
1

1

CMP 436/774

Introduction to

Servlets and

Java Server Pages (JSPs)

Fall 2013

Department of Mathematics

and Computer Science

Lehman College, CUNY

Why Web Applications (Apps)?

 So why does everyone want Web apps?

 Universal access

 Everyone already has a browser installed

 Any computer on the network can access content

 Automatic “updates”

 Content comes from server, so is never out of date

 Downsides to browser-based apps

 GUI is poor

 HTML is OK for static documents, but not effective for dynamic

documents generated/updated by the server side apps

 Communication is inefficient

 HTTP is poor protocol (stateless) for the way we now use Web apps

2

2

Why Build Web Pages Dynamically?

 The Web page is based on data submitted by the user

 E.g., results page from search engines and order-confirmation
pages at on-line stores

 The Web page is derived from data that changes frequently

 E.g., a weather report or news headlines page

 The Web page uses information from databases or other server-

side sources

 E.g., an e-commerce site could use a servlet to build a Web page
that lists the current price and availability of each item that is for
sale.

 Servlet/JSP technologies (in EE) enable for developing dynamic,
portable, secure, robust, reliable web applications.
 In this lecture, we study Servlets and JSP technologies

3

Servlets/JSPs vs. JSF

 Servlets and JSP

 Well-established standard

 Used by google.com, ebay.com, walmart.com, and thousands of
other popular sites

 Relatively low level by today’s standards

 JSF (JavaServer Faces) Version 2

 Now an official part of Java EE 6

 Higher-level features: integrated Ajax support, field validation,
page templating, rich third-party component libraries, etc.
Designed around the MVC approach.

 Not yet as widely used, but recommended for new projects to be
developed

 JSF will be studied (after Servlets/JSPs, intro to EJBs), refer to the
course outline shown in the course Web Site

4

3

Web App Language Popularity

5

6

Servlets and JSPs

Servlets

Examples in SimpleServlets
and SimpleJSPs NetBeans

Projects

4

7

What is a Servlet?

 Servlets are Java programs that serve as an mediating layer

between an HTTP request of a client and applications in the Web

server.

 A Servlet is a dynamically loaded module that services requests

from a Web server.

 A servlet runs entirely inside the a JVM (Java Virtual Machine) of a

container.

 Temporary (Persistent) Servlets are activated when clients request

their services

 Permanent Servlets are active when their host servers are up.

 Servlets are designated as temporary and permanent through

configurations of the hosting servers.

 The GlassFish Server can cache the results of invoking a servlet, a

JSP, or any URL pattern to make subsequent invocations of the

same servlet, JSP, or URL pattern faster.

8

Java VM

Components and Containers

Class

Class

Class

C
la

s
s
lo

a
d

e
r

Component

Component

Object Object

GC

Code-level

security

Other VM

services

Lifecycle

User-level

security

Container

Object

5

9

Components and Containers

 Components:

 One or more objects that implement a well-defined application service

 Make use of component services

 Container:

 Runtime entity that manages components and provides their services

 Components need to be:

 Written within the contracts defined by the container

 APIs plus some rules related to the component services

 Deployed to containers

 Describe the components

 Deliver all the elements (classes, resources, etc.) that implement the
components

 Provide instructions on how to manage them

 Assemble/package components into an application assembly

 Servlets typically run inside multithreaded servlet containers that can handle

multiple requests concurrently.

 Developers must be aware to synchronize access to any shared resources such as files,
network connections, and as well as the servlet's class and instance variables.

10

A Servlet’s Job

 Read explicit data sent by client (form data).

 Read implicit data sent by client (request headers).

 Generate the results.

 Send the explicit data back to client (HTML).

 Send the implicit data to client (status codes and response

headers).

6

11

A Servlet that Generates a HTML doc

@WebServlet(name = "HelloServlet", urlPatterns = {"/hello"})
public class HelloServlet extends HttpServlet {
/*invoked by doGet() and doPost() */
 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 /* TODO output your page here. You may use following

sample code. */
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet HelloServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet HelloServlet at " +

request.getContextPath() + "</h1>");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 } //continues…..

12

Servlet Life Cycle

 The container loads and initializes the Servlet.

 The Servlet handles client requests.

 The container can remove the Servlet.

 The servlet can remain loaded to handle additional requests:

 Incur startup costs only once, may consume server resources if active.

 The javax.servlet.Servlet interface introduces the methods supporting

communication between the Servlets and their container.

 void init(ServletConfig config): to be executed when the Servlet starts
running

 void destroy()

 void service(ServletRequest req,
ServletResponse res): to be executed in response to client requests

 ServletConfig getServletConfig():info about the servlet environment,
provided by the host in init

 String getServletInfo(): information about the Servlet

7

13

Example: HTTP Servlet Lifecycle

Instantiated
(constructor called

by container)

Initialized
init(ServletConfig)

Handle requests
doGet(HttpServletRequest,

 HttpServletResponse)

doPost(HttpServletRequest,

 HttpServletResponse)

Destroyed
destroy()

App logic

happens here
App logic in

processRequest()

In NetBeans Servlets

14

The Servlet Life Cycle (cont’d)

 Init:

 Executed once when the Servlet is first loaded:

 Not called for each request.

 init-params are read.

 Service:

 Called in a new thread by server for each request:

 Dispatches to doGet, doPost, etc

 Do not override service().

 The service method gives you automatic support for:

 HEAD requests,

 OPTIONS requests, //cache, encoding, etc

 TRACE requests.

 doGet, doPost, doXxx:

 Handles GET, POST, doPut, doTrace, etc.

 Override these to provide desired behaviour.

 Destroy:

 Called when server deletes Servlet instance,

 Not called after each request.

8

15

The Servlet Life Cycle (cont’d)

 Main servlet code goes in doGet or doPost:

 The HttpServletRequest contains the incoming information

 The HttpServletResponse lets you set outgoing information

 Call setContentType to specify MIME type

 Call getWriter to obtain a Writer pointing to client

 One-time setup code goes in init

 Servlet gets initialized and loaded once

 Used often in Servlets:

 e.g., initializing database connection pools.

 Servlet gets invoked multiple times, but the initialization is done once
when it’s first invoked.

 Initialization parameters set in web.xml (…/WEB-INF/web.xml)
 @WebServlet(urlPatterns=“/MyPatter”, initParams={@WebInitParam(name=“ccc”,

value=“333”)}) annotation can be used.

 Use ServletConfig.getInitParameter() to read initialization parameters.

