
Chapter 13

Introduction to Simulation Using R
A. Rakhshan and H. Pishro-Nik

13.1 Analysis versus Computer Simulation

A computer simulation is a computer program which attempts to represent the real world based
on a model. The accuracy of the simulation depends on the precision of the model. Suppose that
the probability of heads in a coin toss experiment is unknown. We can perform the experiment
of tossing the coin n times repetitively to approximate the probability of heads.

P (H) =
Number of times heads observed

Number of times the experiment executed

However, for many practical problems it is not possible to determine the probabilities by exe-
cuting experiments a large number of times. With today’s computers processing capabilities, we
only need a high-level language, such as R, which can generate random numbers, to deal with
these problems.

In this chapter, we present basic methods of generating random variables and simulate
probabilistic systems. The provided algorithms are general and can be implemented in any
computer language. However, to have concrete examples, we provide the actual codes in R. If
you are unfamiliar with R, you should still be able to understand the algorithms.

13.2 Introduction: What is R?

R is a programming language that helps engineers and scientists find solutions for given statisti-
cal problems with fewer lines of codes than traditional programming languages, such as C/C++
or Java, by utilizing built-in statistical functions. There are many built-in statistical functions
and add-on packages available in R. It also has high quality customizable graphics capabilities.
R is available for Unix/Linux, Windows, and Mac. Besides all these features, R is free!

13.3 Discrete and Continuous Random Number Generators

Most of the programming languages can deliver samples from the uniform distribution to us
(In reality, the given values are pseudo-random instead of being completely random.) The rest

1

2CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

of this section shows how to convert uniform random variables to any other desired random
variable. The R code for generating uniform random variables is:

U = runif(n,min = 0,max = 1)

which returns a pseudorandom value drawn from the standard uniform distribution on the open
interval (0,1).

13.3.1 Generating Discrete Probability Distributions from Uniform Distri-
bution

Let’s see a few examples of generating certain simple distributions:

Example 1. (Bernoulli) Simulate tossing a coin with probability of heads p.

Solution: Let U be a Uniform(0,1) random variable. We can write Bernoulli random variable
X as:

X =

{
1 U < p
0 U ≥ p

Thus,

P (H) = P (X = 1)

= P (U < p)

= p

Therefore, X has Bernoulli(p) distribution. The R code for Bernoulli(0.5) is:

p = 0.5;

U = runif(1,min = 0,max = 1);

X = (U < p);

Since the “runif(1, min = 0, max = 1)” command returns a number between 0 and 1, we divided
the interval [0, 1] into two parts, p and 1−p in length. Then, the value of X is determined based
on where the number generated from uniform distribution fell.

Example 2. (Coin Toss Simulation) Write codes to simulate tossing a fair coin to see how the
law of large numbers works.

Solution: You can write:

13.3. DISCRETE AND CONTINUOUS RANDOM NUMBER GENERATORS 3

n = 1000;

U = runif(n,min = 0,max = 1);

toss = U < 0.5;

a = numeric(n+ 1);

avg = numeric(n);

for(i in 2 : n+ 1)

{
a[i] = a[i− 1] + toss[i− 1];

avg[i− 1] = a[i]/(i− 1);

}
plot(1 : n, avg[1 : n], type = ”l”, lwd = 5, col = ”blue”, ylab = ”ProportionofHeads”,

xlab = ”CoinTossNumber”, cex.main = 1.25, cex.lab = 1.5, cex.axis = 1.75)

If you run the above codes to compute the proportion of ones in the variable “toss,” the result
will look like Figure 13.1. You can also assume the coin is unbiased with probability of heads
equal to 0.6 by replacing the third line of the previous code with:

toss = U < 0.6;

Figure 13.1: R - coin toss simualtion

4CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

Example 3. (Binomial) Generate a Binomial(50, 0.2) random variable.

Solution: To solve this problem, we can use the following lemma:

Lemma 1. If X1, X2, ..., Xn are independent Bernoulli(p) random variables, then the random
variable X defined by X = X1 +X2 + ...+Xn has a Binomial(n, p) distribution.

To generate a random variable X ∼ Binomial(n, p), we can toss a coin n times and count the
number of heads. Counting the number of heads is exactly the same as finding X1+X2+...+Xn,
where each Xi is equal to one if the corresponding coin toss results in heads and zero otherwise.

