CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Introduction to Software
Architecture

Imed Hammouda
Chalmers | University of Gothenburg

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Who am 1?

® Associate Professor of Software Engineering, previously in
Tampere, Finland

® Research interests
— Software Architecture, Open Source, Software Ecosystems,
Software Development Methods and Tools, Variability Management
® Developing and supporting open software architectures

® Studying socio-technical dependencies in software development
¢ Software ecosystems

® Coordinates:

Imed.hammouda@cse.gu.se, hammouda@chalmers.se
® Room 416, floor 4, Jupiter building, Campus Lindholmen
® Phone +46 31 772 60 40

Introduction to Software Architecture

mailto:Imed.hammouda@cse.gu.se
mailto:hammouda@chalmers.se

CHALMERS | {8%) UNIVERSITY OF GOTHENBURG

® What is software architecture?
® Architectural drivers

® Addressing architectural drivers
® Architectural views

® Example system

Introduction to Software Architecture

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

What is Software Architecture?

® Software Architecture is the global organization of a software
system, including
— the division of software into subsystems/components,
— policies according to which these subsystems interact,
— the definition of their interfaces.

T. C. Lethbridge & R. Laganicre

Introduction to Software Architecture

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

What is Software Architecture?

® "The software architecture of a program or computing system is
the structure or structures of the system, which comprise
software components, the externally visible properties of
those components, and the relationships among them."

Len Bass

Introduction to Software Architecture

CHALMERS | ({8}) UNIVERSITY OF GOTHENBURG

What is Software Architecture?

® “fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in
the principles of its design and evolution.”

ISO/IEC/IEEE 42010
http://www.iso-architecture.org/ieee-1471/defining-architecture.html

Introduction to Software Architecture

CHALMERS | ({8}) UNIVERSITY OF GOTHENBURG

Architectural Information Increases

Architecture is everything that a (group of)
person(s) needs to let a large team successfully
develop a (family of) products

Rob van Ommering, Philips Natlab

® Add your own definition:

http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Introduction to Software Architecture

CHALMERS

UNIVERSITY OF TECHNOLOGY

(8%) UNTVERSITY OF GOTHENBURG

The Role of an Architect

® Central activities:

Design

Document Envision Initial Models,
Architecture [Vision

AsSsess

Recover

Maintain Models,

Vision

—

Communicate
Architecture
to Stakeholders

/'

Work With
Developers

Feedback

Update
Architecture
\M odels. Work Products

Vision

Feedback

Models,
Wision

Architecture work products evolve and are
fleshed out over time

Copyright 2002-2008 Scott W. Ambler

Introduction to Software Architecture

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Enterprise architecture

System architecture Subsystem
Application architecture Application
Macro-architecture g I Frameworks
Micro-architecture Design patterns

ConcreteObserver

Introduction to Software Architecture * Mowbray and Malveau

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Types of Architecture

Mobile System Composition Rule:
"Web” requires "Internet”

Operating

Display Keypad Camera System ’ﬁo Connectivity
Screen Screen Color Keypad Key press Linux Symbian SMS Fax MMS Email Cable Infrared Internet Bluetooth
shape size capacity type type

SN SN

Large Medium Small Simultaneous No Simultaneous S60 S80
Key press Key press

Rationale:
"Large” for game
applications

Product family

Single Product e

Introduction to Software Architecture 10

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Increasing Amount of Software in

Systems
S80 1998 Topology overview XC90 2002 Topology overview
FIEE
SOE B e mecle TEEE
A8 @g £
: SIE E m : ==
i 5 gl - = =

SENSOR.CAN

Introduction to Software Architecture 11

CHALMERS | {#%)) UNIVERSITY OF GOTHENBURG

The Importance of Architecture

> 100x

SW fault repair

1X

Requirements &
Architecting
Design
Implementation
Testing
Deployment
Operation

Introduction to Software Architecture 12

(&%) UNIVERSITY OF GOTHENBURG

CHALMERS |

The Importance of Architecture

® “If a project has not achieved a system architecture, including its
rationale, the project should not proceed to full-scale system
development. Specifying the architecture as a deliverable
enables its use throughout the development and maintenance

process”

Barry Boehm

WHY?

