
Introduction to spatstat

Adrian Baddeley and Rolf Turner

spatstat version 1.8-6

Abstract

spatstat is a library in S-PLUS/R for the statistical analysis of
point pattern data. This document is a brief introduction to the pack-
age for users.

1

1 Introduction

Spatstat is a contributed library in S-PLUS and R for the statistical analysis
of spatial data. Version 1.x of the library deals mainly with patterns of points
in the plane. 1 The points may carry ‘marks’, and the spatial region in which
the points were recorded may have arbitrary shape. Here is an example:

redbox
sugargum

The package supports

• creation, manipulation and plotting of point patterns

• exploratory data analysis

• simulation of point process models

• parametric model-fitting

• residuals and diagnostic plots

1Line segment patterns are also supported.

2

The point process models to be fitted may be quite general Gibbs/Markov
models; they may include spatial trend, dependence on covariates, and inter-
point interactions of any order (i.e. not restricted to pairwise interactions).
Models are specified by a formula in the S language, and are fitted using a
single function ppm analogous to glm and gam.

This document is an introduction to the main features of spatstat and
its use. Please see the “spatstat Quick Reference” page for an annotated
list of all functions in the library. See the online help or printed manual for
detailed information about each function.

Demonstration

You may like to try the following quick demonstration of the package. A
more extensive demonstration can be seen by typing demo(spatstat) and
demo(diagnose).

library(spatstat) Attach spatstat library

data(swedishpines) Find “Swedish Pines” dataset

X <- swedishpines Rename it

plot(X) Plot it

summary(X) Print a useful summary of it

K <- Kest(X) Estimate its K function

plot(K) Plot the estimated K function

plot(allstats(X)) Plot the F, G, J and K functions

fit <- ppm(X, ~1, Strauss(r=7)) Fit a Strauss process model

fit Describe the fitted model

Xsim <- rmh(model=fit,

start=list(n.start=X$n),

control=list(nrep=1e4)) Simulate from fitted model

plot(Xsim) Plot simulated pattern

data(demopat) Artificial data in irregular

window, with 2 types of points

plot(demopat, box=FALSE) Plot the pattern

plot(alltypes(demopat, "K")) Plot array of cross-type K functions

pfit <- ppm(demopat,

~marks + polynom(x,2), Poisson()) Fit inhomogeneous multitype Poisson

point process model

plot(pfit) Plot the fitted intensity surface

3

2 Data

2.1 Overview

The main types of data supported in spatstat are point patterns, windows ,
pixel images and line segment patterns.

Point patterns

A point pattern is represented in spatstat by an object of class "ppp". This
makes it easy to plot a point pattern, manipulate it and subject it to analysis.

A dataset in this format contains the x, y coordinates of the points, op-
tional ‘mark’ values attached to the points, and a description of the spatial re-
gion or ‘window’ in which the pattern was observed. See help(ppp.object)

for further details.
To obtain a "ppp" object you can

• use one of the datasets supplied with the package;

• create one from data in R, using ppp();

• create one from data in a text file, using scanpp();

• convert data from other R libraries, using as.ppp();

• generate a random pattern using one of the simulation routines.

These possibilities are elaborated below.

Spatial windows

Note that, when you create a new point pattern object, you need to specify
the spatial region or window in which the pattern was observed. There is
intentionally no automatic “guessing” of the window dimensions from the
points alone. 2

The window may have arbitrary shape; it may be a rectangle, a polygon,
a collection of polygons (including holes), or a binary image.

2However, the function ripras will compute an estimate of the window given only the
coordinates of the points.

4

If the observation window needs to be stored as a dataset in its own
right, it is represented in spatstat by an object of class "owin". See
help(owin.object) for further details. Objects of this class can be plot-
ted and manipulated in a few simple ways. They can be created using the
function owin().

The simplest way to create a point pattern with a non-rectangular window
is to use the functions ppp() and/or owin().

Marks

Each point in a spatial point pattern may carry additional information called
a ‘mark’. For example, points which are classified into two or more different
types (on/off, case/control, species, colour, etc) may be regarded as marked
points, with a mark which identifies which type they are. Data recording the
locations and heights of trees in a forest can be regarded as a marked point
pattern where the mark attached to a tree’s location is the tree height.

The current version of spatstat supports marked point patterns of two
kinds:

continuous marks : the mark attached to each point is a single real num-
ber (e.g. tree height);

multitype pattern : points are classified into several types; the mark at-
tached to each point is a level of a factor (e.g. tree species).

The mark values must be given in a vector marks of the same length as
the coordinate vectors x and y. This is interpreted so that marks[i] is the
mark attached to the point (x[i],y[i]).

Note: To distinguish between the cases of continuous marks and mul-
titype points, spatstat requires that for a multitype point pattern, marks
must be a factor.

5

2.2 Standard point pattern datasets

Some standard point pattern datasets are supplied with the package. They
include:

amacrine Austin Hughes’ rabbit amacrine cells multitype
ants Harkness-Isham ant nests data irregular window, multitype
betacells Wässle et al. cat retinal ganglia data multitype
bramblecanes Bramble Canes data multitype
cells Crick-Ripley biological cells data
chorley Chorley-South Ribble cancer data irregular window, multitype
copper Copper deposits data spatial covariates
demopat artificial data irregular window, multitype
finpines Finnish Pines data continuous marks
hamster Aherne’s hamster tumour data multitype
humberside childhood leukaemia data irregular window, multitype
japanesepines Japanese Pines data
lansing Lansing Woods data multitype
longleaf Longleaf Pines data continuous marks
nztrees Mark-Esler-Ripley trees data
redwood Strauss-Ripley redwood saplings data
redwoodfull Strauss redwood saplings data (full set)
residualspaper Data from a journal article
simdat Simulated point pattern
spruces Spruce trees in Saxonia continuous marks
swedishpines Strand-Ripley Swedish pines data

See the Demonstration in the Introduction for an example of how to use

6

these datasets.

2.3 Creating point patterns using ppp()

The function ppp() will create a point pattern (an object of class "ppp")
from data in R.

Point pattern in rectangular window

Suppose the x, y coordinates of the points of the pattern are contained in
vectors x and y of equal length. If the window of observation is a rectangle,
then

ppp(x, y, xrange, yrange)

will create the point pattern. Here xrange, yrange must be vectors of length
2 giving the x and y dimensions, respectively, of the rectangle. For example
ppp(x, y, c(0,1), c(0,1)) would give you a point pattern in the unit
square; this is the default so you could also just type ppp(x, y).

