SudParis
et i

N2 1P PARIS

Introduction to software
architecture

Denis Conan

Septembre 2021

_ Foreword

B The content of these slides is extracted from the following references:

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, 3rd
Edition. Addison-Wesley, 2012.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. lvers, R. Little, P. Merson,
R. Nord, and J. Stafford. Documenting Software Architecture: Views and
Beyond, 2nd Edition. Addison-Wesley, 2011.

P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures:
Methods and Case Studies. Addison-Wesley, 2002.

EIT Digital, “Software Architecture for the Internet of Things”, Coursera

MOOC, 2015

A. Sunyaev. Internet Computing: Principles of Distributed Systems and
Emerging Internet-Based Technologies. Springer, 2020.

https://fr.coursera.org/learn/iot-software-architecture

I 1 Motivations and objectives

1. Motivations and objectives

1.1 On a technical perspective

1.2 On a business perspective

1.3 Software architecture and Middleware

1.4 Architectural patterns Vs. Design patterns

2. Software architecture and Views

3. Attribute-Driven Design (ADD)

I 1.1 On a technical perspective

B Software architecture is about preliminary design

® Each stakeholder (customer, user, project manager, coder, tester, and so on) is

concerned with different characteristics of the system

B Software architecture is about design at large

® Provides a language in which different concerns can be expressed, negotiated,

and resolved at a level that is manageable (by one person) for large, complex
systems

B The early design decisions carry enormous weight with respect to the
system’s remaining development, its deployment, and its maintenance life

B |t is the earliest point at which these design decisions can be scrutinized

I 1.2 On a business perspective

B A documented architecture enhances communication among stakeholders

B An architecture channels the creativity of developers, reducing design and
system complexity

B Architecture-based development focuses on finding a stable design and a
stable (predictable) development plan

Architect’s Influences

Business
—
Technical —> Stakeholders [
Project
Professional
; Architect

B Documentation of the architecture: See [150/IEC/IEEE, 2011]

Nl 1.3 Software architecture and Middleware

B Middleware is

® Middleware is software glue

® Middleware is computer software that connects software components or
applications. It is used most often to support complex, distributed applications.

u

Middleware is any software that allows other software to interact

B |n short, in the “Component-and-connector” view of a software architecture,
middleware is about the “connector” part

® Design patterns exist for the design of the connectors

Home work: Study the slides "Introduction to design patterns for
middleware™:

e Asynchronous call, Synchronous call, Buffered messages, Inversion of
control, Proxy, Wrapper, Interceptor, Component/Container, etc.

B Middleware and architectural patterns are are strongly related

B See M. Richards, “Software Architecture Patterns”

http://www-inf.it-sudparis.eu/COURS/CSC5002/Diapos/designpatternmw-diapos.pdf
http://www-inf.it-sudparis.eu/COURS/CSC5002/Diapos/designpatternmw-diapos.pdf
http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf
https://www.oreilly.com/content/software-architecture-patterns/

I 1.4 Architectural patterns Vs. Design patterns

Architectural pattern

o« ~e

Coarse System

7/30 09/2021

_ 2 Software architecture and Views

1. Motivations and objectives

2. Software architecture and Views

2.1 Definition of “Software architecture”

2.2 Other architectures: System and Enterprise
2.3 Views of a software architecture

3. Attribute-Driven Design (ADD)

B > 1 Definition of “Software architecture”

B “The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both” [Bass et al., 2012]

B Software architecture = an abstraction —i.e. omits certain information

® Elements interact with each other by means of interfaces that partition details
into public and private parts

" Architecture focuses on the public side of this division

B Desirable properties of software architectures:

® Can be constructed, evaluated, and documented
® Answer to requirements to satisfy stakeholders
[

Have a repertoire of patterns and description languages
(Architecture Description Language, ADL)

I > 1.1 Examples of sets of software structures

B Module decomposition structures = Implementation units

® What is the primary functional responsibility, e.g. assigned to each element?
® What other elements is an element allowed to use?

® What other software does it actually use and depend on?
B Component-and-connector structures = runtime entities, e.g.

What are the major runtime elements and how do they interact?

What are the major shared data stores?

Which parts of the system are replicated? Can run in parallel?
® Can the system’s structure change as it executes and, if so, how?