Introduction to Software Architecture 13

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

The Importance of Architecture

® Software architecture:
— provides a communication among stakeholders
— captures early design decisions
— acts as a transferable abstraction of a system
— defines constraints on implementation
— dictates organizational structure
— inhibits or enables a system’s quality attributes

— Is analyzable and a vehicle for predicting system qualities

— makes it easier to reason about and manage change
— helps in evolutionary prototyping
— enables more accurate cost and schedule estimates

Introduction to Software Architecture

WHY?

14

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

What Drives Software Architecture?

® System requirements:
— Functional needs (what the system should do)

— Quality needs (properties that the system must possess such as
availability, performance, security,...

® Design constraints
— Development process
— Technical constraints
— Business constraints
— Contractual requirements
— Legal obligations
— Economic factors

Introduction to Software Architecture

15

CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

What Drives Software Architecture?*

Plain Old Telephone System

¢ Feature:
— Call subscriber

¢ Good gualities:
— Works during power shortage
— Reliable

— Emergency calls get location
information

e Architecture:
Centralized hardware switch

Introduction to Software Architecture

Skype
®* Feature:

— Call subscriber

® Good qualities:

— Scales without central
hardware changes

— Easy to add new features
— Easy deployment

 Architecture:
Peer-to-peer software

g >x<George Fairbanks

16

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Architectural Drivers

® Architectural drivers are the design forces that will influence
the early design decisions the architects make

® Architectural drivers are not all of the requirements for a system,
but they are an early attempt to identify and capture those
requirements, that are most influential to the architect making
early design decisions.

- Architecturally Significant Requirements

@ Archietcts pay more attention to qualities that arrise
- from architecture choi
\ py from architecture choices

Introduction to Software Architecture

17

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Functional Requirements

® Functional requirements specify what the software needs to
do. They relate to the actions that the product must carry out in
order to satisfy the fundamental reasons for its existence.

® Business Level: defines the objective/goal of the project and
the measurable business benefits for doing it.

® User Level: user requirements are written from the user's point-
of-view.

® System Level: defines what the system must do to process
input and provide the desired output.

Introduction to Software Architecture 18

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Functional Requirements

®* MoSCoW Method:

— M - MUST: Describes a requirement that must be satisfied in the
final solution for the solution to be considered a success.

— S - SHOULD: Represents a high-priority item that should be
included in the solution if it is possible. This is often a critical
requirement but one which can be satisfied in other ways if strictly
necessary.

— C - COULD: Describes a requirement which is considered desirable
but not necessary. This will be included if time and resources
permit.

— W - WON'T: Represents a requirement that stakeholders have
agreed will not be implemented in a given release, but may be
considered for the future.

Introduction to Software Architecture

19

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Functionality and Software Architecture

® ltis the ability of the system or application to satisfy the
purpose for which it was designed.

® It drives the initial decomposition of the system.

® ltis the basis upon which all other quality attributes are
specified.

® ltisrelated to quality attributes like validity, correctness,
interoperability, and security.

development project. But systems are often redesigned,
Y not because of functional requirements.

@ Functional requirements often get the most focus in a

-

Introduction to Software Architecture

20

CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

Quality Attributes

® A quality attribute is a measurable or testable property of a
system that is used to indicate how well the system satisfies the
needs of its stakeholders.*

® A quality requirement is a specification of the acceptable
values of a quality attribute that must be present in the system.

® Quality attributes should be:
— Not subjective
— In sufficient detail
— Of a value and context (e.g: 180 seconds)

*Bass Clements Kazman

Introduction to Software Architecture 21

CHALMERS |

Attribute
Performance
Availability
Safety
Usability
Interoperability
Integrity
Installability
Robustness
Reliability
Recoverability

(&%) UNIVERSITY OF GOTHENBURG

Quality Attributes*

Description

How fast does it respond or execute?

Is it available when an where | need to use it?

How well does it protect against damage?

How easy it is for people to learn and use?

How easily does it interconnect with other systems?

Does it protect against unauthorized access and data loss?
How easy is it to correctly install the product?

How well does it respond to unexpected operating conditions?
How long does it run before experiencing a failure?

How quickly can the user recover from a failure?

* EnfocusSolutions

Introduction to Software Architecture 22

CHALMERS |

Attribute
Recoverability
Efficiency

Flexibility
Maintainability
Portability
Reusability
Scalability

Supportability
Testability

(&%) UNIVERSITY OF GOTHENBURG

Quality Attributes

Description
How quickly can the user recover from a failure?