To create a marked point pattern, use the additional argument marks:

ppp(x, y, xrange, yrange, marks=m)

where m is a vector of the same length as x and y. Remember that if you
intend to create a multitype pattern (where the points are classified into a
finite number of possible types) then m must be a factor (use factor or
as.factor to make it one).

Note that we have to use the “name=value” syntax to specify the marks
argument. For example

ppp(runif(100),runif(100), marks=factor(sample(1:2,100,replace=TRUE)))

would make a multitype point pattern of 100 random points, uniformly dis-
tributed in the unit square, with random types 1 and 2.

Point pattern in polygonal window

Spatstat supports polygonal windows of arbitrary shape and topology. That
is, the boundary of the window may consist of one or more closed polygonal
curves, which do not intersect themselves or each other. The window may
have ‘holes’. Type

7

ppp(x, y, poly=p)

to create a point pattern with a polygonal window. Again, x and y are the
vectors of coordinates of the points. The argument poly=p indicates that
the window is polygonal and its boundary is given by the dataset p. Note
we must use the “name=value” syntax to give the argument poly.

If the window boundary is a single polygon, then p should be a list with
components x and y giving the coordinates of the vertices of the window
boundary, traversed anticlockwise. For example,

ppp(x, y, poly=list(x=c(0,1,0), y=c(0,0,1)))

will create a point pattern inside the triangle with corners (0, 0), (1, 0) and
(0, 1).

Note that polygons should not be closed, i.e. the last vertex should not
equal the first vertex. The same convention is used in the standard plotting
function polygon(), so you can check that p is correct by using polygon(p)

to display it.
If the window boundary consists of several separate polygons, then p

should be a list, each of whose components p[[i]] is a list with components
x and y describing one of the polygons. The vertices of each polygon should
be traversed anticlockwise for external boundaries and clockwise for
internal boundaries (holes). For example, in

ppp(x, y, poly=list(

list(x=c(0,10,0), y=c(0,0,10)),

list(x=c(5,5,6,6), y=c(5,6,6,5)))

the window is a large triangle with a small square hole. Notice that the
first boundary polygon is traversed anticlockwise and the second clockwise
because it is a hole.

A marked point pattern is created by adding the argument marks exactly
as above.

8

Point pattern in binary mask

The window for the point pattern may be described by a discrete pixel ap-
proximation. Type

ppp(x, y, mask=m, xrange, yrange)

to create the pattern. Here m should be a matrix with logical entries; it
will be interpreted as a binary pixel image whose entries are TRUE where the
corresponding pixel belongs to the window.

The rectangle with dimensions xrange, yrange is divided into equal
rectangular pixels. The correspondence between matrix indices m[i,j] and
cartesian coordinates is slightly idiosyncratic: the rows of m correspond to
the y coordinate, and the columns to the x coordinate. The entry m[i,j]

is TRUE if the point (xx[j],yy[i]) (sic) belongs to the window, where xx,

yy are vectors of pixel coordinates equally spaced over xrange and yrange

respectively.
Image masks can be read from data files, or created by analytic equations.

For example to create a point pattern inside the unit disc:

w <- owin(c(-1,1), c(-1,1))

w <- as.mask(w)

X <- raster.x(w)

Y <- raster.y(w)

M <- (X^2 + Y^2 <= 1)

pp <- ppp(x, y, c(-1,1), c(-1,1), mask=M)

The first line creates a window (an object of class "owin") representing the
rectangle [−1, 1]×[−1, 1]. The next line converts this to a binary image mask
(a rectangular grid of pixels, with default dimensions 100× 100) in which all
of the pixel values are TRUE. The next two lines create matrices X, Y of the
same dimensions as the pixel image, which contain respectively the x and y

9

coordinates of each pixel. The fourth line defines a logical matrix M whose
entries are TRUE where the inequality x2+y2 ≤ 1 holds, in other words, where
the centre of the pixel lies inside the unit disc. The last line creates a point
pattern with this window.

A marked point pattern is created by adding the argument marks exactly
as above.

2.4 Point pattern in existing window

You may already have a window W (an object of class "owin") ready to hand,
and now want to create a pattern of points in this window. This can be done
with

ppp(x, y, window=W)

For example you may want to put a new point pattern inside the window of
an existing point pattern X; the window is accessed as X$window, so type

ppp(x, y, window=X$window)

To generate random points inside an existing window, it is easiest to use the
simulation functions described in section 2.7.

2.5 Scanning point pattern data from text files

The simple function scanpp() will read point pattern coordinate data from
a text file (in table format) and create a point pattern object from it. See
help(scanpp) for details.

2.6 Converting other data types

The convenient function as.ppp() converts data from other formats into
point pattern objects in spatstat. It will accept point pattern objects from
the Venables-Ripley spatial library (class "spp"), data frames with appro-
priate dimensions or column labels, and raw data. See help(as.ppp) for
details.

10

2.7 Generating random point patterns

The following functions in spatstat generate random patterns of points from
various stochastic models. They return a point pattern (as an object of class
"ppp").

runifpoint generate n independent uniform random points
rpoint generate n independent random points
rmpoint generate n independent multitype random points
rpoispp simulate the (in)homogeneous Poisson point process
rmpoispp simulate the (in)homogeneous multitype Poisson point process
rMaternI simulate the Matérn Model I inhibition process
rMaternII simulate the Matérn Model II inhibition process
rSSI simulate Simple Sequential Inhibition
rNeymanScott simulate a general Neyman-Scott process
rMatClust simulate the Matérn Cluster process
rThomas simulate the Thomas process
rlabel randomly (re)label the points of an existing pattern
rtoro randomly shift the points of an existing pattern
rmh run Metropolis-Hastings algorithm

For example

plot(rMaternI(200,0.05))

will plot one realisation of the Matérn Model I inhibition process with pa-
rameters β = 200 and r = 0.05. See the help entries for these functions for
further details.

11

rMaternI(100, 0.05)

•

•

••
•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

••

•
•

•

•

•

•

•

• •

•

•
•

•

•

The function rmh is a basic implementation of the Metropolis-Hastings
algorithm for simulating point processes. A range of different processes can
be simulated. The function rmh is generic and has two methods, rmh.default
which simulates a point process model specified explicitly by a list of its
parameters, and rmh.ppm which simulates a point process model that has
been fitted to data by the fitting function ppm.

The implementation of rmh in version 1.8 of spatstat can currently gen-
erate simulated realisations of the Strauss process; Strauss process with a
hard core; the Soft Core process; Geyer’s saturation process; pairwise inter-
action processes proposed by Diggle, Gratton and Stibbard (in rmh.default

only) and by Diggle and Gratton; and multitype versions of the Strauss and
Strauss/hard core processes. It can also generate processes with an arbitrary
pairwise interaction function given as a vector of values. All these processes
may have a spatial trend.