B Allocation structures = mapping from software structures to organizational,
developmental, installation, e.g.

® What is the assignment of each software element to development teams?

Brook’s Mythical Man-Month: group inter-communication = O(n?)

Conway's law: design structure = a copy of the organization's
communication structure

Introduction to software architecture

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/Conway's_law

I 0 2 Other architectures: System and Enterprise

B System architecture

® Is concerned with a total system, including hardware, software, and humans

® In this presentation, we limit ourselves to software architecture of
software-intensive systems

— E.g., we do not target hardware-software co-design of embedded systems
B Enterprise architecture

® Software is only one concern of enterprise architecture

® Other common concerns addressed by enterprise architecture are how the
software is used by humans to perform business processes, and how it is
organised into subunits that aligned with the organization's core goals and
strategic direction

B Each type of architecture has its own specialized vocabulary and techniques

_ 2.3 Views of a software architecture

B Each of the software structures provides a different perspective

® E.g. module decomposition, component-and-connector, allocation

B Although they give different system perspectives, they are not independent

® Elements of one structure will be related to elements of other structures

® We need to reason about the relations

B A view is a representation of a set of elements and relations among them

® Not all system elements, but those of a particular type

B Documenting an architecture is a matter of documenting the relevant views
and then adding documentation that applies to more than one view

N - s 1 Example of Client—Server with two views

Gystem \ / @ @ \
Client . : @
& K@

o ®
P YW -y

Decomposition View Client-Server View

Server

13/30 09/2021 i n Introduction to software ar¢

I 3 Attribute-Driven Design (ADD)

1. Motivations and objectives
2. Software architecture and Views

3. Attribute-Driven Design (ADD)

3.1 Quality attribute requirements

3.2 Tactics

3.3 Architectural Pattern

3.4 Tactics versus Architectural Patterns
3.5 ADD Methodology

Introduction to software architecture

I 1 Quality attribute requirements

3.1.1 Definition of “Quality attribute”
3.1.2 ISO/IEC 25010 product quality standard
3.1.3 Modelling quality attribute requirements

Introduction to software architecture

I 3.1.1 Definition of “Quality attribute”

B “A quality attribute is a measurable or testable property of a system that is
used to indicate how well the system satisfies the needs of its
stakeholders” [Bass et al., 2012]

B Quality is related to the functions as perceived by the user or customer

B Quality is about the extra-functional characteristics: modifiability, usability,
testability, scalability, availability, security, etc.

B Quality attributes (when architecting) 7 Constraints (taken before)

Quality
attributes

Functional

Non-
functional

Business
requirements

Constraints

w4

I 3.1.2 1SO/IEC 25010 product quality standard |

System Software
Product Quality

Functional

Performance
I I
suitability efficiency Compatibility m
Functional

completeness

Time behavior MGl Maturity Confidentiality Modularity Adaptability
recognizability
Functional

correctness

Resource

Functional

appropriateness =
Capacity Operability Fault tolerance Nonrepudiation Analyzability Replaceability

User error
prediction Recoverability

Accountability Modifiability

User interface Authenticity
aesthetics

Accessibility

_

Introduction to softw

re architect } BOLTECHNIavE

I 3.1.2 1SO/IEC 25010 product quality standard 11

Introduction to software architecture -

Functional suitability: The degree to which a product or system provides functions
that meet stated and implied needs when used under specified conditions

Performance efficiency: Performance relative to the amount of resources used under
stated conditions

Compatibility: The degree to which a product, system, or component can exchange
information with other products, systems, or components, and/or perform its required
functions, while sharing the same hardware or software environment

Usability: The degree to which a product or system can be used by users to achieve
goals with effectiveness, efficiency, and satisfaction in a context of use

Reliability: The degree to which a system, product, or component performs specified
functions under specified conditions for a specified period of time

Security: The degree to which a product or system protects information and data so
that persons or other products or systems have the degree of data access appropriate
to their types and levels of authorization

Maintainability: The degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers

Portability: The degree of effectiveness and efficiency with which a system, product,
or component can be transferred from one hardware, software, or other operational or
usage environment to another

@ e

N 3 13 Modelling quality attribute requirements |

B Quality attribute requirements are modelled into scenarios

B | et's take an example from the document that describes the micro-project:

¥ Section 2.3, at page 7: “Each participant publishes his/her location. Each
participant receives locations of other participants in the group.”