How well does it utilize processor capacity, disk space,
memory, bandwidth, and other resources?

How easily can it be updated with new functionality?
How easy is it to correct defects or make changes?
How easily can it be made to work on other platforms?
How easily can we use components in other systems?

How easily can | add more users, servers, or other
extensions?

How easy will it be support after installation?
Can | verify that it eas implemented correctly?

Introduction to Software Architecture

23

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(8%)) UNIVERSITY OF GOTHENBURG

ISO/IEC 25010:2011 Quality Model

Functional suitability
Functional completeness

Functional correctness
Functional appropriateness

Performance efficiency

Time behaviour
Resource utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness recognizability

Learnability
Operability
User error protection

User interface aesthetics

Accessibility

Introduction to Software Architecture

Reliability

Maturity
Availability
Fault tolerance
Recoverability

Security

Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability
Analysability
Modifiability
Testability

Portability
Adaptability

Installability
Replaceability

24

CHALMERS | ({8}) UNIVERSITY OF GOTHENBURG

ISO/IEC 25010:2011 Quality in Use Characteristics

Effectiveness

Satisfaction
Usefulness
Trust
Pleasure
Comfort

Context coverage

Context completeness
Flexibility

Introduction to Software Architecture

Efficiency

Freedom from risk

Economic risk mitigation

Health and safety risk mitigation
Environmental risk mitigation

25

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Quality Attributes & Software Architecture

¢ Different architectural styles address different sets of quality
attributes and to varying degrees

— Architecture decides range of quality possibilities

® The specification of quality attributes affects the architectural
style of the system
— Architectures are evaluated w.r.t quality attributes

® Not all quality attributes are addressed by the architectural
design, e.g. some aspects of usability (e.g. layouts) and some
aspects of performance (e.g. algorithms)

® Impossible to maximize all quality attributes at once
— Tradeoff: More of this - less of that
— Performance versus security
— Everything versus time-to-market (or cost)

Introduction to Software Architecture 26

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Specifying Quality Requirements

® A Quality Attribute Scenario is a quality attribute specific
requirement.

— Stimulus — a condition that needs to be considered

— Source of stimulus (e.g., human, computer system, etc.)

— Environment - what are the conditions when the stimulus occurs?
— Artifact — what elements of the system are stimulated.

— Response — the activity undertaken after arrival of the stimulus.

— Response measure — when the response occurs it should be
measurable so that the requirement can be tested.

Introduction to Software Architecture 27

CHALMERS |

UNIVERSITY OF TECHNOLOGY

: ; UNIVERSITY OF GOTHENBURG

Specifying Quality Requirements

Reliability
Stimulus Database unresponsive/crash

Source of Stimulus System

Environment Runtime
Artifact Database
Response Detect the failure, inform the system, use redundant database server

Response Measure Degraded mode not to exceed 5 mins

Introduction to Software Architecture

28

CHALMERS | @®}) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Availability Concrete Scenario

A
Artifact: -
2 Process
Stimulus: Response:
Server Inform
Unresponsive Envi . Operator
nvironment:
Source: Contirue Response
Normal Measure:
Heartbeat . to Operate '
; Operation No Downtime
Monitor

Introduction to Software Architecture 29

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Making Design Decisions

® To make each design decision, the software engineer
uses knowledge of:
— the application domain
— the requirements
— the design as created so far
— the technology available
— software design principles and ‘best practices’
— what has worked well in the past

chedule

”The architecture = f(requirements,

design methods, experience,
knowledge, patterns, intuition, ...)”

Quality
Operations
nar

Introduction to Software Architecture

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Making Design Decisions

® Quality attributes can be addressed through different
(architectural) tactics:

— Architectural styles: for example pipes-and-filters, MVC,
blackboard, publish-subscribe,...

— Design patterns: for example Abstract Factory, Adapter,
Command, Observer,...

— Tactics: A design decision: for example heartbeat, limit access

— Converting quality requirement to functionality: for example
exception handling, logging

® Quality requirements can be distributed at the system level to
the subsystems or components that make up the system.

