Introduction to Simulations in R

Charles DiMaggio, PhD, MPH, PA-C

New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care

June 10, 2015

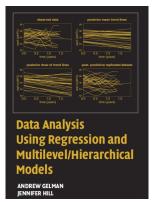
- http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/
- Charles.DiMaggio@nyumc.org

Outline

1 sampling in R

- 2 simulating risk ratios
- ③ simulation for statistical inference
- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- 5 simulation for model checking and fit
 - Poisson example

This material has been shamelessly stolen.



Buy and read this book!

Gellman and Hill, "Data Analysis Using Regression and Mulitlevel/Hierarchical Models", Cambridge University Press, 2007. (mostly chapters 7 and 8).

http://www.stat.columbia.edu/~gelman/arm/

Charles DiMaggio, PhD, MPH, PA-C (New Y

Introduction to Simulations in R

Outline

1 sampling in R

- 2 simulating risk ratios
- 3 simulation for statistical inference
- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- simulation for model checking and fit
 Poisson example

sample(c("H","T"), size = 8, replace = TRUE) # fair coin
sample(1:6, size = 2, replace = TRUE, prob=c(3,3,3,4,4,4)) #10

- replace=TRUE to over ride the default sample without replacement
- *prob*= to sample elements with different probabilities, e.g. over sample based on some factor
- the *set.seed()* function allow you to make a reproducible set of random numbers.

probability distributions in R

- beta(shape1, shape2, ncp)
- binom(size, prob)
- chisq(df, ncp)
- exp(rate)
- gamma(shape, scale)
- logis(location, scale)
- norm(mean, sd)
- pois(lambda)
- t(df, ncp)
- unif(min, max)

convention for using probability functions in R

- dxxx(x,) returns the density or the value on the y-axis of a probability distribution for a discrete value of x
- pxxx(q,) returns the cumulative density function (CDF) or the area under the curve to the left of an x value on a probability distribution curve
- qxxx(p,) returns the quantile value, i.e. the standardized z value for x
- rxxx(n,) returns a random simulation of size n

```
qnorm(0.025)
qnorm(1-0.025)
```

sampling from probability distributions

rnorm(6) # 6 std nrml distribution values rnorm(10, mean = 50, sd = 19) # set parameters runif(n = 10, min = 0, max = 1) #uniform distribution rpois(n = 10, lambda = 15) # Poisson distribution # toss coin 8 times using binomial distribution rbinom(n = 8, size = 1, p = 0.5) rbinom(8,1,.5) # args correct order # 18 trials, sample size 10, prob success =.2 rbinom(18, 10)

Exercise 1: Sampling and Simulations

Outline

1 sampling in R

2 simulating risk ratios

3 simulation for statistical inference

- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- simulation for model checking and fit
 Poisson example

bootstrapping a relative risk

- Use simulations to approximate results when no direct or closed solution
- E.g. Risk Ratios.
 - Use *rbinom()* to simulate (many times) rates of disease in exposed and unexposed populations
 - Divide results by the number of simulations and use the mean and 0.025 tails for the point estimate and confidence limits.

approach to bootstrapping a relative risk

- simulate 5000 replicate bernoulli trials in sample size $n_1 = exposed$
- **②** divide those results by n_1 to get 5000 simulated risk estimates for the exposed group
- \bigcirc repeat that process for the unexposed group n_2
- divide 5000 simulated risks in exposed by 5000 simulated risks in unexposed to get 5000 simulate relative risks
- Solution calcualate mean and 0.25 tails from that population