Since we know how to generate Bernoulli random variables, we can generate a Binomial(n, p)
by adding n independent Bernoulli(p) random variables.

p = 0.2;

n = 50;

U = runif(n,min = 0,max = 1);

X = sum(U < p);

Generating Arbitrary Discrete Distributions

In general, we can generate any discrete random variables similar to the above examples using
the following algorithm. Suppose we would like to simulate the discrete random variable X with
range RX = {x1, x2, ..., xn} and P (X = xj) = pj , so

∑
j pj = 1.

To achieve this, first we generate a random number U (i.e., U ∼ Uniform(0, 1)). Next, we
divide the interval [0, 1] into subintervals such that the jth subinterval has length pj (Figure
13.2). Assume

X =

x0 if (U < p0)
x1 if (p0 ≤ U < p0 + p1)

...

xj if
(∑j−1

k=0 pk ≤ U <
∑j

k=0 pk

)
...

In other words

X = xj if F (xj−1) ≤ U < F (xj),

where F (x) is the desired CDF. We have

P (X = xj) = P

(
j−1∑
k=0

pk ≤ U <

j∑
k=0

pk

)
= pj

13.3. DISCRETE AND CONTINUOUS RANDOM NUMBER GENERATORS 5

0 1

p0 p1 p2 p3 · · · pj

Figure 13.2: Generating discrete random variables

Example 4. Give an algorithm to simulate the value of a random variable X such that

P (X = 1) = 0.35

P (X = 2) = 0.15

P (X = 3) = 0.4

P (X = 4) = 0.1

Solution: We divide the interval [0, 1] into subintervals as follows:

A0 = [0, 0.35)

A1 = [0.35, 0.5)

A2 = [0.5, 0.9)

A3 = [0.9, 1)

Subinterval Ai has length pi. We obtain a uniform number U . If U belongs to Ai, then X = xi.

P (X = xi) = P (U ∈ Ai)
= pi

P = c(0.35, 0.5, 0.9, 1);

X = c(1, 2, 3, 4);

counter = 1;

r = runif(1,min = 0,max = 1);

while(r > P [counter])

counter = counter + 1;

end

X[counter]

13.3.2 Generating Continuous Probability Distributions from the Uniform
Distribution- Inverse Transformation Method

At least in principle, there is a way to convert a uniform distribution to any other distribution.
Let’s see how we can do this. Let U ∼ Uniform(0, 1) and F be a CDF. Also, assume F is
continuous and strictly increasing as a function.

6CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

Theorem 1. Let U ∼ Uniform(0, 1) and F be a CDF which is strictly increasing. Also,
consider a random variable X defined as

X = F−1(U).

Then,
X ∼ F (The CDF of X is F)

Proof:

P (X ≤ x) = P (F−1(U) ≤ x)

= P (U ≤ F (x)) (increasing function)

= F (x)

Now, let’s see some examples. Note that to generate any continuous random variable X with
the continuous cdf F , F−1(U) has to be computed.

Example 5. (Exponential) Generate an Exponential(1) random variable.
Solution: To generate an Exponential random variable with parameter λ = 1, we proceed

as follows

F (x) = 1− e−x x > 0

U ∼ Uniform(0, 1)

X = F−1(U)

= − ln(1− U)

X ∼ F

This formula can be simplified since

1− U ∼ Uniform(0, 1)

0 1

U 1− U

Figure 13.3: Symmetry of Uniform

Hence we can simulate X using
X = − ln(U)

U = runif(1,min = 0,max = 1);

X = −log(U)

13.3. DISCRETE AND CONTINUOUS RANDOM NUMBER GENERATORS 7

Example 6. (Gamma) Generate a Gamma(20,1) random variable.

Solution: For this example, F−1 is even more complicated than the complicated gamma cdf
F itself. Instead of inverting the CDF, we generate a gamma random variable as a sum of n
independent exponential variables.

Theorem 2. Let X1, X2, · · · , Xn be independent random variables with Xi ∼ Exponential(λ).
Define

Y = X1 +X2 + · · ·+Xn

By the moment generating function method, you can show that Y has a gamma distribution
with parameters n and λ, i.e., Y ∼ Gamma(n, λ).

Having this theorem in mind, we can write:

n = 20;

lambda = 1;

X = (−1/lambda) ∗ sum(log(runif(n,min = 0,max = 1)));

Example 7. (Poisson) Generate a Poisson random variable. Hint: In this example, use the fact
that the number of events in the interval [0, t] has Poisson distribution when the elapsed times
between the events are Exponential.