Introduction to Software Architecture 31

CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

Example Architectural Style

Source
//’ ived _‘\\\. <« ived ﬂ\\\. o
[/ Data receive - /> Data receive \ l
Decompression i Decompression Pipe
Decoding I Decoding
I
Data display] Data display
I
A)
Y Filter 1
]‘\
] —
[|
! .
Video capture 1 ‘| Video capture Fipe
Substitution : | Substitution
]
Segmentation : 1 Segmentation
1
Encoding ! 1 Encoding i
\ Filter 2
Compression \ Compression
[
Datasent — = S~ Data sent i
/) Pipe
e e S e
L3
Remote Interaction System
Sink

Pipes and Filters

Introduction to Software Architecture 32

CHALMERS |

UNIVERSITY OF TECHNOLOGY

//
/ Data received

Decompression
Decoding

Data display

Video capture
Substitution
Segmentation
Encoding
Compression

Datasent — =

e

-

Remote Interaction System

§ UNIVERSITY OF GOTHENBURG

/> Data received
Decompression
Decoding

Data display

Video capture
Substitution
Segmentation
Encoding
Compression

Data sent

Introduction to Software Architecture

Blackboard

CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

Example Design Pattern

Subject
— +Attach{Observer)
4 | +Detach(Observer)
el 1 +Notify()
e J ——

}

“~-.__ | forall o in observers {

o-=Update();

Observer
+Update()

B ConcreteSubject |«
ol -subjectState
= +GetState()
Statistics +SetState()

Introduction to Software Architecture

Observer

ConcreteObserver

-observerState

+Update()

34

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Example Architectural Tactics

Availability Tactics

o
Detect Faults

Y
Ping / Echo

Monitor
Heartbeat
Timestamp

Fault Sanity

Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Introduction to Software Architecture

Recover from Faults

-
VAN

Preparation
and Repair

v
Active
Redundancy

Passive
Redundancy

Spare

Exception
Handling

Rollback

Software
Upgrade

Retry

Ignore Faulty

Behavior

Degradation

Reconfiguration

u
Reintroduction

\J
Shadow

State
Resynchronization

Escalating
Restart

Non-Stop
Forwarding

Prevent Faults

v
Removal from
Service

Transactions

Predictive
Model

Exception
Prevention

Increase
Competence Set

Fauit
Masked
or
Repair
Made

EE—

35

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Design Principles: Keep it Simple (KIS)

® Simplicity is a great virtue but it requires hard work to
achieve it
and education to appreciate it.

® And to make matters worse: complexity sells better.

«interface»
Person
age :Integer
gender :Integer
name :Integer
getAge() :Integer Order
getGender() :Intege date -Dat d
getName() :Strin; .
A # num :Integer ‘71 - D e
! close() ~ |- name :String
! + confirm()
+ process|
Customer P 0
- address :String
- membershipNo :String
+ getAge() :Integer [| Npmal |order PriorityOrder
getGender() :Integer |1
eeeeeee () :String lose() close.()
I rder() firm() confirm()
eeeeeeeee der() process() rocess|(

Introduction to Software Architecture | | 36

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Design Principles: Decomposition

® Breaking problem into independent smaller parts

— Each individual component is smaller, and therefore easier to
understand

— Parts can be replaced or changed without having to replace or
extensively change other parts.

— Separate people can work on separate parts

— An individual software engineer can specialize

//\\

ELECTRONICS (Chassis |

VETRAIN BB YL R BLOC:
VE l.l .':".'k.(,«.-w .u‘.w#.e.—m.ui

Introduction to Software Architecture 37

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Design Principles: Coupling

® Coupling is a measure of interdependency between

modules.
-
S 1
high coupling low coupling
7/
\&

x Vi

Introduction to Software Architecture 38

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Design Principles: Cohesion

® Cohesion is concerned with the relatedness within a
module.

low cohesion

%

Introduction to Software Architecture 39

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Design Principles: Information Hiding

® What is inside, must stay inside.

Introduction to Software Architecture

40

CHALMERS |

(&%) UNIVERSITY OF GOTHENBURG

Design Principles: No Circular Dependencies

Introduction to Software Architecture

Callers must depend on callee,
not vice versa

This violates an earlier design
advice: Decomposition

a1

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Design Principles: Separation of Concerns

® |ssues that are not related should be handled In
different components

Telecom protocol:
decode1 ; handle1 ; decode2 ; handle2 ; decode3

handle

handle &
decode

%

Introduction to Software Architecture 42

decode

CHALMERS | {8%) UNIVERSITY OF GOTHENBURG

Design Principles: Open/Closed

® Entities should be open for extension, but closed for
modification.

