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Abstract

These notes provide the foundations of moduli theory in algebraic geometry using
the language of algebraic stacks with the goal of providing a self-contained proof
of the following theorem:

Theorem A. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth,
proper and irreducible Deligne–Mumford stack of dimension 3g − 3 which admits
a projective coarse moduli space.1

Along the way we develop the foundations of algebraic spaces and stacks, and
we hope to convey that this provides a convenient language to establish geometric
properties of moduli spaces. Introducing these foundations requires developing
several themes at the same time including:

• using the functorial and groupoid perspective in algebraic geometry: we
will introduce the new algebro-geometric structures of algebraic spaces and
stacks;

• replacing the Zariski topology on a scheme with the étale topology: we will
generalize the concept of a topological space to Grothendieck topologies and
systematically using descent theory for étale morphisms; and

• relying on several advanced topics not seen in a first algebraic geometry
course: properties of flat, étale and smooth morphisms of schemes, algebraic
groups and their actions, deformation theory, Artin approximation, existence
of Hilbert schemes, and some deep results in birational geometry of surfaces.

Choosing a linear order in presenting the foundations is no easy task. We attempt
to mitigate this challenge by relegating much of the background to appendices.
We keep the main body of the notes always focused entirely on developing moduli
theory with the above goal in mind.

1In a future course, I hope to establish an analogous result for the moduli of vector bundles:
The moduli space Mss

C,r,d of semistable vector bundles of rank r and degree d over a smooth,

connected and projective curve C of genus g is a smooth, universally closed and irreducible
algebraic stack of dimension r2(g − 1) which admits a projective good moduli space.
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Chapter 0

Introduction and motivation

A moduli space is a space M (e.g. topological space, complex manifold or algebraic
variety) where there is a natural one-to-one correspondence between points of M
and isomorphism classes of certain types of algebro-geometric objects (e.g. smooth
curves or vector bundles on a fixed curve). While any space M is the moduli
space parameterizing points of M , it is much more interesting when alternative
descriptions can be provided. For instance, projective space P1 can be described
as the set of points in P1 (not so interesting) or as the set of lines in the plane
passing through the origin (more interesting).

Moduli spaces arise as an attempt to answer one of the most fundamental
problems in mathematics, namely the classification problem. In algebraic geometry,
we may wish to classify all projective varieties, all vector bundles on a fixed variety
or any number of other structures. The moduli space itself is the solution to the
classification problem.

Depending on what objects are being parameterized, the moduli space could
be discrete or continuous, or a combination of the two. For instance, the moduli
space parameterizing line bundles on P1 is the discrete set Z: every line bundle
on P1 is isomorphic to O(n) for a unique integer n ∈ Z. On the other hand, the
moduli space parameterizing quadric plane curve C ⊂ P2 is the connected space
P5: a plane curve defined by a0x

2 + a1xy+ a2xz + a3y
2 + a4yz + a5z

2 is uniquely
determined by the point [a0, . . . , a5] ∈ P5, and as a plane curve varies continuously
(i.e. by varying the coefficients ai), the corresponding point in P5 does too.

The moduli space parameterizing smooth projective abstract curves has both
a discrete and continuous component. While the genus of a smooth curve is a
discrete invariant, smooth curves of a fixed genus vary continuously. For instance,
varying the coefficients of a homogeneous degree d polynomial in x, y, z describes
a continuous family of mostly non-isomorphic curves of genus (d − 1)(d − 2)/2.
After fixing the genus g, the moduli space Mg parameterizing genus g curves is a
connected (even irreducible) variety of dimension 3g − 3, a deep fact providing
the underlying motivation of these notes. Similarly, the moduli space of vector
bundles on a fixed curve has a discrete component corresponding to the rank r and
degree d of the vector bundle, and it turns out that after fixing these invariants,
the moduli space is also irreducible.

An inspiring feature of moduli spaces and one reason they garner so much
attention is that their properties inform us about the properties of the objects
themselves that are being classified. For instance, knowing that Mg is unirational
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(i.e. there is a dominant rational map PN 99KMg) for a given genus g tells us that
a general genus g curve can be written down explicitly in a similar way to how
a general genus 3 curve can be expressed as the solution set to a plane quartic
whose coefficients are general complex numbers.

Before we can get started discussing the geometry of moduli spaces such as
Mg, we need to ask: why do they even exist? We develop the foundations of
moduli theory with this single question in mind. Our goal is to establish the truly
spectacular result that there is a projective variety whose points are in natural
one-to-one correspondence with isomorphism classes of curves (or vector bundles
on a fixed curve). In this chapter, we motivate our approach for constructing
projective moduli spaces through the language of algebraic stacks.

0.1 Moduli sets

A moduli set is a set where elements correspond to isomorphism classes of certain
types of algebraic, geometric or topological objects. To be more explicit, defining
a moduli set entails specifying two things:

1. a class of certain types of objects, and

2. an equivalence relation on objects.

The word ‘moduli’ indicates that we are viewing an element of the set of as an
equivalence class of certain objects. In the same vein, we will discuss moduli
groupoids, moduli varieties/schemes and moduli stacks in the forthcoming sections.
Meanwhile, the word ‘object’ here is intentionally vague as the possibilities are quite
broad: one may wish to discuss the moduli of really any type of mathematical
structure, e.g. complex structures on a fixed space, flat connections, quiver
representations, solutions to PDEs, or instantons. In these notes, we will entirely
focus our study on moduli problems appearing in algebraic geometry although
many of the ideas we present extend similarly to other branches of mathematics.

The two central examples in these notes are the moduli of curves and the
moduli of vector bundles on a fixed curve—two of the most famous and studied
moduli spaces in algebraic geometry. While there are simpler examples such as
projective space and the Grassmanian that we will study first, the moduli spaces
of curves and vector bundles are both complicated enough to reveal many general
phenomena of moduli and simple enough that we can provide a self-contained
exposition. Certainly, before you hope to study moduli of higher dimensional
varieties or moduli of complexes on a surface, you better have mastered these
examples.