For examples, see help(rmh.default) and help(rmh.ppm).

2.8 Pixel images

A ‘pixel image’ is an array of values attached to a rectangular grid of spatial
locations. It may be visualised on the screen as a digital image, a contour
map, or a relief surface.

12

In spatstat a pixel image is represented by an object of class "im". The
individual pixel values may be numeric (real or integer), logical, or factor
levels.

Functions which create a pixel image are
as.im convert data to pixel image
im create a pixel image from raw data

Functions which compute a pixel image from other data include
distmap distance map
density.ppp kernel smoothing of point pattern
density.psp kernel smoothing of line segment pattern
Kmeasure reduced second moment measure of point pattern
setcov set covariance function of spatial window

2.9 Line segment patterns

A spatial pattern of line segments is represented by an object of class "psp".
Like a point pattern, a line segment pattern is assumed to have been observed
inside a spatial window, which must be specified as part of its description.

The functions which create a line segment pattern are
as.psp convert data to line segment pattern
psp create a line segment pattern from raw data

3 Manipulating data

3.1 Plotting

To plot the point pattern object X, type

plot(X)

which invokes plot.ppp(). See help(plot.ppp) for details. Plotting is
isometric, i.e. the physical scales of the x and y axes are the same.

To plot just the window of observation of X, just type plot(X$window).
This calls plot.owin().

A marked point pattern is represented graphically by using different plot-
ting symbols for the points of each type (if it’s a multitype point pattern,
where X$marks is a factor) or by drawing circles of different radii proportional
to the mark value (if the mark is a continuous variable). If you just want to
see the locations of the points without the marks, type plot(unmark(X)).

13

The colours, plotting characters, line widths and so on can be modified
by adding arguments to the plot methods. Default plotting behaviour can
also be controlled using the function spatstat.options. See the help files
for spatstat.options, plot.owin, plot.ppp.

3.2 Subsets of point patterns

The spatstat library supports the extraction and replacement of subsets of
a point pattern, using the array indexing operator "[".

Extraction means either “thinning” (retaining/deleting some points of
a point pattern) or “trimming” (reducing the window of observation to a
smaller subregion and retaining only those points which lie in the subregion).

If X is a point pattern object then

X[subset,]

will cause the point pattern to be “thinned”. The argument subset should
be a logical vector of length equal to the number of points in X. The points
(X$x[i], X$y[i]) for which subset[i]=FALSE will be deleted. The result
is another point pattern object, with the same window as X, but containing
a subset of the points of X.

The pattern will be “trimmed” if we call

X[, window]

where window is an object of class "owin" specifying the window of observa-
tion to which the point pattern X will be restricted. Only those points of X
lying inside the new window will be retained.

Subsets of a point pattern can also be replaced by other data. For example

X[subset] <- Y

will replace the designated subset of X by the pattern Y.
See help(subset.ppp) for full details.

3.3 Other operations on point patterns

Use the function unmark to remove marks from a marked point pattern.
For example plot(unmark(X)) will plot just the locations of the points in a
marked point pattern X.

Use the function setmarks or %mark% to attach marks to an unmarked
point pattern, or to reset the existing values of the marks. For example

14

X <- runifpoint(100) %mark% rexp(100)

generates 100 independent uniformly random points in the unit square and
then attaches random marks to the points, each mark having a negative
exponential distribution. Similarly

X <- rpoispp(42)

M <- sample(letters[1:4], X$n, replace=TRUE)

X <- X %mark% factor(M)

generates a Poisson point process with intensity 42 in the unit square, then
attaches random types a to d to the points. Notice that the length of M

depends on the number of points in X. Note also the use of factor in the
last line.

Use the function cut.ppp to transform the marks of a point pattern from
numerical values into factor levels.

The function split.ppp will divide up a point pattern into a list of several
point patterns according to the values of a factor. It can be used to convert
a multitype point pattern into a list of point patterns, each consisting of the
points of a single type. The result of split can easily be plotted.

The function superimpose will combine several point patterns into a
single point pattern. It accepts any number of arguments, which must all be
"ppp" objects:

U <- superimpose(X, Y, Z)

The functions rotate, shift and affine will subject the point pattern
to a planar rotation, translation and affine transformation respectively.

The function ksmooth.ppp performs kernel smoothing of a point pattern.
The function identify.ppp, a method for identify, allows the user to

examine a point pattern interactively.
The functions duplicated.ppp and unique.ppp allow the user to deter-

mine whether any points in a point pattern are duplicated, and to remove
duplicates.

3.4 Manipulating spatial windows

As explained above, a point pattern object contains a description of the
spatial region or window in which the pattern was observed. This is an
object of class "owin". It is often convenient to create, manipulate and plot

15

these windows in their own right. The following functions are available; see
their help files for details.

Creating new windows

owin create a window
as.owin convert other data into a window
is.owin test whether object is a window
bounding.box Find smallest rectangle enclosing the window
erode.owin Erode window by a distance r
rotate.owin Rotate the window
shift.owin Translate the window in the plane
affine.owin Apply an affine transformation
complement.owin Invert (inside ↔ outside)
is.subset.owin Test whether one window contains another
intersect.owin Intersection of two windows
union.owin Union of two windows
ripras Estimate the window, given only the points

Just for fun, we provide the dataset letterR, a polygonal window ap-
proximating the shape of the R logo.

Digital approximations:

It is possible (and sometimes necessary) to approximate a window using a
discrete grid of pixels.

as.mask Make a discrete pixel approximation of a given window
nearest.raster.point map continuous coordinates to raster locations
raster.x raster x coordinates
raster.y raster y coordinates

The default accuracy of the approximation can be controlled using spatstat.options.

16

Geometrical computations with windows:

intersect.owin intersection of two windows
union.owin union of two windows
inside.owin determine whether a point is inside a window
area.owin compute window’s area
diameter compute window’s diameter
eroded.areas compute areas of eroded windows
bdist.points compute distances from data points to window boundary
bdist.pixels compute distances from all pixels to window boundary
distmap distance map image
centroid.owin compute centroid (centre of mass) of window

17

4 Exploratory Data Analysis

4.1 Basic inspection

A useful summary of information about a point pattern dataset X can be
obtained by typing

summary(X)

which invokes the function summary.ppp. It computes the average intensity
of points, summarises the marks if X is a marked point pattern, and describes
the window.

To decide whether the intensity of points is constant over the window,
try

plot(ksmooth.ppp(X))

which computes a kernel-smoothed estimate of the local intensity function
and displays it as an image.