® Section 3, at page 11: “The system should be able to handle up to 3000
groups of tourists at a time, and handle up to 3000 x 10 tourists. The system
notifies all the members of the group of the tourists within a maximum of 1
second after having received a location from a tourist.”

B |n Section 3, at page 11, of the document that describes the micro-project:

® “In the report of the micro-project, we ask you to analyse the architecture of
the application with regard to two quality attributes chosen among the
following ones: (1) scalability, (2) security, and (3) interoperability.”

N 3 13 Modelling quality attribute requirements ||

who or what A tourist
Source

does something ...broadcasts a location message to

Stimulus the members of their group

under certain conditions ...during normal operations, with at
most 3000 x 10 tourists that are
broadcasting at most one message

Environment

per second,
to the system or part of it ...to the group communication sys-
Artifact tem.
the system reacts with these ac- | The group communication system
Response tions notifies (sends notifications to) all
the members of the group of the
tourists
which can be measured by these | ...within a maximum of 1 second
Resp. measure metrics after having received the broadcast

message from the tourist.

Introduction to software architecture OORE

N 3 13 Modelling quality attribute requirements IlI

B What to specify in stimulus-oriented requirements modelling

1.

Source of stimulus: This is some entity (a human, a computer system, or any
other actuator) that generated the stimulus

Stimulus: The stimulus is a condition that requires a response when it arrives
at a system

Environment: The stimulus occurs under certain conditions (environment
state). The system may be in an overload condition or in normal operation, or
some other relevant state.

Artifact: Some artifact is stimulated. This may be a collection of systems, the
whole system, or some piece or pieces of it

Response: The response is the activity undertaken by the system as the result
of the arrival of the stimulus

Response measure: When the response occurs, it should be measurable in
some fashion so that the requirement can be tested

B See Slide 2 in the appendices for some other illustrative scenarios

_ 3.2 Tactics

3.2.1 Definition of “Tactic”
3.2.2 Working on “Tactics”

@ e

I 3 2.1 Definition of “Tactic”

B The quality attribute requirements specify the responses of the system that
realize the goals of the business

B Techniques to achieve quality attributes are called architectural tactics

B “A tactic is a design decision that influences the achievement of a quality
attribute response” [Bass et al., 2012]

Tactics
————»| toControl ———>
Stimulus Response | Response

B The focus of a tactic is on a single quality attribute response

Within a tactic, there is no consideration of tradeoffs

In this respect, tactics differ from architectural patterns, where tradeoffs are
built into the pattern (See Slide 26)

N ;2 0 Working on “Tactics” |

B \We propose to work on tactics by studying chapters of Bass, Clements, and
Kazman's book [Bass et al., 2012]

" Availability

http://www-inf.telecom-sudparis.eu/COURS/CSC5002/QualityAttributes-Documents/2013-SoftwareArchitectureInPractice-QualityAvailability.pdf
http://www-inf.telecom-sudparis.eu/COURS/CSC5002/QualityAttributes-Documents/2013-SoftwareArchitectureInPractice-QualitySecurity.pdf
http://www-inf.telecom-sudparis.eu/COURS/CSC5002/QualityAttributes-Documents/2013-SoftwareArchitectureInPractice-QualityInteroperability.pdf
http://www-inf.telecom-sudparis.eu/COURS/CSC5002/QualityAttributes-Documents/2013-SoftwareArchitectureInPractice-QualityModifiability.pdf
http://www-inf.telecom-sudparis.eu/COURS/CSC5002/QualityAttributes-Documents/2015-TheArtofScalability-QualityScalability.pdf
http://www-inf.telecom-sudparis.eu/COURS/CSC5002/QualityAttributes-Documents/2013-SoftwareArchitectureInPractice-QualityPerformance.pdf

_3.3 Architectural Pattern

B Architectural pattern = composition of architectural elements
® is a bundle of design decisions that is found repeatedly in practice
® has known properties that permet reuse

B describes a class of architectures

B Exemples: layered pattern, shared-data or repository pattern, client-server
pattern, multi-tier pattern, distributed event-based pattern

B Pattern cataloguers strive to understand how the characteristics lead to
different behaviors and different responses to environmental conditions

® There will never be a complete list of patterns

Patterns spontaneously emerge in reaction to environmental conditions

As long as those conditions change, new patterns will emerge

_ 3.4 Tactics versus Architectural Patterns

B Architectural patterns consist of a bundle of design decisions/tactics

® They are often difficult to apply as is. Architects need to modify/adapt them.