Example: ASA and MI

RR calculation using *epitab()*

- Hennekens, 1987 study protective benefits of aspirin.
- 104 myocardial infarctions (fatal and non-fatal) among 11,037 people in the treatment group
- 189 MI's among 11,034 people in the placebo group
- Calculate RR and CI using with log-approximated approach (*epitools::epitab()*)

```
library(epitools)
asa.tab<- matrix(c(104,11037,189,11034),2,2)
epitab(asa.tab, method="riskratio")</pre>
```

simulate RR estimate

- use *rbinom()* to repeat 5,000 times an experiment where we count the number of outcomes (MI's) in two populations
 - probability of the outcome in a population defined by the results of the Hennekens study
- for each replicate, divide the number outcomes by number of people in each population to get 5,000 risk estimates for each group (treatment and placebo)
- calculate the RR for each simulation
- collect and describe results

```
set.seed(151)
tx <- rbinom(5000, 11037, 104/11037)
plac <- rbinom(5000, 11034, 189/11034)
r.tx<-tx/11037
r.plac<-plac/11034
rr.sim <- r.tx/r.plac
mean(rr.sim)
quantile(rr.sim, c(0.025, 0.975))
sd(rr.sim)</pre>
```


Try writing a function to calculate bootstrap estimates of relative risks. Test the function using the aspirin example.

Outline

- 1 sampling in R
- 2 simulating risk ratios
- ③ simulation for statistical inference
- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- simulation for model checking and fit
 Poisson example

some simple simulations

birth gender

• predict number of girls in 400 births, where prob of female birth is 48.8%

```
n.girls<-rbinom(1,400, .488)
```

```
n.girls
```

• to get distribution of the simulations, repeat the simulation many times n.sims<-1000

```
n.girls<-rbinom(n.sims, 400, .488)
```

```
hist(n.girls)
```

- can do same thing with a loop
 - vectorized operation preferred in R, but loops useful in BUGS

```
n.sims<-1000
n.girls<-rep(NA, n.sims) # create vector to store simulations
for (i in 1:n.sims){
    n.girls[i]<-rbinom(1,400,0.488)
}
hist(n.girls)</pre>
```

more complex simulations

account for twins

- $\bullet~1/125$ chance fraternal twins, each with 49.5% chance being girl
- $\bullet~1/300$ chance identical twins, 49.5% chance of both being girls.

```
birth.type <- sample (c("fraternal twin","identical twin","single birth"),
    size=400, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))
girls <- rep (NA, 400)
for (i in 1:400){
    if (birth.type[i]=="single birth"){
    girls[i] <- rbinom (1, 1, .488)}
    else if (birth.type[i]=="identical twin"){
    girls[i] <- 2*rbinom (1, 1, .495)}
    else if (birth.type[i]=="fraternal twin"){
    girls[i] <- rbinom (1, 2, .495)}
}
n.girls <- sum (girls)</pre>
```

vectorized version of the loop

using replicate() repeat the simulation many times

```
girl.sim<-function(x){</pre>
birth.type <- sample (c("fraternal twin","identical twin","single birth"),</pre>
    size=x, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))
girls <- ifelse (birth.type=="single birth", rbinom (400, 1, .488),
       ifelse ( birth.type=="identical twins", 2*rbinom (400, 1. .495).
        rbinom (400, 2, .495)))
return(sum(girls))
     }
girl.sim(400)
my.sims<-replicate(1000, girl.sim(400))</pre>
hist(my.sims)
```


Exercise 2: Using Simulation to Draw Statistical Inferences

confidence intervals

e.g. ratio of two proportions

- Survey 1000 people, 500 men and 500 women.
 - 75% men support death penalty, 65% women.
 - Ratio of men to women is 0.75/0.65 = 1.15.
- Computing a standard error for this ratio can be challenging.
- Simulate the s.e. $\sqrt{\frac{p \cdot q}{n}}$

confidence intervals

doing the simulation

```
n.men < -500
p.hat.men <- 0.75
se.men <- sqrt (p.hat.men*(1-p.hat.men)/n.men)</pre>
n.women <- 500
p.hat.women <- 0.65
se.women <- sqrt (p.hat.women*(1-p.hat.women)/n.women)</pre>
# Run 10,000 normal simulations for each group.
n.sims <- 10000
p.men <- rnorm (n.sims, p.hat.men, se.men)</pre>
p.women <- rnorm (n.sims, p.hat.women, se.women)
# ratio of the simulation
ratio <- p.men/p.women
# 95% CI of the ratio
int.95 <- quantile (ratio, c(.025,.975)); int.95
```