For a multitype pattern it is useful to separate out the points of each
type, using split.ppp. For example

plot(split(X))

plots the sub-patterns side-by-side.

4.2 Quadrat methods

Quadrat counting is a simple way to inspect point pattern data. The window
of observation is divided into a grid of rectangular tiles, and the number of
data points in each tile is counted. Quadrat counts can be obtained using
the function quadratcount.

4.3 Summary statistics

The library will compute estimates of the summary functions

F (r), the empty space function

G(r), the nearest neighbour distance distribution function

K(r), the reduced second moment function (”Ripley’s K”)

J(r), the function J = (1 − G)/(1 − F)

g(r), the pair correlation function g(r) = [d
dr

K(r)]/(2πr)

18

for a point pattern, and their analogues for marked point patterns.
These estimates can be used for exploratory data analysis and in formal

inference about a spatial point pattern. They are well described in the liter-
ature, e.g. Ripley (1981), Diggle (1983), Cressie (1991), Stoyan et al (1995).
The J-function was introduced by van Lieshout and Baddeley (1996).

The point pattern has to be assumed to be “stationary” (statistically ho-
mogeneous under translations) in order that the functions F, G, J, K be well-
defined and the corresponding estimators approximately unbiased. (There is
an extension of the K function to inhomogeneous patterns; see below).

The empty space function F of a stationary point process X is the cu-
mulative distribution function of the distance from a fixed point in space to
the nearest point of X. The nearest neighbour function G is the c.d.f. of
the distance from a point of the pattern X to the nearest other point of X.
The J function is the ratio J(r) = (1 − G(r))/(1 − F (r)). The K function
is defined so that λK(r) equals the expected number of additional points of
X within a distance r of a point of X, where λ is the intensity (expected
number of points per unit area).

In exploratory analyses, the estimates of F, G, J and K are useful statis-
tics. F summarises the sizes of gaps in the pattern; G summarises the clus-
tering of close pairs of points; J is a comparison between these two effects;
and K is a second order measure of spatial association.

For inferential purposes, the estimates of F, G, J, K are usually compared
to their true values for a completely random (Poisson) point process, which
are

F (r) = 1 − exp(−λπr2)

G(r) = 1 − exp(−λπr2)

J(r) = 1

K(r) = πr2

where again λ is the intensity. Deviations between the empirical and theo-
retical curves may suggest spatial clustering or spatial regularity.

4.4 Implementation in spatstat

The corresponding spatstat library functions are :

19

Fest empty space function F
Gest nearest neighbour distribution function G
Kest Ripley’s K-function
Jest J-function
allstats all four functions F, G, J, K
pcf pair correlation function g

(Some others are listed below).
The routines Fest, Gest, Jest, Kest, pcf each return an object of

class "fv". This is a data frame with some extra features making it easier
to plot. A column labelled r in the data frame contains the values of the
argument r for which the summary function (F (r), etc) has been evaluated.
Other columns give the estimates of the summary function itself (F (r), etc)
by various methods. Another column theo contains the theoretical (Poisson)
value of the same function.

r

K
(r

)

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

data
Poisson

These columns can be plotted against each other for the purposes of
exploratory data analysis. For example

G <- Gest(X)

plot(Gr, Gkm, type="l")

will give you a basic plot of Ĝ(r) against r where Ĝ(r) is the Kaplan-Meier
estimate of G(r) computed by Gest. More elegantly

G <- Gest(X)

plot(G)

20

will produce a nice default plot of Ĝ(r) against r using the plot method
(plot.fv). This plot method allows you to specify a plot of several curves
together using a formula:

plot(G, cbind(km, rs, theo) ~ r)

will plot the Kaplan-Meier estimate G$km, the border corrected (reduced
sample) estimate G$rs, and the theoretical Poisson value, against r. This can
be abbreviated using the symbol • to represent all the available estimates:

plot(G, . ~ r)

If you prefer a P–P style plot, try

plot(G, cbind(km, theo) ~ theo)

or

plot(G, . ~ theo)

Ripley’s K function is often transformed to L(r) =
√

K(r)/π. To estimate
and plot the L function, type

K <- Kest(X)

plot(K, sqrt(./pi) ~ r)

For a quick first analysis of a point pattern it is often convenient to hit

plot(allstats(X))

which plots estimates of the F, G, J and K functions in a single display. See
section 4.10 for more information on allstats.

21

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

km
 ,

th
eo

F function

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r
km

 ,
th

eo

G function

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r

km
 ,

th
eo

J function

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

r

tr
an

s
, t

he
o

K function

Four summary functions for redwood.

There are also several related alternative functions. For the second order
statistics, alternatives are:

Kinhom K function for inhomogeneous patterns
Kest.fft fast K-function using FFT for large datasets
Kmeasure reduced second moment measure

See the help files for these functions.
Distances between points are also computed (without edge correction)

by:

22

nndist nearest neighbour distances
pairdist distances between all pairs of points
crossdist distances between points in two patterns
exactdt distance from any location to nearest data point
distmap distance map

4.5 Function envelopes

A popular strategy for assessing whether a point pattern is ‘random’ (Pois-
son) or has interpoint interactions, is to plot a summary function for the
data (e.g. the K function) together with the upper and lower envelopes of
the K functions for 99 simulated realisations of a completely random (uni-
form Poisson) point process. This can be done with the command envelope.

4.6 Comparing and combining summary functions

The command eval.fv will evaluate any expression involving summary func-
tions. For example, you can use it to subtract one K function from another:

KX <- Kest(X)

KY <- Kest(Y)

Kdiff <- eval.fv(KX - KY)

plot(Kdiff)

will evaluate and plot the difference between the K functions of two point
patterns X and Y.

4.7 Pixel images

Functions which display or manipulate a pixel image include
plot.im plot a pixel image on screen as a digital image
contour.im draw contours of a pixel image
persp.im draw perspective plot of a pixel image
[.im extract subset of pixel image
print.im print basic information about pixel image
summary.im summary of pixel image
is.im test whether an object is a pixel image
compatible.im test whether two images have compatible dimensions
eval.im evaluate an expression involving pixel images
shift.im apply vector shift to pixel image

23

4.8 Line segment patterns

Functions which display or manipulate a line segment pattern include
plot.psp plot a line segment pattern
[.psp extract subset of line segment pattern
print.psp print basic information about line segment pattern
summary.psp print summary of line segment pattern
endpoints.psp extract endpoints of line segments
midpoints.psp compute midpoints of line segments
lengths.psp compute lengths of line segments
angles.psp compute orientation angles of line segments
distmap.psp compute distance map of line segments
density.psp kernel smoothing of line segments
affine.psp affine transformation of line segments
shift.psp vector shift of line segment pattern
rotate.psp rotation of line segment pattern

4.9 Summary statistics for a multitype point pattern:

Analogues of the G, J and K functions have been defined in the literature for
“multitype” point patterns, that is, patterns in which each point is classified
as belonging to one of a finite number of possible types (e.g. on/off, species,
colour). The best known of these is the cross K function Kij(r) derived by
counting, for each point of type i, the number of type j points lying closer
than r units away.