0.1.1 Moduli of curves

Here’s our first attempt at defining Mg:

Example 0.1.1 (Moduli set of smooth curves). The moduli set of smooth curves,
denoted as Mg, is defined as followed: the objects are smooth, connected and
projective curves of genus g over C and the equivalence relation is given by
isomorphism.

There are alternative descriptions. We could take the objects to be complex
structures on a fixed oriented compact surface Σ of genus g and the equivalence
relation to be biholomorphism. Or we could take the objects to be pairs (X,φ)
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where X is a hyberbolic surface and φ : Σ→ X is a diffeomorphism (the set of such
pairs is the Teichmüller space) and the equivalence relation is isotopy (induced
from the action of the mapping class group of Σ).

Each description hints at different additional structures that Mg should inherit.

There are many related examples parameterizing curves with additional struc-
tures as well as different choices for the equivalences relations.

Example 0.1.2 (Moduli set of plane curves). The objects here are degree d plane
curves C ⊂ P2 but there are several choices for how we could define two plane
curves C and C ′ to be equivalent:

(1) C and C ′ are equal as subschemes;

(2) C and C ′ are projectively equivalent (i.e. there is an automorphism of P2

taking C to C ′); or

(3) C and C ′ are abstractly isomorphic.

The three equivalence relations define three different moduli sets. The moduli set
(1) is naturally bijective to the projectivization P(Symd C3) of the space of degree
d homogeneous polynomials in x, y, z while the moduli set (2) is naturally bijective
to the quotient set P(Symd C3)/Aut(P2). The moduli set (3) is the subset of the
moduli set of (possibly singular) abstract curves which admit planar embeddings.

Example 0.1.3 (Moduli set of curves with level n structure). The objects are
smooth, connected and projective curves C of genus g over C together with a
basis (α1, . . . , αg, β1, . . . , βg) of H1(C,Z/nZ) such that the intersection pairing
is symplectic. We say that (C,αi, βi) ∼ (C ′, α′i, β

′
i) if there is an isomorphism

C → C ′ taking αi and βi to α′i and β′i.

A rational function f/g on a curve C defines a map C → P1 given by x 7→
[f(x), g(x)]. Visualizing a curve as a cover of P1 is extremely instructive providing
a handle to its geometry. Likewise it is instructive to consider the moduli of such
covers.

Example 0.1.4 (Moduli of branched covers). We define the Hurwitz moduli set
Hurd,g where an object is a smooth, connected and projective curve of genus
g together with a finite morphisms f : C → P1 of degree d, and we declare

(C
f−→ P1) ∼ (C ′

f ′−→ P1) if there is an isomorphism α : C → C ′ over P1 (i.e.
f ′ = f ◦ α). By Riemann–Hurwitz, any such map C → P1 has 2d + 2g − 2
branch points. Conversely, given a general collection of 2d+ 2g − 2 points of P1,
there exists a genus g curve C and a map C → P1 branched over precisely these
points. In fact there are only finitely many such covers C → P1 as any cover is
uniquely determined by the ramification type over the branched points and the
finite number of permutations specifying how the unramified covering over the
complement of the branched locus is obtained by gluing trivial coverings. In other
words, the map Hurd,g → Sym2d+2g−2 P1, assigning a cover to its branched points,
has dense image and finite fibers.

Likewise, for a fixed curve C, we could consider the moduli set Hurd,C pa-
rameterizing degree d covers C → P1 where the equivalence relation is equality.
There is a map Hurd,g → Mg defined by (C → P1) 7→ C, and the fiber over a
curve C is precisely Hurd,C . Equivalently, Hurd,C can be described as parame-
terizing line bundles L on C together with linearly independent sections s1, s2

where (L, s1, s2) ∼ (L′, s′1, s
′
2) if there exists an isomorphism α : L→ L′ such that

s′i = α(si).
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Application: number of moduli of Mg

Even before we attempt to give Mg the structure of a variety so that in particular
its dimension makes sense, for g ≥ 2 we can use a parameter count to determine
the number of moduli of Mg or in modern terminology the dimension of the local
deformation spaces. Historically Riemann computed the number of moduli in
the mid 19th century (in fact using several different methods) well before it was
known that Mg is a variety. Following [Rie57], the main idea is to compute the
number of moduli of Hurd,g in two different ways using the diagram

Hurd,C
� � //

{{

Hurd,g

zz

finite fibers

&&

{C} �
�

//� � // Mg Sym2d+2g−2 P1

(0.1.1)

We first compute the number of moduli of Hurd,C and we might as well assume
that d is sufficiently large (or explicitly d > 2g). For a fixed curve C, a degree d map
f : C → P1 is determined by an effective divisor D := f−1(0) =

∑
i pi ∈ Symd C

and a section t ∈ H0(C,O(D)) (so that f(p) = [s(p), t(p)] where s ∈ Γ(C,O(D))
defines D). Using that H1(C,O(D)) = H0(C,O(KC −D)) = 0, Riemann–Roch
implies that h0(O(D)) = d− g + 1. Thus the number of moduli of Hurd,C is the
sum of the number of parameters determining D and the section t

# of moduli of Hurd,C = d+ (d− g + 1) = 2d− g + 1.

Using (0.1.1), we compute that

# of moduli of Mg = # of moduli of Hurd,g −# of moduli of Hurd,C

= # of moduli of Sym2d+2g−2 P1 −# of moduli of Hurd,C

= (2d+ 2g − 2)− (2d− g + 1)

= 3g − 3.

One goal of these notes is to put this calculation on a more solid footing. The
interested reader may wish to consult [GH78, pg. 255-257] or [Mir95, pg. 211-215]
for further discussion on the number of moduli of Mg, or [AJP16] for a historical
background of Riemann’s computations.

