion is
necessary and the method returns. If number is greater than 1, line 13 expresses the problem as the
product of number and a recursive call to factorial evaluating the factorial of number - 1, which is

a slightly simpler problem than the original calculation, factorial(number)

1/
2 * FactorialCalculator.java
3 *
4 ¥
5
6 public class FactorialCalculator {
7 Il recursive method factorial
8 public long factorial(long number) {
9 if (number<=1)
10 return 1,
11 else I recursive step
12 return number * factorial(number - 1);
13
14 } // end method factorial
15
16 /I output factorials from values from O thruogh 10
17 public void displayFactorials() {
18 I calculate the factorials from 0 through 10
19 for (int counter=0; counter <= 10; counter++)
20 System.out.printf("%d! =%d\n ", counter, factorial(counter));

21 } // end method displayFactorials
22} |/l end class FactorialCalculator

Introduction to Scientific Programming Using Java Page 67

Figure 9.2

1

2

3

4

5

6 package hello;

7

8 public class FactorialTest {

9

10 public static void main(String[] args) {

11 FactorialCalculator factorialCalculator = new
FactorialCalculator();

12 factorialCalculator.displayFactorials();

13 }

14

15}

Fi gure 9.3

MethoddisplayFactorials (lines 17-22) displays the factorials of 0-10. The call to method

factorial occurs in line 21. Method factorial receives a parameter of type long and returns a
result of typdong . Figure 9.2 tests our factorial and displayFactorials methods by calling
displayFactorials (line 10). As can be seen from the output of Fig. 9.2, factorial values
become large quickly. We use tyjoeg (which can represent relatively large integers) so the
program can calculate factorials greater than 12!. Unfortunatelsactheal method

produces large values so quickly that factorial values soon exceed the maximum value that can

be stored even in a lonyariable.

ol=1
=1
21=2
3'=6

4! =24
5!=120

6! =720

7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Figure 9.4 sample output

Introduction to Scientific Programming Using Java Page 68

WEEK 10

General Learning Objectives for Week10: Characters and Strings

Specific Objectives:

Describe and manipulate character type data

Differentiate between string and string buffer classes
Differentiate between equivalence and equality for string objects
Show how objects are passed to and returned from methods

oo op

Introduction to Scientific Programming Using Java Page 69

Fundamentals of Characters and Strings

Characters are the fundamental building blocks ch 3awrce programs. Every program is
composed of a sequence of characters that when grouped together meaningfully are interpreted
by the computer as a series of instructions used to accomplish a task. A program may contain
character literals. A character literal is an integer value represstatea character in single

guotes. For example, represents the integer valuezpand\n' represents the integer value

of newline. The value of a character literal is the integer value of the character in the Unicode

character set

What are Strings?

A string is a sequence of characters treated agkesinit. A string may include letters, digits
and various special charactersuch as, -, *,/ ands. A string is an object of classring
String literals (stored in memory as String objects) are written as a sequence of characters in

double quotation marks, as in:

"John Q. Doe" (a name)

"9999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

A string may be assigned to a Stringeference. The declaration

String color = "blue" ;

initializesstring reference color to refer to a String object that contains the &ttileg .

Class String

Class string is used to represent strings in Java. The next several subsections cover many of

classstring 's capabilities.

Introduction to Scientific Programming Using Java Page 70

Stri ng Constructors

Class string provides constructors for initializirgyring objects in a variety of ways. Four of

the constructors are demonstrated inntha method of Fig. 10.1.

1 //Fig. 10.1 StringConstructors.java

2 /I String class constructors.

3

4 public class StringConstructors

5

6 public static void main(String args[])

7 A

8 char charArray[] = { o, 0t d, at Yy
9 String s = new String("hello”);

10

11 /I use String constructors

12 String sl = new String();

13 String s2 = new String(s);

14 String s3 = new String(charArray);

15 String s4 = new String(charArray, 6, 3);
16

17 System.out.printf(

18 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n"

19 sl,s2,s3,s4); /I display strings

20 } /l end main
21 } [/l end class StringConstructors

sl =

s2 = hello

s3 = birth day
s4 = day

Line 12 instantiates a neSwing object using classtring 's ho-argument constructor and
assigns its reference ta. The newstring object contains no characters (the empty stjiagd

has a length of 0.

Line 13 instantiates a neswing object using classtring 's constructor that takessaing
object as an argument and assigns its refererge fbhe newstring object contains the same

sequence of characters as wng object sthat is passed as an argument to the constructor.

Line 14 instantiates a nestting object and assigns its reference3ausing classtring 's
constructor that takeschar array as an argument. The nswing object contains a copy of

the characters in the array.

Introduction to Scientific Programming Using Java Page 71

Line 15 instantiates a neswing object and assigns its reference4ausing classtring 's
constructor that takeschar array and two integers as arguments. The second argument
specifies the starting position (the offset) from which characters in the array are accessed.
Remember that the first character is at positionhe third argument specifies the number of
characters (the count) to access in the array. Thesn@wyy object contains a string formed
from the accessed characters. If the offset or the count specified as an argument results in
accessing an element outside the bounds of the character atéag-a

| ndexOutOfBoundsException is thrown.

String Methods | engt h, char At and get Chars

string methods lengthcharat and getChargeturn the length of a string, obtain the character
at a specific location in a string and retrieve a set of characters from a string as a char array,

respectively. The application in Fig. 10.2 demonstrates each of these methods.

1 //Fig. 10.2: StringMiscellaneous.java
2 /I This application demonstrates the length, charAt a nd getChars
3/ methods of the String class.
4
5 public class StringMiscellaneous
6 {
7 public static void main(String args|])
8
9 String s1 = "hello there"
10 char charArray[] = newchar[51];
11
12 System.out.printf("s1: %s" ,s1);
13
14 /I test length method
15 System.out.printf("“\nLength of s1: %d" , sl.length());
16
17 /I loop through characters in s1 with charAt and disp lay reversed
18 System.out.print(“\nThe string reversed is: ");
19
20 for (int count =sl.length() - 1; count >= 0; count--)
21 System.out.printf("%s " , sl.charAt(count));
22
23 /I copy characters from string into charArray
24 sl.getChars(0, b5, charArray, 0);
25 System.out.print("“\nThe character array is: ");
26
27 for (char character : charArray)
28 System.out.print(character);
29

30 System.out.printin();
31 }// end main

Introduction to Scientific Programming Using Java Page 72

32 } /I end class StringMiscellaneous

sl: hello there
Length of s1: 11
The string reversedis:ereht olleh

The character array is: hello

Line 15 uses string methodength to determine the number of characters in stging-ike
arrays, strings always know their own length. However, unlike arrays, you cannot access a

string 's length via a length fieldinstead you must call thgring 'slength method.

Thefor statement at lines 20-21 print the characters of the stringreverse order (and
separated by spaceskring methodcharAt (line 21) returns the character at a specific position
in the string. MethodnharAt receives an integer argument that is used as the index and returns

the character at that position. Like arrays, the first element of a string is at position 0.

Line 24 uses string methodgetChars to copy the characters of a string into a character array.

The first argument is the starting index in the string from which characters are to be copied. The
second argument is the index that is one past the last character to be copied from the string. The
third argument is the character array into which the characters are to be copied. The last
argument is the starting index where the copied characters are placed in the target character

array. Next, line 28 prints thedar array contents one character at a time.

Comparing Strings

Class string provides several methods for comparing strings these are demonstrated in the next

two examples.

To understand what it means for one string to be greater than or less than another string, consider
the process of alphabetizing a series of last names. You would, no doubt, place "Jones" before
"Smith" because the first letter of "Jones" comes before the first letter of "Smith" in the alphabet.
But the alphabet is more than just a list of 26 letters it is an ordered set of characters. Each letter
occurs in a specific position within the set. Z is more than just a letter of the alphabet it is

specifically the twenty-sixth letter of the alphabet.

Introduction to Scientific Programming Using Java Page 73

How does the computer know that one letter comes before another? All characters are
represented in the computer as numeric codes.When the computer compares two strings, it

actually compares the numeric codes of the characters in the strings.

Figure 10.3 demonstrateging methods equals, equalsignoreCase, compareTo and

regionMatches ~ and using the equality operater to comparestring objects.

Figure 10.3. String comparisons.

1 //Fig. 10.3: StringCompare.java

2 /I String methods equals, equalsignoreCase, compareTo and regionMatches.
3

4 public class StringCompare

5

6 public static void main(String args|])

[

8 String s1 = new String("hello”); /I slis a copy of "hello"

9 String s2 = "goodbye";

10 String s3 = "Happy Birthday" ;

11 String s4 = "happy birthday" ;

12

13 System.out.printf(

14 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n\n" ,S1,s2,83,s84);

15

16 /I test for equality

17 if (sl equals("hello®)) //true

18 System.out.printin("s1 equals \"hello\"");

19 else

20 System.out.printin("s1 does not equal \"hello\"");

21

22 /I test for equality with ==

23 if (sl =="hello") /I false; they are not the same object

24 System.out.printin("s1 is the same object as \"hello\"");
25 else

26 System.out.printin("s1 is not the same object as \"hello\"");
27

28 /I test for equality (ignore case)

29 if ('s3.equalsignoreCase(s4)) /I true

30 System.out.printf("%s equals %s with case ignored\n” , S3,84);
31 else

32 System.out.printin("s3 does not equal s4");

33

34 /I test compareTo
35 System.out.printf(

36 "\nsl.compareTo(s2) is %d" , sl.compareTo(s2));

37 System.out.printf(

38 "\ns2.compareTo(sl) is %d" , S2.compareTo(sl));

39 System.out.printf(

40 "\nsl.compareTo(sl) is %d" , Sl.compareTo(sl));

41 System.out.printf(

42 “\ns3.compareTo(s4) is %d" , s3.compareTo(s4));

43 System.out.printf(

44 "\ns4.compareTo(s3) is %d\n\n" , S4.compareTo(s3));

Introduction to Scientific Programming Using Java Page 74

45

46 / test regionMatches (case sensitive)

47 if (s3.regionMatches(0,4, 0, 5))

48 System.out.println("First 5 characters of s3 and s4 match");
49 else

50 System.out.printin(

51 "First 5 characters of s3 and s4 do not match”);

52

53 /I test regionMatches (ignore case)

54 if ('s3. regionMatches(true , 0,s4, 0, 5))

55 System.out.printin("First 5 characters of s3 and s4 match");
56 else

57 System.out.println(

58 "First 5 characters of s3 and s4 do not match");

59 } /I end main
60 } // end class StringCompare

sl = hello

s2 = goodbye

s3 = Happy Birthday
s4 = happy birthday

sl equals "hello"
sl is not the same object as "hello"
Happy Birthday equals happy birthday with case ignored

sl.compareTo(s2)is 1
s2.compareTo(sl)is -1
sl.compareTo(sl)is 0
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match

The condition at line 17 uses methagals to compare stringl and the string literahello”

for equality. Methoaquals (a method of class Objectoverridden irstring) tests any two
objects for equality the strings contained in the two objects are identical. The method returns
true if the contents of the objects are equal, farsd otherwise. The preceding condition is
True because stringl was initialized with the string literahello® . Method equals uses a
lexicographical comparisorit compares the integer Unicode values that repressit character
in each string. Thus, if the strinigello” is compared with the stringELLO", the result is

false , because the integer representation of a lowercase letter is different from that of the

corresponding uppercase letter.