Patterns Tactics

e High-level * Design
structure and decisions
behaviour or e Improve
SW systems individual

* Solution to quality
multiple attribute
system concerns
requirements

B By understanding the role of tactics, an architect can more easily assess the
options for augmenting an existing pattern to achieve a quality attribute goal

I 3.5 ADD Methodology |

|

o

—

Step 1: Choose an element of the
system to design

|

Step 2: Identify the ASRs for this
element

}

Step 3: Generate a design solution for

the chosen element

}

Step 4: Verify & refine requirements
and prepare next iteration

|

<= Element is mostly
a functional
“component”

<= Design solution
introduces
“connectors”
—i.e. middleware

ASR = Architecture Significant Requirement: e.g. a quality attribute

Element = the whole system, a subsystem, or a component

Introduction to software architect

@ e

I 3.5 ADD Methodology I
I

Step 1: Choose an element of the
system to design

I l

Substep 1: Choose patterns and tactics

Substep 2: Instantiate patterns and Step 2: Identify the ASRs for this
tactics element
v \
Substep 3: Allocate responsibilities to Step 3: Generate a design solution for
components the chosen element

v
Substep 4: Define interfaces for Step 4: Verify & refine requirements
components and prepare next iteration

| I

Instantiate patterns and tactics = Use the functional requirements to help instantiate
the roles of the patterns and tactics
Responsabilities = Functionalities

ecture

_ References |

Bass, L., Clements, P., and Kazman, R. (2012).

Software Architecture in Practice, 3rd Edition.

Addison-Wesley.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord, R., and Stafford, J.
(2011).

Documenting Software Architecture: Views and Beyond, 2nd Edition.

Addison-Wesley.

Clements, P., Kazman, R., and Klein, M. (2002).
Evaluating Software Architectures: Methods and Case Studies.
Addison-Wesley.

ISO/IEC (1991).
Information technology — Software product evaluation — Quality characteristics and guidelines for their use.

International Standard ISO/IEC-9126, ISO/IEC Joint Technical Committee

ISO/IEC/IEEE (2011).

Systems and software engineering — Architecture description.

International Standard ISO/IEC/IEEE-42010:2011, ISO/IEC/IEEE Joint Technical Committee.

_ References |l

Richards, M. (2015).
Software Architecture Patterns: Understanding Common Architecture Patterns and When to Use Them.

O'Reilly.

Sunyaev, A. (2020).

Internet Computing: Principles of Distributed Systems and Emerging Internet-Based Technologies.

Nl Appendices

4. Examples of illustrative scenarios of quality attribute requirements

5. Example of decisions for some tactics

6. Example of a catalog of questions

@ e

I Examples of illustrative scenarios of quality at-
tribute requirements |

B |n [Bass et al., 2012], they are modelled in graphics

Artifact <
Processors, m
communication _—
Stimulus | channels, persistent Response

Fault: storage, processes | pravent fault from
omission, becoming failure
Source crash, Environment Detect fault: log, notify Response
of Stimulus incorrect Normal operation, Recover from fault: Measure

Internal/External: timing, startup, shutdown, disable event source, Time or time interval
people, hardware, incorrect repair mode, be unavailable, system must be available
software, physical résponse degraded fixmask, degraded Availability percentage
infrastructure, operation, mode Time in degraded mode
physical overloaded Time to detect fault
environment operation Repair time

