
Introduction to Software

Architecture

Imed Hammouda

Chalmers | University of Gothenburg

Introduction to Software Architecture

Who am I?

• Associate Professor of Software Engineering, previously in

Tampere, Finland

• Research interests

– Software Architecture, Open Source, Software Ecosystems,

Software Development Methods and Tools, Variability Management

• Developing and supporting open software architectures

• Studying socio-technical dependencies in software development

• Software ecosystems

• Coordinates:

Imed.hammouda@cse.gu.se, hammouda@chalmers.se

• Room 416, floor 4, Jupiter building, Campus Lindholmen

• Phone +46 31 772 60 40

2

mailto:Imed.hammouda@cse.gu.se
mailto:hammouda@chalmers.se

Introduction to Software Architecture

• What is software architecture?

• Architectural drivers

• Addressing architectural drivers

• Architectural views

• Example system

3

Introduction to Software Architecture

What is Software Architecture?

• Software Architecture is the global organization of a software

system, including

– the division of software into subsystems/components,

– policies according to which these subsystems interact,

– the definition of their interfaces.

T. C. Lethbridge & R. Laganière

4

Introduction to Software Architecture

What is Software Architecture?

• "The software architecture of a program or computing system is

the structure or structures of the system, which comprise

software components, the externally visible properties of

those components, and the relationships among them."

5

Len Bass

Introduction to Software Architecture

What is Software Architecture?

• “fundamental concepts or properties of a system in its

environment embodied in its elements, relationships, and in

the principles of its design and evolution.”

 ISO/IEC/IEEE 42010

 http://www.iso-architecture.org/ieee-1471/defining-architecture.html

6

Introduction to Software Architecture

Architectural Information Increases

• Add your own definition:

http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

7

Architecture is everything that a (group of)

person(s) needs to let a large team successfully

develop a (family of) products

 Rob van Ommering, Philips Natlab

Introduction to Software Architecture

The Role of an Architect

• Central activities:

– Design

– Document

– Assess

– Recover

– Maintain

8

Introduction to Software Architecture

Levels of Architecture
*

9 * Mowbray and Malveau

Macro-architecture Frameworks

Micro-architecture Design patterns
Observer

update()

Subject
attach(Observer)
detach(Observer)

notify()

ConcreteObserver

update()

ConcreteSubject

getState()

forall o in observers

 o.update()

System architecture Subsystem

Enterprise architecture

Application architecture Application

Introduction to Software Architecture

Types of Architecture

10

Mobile System

Operating

System
MessagingDisplay

Screen

shape

Color

capacity

Screen

size

Keypad

Keypad

type

Camera

SymbianLinux

Connectivity

FaxSMS MMS Email BluetoothCable Infrared Internet

Web

S60 S80Simultaneous

Key press

No Simultaneous

Key press

Key press

type

Large Medium Small

Rationale:

”Large” for game

applications

Composition Rule:

”Web” requires ”Internet”

Single Product

Product family

Introduction to Software Architecture

Increasing Amount of Software in

Systems

11

Introduction to Software Architecture

The Importance of Architecture

12

R
e
q

u
ir

e
m

e
n

ts
 &

A
r
c
h

it
e
c
ti

n
g

 D
e
s
ig

n

 I
m

p
le

m
e
n

ta
ti

o
n

 T
e
s
ti

n
g

 D
e
p

lo
y
m

e
n

t

O
p

e
r
a
ti

o
n

S
W

 f
a
u
lt
 r

e
p
a
ir

c
o
s
ts

 100x

1x

10% of the lifecycle
determines

90% of the costs and risks

Introduction to Software Architecture

The Importance of Architecture

• “If a project has not achieved a system architecture, including its

rationale, the project should not proceed to full-scale system

development. Specifying the architecture as a deliverable

enables its use throughout the development and maintenance

process”

13

Barry Boehm

Introduction to Software Architecture

The Importance of Architecture

• Software architecture:

– provides a communication among stakeholders

– captures early design decisions

– acts as a transferable abstraction of a system

– defines constraints on implementation

– dictates organizational structure

– inhibits or enables a system’s quality attributes

– is analyzable and a vehicle for predicting system qualities

– makes it easier to reason about and manage change

– helps in evolutionary prototyping

– enables more accurate cost and schedule estimates

14

Introduction to Software Architecture

What Drives Software Architecture?