0.1.2 Moduli of vector bundles

The moduli of vector bundles on a fixed curve provides our second primary example
of a moduli set:

Example 0.1.5 (Moduli set of vector bundles on a curve). Let C be a fixed
smooth, connected and projective curve over C, and fix integers r ≥ 0 and d. The
objects of interest are vector bundles E (i.e. locally free OC-modules of finite
rank) of rank r and degree d, and the equivalence relation is isomorphism.

There are alternative descriptions. If V is a fixed C∞-vector bundle V on
C, we can take the objects to be connections on V and the equivalence relation
to be gauge equivalence. Or we can take the objects to be representations
π1(C)→ GLn(C) of the fundamental group π1(C) and declare two representations
to be equivalent if they have the same dimension n and are conjugate under an
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element of GLn(C). This last description uses the observation that a vector bundle
induces a monodromy representation of π1(C) and conversely that a representation

V of π1(C) induces a vector bundle (C̃ × V )/π1(C) on C, where C̃ denotes the
universal cover of C.

Specializing to the rank one case is a model for the general case: the moduli
set Picd(C) of line bundles on C of degree d is identified (non-canonically) with
the abelian variety H1(C,OC)/H1(C,Z) by means of the cohomology of the
exponential exact sequence

H1(C,Z) // H1(C,OC) // Pic(C)

L 7→ deg(L)

// H2(C,Z) // 0

There is a group structure on Pic0(C) corresponding to the tensor product of line
bundles.

Example 0.1.6 (Moduli of vector bundles on P1). Since all vector bundles on
A1 are trivial, a vector bundle of rank n on P1 is described by an element of
GLn(k[x]x) specifying how trivial vector bundles on {x 6= 0} and {y 6= 0} are
glued. We can thus describe this moduli set by taking the objects to be elements
of GLn(k[x]x) where two elements g and g′ are declared equivalent if there exists
α ∈ GLn(k[x]) and β ∈ GLn(k[1/x]) (i.e. automorphisms of the trivial vector
bundles on {x 6= 0} and {y 6= 0}) such that g′ = αgβ.

The Birkhoff–Grothendieck theorem asserts that any vector bundle E on P1 is
isomorphic to O(a1)⊕ · · · ⊕O(ar) for unique integers a1 ≤ · · · ≤ ar.1 This implies
that the moduli set of degree d vector bundles of rank r on P1 is bijective to the
set of increasing tuples (a1, . . . , ar) ∈ Zr of integers with

∑
i ai = d. One would

be mistaken though to think that the moduli space of vector bundles on P1 with
fixed rank and degree is discrete. For instance, if d = 0 and r = 2, the group of
extensions

Ext1(OP1(1),OP1(−1)) = H1(P1,OP1(−2)) = H0(P1,OP1) = C

is one-dimensional and the universal extension (see Example 0.4.21) is a vector
bundle E on P1 × A1 such that E|P1×{t} is the non-trivial extension OP1 ⊕ OP1

for t 6= 0 and the trivial extension OP1(−1)⊕ OP1(1) for t = 0. This shows that
OP1 ⊕ OP1 and OP1(−1)⊕ OP1(1) should be in the same connected component of
the moduli space.

0.1.3 Wait—why are we just defining sets?

It is indeed a bit silly to define these moduli spaces as sets. After all, any
two complex projective varieties are bijective so we should be demanding a lot
more structure than a variety whose points are in bijective correspondence with
isomorphism classes. However, spelling out what properties we desire of the moduli
space is by no means easy. What we would really like is a quasi-projective variety

1Birkhoff proved this in 1909 using linear algebra by explicitly showing that an element
GLn(k[x]x) can be multiplied on the left and right by elements of GLn(k[x]) and GLn(k[1/x])
to be a diagonal matrix diag(xa1 , . . . , xar ) [Bir09] while Grothendieck proved this in 1957 via
induction and cohomology by exhibiting a line subbundle O(a) ⊂ E such that the corresponding
short exact sequence splits [Gro57].
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Mg with a universal family Ug →Mg such that the fiber of a point [C] ∈Mg is
precisely that curve. This is where the difficulty lies—automorphisms of curves
obstruct the existence of such a family—and this is the main reason we want to
expand our notion of a geometric space from schemes to algebraic stacks. Algebraic
stacks provide a nice approach ensuring the existence of a universal family but it
is by no means the only approach.

Historically, it was not clear what structure Mg should have. Riemann in-
troduced the word ‘Mannigfaltigkeiten’ (or ‘manifoldness’) but did not specify
what this means–complex manifolds were only introduced in the 1940s following
Teichmüller, Chern and Weil. The first claim that Mg exists as an algebraic variety
was perhaps due to Weil in [Wei58]: “As for Mg there is virtually no doubt that it
can be provided with the structure of an algebraic variety.” Grothendieck, aware
that the functor of smooth families of curves was not representable, studied the
functor of smooth families of curves with level structure r ≥ 3 [Gro61]. While he
could show representability, he struggled to show quasi-projectivity. It was only
later that Mumford proved that Mg is a quasi-projective variety, an accomplish-
ment for which he was awarded the Field Medal in 1974, by introducing and then
applying Geometric Invariant Theory (GIT) to construct Mg as a quotient [GIT].
For further historical background, we recommend [JP13], [AJP16] and [Kol18].

In these notes, we take a similar approach to Mumford’s original construction
and integrate later influential results due to Deligne, Kollár, Mumford and others
such as the seminal paper [DM69] which simultaneously introduced stable curves
and stacks with the application of irreducibility of Mg in any characteristic. In this
chapter, we motivate our approach by gradually building in additional structure:
first as a groupoid (Section 0.3), then as a presheaf (i.e. contravariant functor)
(Section 0.4), then as a stack (Section 0.7) and then ultimately as a projective
variety (Section 0.9).