Introduction to Scientific Programming Using Java Page 75

The condition at line 23 uses the equality operatdo compare stringl for equality with the

string literal"hello” . Operator ==has different functionality when it is used to compare

references than when it is used to compare values of primitive types. When primitive-type values
are compared with sthe result isrue if both values are identical. When references are

compared with==, the result isrue if both references refer to the same object in memory. To
compare the actual contents (or state information) of objects for equality, a method must be
invoked. In the case of Strings, that method is equals The preceding condition evaluates to

false at line 23 because the referemtenas initialized with the statement

sl= new String("hello”);

which creates a new Stringobject with a copy of string literatello” and assigns the new

object to variable1. If s1 had been initialized with the statement

sl= "hello" ;

which directly assigns the string literakllo" to variables1, the condition would be TRue
Remember that Java treats all string literal objects with the same contentssas@neobject
to which there can be many references. Thus, lines 8, 17 and 23 all refer to tlszisgme

object"hello” in memory.

If you are sortingtrings , you may compare them for equality with metleqdals-

| gnoreCase , which ignores whether the letters in each string are uppercase or lowercase when
performing the comparison. Thus, the stringlo" and the stringHELLO" compare as equal.

Line 29 uses String methodequalsignoreCase to compare string s3Happy Birthday for

equality with strings4happy birthday . The result of this comparisontise because the

comparison ignores case sensitivity.

Lines 35-44 use methadmpareTo to compare strings. MethoebmpareTo is declared in the
Comparable interface and implemented in thetring class. Line 36 compares strisigto string

s2. Method compareTo returns 0 if the strings are equal, a negative number if the string that
invokescompareTo is less than the string that is passed as an argument and a positive number if

the string that invokesompareTo is greater than the string that is passed as an argument.

Introduction to Scientific Programming Using Java Page 76

MethodcompareTo uses a lexicographical comparisonit compares the numeric values of

corresponding characters in each string.

The condition at line 47 usesing methodregionMatches to compare portions of two strings

for equality. The first argument is the starting index in the string that invokes the method. The
second argument is a comparison string. The third argument is the starting index in the
comparison string. The last argument is the number of characters to compare between the two

strings. The method returmgue only if the specified number of characters are lexicographically

equal.

Finally, the condition at line 54 uses a five-argument versi@wia§ methodregionMatches
to compare portions of two strings for equality. When the first argument is true, the method
ignores the case of the characters being compared. The remaining arguments are identical to

those described for the four-argumesionMatches method.

The second example in this section (Fig. 10.4) demonssates methods startsWithand
endsWith. Methodmain creates arrastrings containing the stringstarted”, "starting",
"ended” and'ending". The remainder of methodmain consists of three for statements that test

the elements of the array to determine whether they start with or end with a particular set of

characters.

1 //Fig. 10.4: StringStartEnd.java

2 /I String methods startsWith and endsWith.

3

4 public class StringStartEnd

5 |

6 public static void main(String args|])

7 A

8 String strings[] = { "started", "starting”, "ended" , "ending" };
9

10 /l test method startsWith

11 for (String string : strings)

12 {

13 if (string.startsWith("st")

14 System.out.printf("\"%s\" starts with \"st\"\n" , string);
15 } /I end for

16

17 System.out.printin();

18

19 /l test method startsWith starting from position 2 o f string
20 for (String string : strings)

Introduction to Scientific Programming Using Java Page 77

21 {

22 if (sting.startsWith(~ art’ , 2))

23 System.out.printf(

24 "\"%s\" starts with \"art\" at position 2\n" , string);
25 } /I end for

26

27 System.out.printin();

28

29 /I test method endsWith

30 for (String string : strings)

31 {

32 if (st

33 System.out.printf("\"%s\" ends with \"ed\"\n" , string);
34 } /I end for

35 } /I end main
36 } [/l end class StringStartEnd

Introduction to Scientific Programming Using Java Page 78

WEEK 11

General Learning Objectives for Week11: Arrays

Specific Objectives:

a. Manipulate a set of data values using arrays
b. Declare and use arrays of primitive types
c. Declare and use arrays of objects

Introduction to Scientific Programming Using Java

Page 79

This week we will introduce an important topic of data structuceslections of related data
items. Arraysare data structures consisting of related data itdrtiee same type. Arrays are
fixed-length entitiesthey remain the same length once they are created, although an array variable

may be reassigned such that it refers to a new array of a different length.

Arrays

An array is a group of variables (called elememt€omponent} containing values that all have

the same type. Recall that types are divided into two categories primitive types and reference
types. Arrays are objects, so they are considered reference types. As you will soon see, what we
typically think of as an array is actually a reference to an array object in memory. The elements
of an array can be either primitive types or reference types. To refer to a particular element in an
array, we specify the name of the reference to the array and the position number of the element

in the array. The position number of the element is called the element'sondelzscript

Figure 11.1 shows a logical representation of argartarray called. This array contains 12
elements. A program refers to any one of these elements with an array-access exptiegsion
includes the name of the array followed by the index of the particular element in square
brackets([]). The first element in every array has index zand is sometimes called the

zeroth element Thus, the elements of arrayasec[0] ,c[1] ,c[2] andsoon. The

highest index in array is 11, which is 1 less than 12 the number of elements in the array. Array

names follow the same conventions as other variable names.

c[0] 11
c[1] -34
c[2] 100
c[3] 32
c[4] 98
c[5] -087
c[6] 112
c[7] 2309
c[8] 7
c[9] 8
c[10] 23
c[11] 1

Introduction to Scientific Programming Using Java Page 80

Figure 11.1

An index must be a nonnegative integer. A program can use an expression as an index. For

example, if we assume that variable a &nd variable is 6, then the statement

cl[a+tb]+= 2;

adds 2to array elemend] 11] . Note that an indexed array name is an array-access expression.
Such expressions can be used on the left side of an assignment to place a new value into an array

element.

Let us examine arrayin Fig. 7.1more closely. The namef the array is. Every array object

knows its own length and maintains this information ir@gt h field. The expressioalength

accesses arrayslength field to determine the length of the array. Note that, even though the
length member of an array blic , it cannot be changed because itiigs variable. This

array's 12 elements are referred t@fas] ,c[1] ,c[2] ,..,c[11] . The value ot[0]

is -45, the value of c[1] is 6, the value of c[2] is 0, the value of c[7] Is 62 and the value

of c[11] is 78. To calculate the sum of the values contained in the first three elements of array

¢ and store the result in variaklen, we would write

sum = ¢[0]+ c[11+cl 21

To divide the value of[6] by2 and assign the result to the variableve would write
x=c[61/ 2

Declaring and Creating Arrays

Array objects occupy space in memory. Like other objects, arrays are created with keyword

To create an array object, the programmer specifies the type of the array elements and the
number of elements as part of an array-creation expression that uses keywor&uelw an
expression returns a reference that can be stored in an array variable. The following declaration
and array-creation expression create an array object containimg £Ements and store the

array's reference in variabte

Introduction to Scientific Programming Using Java Page 81

int c]= newint [12];

This expression can be used to create the array shown in Figjhislask also can be
performed in two steps as follows:

i nt cf]; /I declare the array variable
Cc = new int [127 Il create the array; assign to array variable

In the declaration, the square brackets following the variable nanagcate that is a variable

that will refer to an array (i.e., the variable will store an array reference). In the assignment
statement, the array variakleeceives the reference to a new array ahfl2elements. When an

array is created, each element of the array receives a default valuezero for the numeric primitive-
type elements, false for boolean elements and null for references (any nonprimitive type). As

we will soon see, we can provide specific, nondefault initial element values when we create an

array.

A program can create several arrays in a single declaration. The follswirgg array

declaration reserves 100 elementsif@nd 27 elements for. x

String b[] = new String[100 1, X[] = new String[27 1;

In this case, the class nasteng applies to each variable in the declaration. For readability,

we prefer to declare only one variable per declaration, as in:

String b[] = new String[100]; [/l create array b
String x[] = new String[27 1; [/l create array x

When an array is declared, the type of the array and the square brackets can be combined at the
beginning of the declaration to indicate that all the identifiers in the declaration are array

variables. For example, the declaration

double [] arrayl, array?;

indicates thasrrayl andarray2 are "array otiouble " variables. The preceding declaration is

equivalent to:

Introduction to Scientific Programming Using Java Page 82

double arrayl[];

double array2[];
or

double [] arrayl;

double [] array2;

The preceding pairs of declarations are equivalentwhen only one variable is declared in each
declaration, the square brackets can be placed either after the type or after the array variable

name.

A program can declare arrays of any type. Every element of a primitive-type array contains a
value of the array's declared type. Similarly, in an array of a reference type, every element is a
reference to an object of the array's declared type. For example, every element chay is

an int value, and every element of a Strin@rray is a reference tosaing object.

Examples Using Arrays

This section presents several examples that demonstrate declaring arrays, creating arrays,

initializing arrays and manipulating array elements.

Creating and Initializing an Array

The application of Fig. 11.2 uses keyword dewcreate an array of 1@ elements, which are

initially zero (the default font variables).

Figure 11.2. Initializing the elements of an array to default values of zero.

1 //Fig. 11.2: InitArray.java

2 |/ Creating an array.

431 public class InitArray

g { public static void main(String args|])

; {int array[]; // declare array named array

190 array = new int[10]; // create the space for array

% System.out.printf("%s%8s\n", "Index" , "Value"); //column headings
1

14 /I output each array element's value

Introduction to Scientific Programming Using Java Page 83

15 for (int counter= 0; counter < array.length; counter++)

16 System.out.printf("%5d%8d\n", counter, array[counter]);
17} /I end main

18 } // end class InitArray

Index Value

cCo~NoOUO~wWNEO
[eNeoNoNooNoNolNoNoNo]

Line 8 declarearray a reference capable of referring to an arraitofelements. Line 10

creates the array object and assigns its reference to vatialgle Line 12 outputs the column
headings. The first column contains the index (09) of each array element, and the second column
contains the default value (0) of each array element.

Thefor statement in lines 1516 outputs the index number (representednly) and value of

each array element (representedabyy[counter]). Note that the loop control variable

counter is initially oindex values start at 0, so using zero-based counting allows the loop to

access every element of the array. Tdie's loop-continuation condition uses the expression

array .length (line 15) to determine the length of the array. In this example, the length of the

array is 10, so the loop continues executing as long as the value of control vaiatie is

less than 10. The highest index value of a 10-element array is 9, so using the less-than operator in
the loop-continuation condition guarantees that the loop does not attempt to access an element
beyond the end of the array (i.e., during the final iteration of the tooper is 9). We will

soon see what Java does when it encounters such an out-of-range index at execution time.

Using an Array Initializer

A program can create an array and initialize its elements with an array initiaka@ch is a

comma-separated list of expressions (called an initialize) ésiclosed in braceg énd}). In

Introduction to Scientific Programming Using Java Page 84

this case, the array length is determined by the number of elements in the initializer list. For

example, the declaration

int nf={10 , 20, 30, 40, 50}

creates a five-element array with index valogs, 2, 3 and4. Elemenin[0] is initialized to
10,n[1] s initialized to20, and so on. This declaration does not requireto create the

array object. When the compiler encounters an array declaration that includes an initializer list,
the compiler counts the number of initializers in the list to determine the size of the array, then

sets up the appropriatew operation "behind the scenes."

The application in Fig. 7.3 initializes an integer array with 10 values (line 9) and displays the
array in tabular format. The code for displaying the array elements (lines 1415) is identical to
that in Fig. 7.2 (lines 1516).