Gcross,Gdot,Gmulti multitype nearest neighbour distributions Gij, Gi•

Kcross,Kdot, Kmulti multitype K-functions Kij , Ki•

Jcross,Jdot,Jmulti multitype J-functions Jij , Ji•

alltypes array of multitype functions
Iest multitype I-function

These functions (with the exception of alltypes) operate in a very similar

way to Gest, Jest, Kest with additional arguments specifying the type(s)
of points to be studied.

To compute and plot the cross K function Kij(r) for all possible pairs of
types i and j,

plot(alltypes(X,"K"))

24

See the next section for further information.

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tr
an

s
, t

he
o

(off,off)

0.00 0.05 0.10 0.15
0.

00
0.

02
0.

04
0.

06

r

tr
an

s
, t

he
o

(off,on)

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tr
an

s
, t

he
o

(on,off)

0.00 0.05 0.10 0.15

0.
00

0.
02

0.
04

0.
06

r

tr
an

s
, t

he
o

(on,on)

Array of K functions for amacrine.

4.10 Function arrays

A function array is a collection of functions fi,j(r) indexed by integers i and
j. An example is the set of cross K functions Kij(r) for all possible pairs of
types i and j in a multitype point pattern. It is best to think of this as a
genuine matrix or array.

25

A function array is represented in spatstat by an object of type "fasp".
It can be stored, plotted, indexed and subsetted in a natural way. If Z is a
function array, then

plot(Z)

plot(Z[,3:5])

will plot the entire array, and then plot the subarray consisting only of
columns 3 to 5. See help(fasp.object), help(plot.fasp) and help("[.fasp")

for details.
The value returned by alltypes is a function array. alltypes computes

a summary statistic for each possible type, or each possible pairs of types,
in a multitype point pattern. For example if X is a multitype point pattern
with 3 possible types,

Z <- alltypes(X, "K")

yields a 3×3 function array such that (say) Z[1,2] represents the cross-type
K function K1,2(r) between types 1 and 2. The command plot(Z) will plot
the entire set of cross K functions as a two-dimensional array of plot panels.
Arguments to plot.fasp can be used to change the plotting style, the range
of the axes, and to select which estimator of Kij is plotted.

The value returned by allstats is a 2× 2 function array containing the
F , G, J and K functions of an (unmarked) point pattern.

4.11 Summary functions for a continuously marked

point pattern

Some point patterns are marked, but not multitype. That is, the points may
carry marks that do not belong to a finite list of possible types. The marks
might be continuous numerical values, complex numbers, etc.

An example in spatstat is the dataset longleaf where the marks rep-
resent tree diameters. You can easily recognise whether a point pattern is
multitype or not by the behaviour of the plot function: a multitype pattern is
plotted using different plotting symbols for each type, while a marked point
pattern with numerical marks is plotted using circles of radius proportional
to the marks.

There are a few ways to study such patterns in spatstat:

26

• the function markcorr computes the mark correlation function of an
arbitrary marked point pattern. See the help file for markcorr.

• you can convert a marked point pattern to a multitype point pattern
using the function cut.ppp, for example, classifying the marks into
High, Medium and Low, then apply the abovementioned functions for
multitype point patterns. This is usually a good exploratory step.

• the functions Kmulti, Gmulti, Jmulti operate on arbitrary marked
point patterns. They require arguments I, J identifying two subsets
of the point pattern. These two subsets will be treated as two discrete
types.

• ignore the marks (use the function unmark to remove them) and analyse
only the locations of the points.

4.12 Programming tools

spatstat also contains some programming tools to help you perform calcu-
lations with point patterns. One of these is the function applynbd which
can be used to visit each point of the point pattern, identify its neighbouring
points, and apply any desired operation to these neighbours.

For example the following code calculates the distance from each point
in the pattern redwood to its second nearest neighbour:

nnd2 <- applynbd(redwood,

N = 2,

function(Y, cur, d, r){max(d)},

exclude=TRUE)

See the help on applynbd for examples and details.
You can also use applynbd to perform animations in which each point of

the point pattern is visited and a graphical display is executed. There is an
example in demo(spatstat).

27

5 Model fitting

spatstat enables parametric models of spatial point processes to be fitted to
point pattern data. The scope of possible models is very wide. Models may
include spatial trend, dependence on covariates, and interpoint interactions
of any order (i.e. we are not restricted to pairwise interactions). Models
are specified by formulae in the S language and fitted by a function ppm()

analogous to glm() and gam().
Models can be fitted either by the method of maximum pseudolikelihood,

or by an approximate maximum likelihood method. Maximum pseudolike-
lihood is very fast (using a computational device developed by Berman &
Turner (1992) and Baddeley & Turner (2000)). Approximate maximum like-
lihood is slower, but has better statistical properties when the model has
strong interpoint interactions.

For example if X is a point pattern,

ppm(X, ~1, Strauss(r=0.1),)

fits the stationary Strauss process with interaction radius r = 0.1, and

ppm(X, ~x, Strauss(r=0.07),)

fits the non-stationary Strauss process with a loglinear spatial trend of the
form b(x, y) = exp(a + bx).

The value returned by ppm() is a “fitted point process model” of class
"ppm". It can be plotted and predicted, in a manner analogous to the plotting
and prediction of fitted generalised linear models.

Simulation of the fitted model is also possible using rmh.

5.1 Models

Here is a very brief summary of parametric models for point processes. See
Baddeley & Turner (2000), Cox & Isham (1980), and the excellent surveys
by Ripley (1988, 1989).

The point pattern dataset x is assumed to be a realisation of a random
point process X in W . Typically the null model (or the null hypothesis) will

28

be the homogeneous Poisson point process. Other models will be specified
by their likelihood with respect to the Poisson process. Thus we assume
X has a probability density f(x; θ) with respect to the distribution of the
Poisson process with intensity 1 on W . The distribution is governed by a
p-dimensional parameter θ.