Introduction to Software Architecture

43

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Evaluating Quality Attributes

® Quality attributes can be evaluated through:

— Scenario-based evaluation: for example change scenarios for
assessing maintainability

— Simulation: for example Prototyping is a form of simulation where
a part of the architecture is implemented and executed in the actual
system context.

— Mathematical modeling: for example, checking for potential
deadlocks.

— Experience-based assessment: this is based on subjective
factors like intuition and expertise of software engineers.

Introduction to Software Architecture

44

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Introduction to Software Architecture 45

CHALMERS |

UNIVERSITY OF TECHNOLOGY

¢ UNIVERSITY OF GOTHENBURG

4 + 1° View Model*

Programmers

End-User Functionality Software Management

Integrators Systems Engineers
Performance Topology
Scalability Communication

* Philippe Kruchten

Introduction to Software Architecture 46

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

‘4 + 1° View Model*

® Logical
— Focus: Functional requirements of the system.
— Contents: Class diagrams, Sequence diagrams, Layer diagrams.
® Development (implementation)
— Focus: Static organization of the software in its development environment
— Contents: Component diagram, Package diagrams.
® Process

— Focus: Runtime behavior of the system, such as the system processes and
communication, concurrency, performance and scalability.

— Contents: Activity diagrams.
® Physical (Deployment)
— Focus: System Engineer’s perspective, looking at the system topology,
deployment and communication.
— Contents: Deployment diagrams.
® Scenarios
— Focus: Use cases for illustrating and validating the architecture.
— Contents: Use case diagrams.

Introduction to Software Architecture 47

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Notations for Arch. Documentation

® |Informal notations.

— Views are depicted (often graphically) using general-purpose
diagramming and editing tools and visual conventions chosen for

the system at hand.

— The semantics of the description are characterized in natural
language and cannot be formally analyzed.

Introduction to Software Architecture

UC Open Door
Main Flow
Contexts:
1. Is tvoked by Actor (Driver)
Events
1. The driver approaches the car
2. Include UC Unlock with Remete Control to unlock the
car 5 doors
3. The driver checks {f the doors are unlocked
4. {Remore Conmrol unoperarional}
3. The driver e handle and opens the door

ow (Swiatch off Alarm):
Contexts:
1. At any time in UC Open Door (Makn Flow) if alarm
raised
Events

1. The driver swiltches off the alarm

UC Unlock Door with Remote Control
Man Flow (redefines UC U
Contexts:
1. Is invoked by Actor (Driver) (inherited from UC Unlock
Daor Main Flow)
2_Is incleded By UC Open Door (Main Flow)
Events
1. The driver unlocks the car with rhe remote conrrol
(redefines UC Unlock Door. The driver inlocks the car)

nlock Door Mam Flow

UC Unlock Door (abstract use case)
Main Flow;
Contexts:

1. Is hvoked by Actor (Driver)
Events

1. The driver unfocks the car

UC Unlock Door with Key

Main Flow (redefines UC Unlock Door Main Flow

Contexts
1. Is ivoked by Actor (Driver)
(inherited from UC Unlock Door Main Flow)

1. {No cenmal locking system}

2. The driver unfocks the car with tha key
). Th ks he ke
{End Main Fi

Alternative Flow (Unlock only one Door with Key)
Contexts:
1. At {No ceniral locking system} if car has no ceniral
locxing system
Events
1. Thae driver salects a door to unlock
2. The driver wmlocks the selected door with the key
Ri Unlock with Key Main Flow ai
End Main Flow}

48

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Notations for Arch. Documentation

® Semiformal notations.

— Views are expressed in a standardized notation that prescribes
graphical elements and rules of construction, but does not provide
a complete semantic treatment of the meaning of those elements.

— Rudimentary analysis can be applied to determine if a
description satisfies syntactic properties. Unified Modeling
Language (UML) is a semiformal notation in this sense.

I\""\.

Diviver

Introduction to Software Architecture

\ N

Car

imcludes

Undock Dioar with Remate Cagtral _Mlock Door with Key

™,

|
_ - AT
Oipen Door

P

L - -
extenil

Eemote Control unoperational H

A Fad

Linkack Door

49

CHALMERS | J) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Notations for Arch. Documentation

® Formal notations.

— Views are described in a notation that has a precise (usually
mathematically based) semantics.
— Formal analysis of both syntax and semantics is possible. There

are a variety of formal notations for software architecture available,
although none of them can be said to be in widespread use.