Outline

- 1 sampling in R
- 2 simulating risk ratios
- 3 simulation for statistical inference
- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- 5 simulation for model checking and fit
 Poisson example

log earnings model

- basic idea:
 - run model
 - use resulting coefficients to set up simulations for predictive combinations you might not be able to get from simpler approaches
- e.g. height and gender as predictors of annual earnings

using predict() get point estimate

• predict() for log earnings 68" tall man

simulation to summarize and predict regression results

simulate predictive uncertainty simple case

• use point estimate from predict() and residual s.e.

```
pred<-exp(rnorm(1000,10.4, 0.88))
hist(log(pred)) # histogram on log scale
hist(pred) # histogram on original scale
mean(pred)
median(pred) # better measure
quantile(pred,c(0.25,0.75)) # 50% interval
quantile(pred, c(0.025, 0.975)) # 95% interval</pre>
```

- not necessary for simple case
 - simple combinations usually reasonably t-distributed (can just use predict())
 - but useful for more complicated combinations and comparisons, non-linear models e.g. logistic

simulate predictive uncertainty

more complicated case

- plug model values into simulation
- e.g. difference earnings between 68"-tall woman and 68"-tall man
 - GH function *sim()* in "arm", returns simulations for all the regression parameters in a model

pred.man<-exp(rnorm(1000, 8.4+.017*68-.079*1+.007*68*1, .88))
pred.woman<-exp(rnorm(1000, 8.4+.017*68-.079*0+.007*68*0, .88))
pred.diff <- pred.man - pred.woman
pred.ratio <- pred.man/pred.woman
median(pred.diff); mean(pred.diff)
hist(pred.diff); median(pred.ratio)
quantile(pred.ratio,c(.25,.75))</pre>

Outline

- 1 sampling in R
- 2 simulating risk ratios
- 3 simulation for statistical inference
- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- simulation for model checking and fit
 Poisson example

simulate difficult to calculate predictions

predicting congressional democratic victories

- simulation may be only approach to some predictions
- e.g. predict number congressional districts democrats will win based on previous election results
- predictors are democratic proportion from contested 343 (of 435 congressional districts) and whether candidate is incumbent
 - construct model to predict 1988 election from 1986 election
 - apply model to predict 1990 from 1988
 - can compare prediction to actual 1990 results
 - can model as continuous variable (proportion) or counts (glm)

general approach

- use Im() to fit linear model using observed data
- Create matrix of predictor values for unobserved data based on Im() results
- In 1,000 simulations using the matrix
 - arm::sim() to simulate set regression coefficients and s.e.'s with uncertainty
 - multiply results of *sim()* by predictor matrix
- collect results
 - e.g. sum across rows to get predicted proportion of races in which democrats got >50% of vote

regression matrix

- recall, regression can be described in terms of a matrix, X, where each column is an indicator variable, and each row is a set of indicator variable values for that observation
- the *observed* outcome y_i is indexed as $X_i\beta = \beta_1 X_{i1} + ... + \beta_k X_{ik}$
- *unobserved* data (\tilde{X}_i) can be used to predict unobserved outcomes (\tilde{y}_i)
 - if one group, X_{i1} (first column in the matrix) is equal to 1, a constant term for all individuals in the population
 - multi-level models, the first row of the model is allowed to vary to reflect group membership, so that *each level of the model has its own matrix of predictors*