1 //Fig. 7.3: InitArray.java
2 [l Initializing the elements of an array with an arra y initializer.
3
4 public class InitArray
5
6 public static void main(String args|])
7 Ao
8 /' initializer list specifies the value for each elem ent
9 int array[] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37}
10
11 System.out.printf("%s%8s\n", "Index" , "Value"); //column headings
12
13 /I output each array element's value
14 for (int counter= 0; counter < array.length; counter++)
15 System.out.printf("%5d%8d\n", counter, array[counter]);

16 } /I end main
17 } /' end class InitArray

Index Value
32
27
64
18
95
14
90
70
60
37

O©CoOoO~NoOUIhdWNEO

Introduction to Scientific Programming Using Java Page 85

Calculating a Value to Store in Each Array Element

Some programs calculate the value stored in each array element. The application in Fig. 11.4
creates a 10-element array and assigns to each element one of the even integers from 2 to 20 (
4,6, ...,20). Then the application displays the array in tabular formatsoflstatement at lines

1213 calculates an array element's value by multiplying the current valuefafltag's control

variablecounterby 2, then adding.2

1 //Fig. 11.4: InitArray.java

2 /I Calculating values to be placed into elements of a n array.
3

4 public class InitArray

5 {

6 public static void main(String args|[])

7 A

8 final int ARRAY_LENGTE 10; /I declare constant

9 int array[] = newint [ARRAY_LENGTH // create array

10

11 /I calculate value for each array element

12 for (int counter= 0; counter < array.length; counter++)

13 array[counter] = 2+ 2 *counter;

14

15 System.out.printf("%s%8s\n", "Index" , "Value"); //column headings
16

17 /I output each array element's value

18 for (int counter= 0; counter < array.length; counter++)

19 System.out.printf("%5d%8d\n", counter, array[counter]);

20 } /I end main
21 } [/l end class InitArray

Index Value
2
4
6
8
10
12
14
16
18
20

O©CoOoO~NOoOUA~,WNEO

Line 8 uses the modifién nal to declare the constant variableRRAY_LENGTH~VhoSe value is
10. Constant variables (also knownfiasl variables) must be initialized before they are used
and cannot be modified thereafter. If an attempt is made to modiiky a variable after it is

initialized in its declaration (as in line 8), the compiler issues the error message

Introduction to Scientific Programming Using Java Page 86

cannot assign a value to final variable variableName

If an attempt is made to access the valuefiafla variable before it is initialized, the compiler
issues the error message

variable variableName might not have been initialized

Summing the Elements of an Array

Often, the elements of an array represent a seriawds to be used in a calculation. For
example, if the elements of an array represent exam grades, a professor may wish to total the
elements of the array and use that sum to calculate the class average for the exam. The examples

using classsradeBook later in the chapter, namely Fig. 7.5fd _Fig. 7.18use this technique.

The application in Fig. 11.5 sums the values contained in a 10-element integer array. The
program declares, creates and initializes the array at line 8orTrstatement performs the
calculations. [Note: The values supplied as array initializers are often read into a program rather
than specified in an initializer list. For example, an application could input the values from a user
or from a file on disk. Reading the data into a program makes the program more reusable,

because it can be used with different sets of data.]

1 //Fig. 11.5: SumArray.java

2 /I Computing the sum of the elements of an array.

3

4 public class SumArray

5 |

6 public static void main(String args|])

7 A

8 int array[] = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87}
9 int total = 0 ;

10

11 /l add each element's value to total

12 for (int counter = 0; counter < array.length; counter++)

13 total += array[counter |;

14

15 System.out.printf("Total of array elements: %d\n" , total);

16 } /I end main
17 } // end class SumArray

Total of array elements: 849

Introduction to Scientific Programming Using Java Page 87

WEEK 12

General Learning Objectives for Week2: Event Driven Programs

Specific Objectives:

a. Understand the concepts of event driven programs
b. Understand how to place objects on a frame

c. Write simple event drive programs

Introduction to Scientific Programming Using Java Page 88

A graphical user interface (GUI) presents a user-friendly mechanism for interactinig an
application. A GUI (pronounced "GOO-ee") gives an application a distinctive "look™ and "feel.”
Providing different applications with consistent, intuitive user interface components allows users
to be somewhat familiar with an application, so that they can learn it more quickly and use it
more productively.

GUIs are built from GUI componentsThese are sometimes called controls or widgets short for
window gadgets in other languages. A GUI component is an objdciwich the user interacts

via the mouse, the keyboard or another form of input, such as voice recognition.

Overview of Swing Components

Though it is possible to perform input and output usingdp@onPane dialogs presented in
earlier weeks, most GUI applications require more elaborate, customized user interfaces. The
remainder of this text discusses many GUI components that enable application developers to
create robust GUIs. Figure 13.4 lists several Swing GUI componieots package

j avax. swi ng that are used to build Java GUIs. Most Swing components are pure Java

componentsthey are written, manipulated and displayed completely in Java. They are part of the

Java Foundation Classes (JB&)a's libraries for cross-platform GUI developm#figit

java.sun.com/products/jfor more information on JFC.

Figure 13.1 Some basic GUI components.
Component Description

JLabel Displays uneditable text or icons.

JTextField Enables user to enter data from the keyboard. Can also be used to display editable

or uneditable text.
JButton Triggers an event when clicked with the mouse.
JCheckBox | Specifies an option that can be selected or not selected.

JComboBox | Provides a drop-down list of items from which the user can make a selection by

Introduction to Scientific Programming Using Java Page 89

Figure 13.1 Some basic GUI components.
Component Description
clicking an item or possibly by typing into the box.

JList Provides a list of items from which the user can make a selection by clicking on

any item in the list. Multiple elements can be selected.

JPanel Provides an area in which components can be placed and organized. Can also be

used as a drawing area for graphics.

Displaying Text and Images in a Window

Our next example introduces a framework for buildingl @pplications. This framework uses
several concepts that you will see in many of our GUI applications. This is our first example in
which the application appears in its own window. Most windows you will create are an instance
of classiFrame or a subclass of JFramelFrame provides the basic attributes and behaviors of a
windowa title bar at the top of the window, and buttons to minimize, maximize and close the
window. Since an application's GUI is typically specific to the application, most of our examples
will consist of two classesa subclassieaime that helps us demonstrate new GUI concepts and

an application class in whiahain creates and displays the application's primary window.

Labeling GUI Components

A typical GUI consists of many components. In a large GUI, it can be difficult to identify the
purpose of every component unless the GUI designer provides text instructions or information
stating the purpose of each component. Such text is known as andlslIcreated with class
JLabel a subclass afcomponent. A JLabel displays a single line of read-only text, an image, or

both text and an image. Applications rarely change a label's contents after creating it.

The application of Fig. 13.2 and Fig.13.3 demonstrates sexatel features and presents the
framework we use in most of our GUI examples. We did not highlight the code in this example

since most of it is new. [Note: There are many more features for each GUI component than we

Introduction to Scientific Programming Using Java Page 90

can cover in our examples. To learn the complete details of each GUI component, visit its page

in the online documentation.

1 //Fig. 13.2: LabelFrame.java
2 /I Demonstrating the JLabel class.
3 import java.awt.FlowLayout; /I specifies how components are arranged
4 import javax.swing.JFrame; /I provides basic window features
5 import javax.swing.JLabel, /I displays text and images
6 import javax.swing.SwingConstants; /I common constants used with Swing
7 import javax.swing.lcon; /I interface used to manipulate images
8 import javax.swing.Imagelcon; /I loads images
9
10 public class LabelFrame extends JFrame
11 {
12 private JLabel labell; /I JLabel with just text
13 private JLabel label2; /I JLabel constructed with text and icon
14 private JLabel label3; /I JLabel with added text and icon
15
16 /I LabelFrame constructor adds JLabels to JFrame
17 public LabelFrame()
18 {
19 super ("Testing JLabel");
20 setLayout(new FlowLayout()); /I set frame layout
21
22 /I JLabel constructor with a string argument
23 labell = new JLabel("Label with text");
24 labell.setToolTipText("This is labell");
25 add(labell); /l add labell to JFrame
26
27 /I JLabel constructor with string, Icon and alignmen t arguments
28 Icon bug = new Imagelcon(getClass().getResource("bugl.gif*));
29 label2 = new JLabel("Label with text and icon" , bug,
30 SwingConstants.LEFT);
31 label2.setToolTipText("This is label2");
32 add(label2); /I add label2 to JFrame
33
34 label3 = new JLabel(); /I JLabel constructor no arguments
35 label3.setText("Label with icon and text at bottom");
36 label3.setlcon(bug); /I add icon to JLabel
37 label3.setHorizontal TextPosition(SwingConstants.CENTER);
38 label3.setVerticalTextPosition(SwingConstants.BOTTOM);
39 label3.setToolTipText("This is label3");
40 add(label3); /[add label3 to JFrame
41 } /I end LabelFrame constructor

42 } /I end class LabelFrame

/[Fig. 13.3: LabelTest.java
/I Testing LabelFrame.
import javax.swing.JFrame;

public class LabelTest

O)U'l-bml\)l—‘

Introduction to Scientific Programming Using Java Page 91

7 public static void main(String args|[])

8 |

9 LabelFrame labelFrame = new LabelFrame(); Il create LabelFrame
10 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 labelFrame.setSize(275, 180); /I setframe size

12 labelFrame.setVisible(true); //display frame

13} /l end main
14 } // end class LabelTest

-

o Testing JLabel =
L abel with text

@ Lahbel with text and icon
S
B

Label with icon and text at bottom

Text Fields and an Introduction to Event Handlingwvhiested Classes

Normally, a user interacts with an application's GUI to indicate the tasks that the application
should perform. For example, when you write an e-mail in an e-mail application, clicking the
Send button tells the application to send the e-mail to the specified e-mail addresses. GUIs are
event driven. When the user interacts with a GUI component,itexactionknown as an

evendrives the program to perform a task. Some commontgyaser interactions) that might

cause an application to perform a task include clicking a button, typing in a text field, selecting
an item from a menu, closing a window and moving the mouse. The code that performs a task in
response to an event is called an event handret the overall process of responding to events is

known as event handling

In this section, we introduce two new GUI components that can generate)everntsel ds
and JPasswor dFi el ds (package javax.swing). Class JTextField extends class
JText Conponent (package javax.swing.text), which provides many features common to

Swing's text-based components. ClaBssswordField extends JTextField and adds several

Introduction to Scientific Programming Using Java Page 92

methods that are specific to processing passwords. Each of these components is a single-line area
in which the user can enter text via the keyboard. Applications can also display text in a

JTextField (see the output of Fig. 13.3). A JPasswordField shows that characters are being

typed as the user enters them, but hides the actual characters agtioasharacteassuming

that they represent a password that should remain known only to the user.

When the user types data intoTaxtField or a JPasswordField , then presses Enter, an event
occurs. Our next example demonstrates how a program can perform a task when that event

occurs. The techniques shown here are applicable to all GUI components that generate events.

The application of Fig. 13.2 and Fig. 13.3 uses classes JTextField afdsswordField to

create and manipulate four text fields. When the user types in one of the text fields, then presses
Enter, the application displays a message dialog box containing the text the user typed. You can
only type in the text field that is "in focLisA component receives the focus when the user<lick

the component. This is important because the text field with the focus is the one that generates an
event when the user presses Enter. In this example, when the user presses Enter in the
JPasswordField , the password is revealed. We begin by discussing the setup of the GUI, then

discuss the event-handling code.

1 //Fig. 13.2: TextFieldFrame.java

2 /I Demonstrating the JTextField class.