One of the challenges of learning moduli stacks is that it requires simultaneously
extending the theory of schemes in several orthogonal directions including:

(1) the functorial approach: thinking of a scheme X not as topological space
with a sheaf of rings but rather in terms of the functor Sch→ Sets defined
by T 7→ Mor(T,X). For moduli problems, this means specifying not just
objects but families of objects; and

(2) the groupoid approach: rather than specifying just the points we also specify
their symmetries. For moduli problems, this means specifying not just the
objects but their automorphism groups.
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Sets

Topological
spaces

Functors or

presheaves on Sch

Ringed spaces

Schemes Algebraic spaces

Sheaves on SchÉt

Groupoids

Prestacks over Sch

Stacks over SchÉt

Deligne–Mumford
stacks

Algebraic
stacks

Figure 1: Schematic diagram featuring algebro-geometric enrichments of sets and
groupoids where arrows indicate additional geometric conditions.

0.2 Toy example: moduli of triangles

Before we dive deeper into the moduli of curves or vector bundles, we will study
the simple yet surprisingly fruitful example of the moduli of triangles which is easy
both to visualize and construct. In fact, we present several variants of the moduli
of triangles that highlight various concepts in moduli theory. The moduli spaces
of labelled triangles and labelled triangles up to similarity have natural functorial
descriptions and universal families while the moduli space of unlabelled triangles
does not admit a universal family due to the presence of symmetries—in exploring
this example, we are led to the concept of a moduli groupoid and ultimately to
moduli stacks. Michael Artin is attributed to remarking that you can understand
most concepts in moduli through the moduli space of triangles.

0.2.1 Labelled triangles

A labelled triangle is a triangle in R2 where the vertices are labelled with ‘1’, ‘2’
and ‘3’, and the distances of the edges are denoted as a, b, and c. We require that
triangles have non-zero area or equivalently that their vertices are not colinear.

1

2

3a

b

c

Figure 2: To keep track of the labelling, we color the edges as above.

We define the moduli set of labelled triangles M as the set of labelled triangles
where two triangles are said to be equivalent if they are the same triangle in R2

with the same vertices and same labeling. By writing (x1, y1), (x2, y2) and (x3, y3)
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as the coordinates of the labelled vertices, we obtain a bijection

M ∼=
{

(x1, y1, x2, y2, x3, y3) | det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
6= 0
}
⊂ R6 (0.2.1)

with the open subset of R6 whose complement is the codimension 1 closed subset
defined by the condition that the vectors (x2, y2)− (x1, y1) and (x3, y3)− (x1, y1)
are linearly dependent.

y3

x3

Figure 3: Picture of the slice of the moduli space M where (x1, y1) = (0, 0) and
(x2, y2) = (1, 0). Triangles are described by their third vertex (x3, y3) with y3 6= 0.
We’ve drawn representative triangles for a handful of points in the x3y3− plane.

0.2.2 Labelled triangles up to similarity

We define the moduli set of labelled triangles up to similarity, denoted by M lab, by
taking the same class of objects as in the previous example—labelled triangles—but
changing the equivalence relation to label-preserving similarity.

similar not similar

Figure 4: The two triangles on the left are similar, but the third is not.

Every labelled triangle is similar to a unique labelled triangle with perimeter
a+ b+ c = 2. We have the description

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 . (0.2.2)

By setting c = 2− a− b, we may visualize M lab as the analytic open subset of R2

defined by pairs (a, b) satisfying 0 < a, b < 1 and a+ b > 1.
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a

b

degenerate
triangles

right triangles

isosceles

triangles

equilateral

1

1

Figure 5: M lab is the shaded area above. The pink lines represent the right
triangles defined by a2 + b2 = c2, a2 + c2 = b2 and b2 + c2 = a2, the blue lines
represent isosceles triangles defined by a = b, b = c and a = c, and the green point
is the unique equilateral triangle defined by a = b = c.

0.2.3 Unlabelled triangles up to similarity

We now turn to the moduli of unlabelled triangles up to similarity, which reveals
a new feature not seen in to the two above examples: symmetry!

We define the moduli set of unlabelled triangles up to similarity, denoted by
Munl, where the objects are unlabelled triangles in R2 and the equivalence relation
is symmetry. We can describe a unlabelled triangle uniquely by the ordered tuple
(a, b, c) of increasing side lengths as follows:

Munl =

{
(a, b, c)

∣∣∣∣ 0 < a ≤ b ≤ c < a+ b
a+ b+ c = 2

}
. (0.2.3)

a

b

1

degenerate
a
+
b =
c

iso
sc

el
es
a

=
b

isosceles b = c equilateral

right triangles

a2 + b2 = c2
1/2

1/2 2/3

2/3

Figure 6: Picture of Munl where c = 2− a− b.
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The isosceles triangles with a = b or b = c and the equilateral triangle with
a = b = c have symmetry groups of Z/2 and S3, respectively. This is unfortunately
not encoded into our description Munl above. However, we can identify Munl

as the quotient M lab/S3 of the moduli set of labelled triangles up to similarity
modulo the natural action of S3 on the labellings. Under this action, the stabilizers
of isosceles and equilateral triangles are precisely their symmetry groups Z/2 and
S3. The action of S3 on the complement of the set of isosceles and equilateral
triangles is free.

0.3 Moduli groupoids

We now change our perspective: rather than specifying when two objects are
identified, we specify how ! One of the most desirable properties of a moduli space is
the existence of a universal family (see §0.4.5) and the presence of automorphisms
obstructs its existence (see §0.4.6). Encoding automorphisms into our descriptions
will allow us to get around this problem. A convenient mathematical structure to
encode this information is a groupoid.

Definition 0.3.1. A groupoid is a category C where every morphism is an iso-
morphism.

0.3.1 Specifying a moduli groupoid

A moduli groupoid is described by

1. a class of certain algebraic, geometric or topological objects; and

2. a set of equivalences between two objects.

where (1) describes the objects and (2) the morphisms of a groupoid. In particular,
the moduli groupoid encodes Aut(E) for every object E.

We say that two groupoids C1 and C2 are equivalent if there is an equivalence
of categories (i.e. a fully faithful and essentially surjective functor) C1 → C2.
Moreover, we say that a groupoid C is equivalent to a set Σ if there is an equivalence
of categories C→ CΣ (where CΣ is defined in Example 0.3.2).