regression matrix

1.4	1	0.69	-1	-0.69	0.5	2.6	0.31
1.8	1	1.85	1	1.85	1.94	2.71	3.18
0.3	1	3.83	1	3.83	2.23	2.53	3.81
1.5	1	0.5	-1	-0.5	1.85	2.5	1.73
2.0	1	2.29	-1	-2.29	2.99	3.26	2.51
2.3	1	1.62	1	1.62	0.51	0.77	1.01
0.2	1	2.29	-1	2.3	1.57	1.8	2.44
¥,	1	1.8	1	X	3.72	1.1	1.32
1.8	1	1.22	1	1.22	1.13	1.05	2.66
1.8	1	0.92	-1	-0.92	2.29	2.2	2.95
0.2	1	1.7	1	1.7	0.12	0.17	2.86
2.3	1	1.46	-1	-1.46	2.28	2.4	2.04
-0.3	1	4.3	1	4.3	2.3	1.87	0.48
0.4	1	3.64	-1	-3.64	1.9	1.13	0.51
1.5	1	2.27	1	2.27	0.47	3.04	3.12
?	1	1.63	-1	-1.63	0.84	2.35	1.25
~	1	0.65	-1	1	2.08	1.26	2.3
A	1	1.83	-1	- X 3	1.84	1.58	2.99
?	1	2.58	1	2.58	2.03	1.8	1.39
?	1	0.07	-1	-0.07	2.1	2.32	1.27

Figure: single-level regression matrix

Charles DiMaggio, PhD, MPH, PA-C (New Y

1. fit model with Im()

```
load("~/vote86.RData")
```

2. create matrix

```
n.tilde <- length (vote.88)
X.tilde <- cbind (rep(1,n.tilde), vote.88, incumbency.90)
X.tilde</pre>
```

3. run simulations using matrix

4. collect results

```
# sum rows
dems.tilde <- rowSums (y.tilde > .5, na.rm=T)
hist(dems.tilde)
summary(dems.tilde)
```

function based on code

```
Pred.88 <- function (X.pred, lm.fit){
n.pred <- dim(X.pred)[1]
sim.88 <- sim (lm.fit, 1)
y.pred <- rnorm (n.pred, X.pred %*% t(sim.88@coef),
sim.88@sigma)
return(y.pred)
}</pre>
```

```
my.predict<-Pred.88(X.tilde,fit.88)
hist(my.predict)</pre>
```


Exercise 3: Simulating GLM Predictions

Outline

- 1 sampling in R
- 2 simulating risk ratios
- 3 simulation for statistical inference
- simulation to summarize and predict regression results
 simulating predictive uncertainty in complex models
- simulation for model checking and fit
 Poisson example

fake-data simulation for model validation

- simulate outcome data using a "statistical model ... set to fixed "true" values"
- error the model many times using the simulated or fake outcome data as the dependent variable.
- Output compare the model parameters from the fake data runs to the model parameters from the real data run

simulation for model checking and fit

simple example model validation $y = \alpha + \beta x + \epsilon$, where $\alpha = 1.4$, $\beta = 2.3$, and $\sigma = 0.9$

- set up data
 library ("arm")
 a <- 1.4
 b <- 2.3
 sigma <- 0.9
 x <- 1:5
 n <- length(x)</pre>
- simulate outcome data (normally-distributed error term that is key to the simulation...)

y <- a + b*x + rnorm (n, 0, sigma)

 fit model using the simulated outcome data lm.1 <- lm (y ~ x)

check modeling results reasonably consistent with original parameters

```
display (lm.1)
```

b.hat <- coef (lm.1)[2] # "b" is the 2nd coef in the model b.se <- se.coef (lm.1)[2] # "b" is the 2nd coef in the model</pre>

```
cover.68 <- abs (b - b.hat) < b.se  # this will be TRUE or FALSE
cover.95 <- abs (b - b.hat) < 2*b.se  # this will be TRUE or FALSE
cat (paste ("68% coverage: ", cover.68, "\n"))
68% coverage: TRUE
cat (paste ("95% coverage: ", cover.95, "\n"))
95% coverage: TRUE
```

loop multiple runs...