3 import java.awt.FlowLayout;

4 import java.awt.event.ActionListener;

5 import java.awt.event.ActionEvent;

6 import javax.swing.JFrame;

7 import javax.swing.JTextField;

8 import javax.swing.JPasswordField;

9 import javax.swing.JOptionPane;

10

11 public class TextFieldFrame extends JFrame

12 {

13 private JTextField textFieldl; /I text field with set size

14 private JTextField textField2; /I text field constructed with text
15 private JTextField textField3; /I text field with text and size

16 private JPasswordField passwordField; /I password field with text
17

18 Il TextFieldFrame constructor adds JTextFields to JFr ame
19 public TextFieldFrame()

20 {

21 super ("Testing JTextField and JPasswordField");

22 setLayout(new FlowLayout()); Il set frame layout

23

24 /I construct textfield with 10 columns

Introduction to Scientific Programming Using Java Page 93

25 textFieldl = new JTextField(10);
26 add(textFieldl); /I add textFieldl to JFrame

27

28 /I construct textfield with default text

29 textField2 = new JTextField("Enter text here");
30 add(textField2); /I add textField2 to JFrame

31

32 /I construct textfield with default text and 21 colum

33 textField3 = new JTextField("Uneditable text field"
34 textField3.setEditable(false); [/l disable editing
35 add(textField3); /I add textField3 to JFrame

36

37 /I construct passwordfield with default text

38 passwordField =

39 add(passwordField);

40

41 Il register event handlers
42 TextFieldHandler handler =
43 textField1l.addActionListener(handler);

44 textField2.addActionListener(handler);

45 textField3.addActionListener(handler);

46 passwordField.addActionListener(handler);
47 }// end TextFieldFrame constructor

new JPasswordField("Hidden text"
/I add passwordField to JFrame

new TextFieldHandler();

48

49 /I private inner class for event handling

50 private class TextFieldHandler implements ActionListener
51 {

52 /I process text field events

53 public void actionPerformed(ActionEvent event)

54 {

55 String string = " . /[declare string to display

56

57 /I user pressed Enter in JTextField textFieldl

58 if (event.getSource() == textFieldl)

59 string = String.format("textFieldl: %s" ,
60 event.getActionCommand());

61

62 /I user pressed Enter in JTextField textField2

63 else if (‘event.getSource() == textField2)

64 string = String.format("textField2: %s" ,
65 event.getActionCommand());

66

67 /I user pressed Enter in JTextField textField3

68 else if (‘event.getSource() == textField3)

69 string = String.format("textField3: %s" ,
70 event.getActionCommand());

71

72 /I user pressed Enter in JTextField passwordField

73 else if (‘event.getSource() == passwordField)

74 string = String.format("passwordField: %s"
75 new String(passwordField.getPassword()));

76

77 /I display JTextField content

78 JOptionPane.showMessageDialog(null , string);
79 } /I end method actionPerformed

80 } /I end private inner class TextFieldHandler

81 } //end class TextFieldFrame

);

ns
21);

Introduction to Scientific Programming Using Java

Page 94

1 /I Fig. 13.3: TextFieldTest.java

2 |l Testing TextFieldFrame.

3 import javax.swing.JFrame;

4

5 public class TextFieldTest

6 {

7 public static void main(String args|])

8

9 TextFieldFrame textFieldFrame = new TextFieldFrame();
10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(325, 100); /I setframe size
12 textFieldFrame.setVisible(true); //display frame

13} /I end main
14 } // end class TextFieldTest

e

, Message ==f
&y Testing JTextField and JPasswordFi... | = || & |[+5] [
@ textField1: Dele
Cele | |EntertE}:1 here| 3
Uneditable text field] OK, i
. . | Message =
£p Testing ITextField and JPasswordFi... [= |[= |[22 | @
textField?: Moses
Dele | |ru1|:|ses |
Uneditable text fiald |jffffffffff 0K
Message 3

-

@ passwordField: banana

&y Testing JTextField and JPasswordFi... | = |[& || 22

Cele | |r-u1|:|ses

Lneditable text field OK

'

Lines 39 import the classes and interfaces we use in this exampleT&lagsiFrame
extendsiFrame and declares thregextField variables and a JPasswordField variable (lines
13-16). Each of the corresponding text fields is instantiated and attached ¢atkHgdFrame

in the constructor (lines 1947).

Introduction to Scientific Programming Using Java Page 95

Creating the GUI

Line 22 sets the layout of thtextFieldFrame to FlowLayout. Line 25 creates textField1

with 10 columns of text. The width in pixels of a text column is determined by the average width
of a character in the text field's current font. When text is displayed in a text field and the text is
wider than the text field itself, a portion of the text at the right side is not visible. If you are
typing in a text field and the cursor reaches the right edge of the text field, the text at the left
edge is pushed off the left side of the text field and will no longer be visible. Users can use the
left and right arrow keys to move through the complete text even though the entire text will not

be visible at one time. Line 26 addstFieldl to the JFrame

Line 29 create®xtField2 with the initial text "Enter text here" to display in the text field.
The width of the text field is determined by the width of the default text specified in the

constructor. Line 30 addsxtField2 to the JFrame

Line 33 creatextField3 and calls the JTextField constructor with two argumentsthe
default text'Uneditable text field" to display and the number of columns)(The width
of the text field is determined by the number of columns specified. Line 34 uses method
set Edi t abl e (inherited bydTextField from class JTextComponent) to make the text field
uneditablei.e., the user cannot modify the text in the text field. Line 35adelsid3 to the

JFrame .

Line 38 creategasswordField with the text'Hidden text" to display in the text field. The
width of the text field is determined by the width of the default text. When you execute the
application, notice that the text is displayed as a string of asterisks. Line 3% aqadsdField

to the JFrame.

Steps Required to Set Up Event Handling for a GUI Component

This example should display a message dialog containing the text from a text field when the user
presses Enter in that text field. Before an application can respond to an event for a particular GUI

component, you must perform several coding steps:

Introduction to Scientific Programming Using Java Page 96

1. Create a class that represents the event handler.

2. Implement an appropriate interface, known as an event-listener interface, in the class from Step

1.

3. Indicate that an object of the class from Steps 1 and 2 should be notified when the event occurs.

This is known as registering the event handler.

Using a Nested Class to Implement an Event Handler

All the classes discussed so far were so-called top-level cthasés the classes were not
declared inside another class. Java allows you to declare classes inside other classesthese are
called nested classeblested classes can be statioor non-static. Non- static nested classes

are called inner classeand are frequently used for event handling.

Before an object of an inner class can be created, there must first be an object of the top-level
class that contains the inner class. This is required because an inner-class object implicitly has a
reference to an object of its top-level class. There is also a special relationship between these
objectsthe inner-class object is allowed to directly access all the instance variables and methods
of the outer class. A nested class thatagc does not require an object of its top-level class

and does not implicitly have a reference to an object of the top-level class.

The event handling in this example is performed by an object pfithe inner class
TextFieldHandler (lines 5080). This class psivate because it will be used only to create
event handlers for the text fields in top-level classFieldFrame . As with other members of a

class, inner classes can be declauedic , protected or private

GUI components can generate a variety of events in response to user interactions. Each event is
represented by a class and can be processed only by the appropriate type of event handler. In
most cases, the events a GUI component supports are described in the Java API documentation
for that component's class and its superclasses. When the user presses Bmnéetrinl@or
JPasswordField , the GUI component generatesAami onEvent (package java.awt.event).

Such an event is processed by an object that implements the interfacelLi st ener (package

Introduction to Scientific Programming Using Java Page 97

java.awt.event). The information discussed here is available in the Java APl documentation
for classegTextField and ActionEvent . SinceJPasswordField IS a subclass affextField,

JPasswordField ~ supports the same events.

To prepare to handle the events in this example, inner tdasseldHandler implements
interfaceActionListener and declares the only method in that interdatn-Performed

(lines 53-79). This method specifies the tasks to perform whentianEvent occurs. So inner
classTextFieldHandler satisfies Steps 1 and 2 listed earlier in this section. We'll discuss the

details of methodctionPerformed shortly.

Registering the Event Handler for Each Text Field

In theTextFieldFrame constructor, line 42 creategextFieldHandler object and assigns it to
variablehandler . This object's actionPerformed method will be called automatically when the
user presses Enter in any of the GUI's text fields. However, before this can occur, the program
must register this object as the event handler for each text field. Lines 4346 are the event-
registration statements that specifyidier as the event handler for the thogextFields and
the JPasswordField . The application callsTextField method addActi onLi st ener to register
the event handler for each component. This method receives as its argumgiohiastener
object, which can be an object of any class that implemeniésaListener . The object

handler IS anActionListener , because class TextFieldHandler implements

ActionListener . After lines 43-46 execute, the object handler listens for evidatg, when the
user presses Enter in any of these four text fields, mettt@dpPerformed (line 5379) in class
TextFieldHandler is called to handle the event. If an event handler is not registered for a
particular text field, the event that occurs when the user presses Enter in that text field is
consumede., it is simply ignored by the application.

Details of Class Text Fi el dHandl er's act i onPer f or nred Method

In this example, we are using one event-handling obmgitaPerformed method (lines 5379)
to handle the events generated by four text fields. Since we'd like to output the name of each text
field's instance variable for demonstration purposes, we must determine which text field

generated the event each timeonPerformed is called. The GUI component with which the

Introduction to Scientific Programming Using Java Page 98

user interacts is the event sourde this example, the event source is one of thefields or the
password field. When the user presses Enter while one of these GUI components has the focus,
the system creates a unicamgionEvent object that contains information about the event that

just occurred, such as the event source and the text in the text field. The system then passes this
ActionEvent Object in a method call to the event listenatt®nPerformed method. In this

example, we display some of that information in a message dialog. Line 55 declaeaghe

that will be displayed. The variable is initialized with the empty s&rstgng containing no

characters. The compiler requires this in case none of the branches of thefnastates 5875

executes.

ActionEvent methodgetSource (called in lines 58, 63, 68 and 73) returns a reference to the
event source. The condition in line 58 asks, "Is the event seaxteldl ?" This condition
compares the references on either side oftheperator to determine whether they refer to the
same object. If they both refer textField1, then the program knows that the user pressed
Enter in textField1. In this case, lines 59-60 create astring containing the message that line
78 will display in a message dialog. Line 60 usenEvent methodget Act i onConmand to

obtain the text the user typed in the text field that generated the event.

If the user interacted with tli@asswordField , lines 7475 use JPasswordField method
get Passwor d to obtain the password and createshiag to display. This method returns the
password as an array of typear that is used as an argument to a Strigpnstructor to create a

string containing the characters in the array.

Introduction to Scientific Programming Using Java Page 99

WEEK 14

General Learning Objectives for Week14: Inheritance

Specific Objectives:

a. Understand the concepts of inheritance
b. Understand of the is-a and has-a relationship in inheritance hierarchy

c. Write simple Java programs implementing inheritance

Introduction to Scientific Programming Using Java Page 100

Introduction to Inheritance

This week we will discuss one of the primary featuwkesbject-oriented programming (OOP)

that is inheritance which is a form of software reuse in which a neasslis created by

absorbing an existing class's members and embellishing them with new or modified capabilities.
With inheritance, programmers save time during program development by reusing proven and
debugged high-quality software. This also increases the likelihood that a system will be
implemented effectively.

When creating a class, rather than declaring completely new members, the programmer can
designate that the new class should inherit the members of an existing class. The existing class is
called the superclasand the new class is the subcla@he C++ programming language refers

to the superclass as the base clasd the subclass as the derived class.) Each subclass can

become the superclass for future subclasses.

A subclass normally adds its own fields and methods. Therefore, a subclass is more specific than
its superclass and represents a more specialized group of objects. Typically, the subclass exhibits

the behaviors of its superclass and additional behaviors that are specific to the subclass.

The direct superclass is the superclass from which the subclass expintigrits. An indirect
superclassis any class above the direct superclass in the class hierandhigh defines the
inheritance relationships between classes. In Java, the class hierarchy begins wiitiectass

(in package java.lang), which every class in Java directly or indirectly extendsr "inherits

from"). In the case of single inheritanca class is derived from one direct superclass. Java
unlike C++, does not support multiple inheritance (which occurs when a class is derived from

more than one direct superclass).

Experience in building software systems indicates that significant amounts of code deal with
closely-related special cases. When programmers are preoccupied with special cases, the details
can obscure the big picture. With object-oriented programming, programmers focus on the

commonalities among objects in the system rather than on the special cases.