0.3.2 Examples

We will return to our two main examples—curves and vector bundles—in a moment
but it will be useful first to consider a number of simpler examples.

Example 0.3.2. If Σ is a set, the category CΣ, whose objects are elements of Σ
and whose morphisms consist of only the identity morphism, is a groupoid.

Example 0.3.3. If G is a group, the classifying groupoid BG of G, defined as
the category with one object ? such that Mor(?, ?) = G, is a groupoid.

Example 0.3.4. The category FB of finite sets where morphisms are bijections
is a groupoid. Observe that the isomorphism classes of FB are in bijection with N
but the groupoid FB retains the information of the permutation groups Sn.

Example 0.3.5 (Projective space). Projective space can be defined as a moduli
groupoid where the objects are lines L ⊂ An+1 through the origin and whose
morphisms consist of only the identity, or alternatively where the objects are
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non-zero linear maps x = (x0, . . . , xn) : C → Cn+1 such that there is a unique
morphism x→ x′ if im(x) = im(x′) ⊂ Cn+1 (i.e. there exists a λ ∈ C∗ such that
x′ = λx) and no morphisms otherwise.

0.3.3 Moduli groupoid of orbits

Example 0.3.6 (Moduli groupoid of orbits). Given an action of a group G on a
set X, we define the moduli groupoid of orbits [X/G]2 by taking the objects to be
all elements x ∈ X and by declaring Mor(x, x′) = {g ∈ G |x′ = gx}.

[A1/(Z/2)]

A1

Z/2

A1

[A1/Gm]

Gm {1}

0

Figure 7: Pictures of the scaling actions of Z/2 = {±1} and Gm on A1 over C with
the automorphism groups listed in blue. Note that [A1/Gm] has two isomorphism
classes of objects—0 and 1—corresponding to the two orbits—0 and A1 \ 0—such
that 0 ∈ {1} if the set A1/Gm is endowed with the quotient topology.

Exercise 0.3.7.

(1) Show that the moduli groupoid of orbits [X/G] in Example 0.3.6 is equivalent
to a set if and only if the action of G on X is free.

(2) Show that a groupoid C is equivalent to a set if and only if C → C × C is
fully faithful.

Example 0.3.8. Consider the category C with two objects x1 and x2 such that
Mor(xi, xj) = {±1} for i, j = 1, 2 where composition of morphisms is given by
multiplication. Then C is equivalent BZ/2.

1

-1

x1

1

-1

x2

1

-1

1

-1

1

-1

x
xi x

Figure 8: An equivalence of groupoids

Exercise 0.3.9. In Example 0.3.8, show that there is an equivalence of categories
inducing a bijection on objects between C and either [(Z/2)/(Z/4)] or [(Z/2)/(Z/2×
Z/2)] where the action is given by the surjections Z/4→ Z/2 or Z/2×Z/2→ Z/2.

2We use brackets to distinguish the groupoid quotient [X/G] from the set quotient X/G.
Later when G and X are enriched with more structure (e.g. an algebraic group acting on a
variety), then [X/G] will be correspondingly enriched (e.g. as an algebraic stack).
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Example 0.3.10 (Projective space as a quotient). The moduli groupoid of
projective space (Example 0.3.5) can also be described as the moduli groupoid of
orbits [(An+1 \ 0)/Gm].

We can also consider the quotient groupoid [An+1/Gm], which is equivalent to
the groupoid whose objects are (possibly zero) linear maps x = (x0, . . . , xn) : C→
Cn+1 such that Mor(x, x′) = {t ∈ C∗ |x′i = txi for all i}. We can thus view Pn as
a subgroupoid of [An+1/Gm].

Exercise 0.3.11. If a group G acts on a set X and x ∈ X is any point, there
exists a fully faithful functor BGx → [X/G]. If the action is transitive, show that
it is an equivalence.

A morphisms of groupoids C1 → C2 is simply a functor, and we define the
category MOR(C1,C2) whose objects are functors and whose morphisms are
natural transformations.

Exercise 0.3.12. If C1 and C2 are groupoids, show that MOR(C1,C2) is a
groupoid.

Exercise 0.3.13. If H and G are groups, show that there is an equivalence

MOR(BH,BG) =
⊔

φ∈Conj(H,G)

BNG(imφ)

where Conj(H,G) denotes a set of representatives of homomorphisms H → G up
to conjugation by G, and NG(imφ) denotes the normalizer of imφ in G.

Exercise 0.3.14. Provide an example of group actions of H and G on sets X
and Y and a map [X/H]→ [Y/G] of groupoids that does not arise from a group
homomorphism φ : H → G and a φ-equivariant map X → Y .

0.3.4 Moduli groupoids of curves and vector bundles

We return to the two main examples in these notes.

Example 0.3.15 (Moduli groupoid of smooth curves). In this case, the objects
are smooth, connected and projective curves of genus g over C and for two curves
C,C ′, the set of morphisms is defined as the set of isomorphisms

Mor(C,C ′) = {isomorphisms α : C
∼→ C ′}.

Example 0.3.16 (Moduli groupoid of vector bundles on a curve). Let C be a
fixed smooth, connected and projective curve over C, and fix integers r ≥ 0 and d.
The objects are vector bundles E of rank r and degree d, and the morphisms are
isomorphisms of vector bundles.

0.3.5 Moduli groupoid of unlabelled triangles up to simi-
larity

We now revisit Section 0.2.3 of the moduli set Munl of unlabelled triangles
up to similarity. We will show later that this moduli set does not admit a
natural functorial descriptions nor universal family due to presence of symmetries
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(Example 0.4.37). Since these are such desirable properties, we will pursue a work
around where we encode the symmetries into the definition.

We define the moduli groupoid of unlabelled triangles up to similarity, denoted
by Munl (note the calligraphic font), where the objects are unlabelled triangles
in R2 and where for triangles T1, T2 ⊂ R2, the set Mor(T1, T2) consists of the
symmetries σ (corresponding to the permutations of the vertices) such that T1 is
similar to σ(T2). For example, an isosceles triangle (resp. equilateral triangle) has
automorphism group Z/2 (resp. S3).