 See ShowMessages servlet example

16

ShowMessages Servlet

 @Override
 public void init() throws ServletException {
 ServletConfig config = getServletConfig();
 message = config.getInitParameter("message");
 if (message == null) {
 message = defaultMessage;
 }
 try {
 String repeatString = config.getInitParameter("repeats");
 repeats = Integer.parseInt(repeatString);
 } catch (NumberFormatException nfe) {
 }
 }

9

Initialization Parameters setting

17

18

ShowMessage (Cont’d)

 protected void processRequest(HttpServletRequest request, HttpServletResponse
response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String title = "The ShowMessage Servlet";

 out.println(ServletUtilities.headWithTitle(title)

 + "<BODY BGCOLOR=\"#FDF5E6\">\n"

 + "<H1 ALIGN=CENTER>" + title + "</H1>");

 for (int i = 0; i < repeats; i++) {

 out.println(message + "
");

 }

 out.println("</BODY></HTML>");

 }

10

ShowMessages servlet (cont’d)

19

LottoApp servlet

20

11

Hello2 servlet (from EE 6 tutorial)

21

22

ServletUtilities (in utilities package)

….

 public static int getIntParameter(HttpServletRequest request,

 String paramName,

 int defaultValue) {

 String paramString = request.getParameter(paramName);

 int paramValue;

 try {

 paramValue = Integer.parseInt(paramString);

 } catch (NumberFormatException nfe) { // null or bad format

 paramValue = defaultValue;

 }

 return (paramValue);

 }

12

Servlet JSP API

 Servlets and JSP API docs from

 http://glassfish.java.net/nonav/docs/v3/api/overview-

summary.html or

 file:///C:/glassfish4/docs/api/index.html

 Servlets 3.0/3.1 and JSP 2.2

23

24

Servlets and JSPs

Java Server
pages (JSPs)

Exmaples are in SimpleJSPs
SimpleServlets NetBeans

Projects

http://glassfish.java.net/nonav/docs/v3/api/overview-summary.html
http://glassfish.java.net/nonav/docs/v3/api/overview-summary.html
http://glassfish.java.net/nonav/docs/v3/api/overview-summary.html
C:/glassfish4/docs/api/index.html

13

The JSP Framework

 Idea:
 Use regular HTML for most of page
 Mark servlet code with special tags
 Entire JSP page gets translated into a servlet (once), and servlet

is what actually gets invoked (for each request)

 Example:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <title>Order</title>
 </head>
 <body>
 <form method=post action="OrderConfirmation.jsp">
 <h4>Please Enter The Book Name You Order.....</h4>
 <input type=text name="title">
 <input type=submit value="Click to Order Now...">
 </form>
 </body>
</html>

25

Benefits of JSP

 Although JSP technically can’t do anything servlets can’t do, JSP
makes it easier to:

 Write HTML

 Read and maintain the HTML

 JSP makes it possible to:

 Use standard HTML tools such as DreamWeaver

 Have different members of your team do the HTML layout than do
the Java programming

 JSP encourages you to

 Separate the (Java) code that creates the content from the
(HTML) code that presents it

26

14

Advantages of JSP Over Competing Technologies

 Versus ASP or ColdFusion

 Better language for dynamic part

 Portable to multiple servers and operating systems

 Versus PHP

 Better language for dynamic part

 Better tool support
 Versus client-side JavaScript (in browser)

 Capabilities mostly do not overlap with JSP, but
 You control server, not client
 Richer language

 Versus static HTML

 Dynamic features

 Versus pure servlets

 More convenient to create HTML

 Divide and conquer

 JSP programmers still need to know servlet programming

27

28

How Does a JSP work?

 Web server hands a JSP request to the web container (or JSP container)

 Web container picks up the corresponding JSP compiles it

 Parses it (checks tag syntax, etc.)

 Converts page to a Java Servlet (implementing JspPage), with
your code inside the _jspService() method

 Compiles the generated Servlet code (one-time only)

 Original request is passed to the compiled component

 Init, service, destroy lifecycle events mapped into JSP versions

 jspInit(), _jspService() and jspDestroy() are called the life cycle
methods of the JSP

15

29

30

16

31

JSPs as Web Components

 Very similar lifecycle, with a few exceptions

 They extend the class which implements HttpJspPage interface,
which maps the callbacks into JSP callbacks

 jspInit(), _jspService(), jspDestroy()
 Initialization protocol:

 ServletConfig is set by JSP engine

 jspInit() is called, can access config using getServletConfig()
(returns initialization and startup parameters for this Servlet)

 See javax.servlet.jsp package; javax.servlet.jsp.PageContext
abstract class (provides information that is not specific to
Servlets:
 API to manage the various scoped namespaces for tag management

 a mechanism to obtain the JspWriter for output

 a mechanism to expose page directive attributes to the scripting
environment (e.g., for JSP-EL).

 Biggest difference between Servlets and JSPs is that all this is

hidden from you.

32

17

JSP Introduction 33

JSP Lifecycle

jspInit

_jspService

Ten Most Popular Web Sites (Alexa.com, 2010)

1. Google

 Java (Web),
C++ (indexing)

2. Facebook

 PHP

3. YouTube

 Flash, Python, Java

4. Yahoo

 PHP and Java

5. Microsoft Live.com

 .NET

6. Baidu

 Unknown

7. Wikipedia

 PHP

8. Blogger

 Java

9. MSN

 .NET

10. Twitter

 Ruby on Rails, Scala, Java

34

Fall 2010: Google reports over two billion Web pages that use JSP

18

JSP/Servlets in the Real World: Airlines

 Delta Airlines

 United Airlines

 AirTran

 American Airlines

 British Airways

 KLM

 Air China

 Saudi Arabian Airlines

 Iceland Air

35

JSP/Servlets in the Real World: Travel Sites

 Travelocity.com
 Orbitz.com
 HotWire.com
 Hotels.com
 CheapTickets.

com
 National Car

Rental
 Avis Car Rental
 Enterprise

Car Rental
 Hertz Car

Rental

36

19

JSP/Servlets: Financial Services

 American
Century

 Vanguard
 Fidelity
 NY Stock Exchange
 First USA Bank
 Royal Bank of Scotland
 Banco Popular de Puerto

Rico
 Bank of America
 China Construction

Bank

37

JSP/Servlets in the Real World: Retail

 Sears.com

 Walmart.com

 HomeDepot.com

 SamsClub.com

 Macys.com

 llbean.com

 Kohls.com

 Ikea.com

 Target.com

 Longaberger.com

 Nike.com

 CircuitCity.com

38

20

JSP/Servlets in the Real World: Entertainment

 WarnerBrothers.com

 Billboard.com

 E!