• System requirements:

– Functional needs (what the system should do)

– Quality needs (properties that the system must possess such as

availability, performance, security,…

• Design constraints

– Development process

– Technical constraints

– Business constraints

– Contractual requirements

– Legal obligations

– Economic factors

15

Introduction to Software Architecture

What Drives Software Architecture?*

Plain Old Telephone System

• Feature:

– Call subscriber

• Good qualities:

– Works during power shortage

– Reliable

– Emergency calls get location

information

16

*George Fairbanks

Skype

• Feature:

– Call subscriber

• Good qualities:

– Scales without central

hardware changes

– Easy to add new features

– Easy deployment

• Architecture:

Centralized hardware switch

• Architecture:
Peer-to-peer software

Introduction to Software Architecture

Architectural Drivers

• Architectural drivers are the design forces that will influence

the early design decisions the architects make

• Architectural drivers are not all of the requirements for a system,

but they are an early attempt to identify and capture those

requirements, that are most influential to the architect making

early design decisions.

 Architecturally Significant Requirements

Archietcts pay more attention to qualities that arrise

from architecture choices

17

Introduction to Software Architecture

Functional Requirements

• Functional requirements specify what the software needs to

do. They relate to the actions that the product must carry out in

order to satisfy the fundamental reasons for its existence.

• Business Level: defines the objective/goal of the project and

the measurable business benefits for doing it.

• User Level: user requirements are written from the user's point-

of-view.

• System Level: defines what the system must do to process

input and provide the desired output.

18

Introduction to Software Architecture

Functional Requirements

• MoSCoW Method:

– M - MUST: Describes a requirement that must be satisfied in the

final solution for the solution to be considered a success.

– S - SHOULD: Represents a high-priority item that should be

included in the solution if it is possible. This is often a critical

requirement but one which can be satisfied in other ways if strictly

necessary.

– C - COULD: Describes a requirement which is considered desirable

but not necessary. This will be included if time and resources

permit.

– W - WON'T: Represents a requirement that stakeholders have

agreed will not be implemented in a given release, but may be

considered for the future.

19

Introduction to Software Architecture

Functionality and Software Architecture

• It is the ability of the system or application to satisfy the
purpose for which it was designed.

• It drives the initial decomposition of the system.

• It is the basis upon which all other quality attributes are
specified.

• It is related to quality attributes like validity, correctness,
interoperability, and security.

Functional requirements often get the most focus in a
development project. But systems are often redesigned,
not because of functional requirements.

20

Introduction to Software Architecture

Quality Attributes

• A quality attribute is a measurable or testable property of a

system that is used to indicate how well the system satisfies the

needs of its stakeholders.*

• A quality requirement is a specification of the acceptable

values of a quality attribute that must be present in the system.

• Quality attributes should be:

– Not subjective

– In sufficient detail

– Of a value and context (e.g: 180 seconds)

21

*Bass Clements Kazman

Introduction to Software Architecture

Quality Attributes*

22

Attribute Description

Performance How fast does it respond or execute?

Availability Is it available when an where I need to use it?

Safety How well does it protect against damage?

Usability How easy it is for people to learn and use?

Interoperability How easily does it interconnect with other systems?

Integrity Does it protect against unauthorized access and data loss?

Installability How easy is it to correctly install the product?

Robustness How well does it respond to unexpected operating conditions?

Reliability How long does it run before experiencing a failure?

Recoverability How quickly can the user recover from a failure?

*EnfocusSolutions

Introduction to Software Architecture

Quality Attributes

23

Attribute Description

Recoverability How quickly can the user recover from a failure?

Efficiency How well does it utilize processor capacity, disk space,

memory, bandwidth, and other resources?

Flexibility How easily can it be updated with new functionality?

Maintainability How easy is it to correct defects or make changes?

Portability How easily can it be made to work on other platforms?

Reusability How easily can we use components in other systems?

Scalability How easily can I add more users, servers, or other

extensions?

Supportability How easy will it be support after installation?

Testability Can I verify that it eas implemented correctly?

Introduction to Software Architecture

ISO/IEC 25010:2011 Quality Model

24

Functional suitability

 Functional completeness

 Functional correctness

 Functional appropriateness

Compatibility

 Co-existence

 Interoperability

Reliability

 Maturity

 Availability

 Fault tolerance

 Recoverability

Maintainability

 Modularity

 Reusability

 Analysability

 Modifiability

 Testability

Performance efficiency

Time behaviour

 Resource utilization

 Capacity

Usability

 Appropriateness recognizability

 Learnability

 Operability

 User error protection

 User interface aesthetics

 Accessibility

Security

 Confidentiality

 Integrity

 Non-repudiation

 Accountability

 Authenticity

Portability

 Adaptability

 Installability

 Replaceability

Introduction to Software Architecture

ISO/IEC 25010:2011 Quality in Use Characteristics

25

Effectiveness

Efficiency

Satisfaction

 Usefulness

 Trust

 Pleasure

 Comfort

Freedom from risk

 Economic risk mitigation

 Health and safety risk mitigation

 Environmental risk mitigation

Context coverage

 Context completeness

 Flexibility

Introduction to Software Architecture

Quality Attributes & Software Architecture

• Different architectural styles address different sets of quality

attributes and to varying degrees

– Architecture decides range of quality possibilities

• The specification of quality attributes affects the architectural

style of the system

– Architectures are evaluated w.r.t quality attributes

• Not all quality attributes are addressed by the architectural

design, e.g. some aspects of usability (e.g. layouts) and some

aspects of performance (e.g. algorithms)