Solution: We want to employ the definition of Poisson processes. Assume N represents the
number of events (arrivals) in [0,t]. If the interarrival times are distributed exponentially (with
parameter λ) and independently, then the number of arrivals occurred in [0,t], N , has Poisson
distribution with parameter λt (Figure 13.4). Therefore, to solve this problem, we can repeat
generating Exponential(λ) random variables while their sum is not larger than 1 (choosing
t = 1). More specifically, we generate Exponential(λ) random variables

Ti =
−1

λ
ln(Ui)

by first generating uniform random variables Ui’s. Then we define

X = max {j : T1 + · · ·+ Tj ≤ 1}

The algorithm can be simplified:

X = max

{
j :
−1

λ
ln(U1 · · ·Uj) ≤ 1

}

8CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

Lambda = 2;

i = 0;

U = runif(1,min = 0,max = 1);

Y = −(1/Lambda) ∗ log(U);

sum = Y ;

while(sum < 1)

{U = runif(1,min = 0,max = 1);

Y = −(1/Lambda) ∗ log(U);

sum = sum+ Y ;

i = i+ 1; }
X = i

0 1

Exp(λ) Exp(λ) Exp(λ) Exp(λ)

X= Maximum number of exponential random variables

Figure 13.4: Poisson Random Variable

To finish this section, let’s see how to convert uniform numbers to normal random variables.
Normal distribution is extremely important in science because it is very commonly occuring.

Theorem 3. (Box-Muller transformation) We can generate a pair of independent normal vari-
ables (Z1, Z2) by transforming a pair of independent Uniform(0, 1) random variables (U1, U2)
[1].

{
Z1 =

√
−2 lnU1 cos(2πU2)

Z2 =
√
−2 lnU1 sin(2πU2)

Example 8. (Box-Muller) Generate 5000 pairs of normal random variables and plot both
histograms.

Solution: We display the pairs in Matrix form.

13.4. R COMMANDS FOR SPECIAL DISTRIBUTIONS 9

n = 5000;

U1 = runif(n,min = 0,max = 1)

U2 = runif(n,min = 0,max = 1)

Z1 = sqrt(−2 ∗ log(U1)) ∗ cos(2 ∗ pi ∗ U2)

Z2 = sqrt(−2 ∗ log(U1)) ∗ sin(2 ∗ pi ∗ U2)

hist(Z1, col = ”wheat”, label = T)

Figure 13.5: Histogram of Z1, a normal random variable generated by Box-Muller transforma-
tion

13.4 R Commands for Special Distributions

In this section, we will see some useful commands for commonly employed distributions. Func-
tions which start with “p”,“q”,“d”, and “r” give the cumulative distribution function (CDF),
the inverse CDF, the density function (PDF), and a random variable having the specified dis-
tribution respectively.

Distributions Commands

10CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

Binomial pbinom qbinom dbinom rbinom

Geometric pgeom qgeom dgeom rgeom

NegativeBinomial pnbinom qnbinom dnbinom rnbinom

Poisson ppois qpois dpois rpois

Beta pbeta qbeta dbeta rbeta

Beta pbeta qbeta dbeta rbeta

Exponential pexp qexp dexp rexp

Gamma pgamma qgamma dgamma rgamma

Studentt pt qt dt rt

Uniform punif qunif dunif runif

13.5 Exercises

1. Write R programs to generate Geometric(p) and Negative Binomial(i,p) random variables.

Solution: To generate a Geometric random variable, we run a loop of Bernoulli trials until
the first success occurs. K counts the number of failures plus one success, which is equal
to the total number of trials.

K = 1;

p = 0.2;

while(runif(1) > p)

K = K + 1;

K

Now, we can generate Geometric random variable i times to obtain a Negative Binomial(i, p)
variable as a sum of i independent Geometric (p) random variables.

13.5. EXERCISES 11

K = 1;

p = 0.2;

r = 2;

success = 0;

while(success < r)

{if (runif(1) > p)

{K = K + 1;

print = 0 #Failure

}else
{success = success+ 1;

print = 1}} #Success

K + r − 1 #Number of trials needed to obtain r successes

2. (Poisson) Use the algorithm for generating discrete random variables to obtain a Poisson
random variable with parameter λ = 2.