We can draw essentially the same picture as Figure 6 except we mark the
automorphisms of triangles.

a

b

1

a
+
b =
c

a
=
b

b = c

equilateral

a2 + b2 = c2

S3

Z
2

Z 2

1/2

1/2 2/3

2/3

Figure 9: Picture of the moduli groupoid Munl with non-trivial automorphism
groups labelled.

There is a functor

Munl →Munl

which is the identity on objects and collapses all morphisms to the identity. This
could be called a coarse moduli set where by forgetting some information (i.e. the
symmetry groups of isosceles and equilateral triangles), we can study the moduli
problem as a more familiar object (i.e. a set rather than groupoid).

Exercise 0.3.17. Recall that the moduli set M lab of labelled triangles up to
similarity has the description as the set of tuples (a, b, c) such that a+ b+ c = 2,
0 < a < b + c, 0 < b < a + c, and 0 < c < a + b (see from (0.2.1) ) Show that
there is a natural action of S3 on the moduli set M lab of unlabelled triangles up
to similarity and that the functor obtained by forgetting the labelling

[M lab/S3]→Munl

is an equivalence of categories.

Exercise 0.3.18. Define a moduli groupoid of oriented triangles and investigate
its relation to the moduli sets and groupoids of triangles we’ve defined above.
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0.4 Moduli functors

We now undertake the challenging task of motivating moduli functors, which
will be our approach for endowing moduli sets with the enriched structure of a
topological space or scheme. This will require a leap in abstraction that is not at
all the most intuitive, especially if you are seeing for the first time. The idea due
to Grothendieck is to study a scheme X by studying all maps to it!

It may seem that this leap made life more difficult for us: rather than just
specifying the points of a moduli space, we need to define all maps to the moduli
space. In fact, it is easier than you may expect. Let’s take Mg as an example.
If S is a scheme and f : S → Mg is a map of sets, then for every point s ∈ S,
the image f(s) ∈Mg corresponds to an isomorphism class of a curve Cs. But we
don’t want to consider arbitrary maps of sets. If Mg is enriched as a topological
space (resp. scheme), then a continuous (resp. algebraic) map f : S →Mg should
mean that the curves Cs are varying continuously (resp. algebraically). A nice
way of packaging this is via families of curves, i.e. smooth and proper morphisms
C→ S such that every fiber Cs is a curve.

s

t

S

CCs

Ct

Figure 10: A family of curves over a curve S.

This suggests we define Mg as a functor Sch→ Sets assigning a scheme S to
the set of families of curves over S.

0.4.1 Yoneda’s lemma

The fact that schemes are determined by maps into it follows from a completely
formal argument that holds in any category. If X is an object of a category C,
the contravariant functor

hX : C→ Sets, S 7→ Mor(S,X)

recovers the object X itself: this is the content of Yoneda’s lemma:
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Lemma 0.4.1 (Yoneda’s lemma). Let C be a category and X be an object. For
any contravariant functor G : C→ Sets, the map

Mor(hX , G)→ G(X), α 7→ αX(idX)

is bijective and functorial with respect to both X and G.

Remark 0.4.2. The set Mor(hX , G) consists of morphisms or natural transfor-
mations hX → G, and αX denotes the map hX(X) = Mor(X,X)→ G(X).

!
a

Warning 0.4.3. We will consistently abuse notation by conflating an element
g ∈ G(X) and the corresponding morphism hX → G, which we will often write
simply as X → G.

Exercise 0.4.4.

1. Spell out precisely what ‘functorial with respect to both X and G’ means.

2. Prove Yoneda’s lemma.

Remark 0.4.5. It is instructive to imagine constructive proofs of Yoneda’s
lemma. Here we try to explicitly recover a variety X over C from its functor
hX : Sch /C → Sets. Clearly, we can recover the closed points of X by simply
evaluating hX(SpecC). To get all points, we need to allow points whose residue
fields are extensions of C. The underlying set of X is

ΣX :=
⊔
C⊂k

hX(Spec k)/ ∼

where we say x ∈ hX(k) and x′ ∈ hX(k′) are equivalent if there is a further field
extension C ⊂ k′′ containing both k and k′ such that the images of x and x′ in
hX(k′′) are equal under the natural maps hX(k)→ hX(k′′) and hX(k′)→ hX(k′′).
Later, we will follow the same approach when defining points of algebraic spaces
and stacks (see ??).

How can we recover the topological space? Here’s a tautological way: we
say a subset A ⊂ ΣX is open if there is an open immersion U ↪→ X with image
A. Here’s a better approach: we say a subset A ⊂ ΣX is open if for every map
f : S → X of schemes, the subset f−1(A) ⊂ S is open.

What about recovering the sheaf of rings OX? For an open subset U ⊂ ΣX , we
define the functions on U as continuous maps U → A1 such that for every morphism
f : S → X of schemes, the composition (as a continuous map) f−1(U)→ U → A1

is an algebraic function (i.e. corresponds to an element Γ(S, f−1(U)).

Exercise 0.4.6.

(a) Can the above argument be extended if X is non-reduced?

(b) Is it possible to explicitly recover a scheme X from its covariant functor
Sch→ Sets, S 7→ Mor(X,S)?

0.4.2 Specifying a moduli functor

Defining a moduli functor requires specifying:

(1) families of objects;

(2) when two families of objects are isomorphic; and
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(3) and how families pull back under morphisms.

In defining a moduli functor F : Sch→ Sets, then (1) and (2) specify F (S) for
a scheme S and (3) specifies the pull back F (S)→ F (S′) for maps S′ → S.