Introduction to Scientific Programming Using Java Page 101

We distinguish between the "is-a" relationship and the "has-a" relationshifis-a" represents
inheritance. In an "is-a" relationship, an object of a subclass can also be treated as an object of its
superclass. For example, a car is a vehicle. By contrast, "has-a" represents composition. In a
"has-a" relationship, an object contains one or more object references as members. For example,

a car has a steering wheel (and a car object has a reference to a steering wheel object).

New classes can inherit from classes in class libraries. Organizations develop their own class
libraries and can take advantage of others available worldwide. Some day, most new software
likely will be constructed fronstandardized reusable componentgust as automobiles and

most computer hardware are constructed today. This will facilitate the development of more

powerful, abundant and economical software.

Superclasses and Subclasses

Often, an object of one class "is an" object of another class as well. For example, in geometry, a
rectangle is a quadrilateral (as are squares, parallelograms and trapezoids). Thus, in Java, class
Rectangle can be said to inherit from clas®uadrilateral . In this context, class

Quadrilateral is a superclass and classtangle is a subclass. A rectangle is a specific type

of quadrilateral, but it is incorrect to claim that every quadrilateral is a rectanglethe quadrilateral
could be a parallelogram or some other shape. Figure 14.1 lists several simple examples of
superclasses and subclassesnote that superclasses tend to be "more general” and subclasses tend
to be "more specific.”

Figure 14.1. Inheritance examples.

Superclass = Subclasses

Student GraduateStudent , UndergraduateStudent
Shape Circle , TRiangle, Rectangle

Loan CarLoan , HomelmprovementLoan , MortgagelLoan
Employee Faculty , Staff

BankAccount | checkingAccount , SavingsAccount

Introduction to Scientific Programming Using Java Page 102

Because every subclass object "is an" object of its superclass, and one superclass can have many
subclasses, the set of objects represented by a superclass is typically larger than the set of objects
represented by any of its subclasses. For example, the superclass Vehicle represents all vehicles,

including cars, trucks, boats, bicycles and so on. By contrast, subatasgpresents a smaller,

more specific subset of vehicles.

Inheritance relationships form tree-like hierarchical structures. A superclass exists in a
hierarchical relationship with its subclasses. When classes participate in inheritance
relationships, they become "affiliated" with other classes. A class becomes either a superclass,
supplying members to other classes, or a subclass, inheriting its members from other classes. In

some cases, a class is both a superclass and a subclass.

Let us develop a sample class hierarchy also called an inheritance hierafctyiversity

community has thousands of members, including employees, students and alumni. Employees
are either faculty members or staff members. Faculty members are either administrators (such as
deans and department chairpersons) or teachers. Note that the hierarchy could contain many
other classes. For example, students can be graduate or undergraduate students. Undergraduate

students can be freshmen, sophomores, juniors or seniors.

Now consider thehape inheritance hierarchy. This hierarchy begins with supercless,

which is extended by subclasge®DimensionalShape andThreeDimensionalShapeShapes

are eitherrwobDimensionalShapes Or ThreeDimensionalShapes . The third level of this

hierarchy contains some more specific typesvafDimensionalShapes and
THReeDimensionalShapes . From the bottom of the hierarchy to the topmost superclass in this
class hierarchy to identify several "is-a" relationships. For instancgenge is a
TwoDimensionalShape and is ahape, while aSphere is aThreeDimensionalShape and is a
Shape. Note that this hierarchy could contain many other classes. For example, ellipses and

trapezoids arg&wobDimensionalShapes

Not every class relationship is an inheritance relationship. The "has-a" relationship, in which
classes have members that are references to objects of other classes. Such relationships create

classes by composition of existing classes. For example, given the elagkgse, BirthDate

Introduction to Scientific Programming Using Java Page 103

and TelephoneNumber , it iS improper to say that @amployee is a BirthDate or that an
Employee iS a TelephoneNumber . However, arEmployee has aBirthDate, and an Employee

has arelephoneNumber .

It is possible to treat superclass objects and subclass objects similarly their commonalities are
expressed in the members of the superclass. Objects of all classes that extend a common
superclass can be treated as objects of that superclass (i.e., such objects have an "is-a"
relationship with the superclass). However, superclass objects cannot be treated as objects of
their subclasses. For example, all cars are vehicles, but not all vehicles are cars (the other

vehicles could be trucks, planes or bicycles, for example).

One problem with inheritance is that a subclass can inherit methods that it does not need or
should not have. Even when a superclass method is appropriate for a subclass, that subclass often
needs a customized version of the method. In such cases, the subclass can @edafuohe)

the superclass method with an appropriate implementation, as we will see often in the chapter's

code examples.

Relationship between Superclasses and Subclasses

In this section, we use an inheritance hierarchy containing types of employees in a company's
payroll application to discuss the relationship between a superclass and its subclass. In this
company, commission employees (who will be represented as objects of a superclass) are paid a
percentage of their sales, while base-salaried commission employees (who will be represented as

objects of a subclass) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between commission employees and base-salaried
commission employees into five examples. The first example declares class

CommissionEmployee , which directly inherits from classbject and declares asivate

instance variables a first name, last name, social security number, commission rate and gross

(i.e., total) sales amount.

The second example declares cBss:PlusCommissionEmployee , which also directly inherits

from class Object and declares asivate instance variables a first name, last name, social

Introduction to Scientific Programming Using Java Page 104

security number, commission rate, gross sales amount and base salary. We create the latter class
by writing every line of code the class requireswe will soon see that it is much more efficient to

create this class by inheriting from cl&zsnmissionEmployee

The third example declares a sepamt&PlusCommissionEmployee2 class that extends class
CommissionEmployee (i.e., aBasePlusCommissionEmployee2 IS aCommissionEmployee WhoO

also has a base salary) and attempts to accesColastssionEmployee 'S private

membersthis results in compilation errors, because the subclass cannot access the superclass's

private instance variables.

The fourth example shows thatdémmissionEmployee 's instance variables are declared as
protected, @ BasePlusCommissionEmployee3 class that extends classmmissionEmployee2
can access that data directly. For this purpose, we declarecatasssionEmployee2 with
protected instance variables. Both of theBasePlusCommissionEmployee classes contain
identical functionality, but we show how the claasePlusCommissionEmployee3 is easier to

create and manage.

After we discuss the convenience of usingected instance variables, we create the fifth
example, which sets the CommissionEmployeeinstance variables back gavate in class
CommissionEmployee3 to enforce good software engineering. Then we show how a separate
BasePlusCommissionEmployee4 class, which extends classmmissionEmployee3 , can use
CommissionEmployee3 'Spublic methods to manipulateommissionEmployee3 'S private

instance variables

Creating and Using a Commi ssi onEnpl oyee Class

We begin by declaring clagsmmissionEmployee (Fig. 14.1). Line 4 begins the class
declaration and indicates that clazsnmissionEmployee extendgi.e., inherits from) class
Object (from package java.lang). Java programmers use inheritance to create classes from
existing classes. In fact, every class in Java (exoBjptt) extends an existing class. Because
classCommissionEmployee extends clasSbject , class CommissionEmployee inherits the

methods of clasebject classObject does not have any fields. In fact, every Java class directly

Introduction to Scientific Programming Using Java Page 105

or indirectly inheritbject 's methods. If a class does not specify that it extends another class,

the new class implicitly extendsject . For this reason, programmers typically do not include

"extends Object " in their codewe do so in this example for demonstration purposes.
1 //Fig. 14.1 CommissionEmployee.java

2 /I CommissionEmployee class represents a commission employee.

3

4 public class CommissionEmployee extends Object

5

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9 private double grossSales; /I gross weekly sales

10 private double commissionRate; /I commission percentage

11

12 /I five-argument constructor

13 public CommissionEmployee(String first, String last, Strin g ssn,
14 double sales, double rate)

15 {

16 /[implicit call to Object constructor occurs here
17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); /I validate and store gross sales

21 setCommissionRate(rate); /I validate and store commission rate
22 } /I end five-argument CommissionEmployee constructor

23

24 /I set first name

25 public void setFirstName(String first)

26 {

27 firstName = first;
28 } /I end method setFirstName

29

30 /Il return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } /I end method getFirstName

35

36 /I set last name

37 public void setLastName(String last)
38 {

39 lastName = last;
40 } /I end method setLastName

41

42 / return last name

43 public String getLastName()

44 {

45 return lastName;

46 } /I end method getLastName

47

48 /I set social security number

49 public void setSocialSecurityNumber(String ssn)
50 {

Introduction to Scientific Programming Using Java Page 106

51 socialSecurityNumber = ssn; /I should validate
52 } /I end method setSocialSecurityNumber

53

54 /I return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } /I end method getSocialSecurityNumber

59

60 /I set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0)? 0.0 :sales;
64 } /I end method setGrossSales

65

66 /I return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } /I end method getGrossSales

71

72 /I set commission rate

73 public void setCommissionRate(double rate)

74 |

75 commissionRate = (rate > 0.0 &&rate < 1.0) ?rate: 0.0 ;
76} /I end method setCommissionRate

77

78 /I return commission rate

79 public double getCommissionRate()

80 {

81 return commissionRate;

82 } /I end method getCommissionRate

83

84 /I calculate earnings

85 public double earnings()

86 {

87 return commissionRate * grossSales;

88 }// end method earnings

89

920 /I return String representation of CommissionEmployee object
91 public String toString()

92 {

93 return String.format("%S: %S %s\n%s: %s\n%s: %.2A\n%s: %.2f" ,
94 "commission employee" , firstName, lastName,
95 "social security number" , SocialSecurityNumber,
96 "gross sales" , grossSales,

97 "commission rate" , commissionRate);

98 }// end method toString
99 } /I end class CommissionEmployee

Thepublic services of classommissionEmployee include a constructor (lines 13-22) and
methodsearnings (lines 85-88) and toString (lines 9198). Lines 25-82 declarepublic get and
set methods for manipulating the class's instance variables (declared in lineis<iNae,

lastName, socialSecurityNumber , grossSales and commissionRate . Class

Introduction to Scientific Programming Using Java Page 107

CommissionEmployee declares each of its instance variablegriaste , so objects of other

classes cannot directly access these variables. Declaring instance variattes asand

providing get and set methods to manipulate and validate the instance variables helps enforce
good software engineering. Metha@sGrossSales ~ andsetCommissionRate , for example,
validate their arguments before assigning the values to instance vagirakdssles and

commissionRate , respectively.

Constructors are not inherited, so classimissionEmployee does not inherit clas3bject 's
constructor. However, clagommissionEmployee 's constructor calls clas®ject 's constructor
implicitly. In fact, the first task of any subclass constructor is to call its direct superclass's
constructor, either explicitly or implicitly (if no constructor call is specified), to ensure that the
instance variables inherited from the superclass are initialized properly. The syntax for calling a
superclass constructor explicitly is discussed later on in the test. If the code does not include an
explicit call to the superclass constructor, Java implicitly calls the superclass's default or no-
argument constructor. The comment in line 16 of Fig. 14.1 indicates where the implicit call to
the superclassbject 's default constructor is made (the programmer does not write the code for
this call).Object 's default (empty) constructor does nothing. Note that even if a class does not
have constructors, the default constructor that the compiler implicitly declares for the class will

call the superclass's default or no-argument constructor.

After the implicit call toobject 's constructor occurs, lines 17-21G@mmissionEmployee 'S

constructor assign values to the class's instance variables. Note that we do not validate the values
of arguments first , last andssn before assigning them to the corresponding instance

variables. While validating data is good software engineering, including extensive validation in

this class could add a potentially large amount of code that would obscure the focus of this
example. We certainly could validate the first and last namesperhaps by ensuring that they are of
a reasonable length. Similarly, a social security number could be validated to ensure that it

contains nine digits, with or without dashes (eLgB;45-6789 Or 123456789).