Solution: We know a Poisson random variable takes all nonnegative integer values with
probabilities

pi = P (X = xi) = e−λ
λi

i!
for i = 0, 1, 2, · · ·

To generate a Poisson(λ), first we generate a random number U . Next, we divide the
interval [0, 1] into subintervals such that the jth subinterval has length pj (Figure 13.2).
Assume

X =

x0 if (U < p0)
x1 if (p0 ≤ U < p0 + p1)

...

xj if
(∑j−1

k=0 pk ≤ U <
∑j

k=0 pk

)
...

Here xi = i− 1, so

X = i if p0 + · · ·+ pi−1 ≤ U < p0 + · · ·+ pi−1 + pi

F (i− 1) ≤ U < F (i) F is CDF

12CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

lambda = 2;

i = 0;

U = runif(1);

cdf = exp(−lambda);

while(U >= cdf)

{i = i+ 1;

cdf = cdf + exp(−lambda) ∗ lambda∧i/gamma(i+ 1); }
X = i;

3. Explain how to generate a random variable with the density

f(x) = 2.5x
√
x for 0 < x < 1

if your random number generator produces a Standard Uniform random variable U . Hint:
use the inverse transformation method.

Solution:

FX(X) = X
5
2 = U (0 < x < 1)

X = U
2
5

U = runif(1);

X = U
2
5 ;

We have the desired distribution.

4. Use the inverse transformation method to generate a random variable having distribution
function

F (x) =
x2 + x

2
, 0 ≤ x ≤ 1

Solution:

X2 +X

2
= U

(X +
1

2
)2 − 1

4
= 2U

X +
1

2
=

√
2U +

1

4

X =

√
2U +

1

4
− 1

2
(X,U ∈ [0, 1])

13.5. EXERCISES 13

By generating a random number, U , we have the desired distribution.

U = runif(1);

X = sqrt

(
2U +

1

4

)
− 1

2
;

5. Let X have a standard Cauchy distribution.

FX(x) =
1

π
arctan(x) +

1

2

Assuming you have U ∼ Uniform(0, 1), explain how to generate X. Then, use this result
to produce 1000 samples of X and compute the sample mean. Repeat the experiment 100
times. What do you observe and why?

Solution: Using Inverse Transformation Method:

U − 1

2
=

1

π
arctan(X)

π

(
U − 1

2

)
= arctan(X)

X = tan

(
π(U − 1

2
)

)
Next, here is the R code:

U = numeric(1000);

n = 100;

average = numeric(n);

for (i in 1 : n)

{U = runif(1000);

X = tan(pi ∗ (U − 0.5));

average[i] = mean(X); }
plot(1 : n, average[1 : n], type = ”l”, lwd = 2, col = ”blue”)

Cauchy distribution has no mean (Figure 13.6), or higher moments defined.

6. (The Rejection Method) When we use the Inverse Transformation Method, we need a
simple form of the cdf F (x) that allows direct computation of X = F−1(U). When
F (x) doesn’t have a simple form but the pdf f(x) is available, random variables with
density f(x) can be generated by the rejection method. Suppose you have a method

14CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

Figure 13.6: Cauchy Mean

for generating a random variable having density function g(x). Now, assume you want to
generate a random variable having density function f(x). Let c be a constant such that

f(y)

g(y)
≤ c (for all y)

Show that the following method generates a random variable with density function f(x).

- Generate Y having density g.

- Generate a random number U from Uniform (0, 1).

- If U ≤ f(Y)
cg(Y) , set X = Y . Otherwise, return to step 1.

Solution: The number of times N that the first two steps of the algorithm need to be called
is itself a random variable and has a geometric distribution with “success” probability

p = P

(
U ≤ f(Y)

cg(Y)

)

13.5. EXERCISES 15

Thus, E(N) = 1
p . Also, we can compute p:

P

(
U ≤ f(Y)

cg(Y)
|Y = y

)
=

f(y)

cg(y)

p =

∫ ∞
−∞

f(y)

cg(y)
g(y)dy

=
1

c

∫ ∞
−∞

f(y)dy

=
1

c
Therefore, E(N) = c

Let F be the desired CDF (CDF of X). Now, we must show that the conditional distri-

bution of Y given that U ≤ f(Y)
cg(Y) is indeed F , i.e. P (Y ≤ y|U ≤ f(Y)

cg(Y)) = F (y). Assume

M = {U ≤ f(Y)
cg(Y)}, K = {Y ≤ y}. We know P (M) = p = 1

c . Also, we can compute

P (U ≤ f(Y)

cg(Y)
|Y ≤ y) =

P (U ≤ f(Y)
cg(Y) , Y ≤ y)

G(y)

=

∫ y

−∞

P (U ≤ f(y)
cg(y) |Y = v ≤ y)

G(y)
g(v)dv

=
1

G(y)

∫ y

−∞

f(v)

cg(v)
g(v)dv

=
1

cG(y)

∫ y

−∞
f(v)dv

=
F (y)

cG(y)

Thus,

P (K|M) = P (M |K)P (K)/P (M)

= P (U ≤ f(Y)

cg(Y)
|Y ≤ y)× G(y)

1
c

=
F (y)

cG(y)
× G(y)

1
c

= F (y)

7. Use the rejection method to generate a random variable having density function Beta(2, 4).
Hint: Assume g(x) = 1 for 0 < x < 1.