Example 0.4.7 (Moduli functor of smooth curves). A family of smooth curves
(of genus g) is a smooth, proper morphism C→ S of schemes such that for every
s ∈ S, the fiber Cs is a connected curve (of genus g). The moduli functor of smooth
curves of genus g is

FMg
: Sch→ Sets, S 7→ {families of smooth curves C→ S of genus g} / ∼,

where two families C→ S and C′ → S are equivalent if there is a S-isomorphism
C→ C′. If S′ → S is a map of schemes and C→ S is a family of curves, the pull
back is defined as the family C×S S′ → S′.

Example 0.4.8 (Moduli functor of vector bundles on a curve). Let C be a fixed
smooth, connected and projective curve over C, and fix integers r ≥ 0 and d. A
family of vector bundles (of rank r and degree d) over a scheme S is a vector
bundle E on C × S (such that for all s ∈ S, the restriction Es := E|C×Specκ(s) has
rank r and degree d on Cκ(s)). The moduli functor of vector bundles on C of rank
r and degree d is

Sch→ Sets S 7→
{

families of vector bundles E on C × S
of rank r and degree d

}
/ ∼,

where equivalence ∼ is given by isomorphism. If S′ → S is a map of schemes
and E is a vector bundle on C × S, the pull back is defined as the vector bundle
(id×f)∗E on C × S′

Example 0.4.9 (Moduli functor of orbits). Revisiting Example 0.3.6, consider an
algebraic group G acting on a scheme X. For every scheme S, the abstract group
G(S) acts on the set X(S) (in fact, giving such actions functorial in S uniquely
specifies the group action). We can consider the functor

Sch→ Sets S 7→ X(S)/G(S).

Elements of the quotient set X(S)/G(S) is our first candidate for a notion of a
family of orbits, which we will modify later.

To gain intuition of any moduli functor F : Sch→ Sets, it is always useful to
plug in special test schemes. For instance, plugging in a field K should give the
K-points of the moduli problem, plugging in C[ε] should give pairs of C-points
together with tangent vectors, and plugging in a curve (e.g. a DVR) gives families
of objects over the curve.

In some cases, even though you may know exactly what objects you want to
parameterize, it is not always clear how to define families of objects. In fact, there
may be several candidates for families corresponding to different scheme structures
on the same topological space. This is the case for instance for the moduli of
higher dimensional varieties.

0.4.3 Representable functors

Definition 0.4.10. We say that a functor F : Sch→ Sets is representable by a
scheme if there exists a scheme X and an isomorphism of functors F

∼→ hX .
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We would like to know when a given a moduli functor F is representable by a
scheme. Unfortunately, each of the functors considered in Examples 0.4.7 to 0.4.9
is not representable; see Section 0.4.6. We begin though by considering a few
simpler moduli functors which are in fact representable.

Theorem 0.4.11 (Projective space as a functor). [Har77, Thm. II.7.1] There is
a functorial bijection

Mor(S,PnZ) ∼=
{(
L, (s0, . . . , sn)

) ∣∣∣∣ L is a line bundle on S globally generated
by sections s0, . . . , sn ∈ Γ(S,L)

}
/ ∼,

where (L, (si)) ∼ (L′, (s′i)) if there exists t ∈ Γ(S,OS)∗ such that s′i = tsi for all i.

In other words, the theorem states the functor defined on the right is repre-
sentable by the scheme PnZ. The condition that the sections si are globally generated
translates to the condition that for every x ∈ S, at least one section si(x) ∈ L⊗κ(t)
is non-zero, or equivalently to the surjectivity of (s0, . . . , sn) : On+1

S → L. This
perspective of viewing projective space as parameterizing rank 1 quotients of the
trivial bundle will be generalized when we study the Grassmanian in Section 0.5
and even further generalized when we study the Hilbert and Quot schemes. For
now, we mention the following mild generalization:

Definition 0.4.12. If S is a scheme and E is a vector bundle on S, we define the
contravariant functor

P(E) : Sch /S → Sets

(T
f−→ S) 7→ {quotients f∗E

q
� L where L is a line bundle on T}/ ∼

where [f∗E
q
� L] ∼ [f∗E

q′

� L′] if there is an isomorphism α : L → L′ with
q′ = α′ ◦ q′.

Observe that there is an isomorphism PnZ ∼= P(On+1
SpecZ) of functors.

Exercise 0.4.13. Show that P(E) is representable by the usual projectivization
of a vector bundle.

Exercise 0.4.14. Provide functorial descriptions of:

(a) An \ 0; and

(b) the blowup Blp Pn of Pn at a point.

Exercise 0.4.15. Let X be a scheme, and let E and G be OX -modules. The
group Ext1(G,E) classifies extensions 0 → E → F → G → 0 of OX -modules
where two extensions are identified if there is an isomorphism of short exact
sequences inducing the identity map on E and G [Har77, Exer. III.6.1].

Show that the affine scheme Ext1
OX

(G,E) := Spec Sym Ext1(G,F )∨ represents
the functor

Sch→ Sets, T 7→ Ext1
OX×T

(p∗1G, p
∗
1E).

0.4.4 Working with functors

We can form a category Fun(Sch,Sets) whose objects are contravariant functors
F : Sch→ Sets and whose morphisms are natural transformations. This category

has fiber products: given a morphism F
α−→ G and G′

β−→ G, we define

F ×G G′ : Sch→ Sets

S 7→ {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)}
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Exercise 0.4.16. Show that that F ×G G′ satisfies the universal property for
fiber products in Fun(Sch,Sets).

Definition 0.4.17.

(1) We say that a morphism F → G of contravariant functors is representable by
schemes if for any map S → G from a scheme S, the fiber product F ×G S
is representable by a scheme.

(2) We say that a morphism F → G is an open immersion or that a subfunctor
F ⊂ G is open if for any morphism S → G from a scheme S, F ×G S is
representable by an open subscheme of S.

(3) We say that a set of open subfunctors {Fi} is a Zariski-open cover of F if for
any morphism S → F from a scheme S, {Fi ×F S} is a Zariski-open cover
of S.