(eonline.com)

 PBS.org

 Comcast

 games.atari.com

39

JSP/Servlets: Military and Federal Government

 DHS

 TSA

 FAA

 CIA

 NSA

 GSA

 IRS

 Army

 Navy

 USPS

40

21

Science and Research

 NSF

 UN

Oceans

 diabetes.org

 fas.org

 dlse.org

 science.edu.sg

 gbif.net

 collegeboard

.com

41

JSP/Servlets: State, Local, International

42

22

JSP/Servlets in the Real World: Sports

 Baltimore

Orioles

 Washington

Redskins

 Washington

Nationals

 Major League

Baseball

 NHL.com

 Nascar.com

43

JSP/Servlets in the Real World: Search/Portals

 Most of Google

 All of Ebay

 netscape.com

 excite.com

 dice.com

 hi5

 Paypal

44

23

JSP example

<%--

 Document : index

 Created on : Sep 1, 2012, 1:12:57 PM

 Author : gjung

--%>

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <h1>Hello World!</h1>

 </body>

</html>

45

JSP comments, page directives

 <%-- and --%> tags delineate JSP comments, everything between

two tags is ignored by the JSP compiler. These types of comments

will not be rendered on the page.

 Standard HTML comments <!-- and -- >, they will only visible by

viewing the source of the rendered page.

 JSP page directives define attributes that apply to the entire page.

46

24

Page directives

47

ContextPath

 By default the context path for the application is the name of the

project.

 This is the path at which your application can be accessed after it
is deployed to the server.

 For example, GlassFish uses 8080 as its default port number, so
during development you'll be able to access the project in a
browser window from: http://localhost:8080/ProjectName/

48

25

Run a JSP page

 Run the new SimpleJSP project. In the Projects window, you can

do this by right-clicking the project node and choosing Run,

otherwise, click the Run Project () button in the IDE's main

toolbar.

A browser window opens to display the project's index.jsp page.

49

50

JSP/Servlet Correspondence

 Original JSP:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

 Possible resulting Servlet code:

/glassfish4_home/glassfish/domains/domainname/generated/jsp/ProjectName/org/apac

he/jsp/index_jsp.java

26

51

Invoking Dynamic Java Code

fromJSPs

 Call Java Code Directly

 (Expressions, Declarations, Scriptlets)

 Call Java Code Indirectly

 (by means of separate Utility Classes)

 Use Beans

 (jsp:useBean, jsp:getProperty, jsp:setProperty)

 Use MVC architecture (Servlet, JSP, JavaBean)

 Use JSP expression Language

 (shorthand to access bean properties, etc)

 Use custom tags

 (Develop tag handler classes; use xml-like custom tags)

Simple Application by

a Small Development Team

Complex Application by

a Big Development Team

52

Limit Java Code in JSP Pages

 You have two options for writing JSP

 Put 25 lines of Java code directly in the JSP page

 Put those 25 lines in a separate Java class and put 1 line in the
JSP page that invokes it

 Why is the second option much better?

 Modular development

 Debugging

 If you have syntax errors, you see them immediately at compile time.
Simple print statements can be seen.

 Testing

 More effective

 Reuse

 You can use the same class from multiple pages.

27

53

Basic Syntax

 HTML Text

 <H1>……..</H1>

 Passed through to client. Really turned into Servlet code that
looks like out.print("<H1>……..</H1>");

 HTML Comments

 <!-- Comment -->

 Same as other HTML: passed through to client

 JSP Comments

 <%-- Comment --%>

 Not sent to client

 To get <% in output, use <\%

54

Types of Scripting Elements

 Expressions:

 Format <%=expression %>

 Evaluated and inserted into the Servlet’s output, i.e., results in
something like out.println(expression).

 Scriptlets:

 Format <%code%>

 Inserted verbatim into the Servlet’s _jspService method (called
a service).

 Declarations:

 Format <%! code%>

 Inserted verbatim into the body of the Servlet class, outside of
any existing methods.

28

55

JSP Expressions

 Format:

 <%= Java Expression %>

 Result:

 Expression evaluated, converted to String, and placed into
HTML page at the place it occurred in the JSP page.

 That is, expression is placed in _jspService inside out.print.

 Examples:

 Current time: <%=new java.util.Date()%>

 Your hostname: <% = request.getRemoteHost()%>

 XML-compatible syntax

 <jsp:expression>Java Expression</jsp:expression>

 You cannot mix versions within a single page. You must use
XML for entire page if you use jsp:expression.

56

Predefined (implicit) Variables

 Request:

 The HttpServletRequest – 1st arg to doGet();

 Response:

 The HttpSerlvetRepsonse – 2nd arg to doGet();

 session:

 The HttpSession associated with the request (unless disabled
with the session attribute directive).

 out:

 The stream (of type JspWriter) used to send output to the
client.

 application (javax.servlet.ServletContext):

 The ServletContext (for sharing data) as obtained via
getServletConfig().getContext().

 config, jspContext, page (i.e., this), pageContext, exception

29

57

JSP Scriptlets

 Format:
 <%Java Code%>

 Result:
 Code is inserted verbatim into Servlet’s _jspService.

 Example:
 <%String queryData = request.getQueryString();

out.println(“Attached GET data: “ + queryData);%>

58

JSP/Servlet Correspondence

 Original JSP:

<%= foo() %>
<%= bar() %>
<% baz(); %>

 Possible resulting servlet code:

public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws servletException
IOException{

 response.setContentType(“text/html”);
 HttpSession session = request.get Session(true);
 JspWriter out = response.getWriter();
 out.println(foo());
 out.println(bar());
 baz();
…
}

30

59

JSP Declarations

 Format:

 <%! Java Code %>

 Result:

 Code is inserted verbatim into the Servlet’s class
definition, outside of any existing methods..

 Examples:

 <%! private int someField=5;%>

 <%! private void someMethod(…) {…} %>
 Design consideration:

 - Fields are useful. For methods, it is usually better to define the
method in a separate Java class.

60

Example Using JSP Declarations

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">

<HTML>
 <HEAD>
 <TITLE>JSP Declarations</TITLE>
 </HEAD>
 <BODY>
 <H1>JSP Declarations</H1>
 <%! private int accessCount = 0; %>
 <H2>Accesses to page since server reboot:
 <%= ++accessCount %></H2>
 </BODY>
</HTML>

31

61

Purpose of the Page Directive

 Will give high-level information about the Servlet that will

result from the JSP page.

 Can control:

 Which classes are imported,

 What class the Servlet extends,

 What MIME type is generated,

 How multi-threading is handled.

 If the Servlet participates in sessions,

 The size and behaviour of the output buffer,

 What page handles unexpected errors.

62

The Import Attribute

 Format:

 <%@ page import=“package.class” %>
 <%@ page import=“paqckage.class1,…, package.classM”%>

 Purpose:

 Generate import statements at top of the Servlet.

 Notes:

 Although JSP pages can be almost anywhere on the server,
classes used by JSP pages must be in normal Servlet directories.

• Always try to use packages for utilities that will be used by JSP.

