
C H A P T E R 3

Introduction to SQL

Exercises

3.1 Write the following queries in SQL, using the university schema. (We sug-
gest you actually run these queries on a database, using the sample data
that we provide on the Web site of the book, db-book.com. Instructions for
setting up a database, and loading sample data, are provided on the above
Web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3
credits.

b. Find the IDs of all students who were taught by an instructor named
Einstein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more
than one with the same salary).

e. Find the enrollment of each section that was offered in Autumn 2009.

f. Find the maximum enrollment, across all sections, in Autumn 2009.

g. Find the sections that had the maximum enrollment in Autumn 2009.

Answer:

a. Find the titles of courses in the Comp. Sci. department that have 3
credits.

select title
from course
where dept name = ’Comp. Sci.’

and credits = 3

5

6 Chapter 3 Introduction to SQL

b. Find the IDs of all students who were taught by an instructor named
Einstein; make sure there are no duplicates in the result.
This query can be answered in several different ways. One way is as
follows.

select distinct student.ID
from (student join takes using(ID))

join (instructor join teaches using(ID))
using(course id, sec id, semester, year)

where instructor.name = ’Einstein’

As an alternative to th join .. using syntax above the query can be
written by enumerating relations in the from clause, and adding the
corresponding join predicates on ID, course id, section id, semester, and
year to the where clause.
Note that using natural join in place of join .. using would result in
equating student ID with instructor ID, which is incorrect.

c. Find the highest salary of any instructor.

select max(salary)
from instructor

d. Find all instructors earning the highest salary (there may be more
than one with the same salary).

select ID, name
from instructor
where salary = (select max(salary) from instructor)

e. Find the enrollment of each section that was offered in Autumn 2009.
One way of writing the query is as follows.

select course id, sec id, count(ID)
from section natural join takes
where semester = ’Autumn’
and year = 2009
group by course id, sec id

Note that if a section does not have any students taking it, it would
not appear in the result. One way of ensuring such a section appears
with a count of 0 is to replace natural join by the natural left outer
join operation, covered later in Chapter 4. Another way is to use a
subquery in the select clause, as follows.

Exercises 7

select course id, sec id,
(select count(ID)
from takes
where takes.year = section.year

and takes.semester = section.semester
and takes.course id = section.course id
and takes.section id = section.section id)

from section
where semester = ’Autumn’
and year = 2009

Note that if the result of the subquery is empty, the aggregate func-
tion count returns a value of 0.

f. Find the maximum enrollment, across all sections, in Autumn 2009.
One way of writing this query is as follows:

select max(enrollment)
from (select count(ID) as enrollment

from section natural join takes
where semester = ’Autumn’
and year = 2009
group by course id, sec id)

As an alternative to using a nested subquery in the from clause, it is
possible to use a with clause, as illustrated in the answer to the next
part of this question.
A subtle issue in the above query is that if no section had any enroll-
ment, the answer would be empty, not 0. We can use the alternative
using a subquery, from the previous part of this question, to ensure
the count is 0 in this case.

g. Find the sections that had the maximum enrollment in Autumn 2009.
The following answer uses a with clause to create a temporary view,
simplifying the query.

with sec enrollment as (
select course id, sec id, count(ID) as enrollment
from section natural join takes
where semester = ’Autumn’
and year = 2009
group by course id, sec id)

select course id, sec id
from sec enrollment
where enrollment = (select max(enrollment) from sec enrollment)

It is also possible to write the query without the with clause, but the
subquery to find enrollment would get repeated twice in the query.

8 Chapter 3 Introduction to SQL

3.2 Suppose you are given a relation grade points(grade, points), which provides

a conversion from letter grades in the takes relation to numeric scores; for
example an “A” grade could be specified to correspond to 4 points, an “A−”
to 3.7 points, a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade
points earned by a student for a course offering (section) is defined as the
number of credits for the course multiplied by the numeric points for the
grade that the student received.

Given the above relation, and our university schema, write each of the
following queries in SQL. You can assume for simplicity that no takes tuple
has the null value for grade.

a. Find the total grade-points earned by the student with ID 12345,
across all courses taken by the student.

b. Find the grade-point average (GPA) for the above student, that is,
the total grade-points divided by the total credits for the associated
courses.

c. Find the ID and the grade-point average of every student.