try t distribution since small n...

```
n.fake <- 1000
cover.68 <- rep (NA, n.fake)
cover.95 <- rep (NA, n.fake)
for (s in 1:n.fake){
  y <- a + b*x + rnorm (n, 0, sigma)
 lm.1 <- lm (y ~ x)
  b.hat <- coef (lm.1)[2]
  b.se <- se.coef (lm.1)[2]
  cover.68[s] <- abs (b - b.hat) < b.se
  cover.95[s] <- abs (b - b.hat) < 2*b.se
}
cat (paste ("68% coverage: ", mean(cover.68), "\n"))
cat (paste ("95% coverage: ", mean(cover.95), "\n"))
# t.68 <- qt (.84, n-2)
# t.95 <- qt (.975, n-2)</pre>
# t.95
#
```

Poisson example

roach infestation model "real" outcome data

- 160 Tx apartments compared to 104 control apartments
- number of roaches caught over a number of trap days
- control for baseline roach measurement and whether a senior living facility

```
roachdata <- read.csv ("~/roachdata.csv")</pre>
```

```
glm.1 <- glm (y ~ roach1 + treatment + senior, family=poisson,
data=roachdata, offset=log(exposure2))
display (glm.1)
```

	coef.est	coef.se
(Intercept)	3.09	0.17
roach1	0.01	0.00
treatment	-0.52	0.20
senior	-0.38	0.27

create simulated or "fake" outcome data

n <- length(roachdata\$y) # same length as the real data X <- cbind (rep(1,n), roachdata\$roach1, roachdata\$treatment, roachdata\$senior) # matrix holds # predictors from data

parameters for sim
y.hat <- roachdata\$exposure2 * exp (X %*% coef(glm.1))
use Poisson for simulated outcome data
y.rep <- rpois (n, y.hat)</pre>

use number of zero counts in data as comparison statistic

```
print (mean (roachdata$y==0))
0.3587786
print (mean (y.rep==0))
0
```

• 36% zero counts in real data vs. no zero counts simulated data

likely a problem, but need to look at many simulations to be sure

relies and ite

repeat simulation many times

compare simulated to real data

- sim() to loop over multiple simulations
- Opt test statistic function for mean number of zeros in simulated data
- check model using test statistic: not nearly same number of zeros (clearly a problem with model fit)

```
n sims <- 1000
sim.1 <- sim (glm.1, n.sims)
y.rep <- array (NA, c(n.sims, n))
for (s in 1:n.sims){
  y.hat <- roachdata$exposure2 * exp (X %*% sim.1@coef[s,])</pre>
  y.rep[s,] <- rpois (n, y.hat)</pre>
3
Test <- function (v){
  mean (v==0)
3
test.rep <- rep (NA, n.sims)
for (s in 1:n.sims){
  test.rep[s] <- Test (v.rep[s,])</pre>
3
summarv(test.rep)
    Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                   Max
0.000000 0.000000 0.000000 0.000687 0.000000 0.007634
print (mean (test.rep > Test(v)))
```

repeat with overdispersed model better fit

```
glm.2 <- glm (y ~ roach1 + treatment + senior, family=quasipoisson, data=roachdata,
 offset=log(exposure2))
display (glm.2)
           coef.est coef.se
(Intercept) 3.09
                     0.17
roach1
       0.01
                  0.00
treatment -0.52
                  0.20
       -0.38 0.27
senior
n sims <- 1000
sim.2 <- sim (glm.2, n.sims)
y.rep <- array (NA, c(n.sims, n))
overdisp <- summary(glm.2)$dispersion
for (s in 1:n.sims){
 y.hat <- roachdata$exposure2 * exp (X %*% sim.2@coef[s,])</pre>
 a <- v.hat/(overdisp-1)
                                      # using R's parametrization for the
 y.rep[s,] <- rnegbin (n, y.hat, a) # negative binomial distribution</pre>
3
test.rep <- rep (NA, n.sims)
for (s in 1:n.sims){
 test.rep[s] <- Test (y.rep[s,])</pre>
3
summary(test.rep)
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                          Max.
0 1985 0 2901 0 3168 0 3198 0 3511 0 4466
print (mean (test.rep > Test(y)))
[1] 0.182
```

Charles DiMaggio, PhD, MPH, PA-C (New Y