32

63

The contentType Attribute

 Format:
<%@ page contentType=“MIME-Type”%>

<%@ page contentType=“MIME-Type;

 charset=Character-Set”%>

<%@ page pageEncoding="Character-Set" %>

 Purpose:

 Specify the MIME type of the page generated by the
Servlet that results from the JSP page.

64

The isThreadSafe Attribute

 Format:

 <%@ page isThreadSafe=“true”%> <%-- Default--%>

 <%@ page isThreadSafe=“false”%>

 Purpose:

 To tell the system when your code is not threadsafe, so that
the system can prevent concurrent accesses – instructs the
Servlet to implement a SingleThreadModel.

 Notes:

 Default is true – system assumes you have synchronized
updates to fields and other shared data.

 Supplying a value of false can degrade the performance.

33

65

Non-threadsafe Code

 What is the potential problem with this code?

<%! private int idNum = 0;%>

<%

 String UserID = “userID” + idNum;

 out.println(“Your ID is “ + userID + “.”);

 idNum = idNum + 1;

%>

66

Thread-safe Code

<%! private int idNum = 0;%>

<%

 synchronized(this) {

 String UserID = “userID” + idNum;

 out.println(“Your ID is “ + userID + “.”);

 idNum = idNum + 1;

}

%>

 Thread-safe code: access to a shared variable using

the normal synchronized statement.

34

67

Other attributes of the Page Directive
 session:

 Lets you choose NOT to participate in sessions.

 buffer:

 Changes the minimum size of the buffer used by the JspWriter.

 autoflush:

 Requires the developer to explicitly flush the buffer.

 extends:

 Changes the parent class of the generated servlet.

 errorPage:

 Designates a page to handle unplanned errors.

 isErrorPage:

 Declares that page can be used as an error page.

68

JSP and Servlet Interactions

35

69

 Servlet only works well when

 Output is a binary type. (e.g., an image)

 There is no output handling. (e.g., forwarding or redirection)

 Format/layout of page is highly variable (e.g., portal service)

 Low-content, high business-logic situations

 JSP only works well when

 Output is mostly character data. (e.g., HTML)

 Format/layout mostly fixed (although you can forward or redirect to other
pages).

 High-content, low business-logic situations

 Combination (MVC architecture) is recommended when

 A single request will result in multiple substantially different look and feel
results.

 You have a large development team with different team members doing
the Web development and the business logic.

 You perform complicated data processing, but have a relatively fixed
layout.

Handling Requests in Web Environments

70

Model-View-Controller

 Architectural tool

 Addresses a common need: Separation of UI and
business logic

 Various tools support the approach

 Layered on top of standard web components

 Struts is an example

 Enterprise infrastructures and applications evolve

 UI and business tiers evolve on different timelines

 Enterprise development involves multiple parties

 Several roles (web developers, software architects,
software engineers, database engineers)

 Many hands in the soup at the same time

 MVC and multi-tiered applications help keep things

manageable in enterprise environment.

36

71

JSP/Servlet Model 1 Architecture

72

JSP/Servlet Model 2 Architecture

37

73

Model-View-Controller (Model 2)

Bean

JSP

Servlet
Controller

View

Model

74

Implementing MVC with Request Dispatcher

 Define beans to represent the data and use a Servlet to handle

requests

 Servlet reads request parameters, checks for missing and
malformed data, etc.

 Populate the beans

 The Servlet invokes business logic (application- specific code) or
data-access code to obtain the results. Results are placed in the
beans that were defined in step 1.

 Store the bean in the request, session, or Servlet context

 The Servlet calls setAttribute on the request, session, or Servlet

context objects to store a reference to the beans that represent
the results of the request.

38

75

MVC with Request Dispatcher (cont’d)

 Forward the request to a JSP page.

 The Servlet determines which JSP page is appropriate to the
situation and uses the forward() method of RequestDispatcher to

transfer control to that page.

 Extract the data from the Beans.

 The JSP page accesses Beans with jsp:useBean and a scope

declared.

 The page then uses jsp:getProperty to use the Bean properties.

 The JSP page does not create or modify the bean; it merely
extracts and displays data that the Servlet created.

 JSP page does not create all the data objects (Beans). To
guarantee that the JSP page will not create Beans you should use

 <jsp:useBean ... type="package.Class" />

 instead of

 <jsp:useBean ... class="package.Class" />

 you should use jsp:getProperty but not jsp:setProperty.

76

Request Forwarding Example

 protected void processRequest(HttpServletRequest request, HttpServletResponse
response)

 throws ServletException, IOException {

 String operation = request.getParameter("operation");

 if (operation == null) {

 operation = "unknown";

 }

 String address;

 if (operation.equals("order")) {

 address = "/Order.jsp";

 } else if (operation.equals("cancel")) {

 address = "/Cancel.jsp";

 } else {

 address = "/UnknownOperation.jsp";

 }

 RequestDispatcher dispatcher = request.getRequestDispatcher(address);

 dispatcher.forward(request, response);

39

SimpleJSPs MVC example

 Survey App (Index2.jsp, Controller servlet, surveyResult2.jsp)

 Form element of the NetBeans Palette

77

Table Element

78

40

Text element (NetBeans Pallette)

79

Ckeckbox Element

80

41

Button Element

81

Run File – index2.jsp

82

42

surveyResul2.jsp

83

84

43

85

Developer App

86

44

Adding Controller Servlet (MVC)

87

88

45

WebServlet annotation

 @WebServlet annotation by default when generating servlets

89

processRequest() method

 The generated servlet contains a processRequest() method that

will be executed every time the servlet receives an HTTP GET or an

HTTP POST request from the browser.

 This method takes an instance of

javax.servlet.http.HttpServletRequest and an instance of

javax.servlet.http.HttpServletResponse as parameters. These

parameters are equivalent to the request and response implicit

objects in JSPs.

 The processRequest() method is a NetBeans specific method that

is generated (in most cases the servlet executes the same code

regardless GET or POST method from the browser).

 doGet() doPost() methods handle GET or POST request,

respectively.

90

46

Add model (data, JavaBean)

91

Using Model (Data)

92

47

Scope of the Bean (model)

 Objects can be stored by a servlet as attributes at the session or

application scope.

 Request.getSession().setAttribute(“SurveyData”, surveyData);

 getSession() method of the javax.servlet.http.HttpServletRequest
interface returns an instance of javax.servlet.http.HttpSession
representing the user’s session.

 Session attributes are visible to all pages in a user’s session and
are preserved across requests.

 getServletContext() method is defined in
javax.servlet.GenericSurvlet, which is the parent class of
javax.servlet.http.HttpServlet, that is in turn is the parent class of
every servlet in a web application. This method returns an
instance of javax.servlet.ServletContext.