We frequently use the Papangelou conditional intensity defined, for a
location u ∈ W and a point pattern x, as

λθ(u,x) =
f(x ∪ {u}; θ)

f(x \ u; θ)

Effectively our technique fits a model to the conditional intensity.
Here are four important examples.

the homogeneous Poisson process with intensity λ > 0 has conditional
intensity

λ(u,x) = λ

the inhomogeneous Poisson process on W with rate or intensity func-
tion λ : W → R, has conditional intensity

λ(u,x) = λ(u).

In statistical models, the intensity λθ(u) will depend on θ to reflect
‘spatial trend’ (a change in intensity across the region of observation)
or dependence on a covariate.

the Strauss process on W with parameters β > 0 and 0 ≤ γ ≤ 1 and
interaction radius r > 0, has conditional intensity

λ(u,x) = β · γt(u,x)

where t(u,x) is the number of points of x that lie within a distance r
of the location u. If γ < 1, the term γt(u,x) makes it unlikely that the
pattern will contain many points that are close together.

the pairwise interaction process on W with trend or activity function
bθ : W → R+ and interaction function hθ : W × W → R+ has condi-
tional intensity

λ(u,x) = bθ(u)
∏

i

hθ(u, xi)

29

The term bθ(u) influences the intensity of points, and introduces a
spatial trend if bθ(·) is not constant. The terms hθ(u, xi) introduce
dependence (‘interaction’) between different points of the process X.

Our technique only estimates parameters θ for which the model is in
“canonical exponential family” form,

f(x; θ) = α(θ) exp(θTV (x))

λθ(u,x) = exp(θTS(u,x))

where V (x) and S(u,x) are statistics, and α(θ) is the normalising constant.

5.2 Implementation in spatstat

The model-fitting function is called ppm() and is strongly analogous to glm()

or gam(). It is called in the form

ppm(X, formula, interaction, ...)

where X is the point pattern dataset, formula is an S language formula
describing the systematic part of the model, and interact is an object of
class "interact" describing the stochastic dependence between points in the
pattern.

What this means is that we write the conditional intensity λθ(u,x) as a
loglinear expression with two components:

λ(u,x) = exp(θ1B(u) + θ2C(u,x))

where θ = (θ1, θ2) are parameters to be estimated.
The term B(u) depends only on the spatial location u, so it represents

“spatial trend” or spatial covariate effects. It is treated as a “systematic”
component of the model, analogous to the systematic part of a generalised
linear model, and is described in spatstat by an S language formula.

The term C(u,x) represents “stochastic interactions” or dependence be-
tween the points of the random point process. It is regarded as a “distri-
butional” component of the model analogous to the distribution family in a
generalised linear model. It is described in spatstat by an object of class
"interact" that we create using specialised spatstat functions.

For example

30

ppm(X, ~1, Strauss(r=0.1),)

fits the stationary Strauss process with interaction radius r = 0.1. The
spatial trend formula ~1 is a constant, meaning the process is stationary.
The argument Strauss(r=0.1) is an object representing the interpoint in-
teraction structure of the Strauss process with interaction radius r = 0.1.
Similarly

ppm(X, ~x, Strauss(r=0.1),)

fits the non-stationary Strauss process with a loglinear spatial trend of the
form b(x, y) = exp(a + bx) where a and b are parameters to be fitted, and
x, y are the cartesian coordinates.

Spatial trend

The formula argument of ppm() describes any spatial trend and covariate
effects. The default is ~1, which corresponds to a process without spatial
trend or covariate effects. The formula ~x corresponds to a spatial trend
of the form λ(x, y) = exp(a + bx), while ~x + y corresponds to λ(x, y) =
exp(a + bx + cy) where x, y are the Cartesian coordinates. These could be
replaced by any S language formula (with empty left hand side) in terms of
the reserved names x, y and marks, or in terms of some spatial covariates
which you must then supply.

You can easily construct spatial covariates from the Cartesian coordi-
nates. For example

ppm(X, ~ ifelse(x > 2, 0, 1), Poisson())

fits an inhomogeneous Poisson process with different, constant intensities on
each side of the line x = 2.

spatstat provides a function polynom which generates polynomials in 1
or 2 variables. For example

~ polynom(x, y, 2)

31

represents a polynomial of order 2 in the Cartesian coordinates x and y. This
would give a “log-quadratic” spatial trend. The distinction between polynom

and poly is explained below. Similarly

~ harmonic(x, y, 2)

represents the most general harmonic polynomial of order 2 in x and y.
It is slightly more tricky to include observed spatial covariates; see sec-

tion 5.7.

Interaction terms

The higher order (“interaction”) structure can be specified using one of the
following functions. They yield an object (of class "interact") describing
the interpoint interaction structure of the model.

Poisson() Poisson process
Strauss() Strauss process
StraussHard() . . . Strauss process with a hard core
Softcore()Pairwise interaction, soft core potential
PairPiece() Pairwise interaction, piecewise constant potential
DiggleGratton() Diggle-Gratton potential
LennardJones() .Lennard-Jones potential
Geyer() Geyer’s saturation process
OrdThresh() Ord process with threshold potential

Note that ppm() estimates only the “exponential family” type parameters of
a point process model. These are parameters θ such that the loglikelihood
is linear in θ. Other so-called “irregular” parameters (such as the interac-
tion radius r of the Strauss process) cannot be estimated by this technique,
and their values must be specified a priori, as arguments to the interaction
function).

For more advanced use, the following functions will accept “user-defined
potentials” in the form of an arbitrary S language function. They effectively
allow arbitrary point process models of these three classes.

Pairwise() Pairwise interaction, user-supplied potential
Ord() Ord model, user-supplied potential
Saturated(). . . Saturated pairwise model, user-supplied potential

32

The brave user may also generate completely new point process models using
the foregoing as templates.

5.3 Fitted models

The value returned by ppm() is a “fitted point process model” of class "ppm".
It can be stored, inspected, plotted and predicted.

fit <- ppm(X, ~1, Strauss(r=0.1), ...)

fit

plot(fit)

pf <- predict(fit)

coef(fit)

Printing the fitted object fit will produce text output describing the fitted
model. Plotting the object will display the spatial trend and the conditional
intensity, as perspective plots, contour plots and image plots. The predict

method computes either the spatial trend or the conditional intensity at new
locations.