Methodearnings (lines 8588) calculates acommissionEmployee 's earnings. Line 87 multiplies

the commissionRate by thegrossSales and returns the result.

Introduction to Scientific Programming Using Java Page 108

Methodtostring (lines 91-98) is special it is one of the methods that every class inherits

directly or indirectly from clas®bject , which is the root of the Java class hierarchy. Method

toString returns a String representing an object. This method is called implicitly by a program
whenever an object must be converted to a string representation, such as when an object is output
by printf orstring method format using the %$ormat specifier. ClasSbject 'StoString

method returns a String that includes the name of the object's class. It is primarily a placeholder
that can be overridden by a subclass to specify an appropriate string representation of the data in
a subclass object. Methabtring of class CommissionEmployee overrides (redefines) class

Object 'stoString method. When invoked, CommissionEmployee 'StoString method uses

String methodformat to return a String containing information about the

CommissionEmployee . We use format specifies.2f to format both the grossSales and the
commissionRate with two digits of precision to the right of the decimal point. To override a
superclass method, a subclass must declare a method with the same signature (method name,
number of parameters and parameter types) as the superclassanjetihdd toString method

takes no parameters, so CommissionEmployeéeclaresoString with no parameters.

It is a syntax error to override a method with a more restricted access maaifiera method

of the superclass cannot becomeaected or private method in the subclasspetected

method of the superclass cannot becompevate method in the subclass. Doing so would

break the "is-a" relationship in which it is required that all subclass objects be able to respond to
method calls that are madepimlic methods declared in the superclass.gitgic method

could be overridden asprotected or private method, the subclass objects would not be able

to respond to the same method calls as superclass objects. Once a method ispdeiclaréd a

superclass, the method remaguslic for all that class's direct and indirect subclasses.

Figure 14.2 tests clag®mmissionEmployee . Lines 910 instantiate @mmissionEmployee

object and invoke&ommissionEmployee 's constructor (lines 13-22 of Fig. 14.1) to initialize it
with "Sue" as the first name, "Jones"as the last nameg22-22-2222" as the social security
number, 10000 as the gross sales amount an@sothe commission rate. Lines 1524 use
CommissionEmployee 'S get methods to retrieve the object's instance variable values for output.

Lines 26-27 invoke the object's methedssrossSales andsetCommissionRate to change the

Introduction to Scientific Programming Using Java Page 109

values of instance variablg®ssSales and commissionRate . Lines 29-30 output the string
representation of the updateadmmissionEmployee . Note that when an object is output using the
%s format specifier, the objectsstring method is invoked implicitly to obtain the object's

string representation.

1 //Fig. 14.2: CommissionEmployeeTest.java

2 |l Testing class CommissionEmployee.

3

4 public class CommissionEmployeeTest

5

6 public static void main(String args|])

[

8 /Il instantiate CommissionEmployee object

9 CommissionEmployee employee = new CommissionEmployee(

10 "Sue" , "Jones" , "222-22-2222" , 10000, .06);

11

12 /I get commission employee data

13 System.out.printin(

14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n", "First name is" ,

16 employee.getFirstName());

17 System.out.printf("%s %s\n", "Last name is" ,

18 employee.getLastName());

19 System.out.printf("%s %s\n", "Social security number is" ,
20 employee.getSocialSecurityNumber());

21 System.out.printf("%s %.2f\n" , "Gross sales is" ,

22 employee.getGrossSales());

23 System.out.printf("%s %.2f\n" , "Commission rate is" ,
24 employee.getCommissionRate());

25

26 employee.setGrossSales(500); /Il set gross sales

27 employee.setCommissionRate(.1); [/l set commission rate

28

29 System.out.printf("\n%s:\n\n%s\n" ,

30 "Updated employee information obtained by toString" , employee);

31 } /I end main
32 } [/l end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales is 10000.00

Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00

commission rate: 0.10

Introduction to Scientific Programming Using Java Page 110

CommissionEmployeeBasePlusCommissionEmployee Inhenitee Hierarchy Using private
Instance Variables

We now reexamine our hierarchy once more, this tisieguthe best software engineering
practices. ClassommissionEmployee3 (Fig. 14.3) declares instance varialflesName,

lastName, socialSecurityNumber , grossSales and commissionRate asprivate (lines 6-10)

and provides public methodssetFirstName , getFirstName , setLastName , getLastName ,
setSocialSecurityNumber , getSocialSecurityNumber , setGrossSales |, getGrossSales
setCommissionRate , getCommissionRate , earnings and toString for manipulating these

values. Note that methodsrnings (lines 8588) and toString (lines 91-98) use the class's get
methods to obtain the values of its instance variables. If we decide to change the instance
variable names, the earnings and toString declarations will not require modificationonly the
bodies of the get and set methods that directly manipulate the instance variables will need to
change. Note that these changes occur solely within the superclassno changes to the subclass are
needed. Localizing the effects of changes like this is a good software engineering practice.
Subclas®asePlusCommissionEmployee4 (Fig. 14.4) inherit€ommissionEmployee3 'S non-

private methods and can access the privatsuperclass members via those methods.

1 //Fig. 14.3: CommissionEmployee3.java

2 /I CommissionEmployee3 class represents a commission employee.
3

4 public class CommissionEmployee3

5

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9 private double grossSales; /I gross weekly sales

10 private double commissionRate; /I commission percentage

11

12 /I five-argument constructor

13 public CommissionEmployee3(String first, String last, Stri ng ssn,
14 double sales, double rate)

15 {

16 /I implicit call to Object constructor occurs here
17 firstName = first;

18 lastName = last;

19 socialSecurityNumber = ssn;

20 setGrossSales(sales); /l validate and store gross sales

21 setCommissionRate(rate); /Il validate and store commission rate
22} /I end five-argument CommissionEmployee3 constructor

23

Introduction to Scientific Programming Using Java Page 111

24 /I set first name

25 public void setFirstName(String first)
26 {

27 firstName = first;

28 }// end method setFirstName

29

30 [return first name

31 public String getFirstName()

32 {

33 return firstName;

34 } /I end method getFirstName

35

36 /I set last name

37 public void setLastName(String last)
38

39 lastName = last;
40 } /I end method setLastName

41

42 /I return last name

43 public String getLastName()
44 {

45 return lastName;

46 } /I end method getLastName
47

48 /I set social security number

49 public void setSocialSecurityNumber(String ssn)
50 {

51 socialSecurityNumber = ssn; /I should validate
52 } /I end method setSocialSecurityNumber

53

54 /I return social security number

55 public String getSocialSecurityNumber()

56 {

57 return socialSecurityNumber;

58 } /I end method getSocialSecurityNumber

59

60 /I set gross sales amount

61 public void setGrossSales(double sales)

62 {

63 grossSales = (sales < 0.0)? 0.0 :sales;
64 } /I end method setGrossSales

65

66 /l return gross sales amount

67 public double getGrossSales()

68 {

69 return grossSales;

70 } /I end method getGrossSales

71

72 /I set commission rate

73 public void setCommissionRate(double rate)
74 |

75 commissionRate = (rate > 0.0 &&rate < 1.0) ?rate:
76} /I end method setCommissionRate

77

78 /I return commission rate

79 public double getCommissionRate()

80 {

0.0 ;

Introduction to Scientific Programming Using Java

Page 112

81 return commissionRate;
82 } /I end method getCommissionRate

83

84 /I calculate earnings

85 public double earnings()

86 {

87 return getCommissionRate() * getGrossSales();

88 1} /I end method earnings

89

90 /I return String representation of CommissionEmploye e3 object
91 public String toString()

92 {

93 return String.format("%S: %S %s\n%s: %s\n%s: %.2\n%s: %.2f" ,
94 "commission employee" , getFirstName(), getLastName(),

95 "social security number" , getSocialSecurityNumber(),

96 "gross sales" , getGrossSales(),

97 "commission rate" , getCommissionRate());

98 } /I end method toString
99 } /I end class CommissionEmployee3

1 //Fig. 14.4: BasePlusCommissionEmployee4.java

2 /IBasePlusCommissionEmployee4 class inherits from Com missionEmployee3 and
3/l accesses CommissionEmployee3's private data via Co mmissionEmployee3's
4/ public methods.

5

6 public class BasePlusCommissionEmployee4 extends CommissionEmployee3
7 A

8 private double baseSalary; /I base salary per week

9

10 /I six-argument constructor

11 public BasePlusCommissionEmployee4(String first, String | ast,
12 String ssn, double sales, double rate, double salary)

13 {

14 super (first, last, ssn, sales, rate);

15 setBaseSalary(salary); /I validate and store base salary

16 } /I end six-argument BasePlusCommissionEmployee4 const ructor
17

18 /I set base salary

19 public void setBaseSalary(double salary)

20 {

21 baseSalary = (salary < 0.0)? 0.0 :salary;

22} /I end method setBaseSalary

23

24 /I return base salary

25 public double getBaseSalary()

26 {

27 return baseSalary;

28 } /I end method getBaseSalary

29

30 /Il calculate earnings

31 public double earnings()

32 {

33 return getBaseSalary() + super .earnings();

34 1} /I end method earnings

35

36 /I return String representation of BasePlusCommission Employee4
37 public String toString()

Introduction to Scientific Programming Using Java Page 113

38 {

39 return String.format("%s %s\n%s: %.2f" , "base-salaried" ,
40 super .toString(), "base salary" , getBaseSalary());

41 } /I end method toString

42 } /I end class BasePlusCommissionEmployee4

ClassBasePlusCommissionEmployee4 (Fig. 14.3) has several changes to its method
implementations that distinguish it from cl@ssePlusCommissionEmployee3 (Fig. 14.3).
Methodsearnings (Fig. 14.2, lines 31-34) andtoString (lines 37-41) each invoke method
getBaseSalary to obtain the base salary value, rather than accessiegalary directly. If we
decide to rename instance varialdgeSalary, only the bodies of methodsetBaseSalary and

getBaseSalary will need to change.

Class BasePlusCommissionEmployee4 'Searnings method (Fig. 14.2, lines 31-34) overrides
classCommissionEmployee3 'searnings method (Fig.14.4 lines 85-88) to calculate the earnings

of a base-salaried commission employee. The new version obtains the portion of the employee's
earnings based on commission alone by cattimgmissionEmployee3 'searnings method with

the expressionuper.earnings() (Fig. 14.3, line 33)BasePlusCommissionEmployee4 'S

earnings method then adds the base salary to this value to calculate the total earnings of the
employee. Note the syntax used to invoke an overridden superclass method from a subclassplace
the keywordsuper and a dot.() separator before the superclass method name. This method
invocation is a good software-engineering practice: Recall from Software Engineering
Observation 8.5 that if a method performs all or some of the actions needed by another method,
call that method rather than duplicate its code. By ha®g#isgPlusCommissionEmployee4 'S

earnings method invoke CommissionEmployee3 'Searnings method to calculate part of a
BasePlusCommissionEmployee4 object's earnings, we avoid duplicating the code and reduce

code-maintenance problems.

Introduction to Scientific Programming Using Java Page 114

WEEK 15

General Learning Objectives for Week15: Polymorphism

Specific Objectives:

Understand the concepts of polymorphism using class hierarchy
Know how to create abstract classes

Write abstract methods

o o T p

Write simple programs implementing polymorphism

Introduction to Scientific Programming Using Java Page 115

Polymorphism

We now continue our study of object-oriented programming by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enabsetou'program in the

general” rather than "program in the specific.” In particular, polymorphism enables us to write
programs that process objects that share the same superclass in a class hierarchy as if they are all

objects of the superclass.