• Impossible to maximize all quality attributes at once

– Tradeoff: More of this  less of that

– Performance versus security

– Everything versus time-to-market (or cost)

26

Introduction to Software Architecture

Specifying Quality Requirements

• A Quality Attribute Scenario is a quality attribute specific

requirement.

– Stimulus – a condition that needs to be considered

– Source of stimulus (e.g., human, computer system, etc.)

– Environment - what are the conditions when the stimulus occurs?

– Artifact – what elements of the system are stimulated.

– Response – the activity undertaken after arrival of the stimulus.

– Response measure – when the response occurs it should be

measurable so that the requirement can be tested.

27

Introduction to Software Architecture

Specifying Quality Requirements

28

Reliability

Stimulus Database unresponsive/crash

Source of Stimulus System

Environment Runtime

Artifact Database

Response Detect the failure, inform the system, use redundant database server

Response Measure Degraded mode not to exceed 5 mins

Introduction to Software Architecture

Availability Concrete Scenario

29

Introduction to Software Architecture

Making Design Decisions

• To make each design decision, the software engineer

uses knowledge of:
– the application domain

– the requirements

– the design as created so far

– the technology available

– software design principles and ‘best practices’

– what has worked well in the past

30

”The architecture = f(requirements,

design methods, experience,

knowledge, patterns, intuition, ...)”

Introduction to Software Architecture

Making Design Decisions

• Quality attributes can be addressed through different

(architectural) tactics:

– Architectural styles: for example pipes-and-filters, MVC,

blackboard, publish-subscribe,…

– Design patterns: for example Abstract Factory, Adapter,

Command, Observer,…

– Tactics: A design decision: for example heartbeat, limit access

– Converting quality requirement to functionality: for example

exception handling, logging

• Quality requirements can be distributed at the system level to

the subsystems or components that make up the system.

31

Introduction to Software Architecture

Example Architectural Style

32

Remote Interaction System

Pipes and Filters

Introduction to Software Architecture

Or it could have been…

33

Remote Interaction System Blackboard

data

Component Component Component

Introduction to Software Architecture

Example Design Pattern

34

display

predict

Statistics

Observer

Introduction to Software Architecture

Example Architectural Tactics

35

Introduction to Software Architecture

Design Principles: Keep it Simple (KIS)

• Simplicity is a great virtue but it requires hard work to

achieve it

and education to appreciate it.

• And to make matters worse: complexity sells better.

36

Introduction to Software Architecture

Design Principles: Decomposition

• Breaking problem into independent smaller parts

– Each individual component is smaller, and therefore easier to

understand

– Parts can be replaced or changed without having to replace or

extensively change other parts.

– Separate people can work on separate parts

– An individual software engineer can specialize

37

Introduction to Software Architecture

Design Principles: Coupling

• Coupling is a measure of interdependency between

modules.

38

high coupling low coupling

Introduction to Software Architecture

Design Principles: Cohesion

• Cohesion is concerned with the relatedness within a

module.

39

low cohesion high cohesion

39

Introduction to Software Architecture

Design Principles: Information Hiding

• What is inside, must stay inside.

40

Introduction to Software Architecture

Design Principles: No Circular Dependencies

41

Callers must depend on callee,
not vice versa

This violates an earlier design
advice: Decomposition

Introduction to Software Architecture

Design Principles: Separation of Concerns

• Issues that are not related should be handled in

different components

42

Telecom protocol:

decode1 ; handle1 ; decode2 ; handle2 ; decode3

handle

decode

handle &
decode

Introduction to Software Architecture

Design Principles: Open/Closed

• Entities should be open for extension, but closed for

modification.

43

Introduction to Software Architecture

Evaluating Quality Attributes

• Quality attributes can be evaluated through:

– Scenario-based evaluation: for example change scenarios for

assessing maintainability

– Simulation: for example Prototyping is a form of simulation where

a part of the architecture is implemented and executed in the actual

system context.

– Mathematical modeling: for example, checking for potential

deadlocks.

– Experience-based assessment: this is based on subjective

factors like intuition and expertise of software engineers.