Answer:

a. Find the total grade-points earned by the student with ID 12345,
across all courses taken by the student.

select sum(credits * points)
from (takes natural join course) natural join grade points
whereID = ’12345’

One problem with the above query is that if the student has not
taken any course, the result would not have any tuples, whereas we
would expect to get 0 as the answer. One way of fixing this problem
is to use the natural left outer join operation, which we study later
in Chapter 4. Another way to ensure that we get 0 as the answer, is
to the following query:

(select sum(credits * points)
from (takes natural join course) natural join grade points
where ID = ’12345’)
union
(select 0
from student
where takes.ID = ’12345’ and

not exists (select * from takes where takes.ID = ’12345’))

As usual, specifying join conditions can be specified in the where
clause instead of using the natural join operation or the join .. using
operation.

Exercises 9

b. Find the grade-point average (GPA) for the above student, that is,
the total grade-points divided by the total credits for the associated
courses.

select sum(credits * points)/sum(credits) as GPA
from (takes natural join course) natural join grade points
where ID = ’12345’

As before, a student who has not taken any course would not appear
in the above result; we can ensure that such a student appears in the
result by using the modified query from the previous part of this
question. However, an additional issue in this case is that the sum
of credits would also be 0, resulting in a divide by zero condition.
In fact, the only meaningful way of defining the GPA in this case is
to define it as null. We can ensure that such a student appears in the
result with a null GPA by adding the following union clause to the
above query.

union
(select null as GPA
from student
where takes.ID = ’12345’ and

not exists (select * from takes where takes.ID = ’12345’))

Other ways of ensuring the above are discussed later in the solution
to Exercise 4.5.

c. Find the ID and the grade-point average of every student.

select ID, sum(credits * points)/sum(credits) as GPA
from (takes natural join course) natural join grade points
group by ID

Again, to handle students who have not taken any course, we would
have to add the following union clause:

union
(select ID, null as GPA
from student
where not exists (select * from takes where takes.ID = student.ID))

3.3

3.4 Write the following inserts, deletes or updates in SQL, using the university
schema.

a. Increase the salary of each instructor in the Comp. Sci. department
by 10%.

b. Delete all courses that have never been offered (that is, do not occur
in the section relation).

10 Chapter 3 Introduction to SQL

c. Insert every student whose tot cred attribute is greater than 100 as an
instructor in the same department, with a salary of $10,000.

Answer:

a. Increase the salary of each instructor in the Comp. Sci. department
by 10%.

update instructor
set salary = salary * 1.10
where dept name = ’Comp. Sci.’

b. Delete all courses that have never been offered (that is, do not occur
in the section relation).

delete from course
where course id not in

(select course id from section)

c. Insert every student whose tot cred attribute is greater than 100 as an
instructor in the same department, with a salary of $10,000.

insert into instructor
select ID, name, dept name, 10000
from student
where tot cred > 100

3.5 Consider the insurance database of Figure ??, where the primary keys
are underlined. Construct the following SQL queries for this relational
database.

a. Find the total number of people who owned cars that were involved
in accidents in 1989.

b. Add a new accident to the database; assume any values for required
attributes.

c. Delete the Mazda belonging to “ John Smith” .

Answer: Note: The participated relation relates drivers, cars, and accidents.

a. Find the total number of people who owned cars that were involved
in accidents in 1989.
Note: this is not the same as the total number of accidents in 1989.
We must count people with several accidents only once.

select count (distinct name)
from accident, participated, person
where accident.report number = participated.report number
and participated.driver id = person.driver id
and date between date ’1989-00-00’ and date ’1989-12-31’

Exercises 11

person (driver id, name, address)
car (license, model, year)
accident (report number, date, location)

owns (driver id, license)
participated (driver id, car, report number, damage amount)

Figure ??. Insurance database.

b. Add a new accident to the database; assume any values for required
attributes.
We assume the driver was “ Jones,” although it could be someone
else. Also, we assume “ Jones” owns one Toyota. First we must find
the license of the given car. Then the participated and accident relations
must be updated in order to both record the accident and tie it to the
given car. We assume values “Berkeley” for location, ’2001-09-01’ for
date and date, 4007 for report number and 3000 for damage amount.