 Storing an object as an attribute of the servlet context makes it visible
across user sessions; therefore all users in the application have access
to the attribute.

93

94

48

SurveyResult2.jsp

95

96

Examples are in SecureWebApp NB Project

Securing Web
Applications

JSP and Servlet Interactions

49

Securing Web Apps

 It is a common requirement to only allow certain users to access

certain pages in a web application.

 Requires security realm set up

 Each security realm allows the application server to obtain security
information from some sort of permanent storage (i.e., file, relational
database, LDAP repository, or any kind of persistent storage)

 Developers not to worry about the specific implementation.

 Simply configure the application to use a defined security realm for
authentication

 Setting up security realm varies from AS to AS.

 Four different ways to authenticate a user

 Basic authentication (browser pop up window based)

 Digest authentication (~~ BA, password is encrypted)

 Client side certificate (issued by certificate authorities such as Verisign or
Thawte): not very common due to the expense and lack of convenience of
issuing client-side certificates

 Form-based authentication: most common, need to develop a JSP or
HTML page used to collect user credentials, use HTTPS (HTTP over SSL)

97

Implementing Form-based Authentication

 A login page needs to be created

 Every login page created for form based authentication must
contain an HTML form with a method POST and an action of
j_security_check

 Every EE-compliant AS has a security servlet deployed on
installation, the security servlet is mapped to the j_security_check

 URL, as such, its doPost() method is executed when the form is
submitted.

 Login page must have j_username and j_password (used by the
security servlet to check these values match those in security
realm)

 A login error page needs to be created, this page will be displayed

when a user enters incorrect credentials

 The web app needs to be configured to use a security realm for

authentication

98

50

SecureWebApp –login.jsp

99

Configuring Web app for form-based AU

100

51

Add Security Role

101

102

52

103

104

53

GlassFish Specific Security Config

105

106

54

Configure GF AS Security Realm

107

108

55

New File Realm User

109

Run SecureWebApp

 After deploying the App and accessing admin/admin.jsp

 The user is automatically directed to the App’s login page

110

56

111

JSP and Servlet Interactions

JSP Fragments

Examples are in SecureWebApp NB Project

JSP fragments

 In a typical web application, most pages share certain common web page areas

such as a navigation menu, a header, a footer, etc.

 Create JSP fragments for common page areas, which can be included in
every page.

 JSP fragments need to be updated when there are some changes on those
common page segments.

112

57

SecureWebApp- loginForm.jspf

113

114

JSP Scripting Elements

Revisited

58

115

Invoking Dynamic Java Code

fromJSPs

 Call Java Code Directly

 (Expressions, Declarations, Scriptlets)

 Call Java Code Indirectly

 (by means of separate Utility Classes)

 Use Beans

 (jsp:useBean, jsp:getProperty, jsp:setProperty)

 Use MVC architecture (Servlet, JSP, JavaBean)

 Use JSP expression Language

 (shorthand to access bean properties, etc)

 Use custom tags

 (Develop tag handler classes; use xml-like custom tags)

Simple Application by

a Small Development Team

Complex Application by

a Big Development Team

116

Drawback of MVC Based on useBean

 Main drawback is the final step: presenting the results in the JSP

page.

 jsp:useBean and jsp:getProperty

 Clumsy and verbose

 Cannot access bean subproperties

 JSP scripting elements

 May Result in hard-to-maintain code

 Defeat the purpose behind MVC.

 Goal

 More concise access

 Ability to access subproperties

 Simple syntax accessible to Web developers

59

117

JSP and Servlet Interactions

By Expression
Language

Examples are in JSPEL NB Project

118

Advantages of Expression Language

 Concise access to stored objects.

 To output a “scoped variable” (object stored with setAttribute in
the PageContext, HttpServletRequest, HttpSession, or
ServletContext) named saleItem, you use ${saleItem}.

 Shorthand notation for bean properties.

Examples:

 To output the companyName property (i.e., result of the
getCompanyName() method) of a scoped variable named company,
you use ${company.companyName}.

 To access the firstName property of the president property of a
scoped variable named company, you use
${company.president.firstName}.

 Simple access to collection elements.

 To access an element of an array, List, or Map, you use
${variable[indexOrKey]}. Provided that the index or key is in a form

that is legal for Java variable names.

60

119

Advantages of EL (cont’d)

 Succinct access to request parameters, cookies, and other request

data.

 To access the standard types of request data, you can use one of
several predefined implicit objects.

 A small but useful set of simple operators.

 To manipulate objects within EL expressions, you can use any of
several arithmetic, relational, logical, or empty-testing operators.

 (E.g.,) For conditional output, you can use ${test ? option1 :
option2}.

 Automatic type conversion.

 The expression language removes the need for most typecasts
and for much of the code that parses strings as numbers.

 Empty values instead of error messages.

 In most cases, missing values or NullPointerExceptions result in

empty strings, not thrown exceptions.

120

Invoking the Expression Language

 Basic form: ${expression}

 These EL elements can appear in ordinary text or in JSP tag
attributes, provided that those attributes permit regular JSP
expressions. For example:

•

• Name: ${expression1}

• Address: ${expression2}

•

• <jsp:include page="${expression3}" />

 The EL in tag attributes

 You can use multiple expressions (possibly intermixed with static
text) and the results are strings and concatenated. For example:

 • <jsp:include page="${expr1}……..${expr2}" />

 Escaping special characters

 To get ${ in the page output, Use \${ in the JSP page. To get a
single quote within an EL expression Use \‘ and to get a double
quote within an EL expression Use \"

61

121

Accessing Scoped Variables

 ${varName}

 Means to search the PageContext, the HttpServletRequest, the
HttpSession, and the ServletContext, in that order, and output the

object with that attribute name.

 Bean object variable

 ${name}

<%= pageContext.findAttribute("name") %>

<jsp:useBean id=“person” type="somePackage.SomeClass“ scope="...">

<jsp:getProperty name=“person“ property=“name" />

122

JSPELExamples Project-- ScopedVars

@WebServlet(name = "ScopedVars", urlPatterns = {"/ScopedVars"})

public class ScopedVars extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse
response)

 throws ServletException, IOException {

 request.setAttribute("attribute1", "First Value");

 HttpSession session = request.getSession();

 session.setAttribute("attribute2", "Second Value");

 ServletContext application = getServletContext();

 application.setAttribute("attribute3",

 new java.util.Date());

 request.setAttribute("repeated", "Request");

 session.setAttribute("repeated", "Session");

 application.setAttribute("repeated", "ServletContext");

 RequestDispatcher dispatcher =

 request.getRequestDispatcher("/scopedVariables.jsp");

 dispatcher.forward(request, response);