44

Introduction to Software Architecture

Views

45

Introduction to Software Architecture

’4 + 1’ View Model*

46

* Philippe Kruchten

Introduction to Software Architecture

’4 + 1’ View Model*

• Logical

– Focus: Functional requirements of the system.

– Contents: Class diagrams, Sequence diagrams, Layer diagrams.

• Development (implementation)

– Focus: Static organization of the software in its development environment

– Contents: Component diagram, Package diagrams.

• Process

– Focus: Runtime behavior of the system, such as the system processes and

communication, concurrency, performance and scalability.

– Contents: Activity diagrams.

• Physical (Deployment)

– Focus: System Engineer’s perspective, looking at the system topology,

deployment and communication.

– Contents: Deployment diagrams.

• Scenarios

– Focus: Use cases for illustrating and validating the architecture.

– Contents: Use case diagrams.

47

Introduction to Software Architecture

Notations for Arch. Documentation

• Informal notations.

– Views are depicted (often graphically) using general-purpose

diagramming and editing tools and visual conventions chosen for

the system at hand.

– The semantics of the description are characterized in natural

language and cannot be formally analyzed.

48

Introduction to Software Architecture

Notations for Arch. Documentation

• Semiformal notations.

– Views are expressed in a standardized notation that prescribes

graphical elements and rules of construction, but does not provide

a complete semantic treatment of the meaning of those elements.

– Rudimentary analysis can be applied to determine if a

description satisfies syntactic properties. Unified Modeling

Language (UML) is a semiformal notation in this sense.

49

Introduction to Software Architecture

Notations for Arch. Documentation

• Formal notations.

– Views are described in a notation that has a precise (usually

mathematically based) semantics.

– Formal analysis of both syntax and semantics is possible. There

are a variety of formal notations for software architecture available,

although none of them can be said to be in widespread use.

– Architecture Description Languages (ADLs)

50

Online Catering Service

5

1

http://msdn.microsoft.com/en-us/library/dd409427.aspx

https://www.ibm.com/

Introduction to Software Architecture

Logical View: Layer Diagram

52

1 Layer

2 Dependency

3 Bidirectional dependency

4 Comment

5 Comment link

Introduction to Software Architecture

Logical View: Component Diagram

53

1 Component

2 Provided interface

3 Required interface

4 Dependency

Introduction to Software Architecture

Logical View: Class Diagram

54

1 Class

3 Attribute

4 Operation

5 Association

5a Aggregation

5b Composition

9 Generalization

Introduction to Software Architecture

Logical View: Sequence Diagram

55

1 Lifeline

2 Actor

3 Sync. Message

4 Async. Message

5 Execution occurence

Introduction to Software Architecture

Development View: Layer Diagram

56

Team A

Team B

Team C

Introduction to Software Architecture

Process View: Activity Diagram

57

1 Action

2 Control flow

3 Initial node

4 Final node

5 Decision node

7 Merge node

Introduction to Software Architecture

Process View: Activity Diagram

58

11 Fork node

12 Join node

Introduction to Software Architecture

Physical View: Deployment Diagram

59

1 Node

2 Association

Introduction to Software Architecture

Physical View: Deployment Diagram

60

3 Artifact

Introduction to Software Architecture

Scenarios View: Use Case Diagram

61

1 Actor

2 Use Case

3 Association

4 Subsystem

Introduction to Software Architecture

Scenarios View: Use Case Diagram

62

5 Include

6 Extend

7 Inheritance

8 Dependency

Introduction to Software Architecture

Data View: Activity Diagram

63

15, 18 Object node

16 Input pin

17 Output pin

Introduction to Software Architecture

The ”Sad” Reality

64

Introduction to Software Architecture

Wrap-up: IEEE-Std-1471 Conceptual Framework

65

Rationale

Architectural Description

Model

View

Concern

Architecture System

Environment Mission

Viewpoint

LibraryViewpoint

Stakeholder

provides

1..*aggregates

participates in

consists of

participates in

1..*

1..*organized by

establishes methods for

described by

selects
1..*

used to cover
1..*identifies

1..*

has is important to

1..*

1..*

identifies 1..*

1..*

has

conforms to
1..* has source

has an

1..*fulfillsinhabits

influences

1..*

is addressed to

Introduction to Software Architecture

Wrap-up

• Architecture should be the product of a single architect or a

small group of architects with an identified leader.

• Architect team should have functional requirements for the

system and an articulated prioritized list of quality attributes

that the architecture is expected to satisfy.

• Architecture should be well documented, and circulated and

reviewed by system stakeholders.

• Architecture should be analyzed for applicable quantitative

measures and formally evaluated for quality attributes before it

is too late to make changes to it.

• Architecture should lend itself to incremental refinement and

implementation.

66

Introduction to Software Architecture 67

Tack så mycket!

Frågor?