— Architecture Description Languages (ADLS)

KB 01 model: Cruise contral architecture, March 9, 2007, 10:20

wii demo_ctrl_processing.adeledi demo_ctrl_processing.aadl &

DATA sensor_data
END sensor_data;

DATA command_data
END command_data;

THREAD control_out
END control_out;

THREAD IMPLEMENTATION control_out.output_processing_ 01
END control_out.output_processing_01;

THREAD control_in
END control_in;

THREAD IMPLEMENTATION control_in.input_processing_01
END control_in.input_processing_01;

PROCESS control_processin g
FEATURES
input : IN DATA PORT demo_ctrl processing::sensor_data
output : OUT DATA PORT demo_ct
END control_processing;

PROCESS IMPLEMENTATION control_processing.speed_control
SUBCOMPONENTS
control_input : THREAD demo_ctrl_processing::control_in.input_processing_01;

control_output : THREAD demuictrTiprucesslng::cuntruliuut.uutEutiprucessmg 01;
END control_processing.speed_control;

Active: ticrs Subgraph(s): Tre Gk 10810 s (] show| @ 100% ~|@ END demo_ctrl_processing;

Introduction to Software Architecture

CHALMERS | &) UNIVERSITY OF GOTHENBURG

&L D
= N

Online Catering Service

http://msdn.microsoft.com/en-us/library/dd409427.aspx

hitps://www.ibm.com/

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(&%) UNIVERSITY OF GOTHENBURG

Logical View: Layer Diagram

- Presentation B ---- Add Order Menu Ul

| WebUI Windows Ul
—1— I |
UL FAW 5 4

3 I

Business Logic

Services
Core Business Logic 1 Layer
I 2 Dependency
3 Bidirectional dependency
Data
4 Comment
5 Comment link

Introduction to Software Architecture

52

CHALMERS | § UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Logical View: Component Diagram

—3
=components E

‘Web Browser

L
e -
@ | HTTP ; scomponents E
> 1k . :
Customer Website DinnerMow Web Service

_ 50— ?
>) —{}-O

Sales|_J)&) 2 Kitchen Website
n 3])
Customer Web Server ...
5.
L] o I-r' . 1 Component
PaymentAuthorization MealOrdering KitchenWorkQueue
Paymentauthonzation 3' fl\ - | I 2 Provided interface
~ . _ | MealDrdenng 3] o
J ?_: M] Kitchen Server - 3 Required interface
< & 2/ 4 Dependency

Introduction to Software Architecture 53

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Menu

2
Menu <> 1
5a)

Menultems | *

Menultem

§ UNIVERSITY OF GOTHENBURG

6
mMenuChoice =
Chosenhenu Orders Order 1)
1 50
N [= Attributes
+ TotalPrice : Maoney 3
[=] Operations
+ AddItem(bMenultem))Y
+ Deleteltem(Menultem)
Crder ’ 1
= 9
Orderltems | * sby
Menultem
E Orderltem EI PhoneOrder
1 | ..I —_— - — "
5 |= Attributes |=| Attributes
+ guantity + CallbackMumber : String
|=l Operations = Operations

W
15
-

Introduction to Software Architecture

5a

5b

Logical View: Class Diagram

Class
Attribute

Operation

Association

Aggregation

Composition

Generalization

54

CHALMERS |

UNIVERSITY OF TECHNOLOGY

. hunger

14

) UNIVERSITY OF GOTHENBURG

Logical View: Sequence Diagram

Ra

| Customer

I
[until complete]

" 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I

—————— -

1) order

8 <<Createss

4 Add Item

g

3] Check Available

henu Manager

a Callback

:
:
ITI
I
I
;

«

[

7

3 a self message

<< returns >

ref

A

Complete Order and Pay

Introduction to Software Architecture

10
Stock update

.
o

Lifeline
Actor

Sync. Message

Async. Message

Execution occurence

55

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Development View: Layer Diagram

o Fresentation ,
| Webul | Windows Ul .. Team A
UI FAW
; !
Business Logic - Team B
Services |

I

Core Business Logic

I

Data

. Team C

Introduction to Software Architecture 56

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Process View: Activity Diagram

Each Order contains items

from only one Menu. a
r

3
1
'%L Choose Menu]‘

2
N
] e
N
[Clmase Menu [tem]
1 Action
[customer wants to choose more] 2 Control flow
—, 3 Initial node
7]
[customer has finished choosing) 4 Final node
5 Decision node

\l

Merge node

v i
9
L Confirm DrdErl_l_I

Introduction to Software Architecture

57

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Process View: Activity Diagram

!