insert into accident
values (4007, ’2001-09-01’, ’Berkeley’)

insert into participated
select o.driver id, c.license, 4007, 3000
from person p, owns o, car c
where p.name = ’Jones’ and p.driver id = o.driver id and

o.license = c.license and c.model = ’Toyota’

c. Delete the Mazda belonging to “ John Smith” .
Since model is not a key of the car relation, we can either assume
that only one of John Smith’s cars is a Mazda, or delete all of John
Smith’s Mazdas (the query is the same). Again assume name is a key
for person.

delete car
where model = ’Mazda’ and license in

(select license
from person p, owns o
where p.name = ’John Smith’ and p.driver id = o.driver id)

Note: The owns, accident and participated records associated with the
Mazda still exist.

3.6 Suppose that we have a relation marks(ID, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40,
grade C if 40 ≤ score < 60, grade B if 60 ≤ score < 80, and grade A if 80 ≤

score. Write SQL queries to do the following:

a. Display the grade for each student, based on the marks relation.

12 Chapter 3 Introduction to SQL

b. Find the number of students with each grade.

Answer:

a. Display the grade for each student, based on the marks relation.

select ID,
case

when score < 40 then ’F’
when score < 60 then ’C’
when score < 80 then ’B’
else ’A’

end
from marks

b. Find the number of students with each grade.

with grades as
(
select ID,

case
when score < 40 then ’F’
when score < 60 then ’C’
when score < 80 then ’B’
else ’A’

end as grade
from marks
)
select grade, count(ID)
from grades
group by grade

As an alternative, the with clause can be removed, and instead the
definition of grades can be made a subquery of the main query.

3.7 The SQL like operator is case sensitive, but the lower() function on strings
can be used to perform case insensitive matching. To show how, write a
query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.
Answer:

select dept name
from department
where lower(dept name) like ’%sci%’

3.8 Consider the SQL query

Exercises 13

branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 3.1 Banking database for Exercises 3.8 and 3.15.

select p.a1
from p, r1, r2
where p.a1 = r1.a1 or p.a1 = r2.a1

Under what conditions does the preceding query select values of p.a1 that
are either in r1 or in r2? Examine carefully the cases where one of r1 or r2
may be empty.
Answer: The query selects those values of p.a1 that are equal to some value
of r1.a1 or r2.a1 if and only if both r1 and r2 are non-empty. If one or both
of r1 and r2 are empty, the cartesian product of p, r1 and r2 is empty, hence
the result of the query is empty. Of course if p itself is empty, the result is
as expected, i.e. empty.

3.9 Consider the bank database of Figure 3.19, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Find all customers of the bank who have an account but not a loan.

b. Find the names of all customers who live on the same street and in
the same city as “Smith” .

c. Find the names of all branches with customers who have an account
in the bank and who live in “Harrison” .

Answer:

a. Find all customers of the bank who have an account but not a loan.

(select customer name
from depositor)
except
(select customer name
from borrower)

The above selects could optionally have distinct specified, without
changing the result of the query.

b. Find the names of all customers who live on the same street and in
the same city as “Smith” .
One way of writing the query is as follows.

14 Chapter 3 Introduction to SQL

select F.customer name
from customer F join customer S using(customer street, customer city)
where S.customer name = ’Smith’

The join condition could alternatively be specified in the where
clause, instead of using bf join .. using.

c. Find the names of all branches with customers who have an account
in the bank and who live in “Harrison” .

select distinct branch name
from account natural join depositor natural join customer
where customer city = ’Harrison’

As usual, the natural join operation could be replaced by specifying
join conditions in the where clause.

3.10 Consider the employee database of Figure ??, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the names and cities of residence of all employees who work
for First Bank Corporation.

b. Find the names, street addresses, and cities of residence of all em-
ployees who work for First Bank Corporation and earn more than
$10,000.

c. Find all employees in the database who do not work for First Bank
Corporation.

d. Find all employees in the database who earn more than each em-
ployee of Small Bank Corporation.

e. Assume that the companies may be located in several cities. Find all
companies located in every city in which Small Bank Corporation is
located.

f. Find the company that has the most employees.

g. Find those companies whose employees earn a higher salary, on
average, than the average salary at First Bank Corporation.