 }

62

123

scopedVars.jsp

<!DOCTYPE …>

…

<TABLE BORDER=5 ALIGN="CENTER">

<TR><TH CLASS="TITLE">

Accessing Scoped Variables

</TABLE>

<P>

 attribute1: ${attribute1}

 attribute2: ${attribute2}

 attribute3: ${attribute3}

 Source of "repeated" attribute: ${repeated}

</BODY></HTML>

124

ScopedVars (cont’d)

63

125

Accessing Bean Properties

 ${varName.propertyName}

 Means to find scoped variable of given name and output the
specified bean property

 Equivalent forms

${customer.firstName}

<%@ page import=“packageName.NameBean" %>

<%

 NameBean person =

 (NameBean)pageContext.findAttribute("customer");

%>

<%= person.getFirstName() %>

126

Accessing Bean Properties (cont’d)

 Equivalent forms

 ${customer.firstName}

 <jsp:useBean id="customer“ type="coreservlets.NameBean“
scope="request, page, session, or application" />

 <jsp:getProperty name="customer“ property="firstName" />

 This may be better than script on previous slide.

 But, requires you to know the scope and fails for sub-properties.
(E.g.,) ${customer.address.zipCode}

 Equivalent forms

 – ${name.property}

 – ${name["property"]}

 Reasons for using array notations

 – To access arrays, lists, and other collections

 – To calculate the property name at request time.

64

127

BeanProperty servlet

@WebServlet(name = "BeanProperty", urlPatterns = {"/BeanProperty"})

public class BeanProperty extends HttpServlet {

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

 throws ServletException, IOException {

 NameBean name = new NameBean("Bob", "Feiner");

 CompanyBean company =

 new CompanyBean("ee6Consulting.com",

 "Enterprise Java Consulting Co.");

 EmployeeBean employee = new EmployeeBean(name, company);

 request.setAttribute("employee", employee);

request.getRequestDispatcher("beanProperties.jsp").forward(request,
response);

 }

128

BeanProperties (cont’d)-- EmployeeBean

 public class EmployeeBean {

 private NameBean name;

 private CompanyBean company;

 public EmployeeBean(NameBean name, CompanyBean company) {

 setName(name);

 setCompany(company);

 }

 public NameBean getName() { return(name); }

 public void setName(NameBean newName) {

 name = newName;

 }

 public CompanyBean getCompany() { return(company); }

 public void setCompany(CompanyBean newCompany) {

 company = newCompany;

 }

}

65

129

NameBean

public class NameBean {

 private String firstName = "Missing first name";

 private String lastName = "Missing last name";

 public NameBean() {}

 public NameBean(String firstName, String lastName) {

 setFirstName(firstName);

 setLastName(lastName);

 }

 public String getFirstName() {

 return(firstName);

 }

 public void setFirstName(String newFirstName) {

 firstName = newFirstName;

 }

 public String getLastName() {

 return(lastName);

 }

 public void setLastName(String newLastName) {

 lastName = newLastName;

 }

}

130

CompanyBean

public class CompanyBean {

 private String companyName;

 private String business;

 public CompanyBean(String companyName, String business) {

 setCompanyName(companyName);

 setBusiness(business);

 }

 public String getCompanyName() { return(companyName); }

 public void setCompanyName(String newCompanyName) {

 companyName = newCompanyName;

 }

 public String getBusiness() { return(business); }

 public void setBusiness(String newBusiness) {

 business = newBusiness;

 }

}

66

131

beanProperties.jsp

<!DOCTYPE …>

…

 First Name:

 ${employee.name.firstName}

 Last Name:

 ${employee.name.lastName}

 Company Name:

 ${employee.company.companyName}

 Company Business:

 ${employee.company.business}

</BODY>

</HTML>

132

BeanProperties (cont’d)

67

133

Accessing Collections

 • ${attributeName[entryName]} works for

 Array.

 Equivalent to theArray[index]

 List.

 Equivalent to theList.get(index)

 Map.

 Equivalent to theMap.get(keyName)

 Equivalent forms (for HashMap)

 ${stateCapitals["maryland"]}

 ${stateCapitals.maryland}

 But the following is illegal since 2 is not a legal var name

 ${listVar.2}

134

Collections servlet

@WebServlet(name = "Collections", urlPatterns = {"/Collections"})

public class Collections extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String[] firstNames = {"Bill", "Scott", "Larry"};

 ArrayList<String> lastNames = new ArrayList();

 lastNames.add("Ellison");

 lastNames.add("Gates");

 lastNames.add("McNealy");

 HashMap<String, String> companyNames = new HashMap();

 companyNames.put("Ellison", "Intel");

 companyNames.put("Gates", "Oracle");

 companyNames.put("McNealy", "Microsoft");

 request.setAttribute("first", firstNames);

 request.setAttribute("last", lastNames);

 request.setAttribute("company", companyNames);

 request.getRequestDispatcher("collections.jsp").forward(request, response);

 }

68

135

collections.jsp

<!DOCTYPE …>

…

<BODY>

<H3>

Accessing Collections

</H3>

<P>

 ${first[0]} ${last[0]} (${company["Ellison"]})

 ${first[1]} ${last[1]} (${company["Gates"]})

 ${first[2]} ${last[2]} (${company["McNealy"]})

</BODY></HTML>

136

Accessing Collections

69

137

Accessing Implicit Objects

 pageContext

 E.g., ${pageContext.session.id}

 param and paramValues

 Request params. – E.g. ${param.custID}

 header and headerValues

 Request headers. – E.g. ${header.Accept} or
${header["Accept"]}, ${header["Accept-Encoding"]}

 cookie

 Cookie object (not cookie value). – E.g.
${cookie.userCookie.value} or ${cookie["userCookie"].value}

 initParam

 Context initialization param.

 pageScope, requestScope, sessionScope, appliationScope.

138

Expression Language support

 implicit variables defined in the EL:

Variable name Description

pageScope A collection (a java.util.Map) of all page scope variables.

requestScope A collection (a java.util.Map) of all request scope variables.

sessionScope A collection (a java.util.Map) of all session scope variables.

applicationScope A collection (a java.util.Map) of all application scope variables.

param A collection (a java.util.Map) of all request parameter values as a single String value per parameter.

paramValues A collection (a java.util.Map) of all request parameter values as a String array per parameter.

header A collection (a java.util.Map) of all request header values as a single String value per header.

headerValues A collection (a java.util.Map) of all request header values as a String array per header.

cookie A collection (a java.util.Map) of all request cookie values as a single javax.servlet.http.Cookie value per
cookie.

initParam A collection (a java.util.Map) of all application initialization parameter values as a single String value per
parameter.

pageContext An instance of the javax.servlet.jsp.PageContext class, providing access to various request data.