Create Qrder]
11

Send invoice 13>
\ [Dispatch goods]
14
Receive payment

12
11 Fork node
Close Order .
12 Join node

o

Introduction to Software Architecture 58

CHALMERS |

Physical View:

] T
A L.,
I h
[1
M,. i
e

Browsear Internet

|

Web Server

Introduction to Software Architecture

(&%) UNIVERSITY OF GOTHENBURG

|

Application Server

H"\-._.-‘I;:_.-"' :‘;.

Web Service

ER0E00

Delivery
Sarvice

Deployment Diagram

1 Node

2 Association

59

CHALMERS |

UNIVERSITY OF TECHNOLOGY

: UNIVERSITY OF GOTHENBURG

Physical View: Deployment Diagram

& WebSphere Application Server 1

<& Yummy.ear
<& WebYummy.war
<& YurmnmyEJIB.ejb

«deployment»
3 sdeployments
«deployments
_ «artifacts artifact»
= YummyEJR.ejb 1 1 | WebYummy.war

«artifacts

S Yummy.ear (1, 1
— v «deployment:

B IHS Http Server = DB2 Database

«deployments
«deployments

= WebSphere Application Server 2
<& Yummy.ear

<= WebYurmmy.war
<& YurmmyEIB.&jb

3 Artifact

Introduction to Software Architecture

CHALMERS | @8Y})) UNIVERSITY OF GOTHENBURG

Scenarios View: Use Case Diagram

«subsystems
Cinner Now System

EEEDN|

3 3

1 J.'J'-'._ ,-""”"’ .//’_-2 -‘“"‘-._ P14 1
' 3 O

) [rder a Meal 1 [
n m
U

P
Custamer Restaurant
3 3

2
Deliver Meal

Introduction to Software Architecture

Actor
Use Case

Association

Subsystem

61

CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

Scenarios View: Use Case Diagram

ﬂr\ t Crder meal

A 5 1 ’..I 4
. - . 1 M"\.
Customer sincludes * «includes LI
.

nhuinrzludm

b
b
)

-

IJLIH-
A
|

N

Registered Customer

1

:

iy

s«artifacts ‘F"i'l

available to registered
customers after July al

Pay.sequencediagram

Filter by dietary requirements Filter by cuisine

Introduction to Software Architecture

10

Include
Extend

Inheritance

Dependency

62

CHALMERS |) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Data View: Activity Diagram

18] 187
| [tem list I Customer Address
16/
17
[Find goods in warehﬂuse] L Print address label J

]
¥

Cirder Id Address label

15

| Stock Update Record Pack goods

\I(\I(15,18 Object node
(Update stock database J (Ship goods to customer J 16 Input pin
17 Output pin

Introduction to Software Architecture

63

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY VM’?

The ”Sad” Reality

Introduction to Software Architecture

64

CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

Wrap-up: IEEE-Std-1471 Conceptual Framework

establishes methods for . ..
Environment Mission
consists of : inhabits fulfills | 1..*
Model Rationale
aggregates 1.*
o . provides .
participates in influences
] o described by _ has an
Architectural Description Architecture System
- ' | L
identifies| 1. * selects
used to cover
organized by | 1. * Viewpoint
1 * Concern 1% is addressed to —
— . View) 1.%
participates in 1.% 1.*| Stakeholder
conforms to
has is important to| 1..* |has source
identifies| 1..* 1..*has . . .
LibraryViewpoint

Introduction to Software Architecture

CHALMERS | &) UNIVERSITY OF GOTHENBURG

Wrap-up

® Architecture should be the product of a single architect or a
small group of architects with an identified leader.

® Architect team should have functional requirements for the
system and an articulated prioritized list of quality attributes
that the architecture is expected to satisfy.

® Architecture should be well documented, and circulated and
reviewed by system stakeholders.

® Architecture should be analyzed for applicable quantitative
measures and formally evaluated for quality attributes before it
IS too late to make changes to it.

® Architecture should lend itself to incremental refinement and
iImplementation.

Introduction to Software Architecture 66

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Tack sa mycket!

Fragor?

Introduction to Software Architecture

67