Answer:

employee (employee name, street, city)

works (employee name, company name, salary)

company (company name, city)

manages (employee name, manager name)

Figure 3.20. Employee database.

Exercises 15

a. Find the names and cities of residence of all employees who work
for First Bank Corporation.

select e.employee name, city
from employee e, works w
where w.company name = ’First Bank Corporation’ and

w.employee name = e.employee name

b. Find the names, street address, and cities of residence of all em-
ployees who work for First Bank Corporation and earn more than
$10,000.
If people may work for several companies, the following solution
will only list those who earn more than $10,000 per annum from
“First Bank Corporation” alone.

select *
from employee
where employee name in

(select employee name
from works
where company name = ’First Bank Corporation’ and salary > 10000)

As in the solution to the previous query, we can use a join to solve
this one also.

c. Find all employees in the database who do not work for First Bank
Corporation.
The following solution assumes that all people work for exactly one
company.

select employee name
from works
where company name 6= ’First Bank Corporation’

If one allows people to appear in the database (e.g. in employee) but
not appear in works, or if people may have jobs with more than one
company, the solution is slightly more complicated.

select employee name
from employee
where employee name not in

(select employee name
from works
where company name = ’First Bank Corporation’)

d. Find all employees in the database who earn more than each em-
ployee of Small Bank Corporation.

16 Chapter 3 Introduction to SQL

The following solution assumes that all people work for at most one
company.

select employee name
from works
where salary > all

(select salary
from works
where company name = ’Small Bank Corporation’)

If people may work for several companies and we wish to consider
the total earnings of each person, the problem is more complex. It
can be solved by using a nested subquery, but we illustrate below
how to solve it using the with clause.

with emp total salary as
(select employee name, sum(salary) as total salary
from works
group by employee name
)

select employee name
from emp total salary
where total salary > all

(select total salary
from emp total salary, works
where works.company name = ’Small Bank Corporation’ and

emp total salary.employee name = works.employee name
)

e. Assume that the companies may be located in several cities. Find all
companies located in every city in which Small Bank Corporation is
located.

The simplest solution uses the contains comparison which was in-
cluded in the original System R Sequel language but is not present
in the subsequent SQL versions.

select T.company name
from company T
where (select R.city

from company R
where R.company name = T.company name)

contains
(select S.city
from company S
where S.company name = ’Small Bank Corporation’)

Below is a solution using standard SQL.

Exercises 17

select S.company name
from company S
where not exists ((select city

from company
where company name = ’Small Bank Corporation’)

except
(select city
from company T
where S.company name = T.company name))

f. Find the company that has the most employees.

select company name
from works
group by company name
having count (distinct employee name) >= all

(select count (distinct employee name)
from works
group by company name)

g. Find those companies whose employees earn a higher salary, on
average, than the average salary at First Bank Corporation.

select company name
from works
group by company name
having avg (salary) > (select avg (salary)

from works
where company name = ’First Bank Corporation’)

3.11 Consider the relational database of Figure ??. Give an expression in SQL for
each of the following queries.

a. Modify the database so that Jones now lives in Newtown.

b. Give all managers of First Bank Corporation a 10 percent raise unless
the salary becomes greater than $100,000; in such cases, give only a
3 percent raise.

Answer:

a. Modify the database so that Jones now lives in Newtown.

The solution assumes that each person has only one tuple in the
employee relation.

update employee
set city = ’Newton’
where person name = ’Jones’

18 Chapter 3 Introduction to SQL

b. Give all managers of First Bank Corporation a 10-percent raise unless
the salary becomes greater than $100,000; in such cases, give only a
3-percent raise.

update works T
set T.salary = T.salary * 1.03
where T.employee name in (select manager name

from manages)
and T.salary * 1.1 > 100000
and T.company name = ’First Bank Corporation’

update works T
set T.salary = T.salary * 1.1
where T.employee name in (select manager name

from manages)
and T.salary * 1.1 <= 100000
and T.company name = ’First Bank Corporation’

The above updates would give different results if executed in the
opposite order. We give below a safer solution using the case state-
ment.

update works T
set T.salary = T.salary ∗

(case
when (T.salary ∗ 1.1 > 100000) then 1.03
else 1.1

)
where T.employee name in (select manager name

from manages) and
T.company name = ’First Bank Corporation’