Methods are provided for the following generic operations applied to
"ppm" objects:

predict() prediction (spatial trend, conditional intensity)
plot() plotting
coef() extraction of fitted coefficients
fitted() fitted conditional intensity or trend at data points
update() update the fit
summary() print extensive summary information
anova() analysis of deviance

A "ppm" object contains full information about the data to which the
model was fitted. These data can be extracted using the following:

quad.ppm() extract quadrature scheme
data.ppm() extract data point pattern
dummy.ppm() extract dummy points of quadrature scheme

A trap for young players

Note that problems may arise if you use predict on a point process model
whose systematic component is expressed in terms of one of the functions
poly(), bs(), lo(), or ns(). For example

33

fit <- ppm(X, ~ poly(x,2), Poisson())

p <- predict(fit)

The same problem occurs with predict for generalised linear models and
generalised additive models. Each of the abovementioned functions returns
a data frame, containing variables that are transformations of the variables
given as arguments of the function. However the transformations themselves
depend on the values of the arguments. For example poly performs Gram-
Schmidt orthonormalisation. Hence the fitted coefficients contained in the
fit object are not appropriate when we predict at new locations — not
even for the default call to predict(fit) above.

For this reason we have supplied the function polynom which does not
perform any data-dependent transformation, and yields a data frame whose
columns are just the powers of its arguments. Replacing poly by polynom

in the code above does work correctly.
This problem does not affect the function harmonic.

5.4 Simulation and goodness-of-fit

The command rmh.ppm will generate simulated realisations of a fitted point
process model.

The command envelope will compute the upper and lower envelopes of
a summary statistic (such as the K function) for simulated realisations from
a fitted point process model. This can be used as a test of goodness-of-fit for
the fitted model.

5.5 Fitting models to multitype point patterns

The function ppm() will also fit models to multitype point patterns. A mul-
titype point pattern is a point pattern in which the points are each classified
into one of a finite number of possible types (e.g. species, colours, on/off
states). In spatstat a multitype point pattern is represented by a "ppp"

object X containing a vector X$marks, which must be a factor.

Interaction component

Naturally an appropriate specification of the interaction for such a model
must be available. Apart from the Poisson process, so far interaction func-
tions have been written for the following:

34

MultiStrauss() multitype Strauss process
MultiStraussHard() multitype Strauss/hard core process

For the multitype Strauss process, a matrix of “interaction radii” must
be specified. If there are m distinct levels (possible values) of the marks, we
require a matrix r in which r[i,j] is the interaction radius rij between types
i and j. For the multitype Strauss/hard core model, a matrix of “hardcore
radii” must be supplied as well. These matrices will be of dimension m×m
and must be symmetric. See the help files for these functions.

Trend component

The first-order component (“trend”) of a multitype point process model may
depend on the marks. For example, a stationary multitype Poisson point
process could have different (constant) intensities for each possible mark. A
general nonstationary process could have a different spatial trend surface for
each possible mark.

In order to represent the dependence of the trend on the marks, the trend
formula passed to ppm() may involve the reserved name marks.

The trend formula ~ 1 states that the trend is constant and does not
depend on the marks. The formula ~marks indicates that there is a sepa-
rate, constant intensity for each possible mark. The correct way to fit the
multitype Poisson process is

ppm(X, ~ marks, Poisson())

Getting more elaborate, the trend formula might involve both the marks
and the spatial locations or spatial covariates. For example the trend for-
mula ~marks + polynom(x,y,2) signifies that the first order trend is a log-
quadratic function of the cartesian coordinates, multiplied by a constant
factor depending on the mark.

The formulae

~ marks * polynom(x,2)

~ marks + marks:polynom(x,2)

both specify that, for each mark, the first order trend is a different log-
quadratic function of the cartesian coordinates. The second form looks

35

“wrong” since it includes a “marks by polynom” interaction without hav-
ing polynom in the model, but since polynom is a covariate rather than a
factor this is is allowed, and makes perfectly good sense. As a result the two
foregoing models are in fact equivalent. However, they will give output that
is slightly different in appearance. For instance, suppose that there are 3
distinct marks. The first form of the model gives a “baseline” polynomial,
say P0, and two polynomials say P1 and P2. Assume that either Helmert or
sum contrasts were used, so that the “sum constraints” apply. The trends
corresponding to each of the marks would be given by exp(C1 + P0 + P1),
exp(C2 + P0 + P2), and exp(C3 + P0 − P1 − P2) respectively, where C1, C2,
and C3 are the appropriate constant terms corresponding to each of the three
marks.

The second model simply gives 3 polynomials, say p1, p2, and p3, cor-
responding to each of the 3 marks. The trends would then be given by
exp(c1 + p1), exp(c2 + p2), and exp(c3 + p3).

5.6 Quadrature schemes

The function ppm is an implementation of the technique of Baddeley & Turner
(2000) which is based on a quadrature device originated by Berman & Turner
(1992). Complete control over the quadrature technique is possible.

Indeed the function ppm() prefers to be provided with a “quadrature
scheme” as its first argument, although it will make do with a point pattern
and calculate a default quadrature scheme.

A quadrature scheme is an object of class "quad" giving the locations of
quadrature points and the weights attached to them. See help(quad.object)
for more details. The usual way to create a quadrature scheme is to use
quadscheme(). For example:

Q <- quadscheme(simdat,gridcentres(simdat,50,50),

nx=40,ny=40)

fit <- ppm(Q, ~polynom(x,y,3),Softcore(0.5),

correction="periodic")

Following are the most useful functions for manipulating quadrature schemes.

36

quadscheme generate a Berman-Turner quadrature scheme
for use by ppm

default.dummy default pattern of dummy points
gridcentres dummy points in a rectangular grid
stratrand stratified random dummy pattern
spokes radial pattern of dummy points
corners dummy points at corners of the window
gridweights quadrature weights by the grid-counting rule
dirichlet.weights quadrature weights are Dirichlet tile areas
print.quad print basic information
summary.quad summary of a quadrature scheme

5.7 Observed spatial covariates

If you wish to model the dependence of a point pattern on a spatial covariate,
there are several requirements.

• the covariate must be a quantity Z(u) observable (in principle) at each
location u in the window (e.g. altitude, soil pH, or distance to another
spatial pattern). There may be several such covariates, and they may
be continuous valued or factors.

• the values Z(xi) of Z at each point of the data point pattern must be
available.

• the values Z(u) at some other points u in the window must be available.

Thus, it is not enough simply to observe the covariate values at the points
of the data point pattern. In order to fit a model involving covariates, ppm
must know the values of these covariates at every quadrature point.

The argument covariates to the function ppm() specifies the values of
the spatial covariates. It may be either a data frame or a list of images.

(a) If covariates is a data frame, then the ith row of the data frame is ex-
pected to contain the covariate values for the ith quadrature point. The
column names of the data frame should be the names of the covariates
used in the model formula when you call ppm.

(b) If covariates is a list of images, then each image is assumed to con-
tain the values of a spatial covariate at a fine grid of spatial locations.

37

The software will look up the values of these images at the quadra-
ture points. The names of the list entries should be the names of the
covariates used in the model formula when you call ppm.