Proportion of faults
system handles

_ duction to software architec

I Examples of illustrative scenarios of quality at-
tribute requirements II

B Availability
Ny
_—
3 Process
Stimulus: Response:
Server Inform
Unresponsive Environment: Operator
Source: % : Continue Response
orma Measure:
Heartbeat . to Operate
Monitor Operation No Downtime

tribute requirements Il|

B [nteroperability

I Examples of illustrative scenarios of quality at-

Artifact:
———p| Traffic Monitoring
Stimulus: System Response:
Current Traffic Monitor
Location Combines Current
Source Sent Environment: Location with Other Response
of Stimulus: Systems known Information, Measure:
Our Vehicle prior to run-time Overlays on Google Our Information
Information Maps, and Included Correctly
System Broadcasts 99.9% of the Time

W B

Introduction to software architecture

4 05/2021

I Examples of illustrative scenarios of quality at-
tribute requirements IV

B Modifiability
e
»| Artifact: |
Stimulus: Code Response:
Wishes Change Made
to Change . and Unit Tested
So . the UI Environment: Response
urce: Design Measure:
Developer Time In Three
Hours

I Examples of illustrative scenarios of quality at-
tribute requirements V

B Performance

WY

Artifact:
System

Stimulus: Response:
Initiate Transactions
Transactions Envi i Are Processed
nvironment:
Source: e Response
Users ormal Measure:
Operation Average
Latency
of Two
Seconds

I Examples of illustrative scenarios of quality at-
tribute requirements VI

B Security
Artifact:
Data within
Stimulus: the System Response:
Attempts to System
Modify Pay Maintains
. Rate Environment: Audit Trail Response
ggurrucn‘;'e d Normal Measure:
I "
Emgloyee from Operations Correct Data Is
Remote Location Restored within a
Day and Source
of Tampering
Identified

I Examples of illustrative scenarios of quality at-
tribute requirements VII

B Testability
e
Artifact; XWAN
ST Code Unit e —-
Stimulus: Response:
Code Unit Results Captured
Completed
Environment: Response
Source:
Measure:
Unit Tester Development

85% Path Coverage
in Three Hours

I Examples of illustrative scenarios of quality at-
tribute requirements VIl

B Usability
P R
Artifact: m
= System >
Stimulus: Response:
Downloads User Uses
a New - Application
Source: Application Environment: Productively aespons.e
U Runtime easure:
ser)
Within Two
Minutes of
Experimentation

I - Example of decisions for some tactics |

B In [Bass et al., 2012], sets of decisions are graphically displayed.
The slides of this section contain some of these graphics.

B [nteroperability tactics

Interoperability Tactics

AN
NS
Locate Manage Interfaces
Information { Request
—_— t -
Exchange : Correctly
Request Discover Orchestrate Handled

Service
Tailor Interface

Introduction to software architecture

I - Example of decisions for some tactics Il

B Performance tactics

Event
Arrives

Performance Tactics

Control Resource Demand

Manage Sampling Rate
Limit Event Response
Prioritize Events
Reduce Overhead
Bound Execution Times

Increase Resource
Efficiency

Manage Resources

Increase Resources
Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes
Schedule Resources

_ Introdu o software architect

Response
Generated within
Time Constraints

N 5 Example of decisions for some tactics Il

B Modifiability tactics

Modifiability Tactics

~ ~

S

S ‘\
Reducg Size Increase Reduce Defer
of aModule Cohesion Coupling Binding
Change Change Made
i v .
Arrives : Increase Encapsulate within Time
Split Module gomantic Use o and Budget
Coherence | ntermediary
Restrict
Dependencies
Refactor

Abstract Common
Services

@ e

nan Introduction to software architecture

I - Example of decisions for some tactics IV

B Security tactics

Detect Attacks

Detect

Intrusion

Detect Service
Denial

Verify Message
Integrity

Detect Message
Delay

Attack
>l

Security Tactics

7
/

K X
Resist Attacks

v
Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access
Limit Exposure
Encrypt Data

Separate
Entities

Change Default

Settings

React to

““~Recover

Attacks from Attacks
v AN o
7

Revoke Maintain Restore
Access 4 B

Audit Trail
Lock System Detects,
Computer \J Resists, Reacts,’

See» _ | or Recovers

Inform Availability
Actors

! duction to software architec

3

N 5 Example

B Availability tactics

Fault

o
Detect Faults

v
Ping / Echo

Monitor
Heartbeat
Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Availability Tactics