Solution:

f(x) = 20x(1− x)3 0 < x < 1

g(x) = 1 0 < x < 1

f(x)

g(x)
= 20x(1− x)3

16CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

We need to find the smallest constant c such that f(x)/g(x) ≤ c. Differentiation of this
quantity yields

d
(
f(x)
g(x)

)
dx

= 0

Thus, x =
1

4

Therefore,
f(x)

g(x)
≤ 135

64

Hence,
f(x)

cg(x)
=

256

27
x(1− x)3

n = 1;

while (n == 1)

{U1 = runif(1);

U2 = runif(1);

if (U2 <= 256/27 ∗ U1 ∗ (1− U1)∧3)

{X = U1;

n = 0; }}

8. Use the rejection method to generate a random variable having the Gamma(52 , 1) density
function. Hint: Assume g(x) is the pdf of the Gamma

(
α = 5

2 , λ = 1
)
.

Solution:

f(x) =
4

3
√
π
x

3
2 e−x, x > 0

g(x) =
2

5
e−

2x
5 x > 0

f(x)

g(x)
=

10

3
√
π
x

3
2 e−

3x
5

d
(
f(x)
g(x)

)
dx

= 0

Hence, x =
5

2

c =
10

3
√
π

(
5

2

) 3
2

e
−3
2

f(x)

cg(x)
=

x
3
2 e

−3x
5(

5
2

) 3
2 e

−3
2

We know how to generate an Exponential random variable.

13.5. EXERCISES 17

- Generate a random number U1 and set Y = −5
2 logU1.

- Generate a random number U2.

- If U2 <
Y

3
2 e

−3Y
5

(5
2)

3
2 e

−3
2

, set X = Y . Otherwise, execute the step 1.

9. Use the rejection method to generate a standard normal random variable. Hint: Assume
g(x) is the pdf of the exponential distribution with λ = 1.

Solution:

f(x) =
2√
2π
e−

x2

2 0 < x <∞

g(x) = e−x 0 < x <∞ (Exponential density function with mean 1)

Thus,
f(x)

g(x)
=

√
2

π
ex−

x2

2

Thus, x = 1 maximizes
f(x)

g(x)

Thus, c =

√
2e

π
f(x)

cg(x)
= e−

(x−1)2

2

- Generate Y , an exponential random variable with mean 1.

- Generate a random number U .

- If U ≤ e
−(Y −1)2

2 set X = Y . Otherwise, return to step 1.

10. Use the rejection method to generate a Gamma(2, 1) random variable conditional on its
value being greater than 5, that is

f(x) =
xe−x∫∞

5 xe−xdx

=
xe−x

6e−5
(x ≥ 5)

Hint: Assume g(x) be the density function of exponential distribution.

Solution: Since Gamma(2,1) random variable has expected value 2, we use an exponential
distribution with mean 2 that is conditioned to be greater than 5.

f(x) =
xe(−x)∫∞

5 xe(−x)dx

=
xe(−x)

6e(−5)
x ≥ 5

g(x) =
1
2e

(−x
2
)

e
−5
2

x ≥ 5

f(x)

g(x)
=
x

3
e−(

x−5
2

)

18CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHANANDH. PISHRO-NIK

We obtain the maximum in x = 5 since f(x)
g(x) is decreasing. Therefore,

c =
f(5)

g(5)
=

5

3

- Generate a random number V .

- Y = 5− 2 log(V).

- Generate a random number U .

- If U < Y
5 e
−(Y −5

2
), set X = Y ; otherwise return to step 1.

Bibliography

[1] http://projecteuclid.org/download/pdf_1/euclid.aoms/1177706645

[2] Michael Baron, Probability and Statistics for Computer Scientists. CRC Press, 2006

[3] Sheldon M. Ross, Simulation. Academic Press, 2012

19