Covariates in a data frame

Typically you would use the data frame format (a) if the values of the spatial
covariates can only be observed at a few locations. You need to force ppm()

to use these locations to fit the model. To do this, you will need to construct
a quadrature scheme based on the spatial locations where the covariate Z
has been observed. Then the values of the covariate at these locations are
passed to ppm() through the argument data.

For example, suppose that X is the observed point pattern and we are
trying to model the effect of soil acidity (pH). Suppose we have measured
the values of soil pH at the points xi of the point pattern, and stored them
in a vector XpH. Suppose we have measured soil pH at some other locations
u in the window, and stored the results in a data frame U with columns x,

y, pH. Then do as follows:

Q <- quadscheme(data=X, dummy=list(x=U$x, y=U$y))

df <- data.frame(pH=c(XpH, U$pH))

Then the rows of the data frame df correspond to the quadrature points in
the quadrature scheme Q. To fit just the effect of pH, type

ppm(Q, ~ pH, Poisson(), covariates=df)

where the term pH in the formula ~ pH agrees with the column label pH in the
argument covariates = df. This will fit an inhomogeneous Poisson process
with intensity that is a loglinear function of soil pH. You can also try (say)

ppm(Q, ~ pH, Strauss(r=1), covariates=df)

ppm(Q, ~ factor(pH > 7), Poisson(), covariates=df)

ppm(Q, ~ polynom(x, 2) * factor(pH > 7), covariates=df)

Covariates in a list of images

The alternative format (b), in which covariates is a list of images, would
typically be used when the covariate values are computed from other data.

For example, suppose we have a spatial epidemiological dataset containing
a point pattern X of disease cases, and another point pattern Y of controls.

38

We want to model X as a point process with intensity proportional to the
local density ρ of the susceptible population. We estimate ρ by taking a
kernel-smoothed estimate of the intensity of Y. Thus

rho.hat <- ksmooth.ppp(Y, sigma=1.234)

ppm(X, ~offset(log(rho)), covariates=list(rho=rho.hat))

The first line computes the values of the kernel-smoothed intensity estimate
at a fine grid of pixels, and stores them in the image object rho.hat. The
second line fits the Poisson process model with intensity

λ(u) = µ ρ(u)

Note that covariates must be a list of images, even though there is only
one covariate. The variable name rho in the model formula must match the
name rho in the list.

6 Diagnostics for a fitted model

Diagnostic plots are available for checking a fitted point process model.
diagnose.ppm diagnostic plots for spatial trend
qqplot.ppm diagnostic plot for interpoint interaction

For example, suppose we fit a Strauss process model to the Swedish Pines
data:

data(swedishpines)

fit <- ppm(swedishpines, ~1, Strauss(7), rbord=7)

Then the adequacy of the trend in the fitted model can be assessed by calling

diagnose.ppm(fit)

qqplot.ppm(fit)

and inspecting these plots. See the help files for further information, or type
demo(diagnose) for a demonstration of the diagnostics features.

39

7 Worked example

Suppose we have a data file trees.tab containing a table of x,y coordinates
and species names for all trees in a paddock. The paddock has an irregular
polygonal boundary whose vertex coordinates are stored in the file paddock.
The following code will read in these data, plot the polygonal boundary,
create the point pattern object and plot the point pattern.

tab <- read.table("trees.tab", header=TRUE)

bdry <- scan("paddock", what=list(x=0,y=0))

plot(owin(poly=bdry))

trees <- ppp(tabx, taby, poly=bdry, marks=factor(tab$species))

plot(trees)

owin(poly=bdry) trees

Next we inspect the pattern of sugar gums only, using the subset operation
"[" for point patterns:

sugargums <- trees[trees$marks == "sugargum"]

plot(sugargums)

sugargums

40

Next we compute and plot the cross-type G function between sugar gums
and red box:

G <- Gcross(trees, "sugargum", "redbox")

plot(G)

r

km
 ,

th
eo

r

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

Next we fit a nonstationary Poisson process, with a separate log-cubic
spatial trend for each species of tree:

fitsep <- ppm(trees, ~ marks * polynom(x,y,3), Poisson())

We also fit the sub-model in which the species trends are all proportional:

fitprop <- ppm(trees, ~ marks + polynom(x,y,3), Poisson())

and fit the stationary model in which each species has constant intensity:

fit0 <- ppm(trees, ~ marks, Poisson())

We plot the fitted trend surfaces for each tree:

plot(fitsep)

Finally we fit a nonstationary multitype Strauss / hard core process with a
hard core operating between trees of the same species:

mymodel <- MultiStraussHard(levels(trees$marks),

iradii=matrix(c(150,100,100,200), 2,2),

hradii=matrix(c(50,NA,NA,50), 2,2))

fit <- ppm(trees, ~ marks * polynom(x,y,3), mymodel, rbord=20)

plot(fit, cif=FALSE)

41

mark = redbox

42

References

[1] A. Baddeley and R. Turner. Practical maximum pseudolikelihood for
spatial point patterns. Australian and New Zealand Journal of Statistics
42 (2000) 283–322.

[2] A.J. Baddeley and R.D. Gill. Kaplan-Meier estimators for interpoint
distance distributions of spatial point processes. Annals of Statistics 25
(1997) 263–292.

[3] M. Berman and T.R. Turner. Approximating point process likelihoods
with GLIM. Applied Statistics, 41:31–38, 1992.

[4] N.A.C. Cressie. Statistics for spatial data. John Wiley and Sons, New
York, 1991.

[5] P.J. Diggle. Statistical analysis of spatial point patterns. Academic Press,
London, 1983.

[6] M.B. Hansen, R.D. Gill and A.J. Baddeley. Kaplan-Meier type estima-
tors for linear contact distributions. Scandinavian Journal of Statistics
23 (1996) 129–155.

[7] M.B. Hansen, A.J. Baddeley and R.D. Gill. First contact distributions
for spatial patterns: regularity and estimation. Advances in Applied
Probability (SGSA) 31 (1999) 15–33.

[8] M.N.M. van Lieshout and A.J. Baddeley. A non-parametric measure of
spatial interaction in point patterns. Statistica Neerlandica 50 (1996)
344–361.

[9] M.N.M. van Lieshout and A.J. Baddeley. Indices of dependence between
types in multivariate point patterns. Scandinavian Journal of Statistics
26 (1999) 511–532.

[10] B.D. Ripley. Spatial statistics. John Wiley and Sons, New York, 1981.

[11] D. Stoyan, W.S. Kendall, and J. Mecke. Stochastic Geometry and its
Applications. John Wiley and Sons, Chichester, second edition, 1995.

43