Preparation
and Repair

v
Active
Redundancy

Passive
Redundancy

Spare

Exception
Handling

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Recover from Faults

A

A
Reintroduction

|

Shadow

State
Resynchronization

Escalating
Restart

Non-Stop
Forwarding

B,
Prevent Faults

v
Removal from
Service

Transactions

Predictive
Model

Exception
Prevention

Increase
Competence Set

of decisions for some tactics V

Fault
Masked

Repair

Made
—

TeLEcom|
Introduction to software architect E-

I - Example of a catalog of questions |

B We can view an architecture as the result of applying a collection of design
decisions

B Slides of this section propose some initial categories of decisions

® During the design of your solution, use these slides as a reminder

B These design decisions are fine-grained; this is why there are inserted in the
appendix

I - Example of a catalog of questions Il

B Allocation of responsibilities

® ldentifying the important responsibilities, including basic system functions,

architectural infrastructure, and satisfaction of quality attributes

Determining how these responsibilities are allocated to non-runtime and
runtime elements (namely, modules, components, and connectors)

I - Example of a catalog of questions IlI

B Coordination model

® Identifying the elements of the system that must coordinate, or are prohibited

from coordinating
Determining the properties of the coordination, such as timeliness, currency,
completeness, correctness, and consistency

® Choosing the communication mechanisms (between systems, between our
system and external entities, between elements of our system)

Stateful versus stateless
Synchronous versus asynchronous

Guaranteed versus nonguaranteed delivery

Performance-related properties such as throughput and latency

Denis Conan Introduction to software architecture

I - Example of a catalog of questions IV

B Data model

® Choosing the major data abstractions, their operations, and their properties

How the data items are created, initialized, accessed, persisted,
manipulated, translated, and destroyed

® Compiling metadata needed for consistent interpretation of the data

Organizing the data

In a relational database, a collection of objects, or both

e If both, then the mapping between the two different locations of the
data must be determined

I - Example of a catalog of questions V

B Management of resources

Identifying the resources that must be managed and determining the limits for
each
Determining which system element(s) manage each resource

Determining how resources are shared and the arbitration strategies employed
when there is contention

Determining the impact of saturation on different resources

I - Example of a catalog of questions VI

B Mapping among architectural elements

® The mapping of modules and runtime elements to each other

The runtime elements that are created from each module

The modules that contain the code for each runtime element
® The assignment of runtime elements to processors
® The assignment of items in the data model to data stores

® The mapping of modules and runtime elements to units of delivery

I - Example of a catalog of questions VII

B Binding time decisions

® Binding time decision establishes the scope, the point in the life cycle, and the
mechanism for achieving the variation

For allocation of responsibilities, you can have build-time selection of
modules via a parameterized makefile

For choice of coordination model, you can design runtime negotiation of
protocols

For resource management, you can design a system to accept new peripheral
devices plugged in at runtime, after which the system recognizes them and
downloads and installs the right drivers automatically

For choice of technology, you can build an app store for a smartphone that
automatically downloads the version of the app appropriate for the phone of
the customer buying the app.

Introduction to software architecture

I - Example of a catalog of questions VIII

B Choice of technology

Deciding which technologies are available to realize the decisions made in the
other categories

Determining whether the available tools to support this technology choice
(IDEs, simulators, testing tools, etc.) are adequate for development

Determining the extent of internal familiarity as well as the degree of external
support available for the technology (such as courses, tutorials, examples, and
availability of experts) and deciding whether this is adequate

Determining the side effects of choosing a technology, such as a required
coordination model or constrained resource management opportunities

Determining whether a new technology is compatible with the existing
technology stack

Can the new technology run on top of or alongside the existing technology
stack?

Can it communicate with the existing technology stack?

Can the new technology be monitored and managed?

Introduction to software architecture

	Motivations and objectives
	On a technical perspective
	On a business perspective
	Software architecture and Middleware
	Architectural patterns Vs. Design patterns

	Software architecture and Views
	Definition of ``Software architecture''
	Other architectures: System and Enterprise
	Views of a software architecture

	Attribute-Driven Design (ADD)
	Quality attribute requirements
	Tactics
	Architectural Pattern
	Tactics versus Architectural Patterns
	ADD Methodology

	Appendix
	Examples of illustrative scenarios of quality attribute requirements
	Example of decisions for some tactics
	Example of a catalog of questions