Consider the following example of polymorphism. Suppose we create a program that simulates
the movement of several types of animals for a biological study. CEislsesrog andBird

represent the three types of animals under investigation. Imagine that each of these classes
extends superclagsimal , which contains a method moand maintains an animal's current
location as x-y coordinates. Each subclass implements metvedOur program maintains an

array of references to objects of the varieusnal subclasses. To simulate the animals'
movements, the program sends each object the same message once per secondnamely,
However, each specific type afimal responds to a movsessage in a unique wakiah might

swim three feet, a Frogmight jump five feet and a Birdmight fly ten feet. The program issues

the same message (i.agve) to each animal object generically, but each object knows how to
modify its x-y coordinates appropriately for its specific type of movement. Relying on each
object to know how to "do the right thing” (i.e., do what is appropriate for that type of object) in
response to the same method call is the key concept of polymorphism. The same message (in this

case, movg sent to a variety of objects has "many forms" of resultshence the term polymorphism.

With polymorphism, we can design and implement systems that are easily extensiblenew classes
can be added with little or no modification to the general portions of the program, as long as the
new classes are part of the inheritance hierarchy that the program processes generically. The only
parts of a program that must be altered to accommodate new classes are those that require direct
knowledge of the new classes that the programmer adds to the hierarchy. For example, if we
extend clasanimal to create classortoise (Which might respond to a move message by

crawling one inch), we need to write only th@toise class and the part of the simulation that

Introduction to Scientific Programming Using Java Page 116

instantiates aortoise object. The portions of the simulation that process eashimal

generically can remain the same.

This chapter has several key parts. First, we discuss common examples of polymorphism. We
then provide a live-code example demonstrating polymorphic behavior. As you will soon see,
you will use superclass references to manipulate both superclass objects and subclass objects

polymorphically.

We then present a case study that revisits the employee hierarchy of SectioWw.deévelop a
simple payroll application that polymorphically calculates the weekly pay of several different
types of employees using each employesisngs method. Though the earnings of each type

of employee are calculated in a specific way, polymorphism allows us to process the employees
"in the general.” In the case study, we enlarge the hierarchy to include two new
classesalariedEmployee (for people paid a fixed weekly salary) amglirlyEmployee (for

people paid an hourly salary and so-called time-and-a-half for overtime). We declare a common
set of functionality for all the classes in the updated hierarchy in a so-called abstract class,
Employee, from which classes SalariedEmployee , HourlyEmployee andCommissionEmployee

inherit directly and clasgasePlusCommissionEmployee4 inherits indirectly. As you will soon

see, when we invoke each employeisings method off a superclassEmployee reference,

the correct earnings calculation is performed due to Java's polymorphic capabilities.

Occasionally, when performing polymorphic processing, we need to program "in the specific.”
OurEmployee case study demonstrates that a program can determine the type of an object at
execution time and act on that object accordingly. In the case study, we use these capabilities to
determine whether a particular employee objectBssaPlusCommissionEmployee . If so, we

increase that employee's base salary by 10%.

The chapter continues with an introduction to Java interfaces. An interface describes a set of
methods that can be called on an object, but does not provide concrete implementations for the
methods. Programmers can declare classes that implement (i.e., provide concrete
implementations for the methods of) one or more interfaces. Each interface method must be

declared in all the classes that implement the interface. Once a class implements an interface, all

Introduction to Scientific Programming Using Java Page 117

objects of that class have an is-a relationship with the interface type, and all objects of the class
are guaranteed to provide the functionality described by the interface. This is true of all

subclasses of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unrelated

classes. This allows objects of unrelated classes to be processed polymorphicallyobjects of
classes that implement the same interface can respond to the same method calls. To demonstrate
creating and using interfaces, we modify our payroll application to create a general accounts
payable application that can calculate payments due for company employees and invoice
amounts to be billed for purchased goods. As you will see, interfaces enable polymorphic
capabilities similar to those possible with inheritance.

Polymorphism Examples

We now consider several additional examples of polymorphism. If R&assgle is derived

from class Quadrilateral , then aRectangle object is a more specific version of a

Quadrilateral object. Any operation (e.g., calculating the perimeter or the area) that can be
performed on a Quadrilateral object can also be performed on a Rectangle object. These
operations can also be performed on othetdrilateral S, such asquare s, Parallelogram S

and trapezoids. The polymorphism occurs when a program invokes a method through a
superclass variableat execution time, the correct subclass version of the method is called, based

on the type of the reference stored in the superclass variable.

As another example, suppose we design a video game that manipulates objects of many different
types, including objects of class@srtian , Venusian, Plutonian, SpaceShip and LaserBeam.

Imagine that each class inherits from the common superclass sialtedbject , which

contains methodraw . Each subclass implements this method. A screen-manager program
maintains a collection (e.g.,SpaceObject array) of references to objects of the various classes.

To refresh the screen, the screen manager periodically sends each object the same
messagenamely, dranHowever, each object responds in a unique way. For exaniejza

object might draw itself in red with the appropriate number of antennagaddship object

might draw itself as a bright silver flying saucerL#serBeam object might draw itself as a

Introduction to Scientific Programming Using Java Page 118

bright red beam across the screen. Again, the same message (in thisegsent to a variety

of objects has "many forms" of results.

A polymorphic screen manager might use polymorphism to facilitate adding new classes to a
system with minimal modifications to the system's code. Suppose that we want to add

Mercurian objects to our video game. To do so, we must build a clegscurian that extends
SpaceObject and provides its own draunethod implementation. When objects of class

Mercurian appear in the SpaceObject collection, the screen manager code invokes method

draw , exactly as it does for every other object in the collection, regardless of its type. So the new
Mercurian objects simply "plug right in" without any modification of the screen manager code

by the programmer. Thus, without modifying the system (other than to build new classes and
modify the code that creates new objects), programmers can use polymorphism to include

additional types that were not envisioned when the system was created.

With polymorphism, the same method name and signature can be used to cause different actions
to occur, depending on the type of object on which the method is invoked. This gives the

programmer tremendous expressive capability.

Polymorphism enables programmers to deal in generalities and let the execution-time
environment handle the specifics. Programmers can command objects to behave in manners
appropriate to those objects, without knowing the types of the objects (as long as the objects
belong to the same inheritance hierarchy).

Demonstrating Polymorphic Behavior

In week fourteen created a commission employee class hierarchy, in which class
BasePlusCommissionEmployee inherited from classommissionEmployee . The examples in

that section manipulatetbmmissionEmployee andBasePlusCommissionEmployee objects by

using references to them to invoke their methods. We aimed superclass references at superclass
objects and subclass references at subclass objects. These assignments are natural and
straightforwardsuperclass references are intended to refer to superclass objects, and subclass
references are intended to refer to subclass objects. However, as you will soon see, other
assignments are possible.

Introduction to Scientific Programming Using Java Page 119

In the next example, we aim a superclass reference at a subclass object. We then show how
invoking a method on a subclass object via a superclass reference invokes the subclass
functionalitythe type of the actual referenced object, not the type of the reference, determines
which method is called. This example demonstrates the key concept that an object of a subclass
can be treated as an object of its superclass. This enables various interesting manipulations. A
program can create an array of superclass references that refer to objects of many subclass types.
This is allowed because each subclass object is an object of its superclass. For instance, we can
assign the reference oBasePlusCommissionEmployee Object to a superclass

CommissionEmployee Vvariable becauseBasePlusCommissionEmployee IS a

CommissionEmployee Wwe can treat a BasePlusCommissionEmployee as a

CommissionEmployee

As you will learn later in the chapter, we cannot treat a superclass object as a subclass object
because a superclass object is not an object of any of its subclasses. For example, we cannot
assign the reference ofcammissionEmployee 0object to a subclass

BasePlusCommissionEmployee variable because@mmissionEmployee IS not a
BasePlusCommissionEmployee & CommissionEmployee does not have laseSalary instance

variable and does not have metheglBaseSalary andgetBaseSalary . The is-a relationship

applies only from a subclass to its direct (and indirect) superclasses, and not vice versa.

It turns out that the Java compiler does allow the assignment of a superclass reference to a
subclass variable if we explicitly cast the superclass reference to the subclass type. Why would
we ever want to perform such an assignment? A superclass reference can be used to invoke only
the methods declared in the superclass attempting to invoke subclass-only methods through a
superclass reference results in compilation errors. If a program needs to perform a subclass-
specific operation on a subclass object referenced by a superclass variable, the program must
first cast the superclass reference to a subclass reference through a technique known as
downcasting. This enables the program to invoke subclass methatare not in the

superclass. We will show you a concrete example of downcasting later in the text.

1 //Fig. 15.1: PolymorphismTest.java

2 /I Assigning superclass and subclass references to su perclass and
3 /I subclass variables.

Introduction to Scientific Programming Using Java Page 120

public class PolymorphismTest

{

public static void main(String args|])

©oo~NO O b

10

11

12

13

14

15

16

17

18 I/l invoke toString on superclass object using supercl ass variable
19 System.out.printf("%s %s:\n\n%s\n\n" ,

20 "Call CommissionEmployee3's toString with superclass reference
21 "to superclass object" , commissionEmployee.toString());

22

23 /I invoke toString on subclass object using subclass variable

24 System.out.printf("%s %s:\n\n%s\n\n" ,

25 "Call BasePlusCommissionEmployee4's toString with sub class" ,
26 "reference to subclass object” ,

27 basePlusCommissionEmployee toString());

28

29 /I invoke toString on subclass object using superclas s variable
30 Com

31 bas

32 System.out.printf("%s %s:\n\n%s\n"

33 "Call BasePlusCommissionEmployeed4's toString with su perclass",
34 “reference to subclass object” , commissionEmployee2.toString()
);

3 }// end main
36 } // end class PolymorphismTest

Introduction to Scientific Programming Using Java Page 121

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

In Fig. 15.1, lines 10-11 createcammissionEmployee3 oObject and assign its reference to a
CommissionEmployee3 variable. Lines 14-16 createBasePlusCommissionEmployee4 object

and assign its reference t@asePlusCommissionEmployee4 variable. These assignments are
naturalfor example, @aommissionEmployee3 variable's primary purpose is to hold a reference to
aCommissionEmployee3 object. Lines 19-21 use refererwoammissionEmployee to invoke

toString explicitly. Because commissionEmployee refers to aommissionEmployee3 object,
superclassommissionEmployee3 's version of toString is called. Similarly, lines 24-27 use
basePlusCommissionEmployee t0 invoke toString explicitly on the

BasePlusCommissionEmployee4 object. This invokes subclass

BasePlusCommissionEmployee4 'S version of toString.

Lines 30-31 then assign the reference to subclass ob$eetusCommissionEmployee to a
superclassommissionEmployee3 variable, which lines 32-34 use to invoke methustring.

A superclass variable that contains a reference to a subclass object and is used to call a method
actually calls the subclass version of the method. Hene@jissionEmployee?2.toString() in

line 34 actually calls clagmsePlusCommissionEmployee4 'stoString method. The Java

compiler allows this "crossover” because an object of a subclass is an object of its superclass (but
not vice versa). When the compiler encounters a method call made through a variable, the
compiler determines if the method can be called by checking the variable's class type. If that
class contains the proper method declaration (or inherits one), the compiler allows the call to be
compiled. At execution time, the type of the object to which the variable refers determines the

actual method to use.

Abstract Classes and Methods

When we think of a class type, we assume that programs will create objects of that type. In some

cases, however, it is useful to declare classes for which the programmer never intends to

Introduction to Scientific Programming Using Java Page 122

instantiate objects. Such classes are called abstract classes. Because they are used only as
superclasses in inheritance hierarchies, we refer to them as abstract supercldesesclasses
cannot be used to instantiate objects, because, as we will soon see, abstract classes are
incomplete. Subclasses must declare the "missing pieces." We demonstrate abstract classes in

later.