70

139

Example: Implicit Objects

<!DOCTYPE …>

…

<P>

 test Request Parameter:

 ${param.test}

 User-Agent Header:

 ${header["User-Agent"]}

 JSESSIONID Cookie Value:

 ${cookie.JSESSIONID.value}

 Server:

 ${pageContext.servletContext.serverInfo}

</BODY></HTML>

140

Example: Implicit Objects

71

141

Operators & Conditional Expressions

 Arithmetic

 + - * / div % mod

 Relational

 == eq != ne < lt > gt <= le >= ge

 Logical

 && and || or ! not

 Empty

 empty

 True for null, empty string, empty array, empty list, empty map.
False otherwise.

 ${ test ? expression1 : expression2 }

 Evaluates test and outputs either expression1 or expression2

 Problems

 Relatively weak

 c:if and c:choose from JSTL may be better

142

Examples

 ${1.2 + 2.3} => 3.5 <%= 1.2 + 2.3 %>

 ${3/0} => Infinity

 \${1} => ${1}

 ${10 mod 4} => 2

 ${4.0 >= 3} => true

 ${4.0 ge 3} => true Not in Java

 ${100.0 == 100} => true

 ${(10*10) ne 100} => false Not in Java

 ${'hip' > 'hit'} => false Not in Java

 ${'a' < 'b'} => true Not in Java

72

143

Expression Language support

Operator Description
. Access a bean property or Map entry.

[] Access an array or List element.

() Group a subexpression to change the evaluation order.

? : Conditional test: condition ? ifTrue : ifFalse.

+ Addition.

- Subtraction or negation of a value.

* Multiplication.

/ or div Division.

% or mod Modulo (remainder).

== or eq Test for equality.

!= or ne Test for inequality.

< or lt Test for less than.

> or gt Test for greater than.

<= or le Test for less than or equal.

>= or ge Test for greater than or equal.

&& or and Test for logical AND.

|| or or Test for logical OR.

! or not Unary Boolean complement.

empty Test for an empty variable value: null, an empty String, or an array, Map, or Collection without entries).

func(args) A function call, where func is the function name and args is zero, one or more comma-separated function arguments.

144

Example: operator.jsp

…..

<TABLE BORDER=1 ALIGN="CENTER">
 <TR><TH CLASS="COLORED" COLSPAN=2>Arithmetic Operators
 <TH CLASS="COLORED" COLSPAN=2>Relational Operators
 <TR><TH>Expression<TH>Result<TH>Expression<TH>Result
 <TR ALIGN="CENTER">
 <TD>\${3+2-1}<TD>${3+2-1} <%-- Addition/Subtraction --%>
 <TD>\${1<2}<TD>${1<2} <%-- Numerical comparison --%>
 <TR ALIGN="CENTER">
 <TD>\${"1"+2}<TD>${"1"+2} <%-- String conversion --%>
 <TD>\${"a"<"b"}<TD>${"a"<"b"} <%-- Lexical comparison --%>
 <TR ALIGN="CENTER">
 <TD>\${1 + 2*3 + 3/4}<TD>${1 + 2*3 + 3/4} <%-- Mult/Div --%>
 <TD>\${2/3 >= 3/2}<TD>${2/3 >= 3/2} <%-- >= --%>
 <TR ALIGN="CENTER">
 <TD>\${3%2}<TD>${3%2} <%-- Modulo --%>
 <TD>\${3/4 == 0.75}<TD>${3/4 == 0.75} <%-- Numeric = --%>
 <TR ALIGN="CENTER">
 <%-- div and mod are alternatives to / and % --%>
 <TD>\${(8 div 2) mod 3}<TD>${(8 div 2) mod 3}
 <%-- Compares with "equals" but returns false for null --%>
 <TD>\${null == "test"}<TD>${null == "test"}

73

145

Example: operators.jsp (cont’d)

<TR><TH CLASS="COLORED" COLSPAN=2>Logical Operators

 <TH CLASS="COLORED" COLSPAN=2><CODE>empty</CODE> Operator

 <TR><TH>Expression<TH>Result<TH>Expression<TH>Result

 <TR ALIGN="CENTER">

 <TD>\${(1<2) && (4<3)}<TD>${(1<2) && (4<3)} <%--AND--%>

 <TD>\${empty ""}<TD>${empty ""} <%-- Empty string --%>

 <TR ALIGN="CENTER">

 <TD>\${(1<2) || (4<3)}<TD>${(1<2) || (4<3)} <%--OR--%>

 <TD>\${empty null}<TD>${empty null} <%-- null --%>

 <TR ALIGN="CENTER">

 <TD>\${!(1<2)}<TD>${!(1<2)} <%-- NOT -%>

 <%-- Handles null or empty string in request param --%>

 <TD>\${empty param.blah}<TD>${empty param.blah}

</TABLE>

</BODY></HTML>

146

Example: operators.jsp (cont’d)

74

147

Example: Conditionals

@WebServlet(name = "Conditionals", urlPatterns = {"/Conditionals"})

public class Conditionals extends HttpServlet {

protected void processRequest(HttpServletRequest request, HttpServletResponse
response)

 throws ServletException, IOException {

 SalesBean apples =

 new SalesBean(150.25, -75.25, 22.25, -33.57);

 SalesBean oranges =

 new SalesBean(-220.25, -49.57, 138.25, 12.25);

 request.setAttribute("apples", apples);

 request.setAttribute("oranges", oranges);

 request.getRequestDispatcher("conditionalEval.jsp").forward(request,
response);

 }

148

SalesBean.java

public class SalesBean {
 private double q1, q2, q3, q4;

 public SalesBean(double q1Sales,
 double q2Sales,
 double q3Sales,
 double q4Sales) {
 q1 = q1Sales;
 q2 = q2Sales;
 q3 = q3Sales;
 q4 = q4Sales;
 }

 public double getQ1() { return(q1); }

 public double getQ2() { return(q2); }

 public double getQ3() { return(q3); }

 public double getQ4() { return(q4); }

 public double getTotal() { return(q1 + q2 + q3 + q4); }
}

75

149

conditional-eval.jsp

…
<TABLE BORDER=1 ALIGN="CENTER">
<TR><TH>
 <TH CLASS="COLORED">Apples
 <TH CLASS="COLORED">Oranges
<TR><TH CLASS="COLORED">First Quarter
 <TD ALIGN="RIGHT">${apples.q1}
 <TD ALIGN="RIGHT">${oranges.q1}
<TR><TH CLASS="COLORED">Second Quarter
 <TD ALIGN="RIGHT">${apples.q2}
 <TD ALIGN="RIGHT">${oranges.q2}
…
<TR><TH CLASS="COLORED">Total
 <TD ALIGN="RIGHT"
 BGCOLOR="${(apples.total < 0) ? "RED" : "WHITE" }"> ${apples.total}
 <TD ALIGN="RIGHT"
 BGCOLOR="${(oranges.total < 0) ? "RED" : "WHITE" }"> ${oranges.total}
</TABLE>…

150

Conditional Evaluation

76

151

JSP Tag Libraries

JSP Tag Libraries allow you to define

and use JSP tags in much the same way

as you define and use functions in

standard programming languages.