The purpose of an abstract class is primarily to provide an appropriate superclass from which
other classes can inherit and thus share a common designshaphehierarchy for example,
subclasses inherit the notion of what it means to ieape common attributes such &asation,

color andborderThickness , and behaviors such as dramove, resize andchangeColor

Classes that can be used to instantiate objects are called concrete. Sasfeslasses provide
implementations of every method they declare (some of the implementations can be inherited).
For example, we could derive concrete classe& , Square andtriangle from abstract
superclasgwobDimensionalShape . Similarly, we could derive concrete clasSesere , Cube

and Tetrahedron ~ from abstract superclassReeDimensionalShape . Abstract superclasses are

too general to create real objectsthey specify only what is common among subclasses. We need
to be more specific before we can create objects. For example, if you serahvtimessage to
abstract classwobDimensionalShape , it knows that two-dimensional shapes should be drawable,
but it does not know what specific shape to draw, so it cannot implementdeaveahethod.

Concrete classes provide the specifics that make it reasonable to instantiate objects.

Not all inheritance hierarchies contain abstract classes. However, programmers often write client
code that uses only abstract superclass types to reduce client code's dependencies on a range of
specific subclass types. For example, a programmer can write a method with a parameter of an
abstract superclass type. When called, such a method can be passed an object of any concrete
class that directly or indirectly extends the superclass specified as the parameter's type.

Abstract classes sometimes constitute several levels of the hierarchy. For exangplethe
hierarchy of begins with abstract cla@spe. On the next level of the hierarchy are two more
abstract classeSwoDimensionalShape andThreeDimensionalShape . The next level of the
hierarchy declares concrete classesri@DimensionalShapes (Circle , Square andTRiangle)

and for ThreeDimensionalShapes (Sphere , Cube andTeTRahedron).

Introduction to Scientific Programming Using Java Page 123

You make a class abstract by declaring it with keyword abstractabstract class normally
contains one or more abstract methods. An abstract method is one with kewgract in

its declaration, as in

public abstract void draw(); // abstract method

Abstract methods do not provide implementations. A class that contains any abstract methods
must be declared as an abstract class even if that class contains concrete (non-abstract) methods.
Each concrete subclass of an abstract superclass also must provide concrete implementations of
the superclass's abstract methods. Constructorsaind methods cannot be declared

abstract. Constructors are not inherited, so aabstract constructor could never be

implemented. Similarly, subclasses cannot overtitlie =~ methods, SO a#sbstract static

method could never be implemented.

Although we cannot instantiate objects of abstract superclasses, you will soon see that we can
use abstract superclasses to declare variables that can hold references to objects of any concrete
class derived from those abstract classes. Programs typically use such variables to manipulate
subclass objects polymorphically. We also can use abstract superclass names taaititvoke

methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display many
shapes, including new shape types that the programmer will add to the system after writing the
drawing program. The drawing program might need to display shapes, stiaieas ,

TRiangles, Rectangles or others, that derive from abstract superclassape. The drawing

program uses Shap#ariables to manage the objects that are displayed. To draw any object in
this inheritance hierarchy, the drawing program uses a supesakagsvariable containing a
reference to the subclass object to invoke the obpeatismethod. This method is declared

abstract in superclass Shape, so each concrete subclass must implement methedin a

manner specific to that shape. Each object irsttape inheritance hierarchy knows how to draw
itself. The drawing program does not have to worry about the type of each object or whether the

drawing program has ever encountered objects of that type.

Introduction to Scientific Programming Using Java Page 124

Polymorphism is particularly effective for implementing so-called layered software systems. In
operating systems, for example, each type of physical device could operate quite differently from
the others. Even so, commands to read or write data from and to devices may have a certain
uniformity. For each device, the operating system uses a piece of software called a device driver
to control all communication between the system and the device. The write message sent to a
device-driver object needs to be interpreted specifically in the context of that driver and how it
manipulates devices of a specific type. However, the write call itself really is no different from
the write to any other device in the system: Place some number of bytes from memory onto that
device. An object-oriented operating system might use an abstract superclass to provide an
“interface" appropriate for all device drivers. Then, through inheritance from that abstract
superclass, subclasses are formed that all behave similarly. The device driver methods are
declared as abstract methods in the abstract superclass. The implementations of these abstract
methods are provided in the subclasses that correspond to the specific types of device drivers.
New devices are always being developed, and often long after the operating system has been
released. When you buy a new device, it comes with a device driver provided by the device
vendor. The device is immediately operational after you connect it to your computer and install

the driver. This is another elegant example of how polymorphism makes systems extensible.

Creating Abstract Superclass Enpl oyee

Class Employee (Fig. 15.4) provides methods earnings anebString, in addition to the get and
set methods that manipulatenployee 's instance variables. Asarnings method certainly
applies generically to all employees. But each earnings calculation depends on the employee's
class. So we declare earnings agbstract in superclass Employee because a default
implementation does not make sense for that methodthere is not enough information to
determine what amount earnings should return. Each subclass overréd@sngs with an
appropriate implementation. To calculate an employee's earnings, the program assigns a
reference to the employee's object to a superelassyee variable, then invokes thearnings
method on that variable. We maintain an arragmfiloyee variables, each of which holds a
reference to aBmployee object (of course, there cannotieployee objects becaus€mployee
is an abstract classbecause of inheritance, however, all objects of all subclasgésed may

nevertheless be thought of Baployee objects). The program iterates through the array and

Introduction to Scientific Programming Using Java Page 125

calls methodarnings for each Employee object. Java processes these method calls
polymorphically. Includingearnings as an abstract method irEmployee forces every direct
subclass oEmployee to override earnings in order to become a concrete class. This enables the
designer of the class hierarchy to demand that each subclass provide an appropriate pay

calculation.

MethodtoString in class Employee returns a String containing the first name, last name and
social security number of the employee. As we will see, each subclasglofee overrides
methodtoString to create a string representation of an object of that class that contains the
employee's type (e.g'salaried employee:") followed by the rest of the employee's

information.

The diagram in Fig. 15.3 shows each of the five classes in the hierarchy down the left side and
methods earnings and toString across the top. For each class, the diagram shows the desired
results of each method. [Note: We do not list superéasyee 's get and set methods because
they are not overridden in any of the subclasseseach of these methods is inherited and used "as

is" by each of the subclasses.]

1 //Fig. 15.4: Employee.java

2 /I Employee abstract superclass.

3

4 public abstract class Employee

5 {

6 private String firstName;

7 private String lastName;

8 private String socialSecurityNumber;

9

10 /I three-argument constructor

11 public Employee(String first, String last, String ssn)
12 {

13 firstName = first;

14 lastName = last;

15 socialSecurityNumber = ssn;

16 }// end three-argument Employee constructor
17

18 /I set first name

19 public void setFirstName(String first)
20 {

21 firstName = first;
22 }// end method setFirstName

23
24 /I return first name
25 public String getFirstName()

Introduction to Scientific Programming Using Java Page 126

26 {

27 return firstName;

28 } /I end method getFirstName

29

30 /I set last name

31 public void setLastName(String last)

32 {

33 lastName = last;

34 }// end method setLastName

35

36 [l return last name

37 public String getLastName()

38 {

39 return lastName;

40 }// end method getLastName

41

42 /I set social security number

43 public void setSocialSecurityNumber(String ssn)

44

45 socialSecurityNumber = ssn; // should validate
46 } /I end method setSocialSecurityNumber

47

48 /I return social security number

49 public String getSocialSecurityNumber()

50 {

51 return socialSecurityNumber;

52 } /I end method getSocialSecurityNumber

53

54 /I return String representation of Employee object

55 public String toString()

56 {

57 return String.format("%s %s\nsocial security number: %s" ,
58 getFirstName(), getLastName(), getSocialSecurityNumber());
59 }// end method toString

60

61 /I abstract method overridden by subclasses

62 public abstract double earnings(); /I no implementation here

63 } // end abstract class Employee

Why did we decide to declaearnings as an abstract method? It simply does not make sense
to provide an implementation of this method in ckassloyee. We cannot calculate the
earnings for a genera@mployeewe first must know the specifiemployee type to determine the
appropriate earnings calculation. By declaring this metedlact, we indicate that each
concrete subclass must provide an appropseatengs implementation and that a program will
be able to use superclagsployee variables to invoke methodarnings polymorphically for

any type ofEmployee.

Introduction to Scientific Programming Using Java Page 127

Creating Concrete Subclass sal ari edEnpl oyee

Class salariedEmployee (Fig. 15.5) extends clagsployee (line 4) and overridegarnings

(lines 29-32), which makes SalariedEmployee a concrete class. The class includes a constructor
(lines 9-14) that takes a first name, a last name, a social security number and a weekly salary as
arguments; a set method to assign a new non-negative value to instance wagiasalary

(lines 17-20); a get method to retweeklySalary 's value (lines 23-26); a metheanings

(lines 29-32) to calculatesalariedEmployee 'S earnings; and a method toString (lines 35-39),
which returns &tring including the employee's type, namely, "salaried employee:"

followed by employee-specific information produced by supereas®yee's toString

method andsalariedEmployee 'SgetWeeklySalary method. ClasSalariedEmployee 'S

constructor passes the first name, last name and social security numbegrntipldhes

constructor (line 12) to initialize theivate instance variables not inherited from the

superclass. Methoéhrnings overrides abstract methockarnings in - Employee to provide a

concrete implementation that returns gagariedEmployee 's weekly salary. If we do not
implement earnings, class SalariedEmployee ~ must be declared abstractotherwise, a

compilation error occurs (and, of course, we WsandriedEmployee here to be a concrete

class).

1 //Fig. 10.5: SalariedEmployee.java

2 /I SalariedEmployee class extends Employee.

3

4 public class SalariedEmployee extends Employee

5 {

6 private double weeklySalary;

7

8 /l four-argument constructor

9 public SalariedEmployee(String first, String last, String ssn,
10 double salary)

11 {

12 super (first, last, ssn); /I pass to Employee constructor
13 setWeeklySalary(salary); /l validate and store salary
14 } /I end four-argument SalariedEmployee constructor

15

16 Il set salary

17 public void setWeeklySalary(double salary)

18 {

19 weeklySalary = salary < 0.0 ? 0.0 :salary;

20 } /I end method setWeeklySalary

21

22 I return salary

23 public double getWeeklySalary()

Introduction to Scientific Programming Using Java Page 128

24 |

25 return weeklySalary;

26} /I end method getWeeklySalary

27

28 /I calculate earnings; override abstract method earni ngs in Employee
29 public double earnings()

30 {

31 return getWeeklySalary();

32 }// end method earnings

33

34 /I return String representation of SalariedEmployee o bject

35 public String toString()

36 {

37 return String.format("salaried employee: %s\n%s: $%,.2f" ,
38 super .toString(), "weekly salary" , getWeeklySalary());

39 }// end method toString
40 } // end class SalariedEmployee

Methodtostring (lines 35-39) of class SalariedEmployee overridesEmployee method

toString. If class SalariedEmployee did not overrideoString, SalariedEmployee would

have inherited themployee version of toString . In that caseSalariedEmployee 'StoString

method would simply return the employee'’s full name and social security number, which does
not adequately represensaariedEmployee . To produce a complete string representation of a
SalariedEmployee , the subclass's toString method returnssalaried employee:" followed

by the superclassmployee-specific information (i.e., first name, last name and social security
number) obtained by invoking the superclagssging (line 38)this is a nice example of code
reuse. The string representation cfatriedEmployee also contains the employee's weekly

salary obtained by invoking the clasgéweeklySalary method.

Introduction to Scientific Programming Using Java Page 129

	Cover
	Table of Contents
	Week 1:
	Week 2:
	Week 3:
	Week 4:
	Week 5:
	Week 6:
	Week 7:
	Week 8:
	Week 9:
	Week 10:
	Week 11:
	WEEK 12
	Week 14:
	Week 15:
	Return to Table