Examples are in JSTLExample NB Project

152

JSP Tag libraries

 The debut of JavaServer Pages (JSP) followed by the inclusion of

support for JSP tags were logical evolutionary steps toward fast,

maintainable Java Web page implementation.

 The JSTL (JSP Standard Tag Library) further enables speeding

and simplifying the development process.

 JSTL 1.2 was intended to align JSTL with JSP 2.1 (JSP2.2)

 JSTL pages are also JSP pages:

 Also, all JSTL tags are valid XML:

 A primary design goal for JSTL and the EL was to simplify Web

page development and implementation.

 Can use JSTL either with JSP expressions or with EL (or both).

77

153

The JSTL Tag Libraries

 JSTL is often spoken of as a single-tag library.

 JSTL consists of five tag libraries.

 Five tag libraries are:

 Core Tag Library – tags that are essential to nearly any Web
application. Examples of core tag libraries include looping,
expression evaluation, and basic input and output.

 Formatting/Internationalization Tag Library – tags that are used
to and parse data. Some of these tags will parse data, such as
dates, differently based on the current locale.

 Database Tag Library – tags that can be used to access SQL
databases.

 XML Tag Library – tags that can be used to access XML elements.
Because XML is used in many Web applications, XML processing is
an important feature of JSTL.

 Function Library – tags that are used for testing and manipulating
String and collection.

154

JSTL tag libraries

78

155

JSTL tag libraries

 To use the JSTL core tag library in your page, include the

following example directive at the top of your page:

 <%@ taglib prefix="c" uri=http://java.sun.com/jsp/jstl/core%>

 To use the tags in that core library, prefix each tag in your page

with the prefix you have designated in your include statement:

 <c:out value="${anExpression}"/>

JSTL Tags

156

79

157

JSTL Examples

Examples in JSTLExamples NetBeans

Project

158

Example: jstl-a.jsp

 The set action creates a variable named browser and assigns it the
value of the User-Agent property.

 The out action then prints the value of the browser.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head> <title>Simple Example</title> </head>
 <body>
 <c:set var="browser" value="${header['User-Agent']}"/>
 <c:out value="${browser}"/>
 </body>
</html>

80

159

Example: jstl-b.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSTL headers</title>
 </head>
 <body bgcolor="#FFFFCC">
 <h3>Header info:</h3>
 <c:forEach var="head" items="${headerValues}">
 param: <c:out value="${head.key}"/>

 values:
 <c:forEach var="val" items="${head.value}">
 <c:out value="${val}"/>
 </c:forEach>
 <p>
 </c:forEach>
 </body>
</html>

160

Example: jstl-b.jsp

81

161

XML Tags

 XML is becoming increasingly important to page authors, and the
JSTL provides XML actions that address the basic needs of those
developers.

 The XML actions can be divided into core, control flow, and
transformation actions.

 The XML core actions are similar to those provided in the core
actions discussed above, and include <x:out>, <x:set>, and
<x:parse>.

 The main difference between the core actions discussed above
and the XML core actions is that XML actions support XPath
expressions, while the core actions do not.

 As a matter of fact, the XML actions are based on XPath
expressions.

 Xpath is a language for defining parts of an XML document; XPath
uses path expressions to identify nodes in an XML document.

162

XML Tags (cont’d)

 The XML control flow actions are the same as the core actions.

 They include: <x:if>, <x:choose>, <x:when>, <x:otherwise>, and
<x:forEach>.

 The main difference is that you use the select attribute to specify

XPath expressions.

 An example:

 <x:forEach select="$output/portfolio/stock"> <x:out select="price"/>
</x:forEach>

 In the next slide, xml-ex1.jsp uses the core and XML tag libraries

to process an XML document.

 In this example, the XML document is embedded within the page
and the <x:parse> tag is used to parse the document.

 Then, an expression is used to select items from the document.

82

163

jstl-xml1.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

<html>

<head><title>JSTL Support for XML</title></head>

<h3>Books Info:</h3>

<c:set var="xmltext">

 <books>

 <book>

 <title>Book Title A</title>

 <author>A. B. C.</author>

 <price>17.95</price>

 </book>

 <book>

 <title>Book Title B</title>

 <author>X. Y. Z.</author>

 <price>24.99</price>

 </book>

 </books>

</c:set>

<x:parse xml="${xmltext}" var="output"/>

The title of the first book is: <x:out select="$output/books/book[1]/title"/>

The price of the second book: <x:out select="$output/books/book[2]/price"/>

</body>

</html>

164

Jstl-xml1.jsp (cont’d)

83

165

Jstl-xml2.jsp
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jstl/xml" %>

<html>

<head> <title>JSTL Support for XML</title></head>

<h3>Portfolio</h3>

<c:import url="stocks.xml" var="xmldoc"/>

<x:parse xml="${xmldoc}" var="output"/><p>

<table border="2" width="50%">

 <tr>

 <th>Stock Symbol</th>

 <th>Company Name</th>

 <th>Price</th>

 </tr>

 <tr>

<x:forEach select="$output/portfolio/stock" var="item">

 <td><x:out select="symbol"/></td>

 <td><x:out select="name"/></td>

 <td><x:out select="price"/></td></tr>

</x:forEach>

</table>

</body>

</html>

166

Jstl-xml2.jsp

84

167

sqlaccess.jsp

……………
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>

<sql:query var="products" dataSource="jdbc/affablebean">
 SELECT * FROM product
</sql:query>

<c:forEach var="row" items="${products.rows}">
 <c:out value="${row.name}"/>
 <c:out value="${row.price}"/>
</c:forEach>

JDBC Resource Setting

168

85

169

170

86

171

Glassfish-resources.xml updated

172

87

Affablebean JDBC Resource

173

174

88

Update web.xml to Add Resource reference

175

sqlExample.jsp

176

89

177

Customized Tags

178

Extending JSTL

 It is also possible that you can use JSTL as a base for developing
your own custom tags.

 Some abstract classes are provided that can assist with rapid
development of tags and promote integration of your own custom
tags with JSTLs tag set.

 For instance, you can build your own custom tags that make use
of the JSTL.

 By extending javax.servlet.jsp.jstl.core.ConditionalTagSupport,
you could write a conditional tag by simply implementing a single
method that returns a boolean value corresponding with your
tag's desired conditional behaviour.

 Or, by implementing javax.servlet.jsp.tagext.IterationTag
interface