Each of these conditions can be checked on affine schemes

By appealing to Yoneda’s lemma (Lemma 0.4.1), one can define a scheme as
a functor F : Sch→ Sets such that there exists a Zariski-open cover {Fi} where
each Fi is representable by an affine scheme. Furthermore, this perspective also
gives us a recipe for checking that a given functor F is representable by a scheme:
simply find a Zariski-open cover {Fi} where each Fi is representable.

Exercise 0.4.18. Show that a scheme can be equivalently defined as a contravari-
ant functor F : AffSch → Sets on the category of affine schemes (or covariant
functor on the category of rings) such that there is Zariski-open cover {Fi} where
each Fi is representable by an affine scheme.

Replacing Zariski-opens with étale-opens (see Section 0.6) leads to the definition
of an algebraic space (Definition 2.1.2).

0.4.5 Universal families

Definition 0.4.19. Let F : Sch → Sets be a moduli functor representable by
a scheme X via an isomorphism α : F

∼→ hX of functors. The universal family
of F is the object U ∈ F (X) corresponding under α to the identity morphism
idX ∈ hX(X) = Mor(X,X).

Suspend your skepticism for a moment and suppose that there actually ex-
ists a scheme Mg representing the moduli functor of smooth curves of genus g
(Example 0.4.7). Then corresponding to the identity map Mg →Mg is a family
of genus g curves Ug → Mg satisfying the following universal property: for any
smooth family of curves C→ S over a scheme S, there is a unique map S →Mg

and cartesian diagram
C //

��

Ug

��

S // Mg.

�

The map S →Mg sends a point s ∈ S to the curve [Cs] ∈Mg.

Example 0.4.20. The universal family of the moduli functor of projective
space (Theorem 0.4.11) is the line bundle O(1) on Pn together with the sec-
tions x0, . . . , xn ∈ Γ(Pn,O(1)).
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Mg

Ug
C

D

[C]

[D]

Figure 11: Visualization of a (non-existent) universal family over Mg.

Example 0.4.21 (Universal extensions). If X is a scheme with vector bundles E
and G, the universal family for the moduli functor Ext1

OX
(G,F ) of extensions of

Exercise 0.4.15 is the extension 0 → p∗1G → F → p∗2E → 0 of vector bundle on
X × Ext1

OX
(G,E). The restriction of this extension to X × {t} is the extension

corresponding to t ∈ Ext1(G,E).

Example 0.4.22 (Classifying spaces in algebraic topology). LetG be a topological
group and Toppara be the category of paracompact topological spaces where
morphisms are defined up to homotopy. It is a theorem in algebraic topology that
the functor

Toppara → Sets, S 7→ {principal G-bundles P → S}/ ∼,

where ∼ denotes isomorphism, is represented by a topological space, which we
denote by BG and call the classifying space. The universal family is usually
denoted by EG→ BG.

For example, the classifying space BC∗ is the infinite-dimensional manifold
CP∞; in algebraic geometry however the classifying stack BGm,C is an algebraic
stack of dimension −1.

0.4.6 Non-representability of some moduli functors

Suppose F : Sch /C → Sets is a moduli functor parameterizing isomorphism
classes of objects, and let’s suppose that there is an object E over SpecC with a
non-trivial automorphism α. This can obstruct the representability of F as the
automorphism α can sometimes be used to construct non-trivial families: namely,
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if S = S1 ∪ S2 is an open cover of a scheme S, we can glue the trivial families
E×S1 and E×S2 using α to obtain a family E over S which might be non-trivial.

Proposition 0.4.23. Let F : Sch /C→ Sets be a moduli functor parameterizing
isomorphism classes of objects. Suppose there is a family of objects E ∈ F (S)
over a variety S. For a point s ∈ S(C), denote by Es the pull back of E along
s : SpecC→ S. If

(a) the fibers Es are isomorphic for s ∈ S(C); and

(b) the family E is non-trivial, i.e. is not equal to the pull back of an object
E ∈ F (C) along the structure map S → SpecC,

then F is not representable.

Proof. Suppose by way of contradiction that F is represented by a scheme X.
By condition (a), the restriction E := Es is independent of s ∈ S(C) and defines
a unique point x ∈ X(C). As S is reduced, the map S → X factors as S →
SpecC x−→ X. Thus both the family E and the trivial family correspond to the
same constant map S → SpecC x−→ X, contradicting condition (b).

Example 0.4.24 (Moduli of vector bundles over a point). Consider the moduli
functor F : Sch /C→ Sets assigning a scheme S to the set of isomorphism classes
of vector bundles over S. Note that F (SpecC) =

⊔
r≥0{OrSpecC}. Since we know

there exist non-trivial vector bundles (of any positive rank), we see that F cannot
be representable by a scheme.

Exercise 0.4.25. Show that the moduli functor of vector bundles over a curve
C is not representable.

Example 0.4.26 (Moduli of elliptic curves). An elliptic curve over a field K is a
pair (E,P ) where E is a smooth, geometrically connected (i.e. EK is connected),
and projective curve E of genus 1 and p ∈ E(K). A family of elliptic curves over
a scheme S is a pair (E→ S, σ) where E→ S is smooth proper morphism with a
section σ : S → E such that for every s ∈ S, the fiber (Es, σ(t)) is an elliptic curve
over the residue field κ(s). The moduli functor of elliptic curves is

FM1,1 : Sch→ Sets

S 7→ {families (E→ S, σ) of elliptic curves } / ∼,

where (E→ S, σ) ∼ (E′ → S, σ′) if there is a S-isomorphism α : E→ E′ compatible
with the sections (i.e. σ′ = α ◦ σ).

Exercise 0.4.27. Consider the family of elliptic curves defined over A1 \ 0 (with
coordinate t) by

E := V (y2z − x3 + tz3) �
�

//

��

(A1 \ 0)× P2

A1 \ 0

with section σ : A1 \ 0 → E given by t 7→ [0, 1, 0]. Show that (E → A1 \ 0, σ)
satisfies (a) and (b) in Proposition 0.4.23.
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Example 0.4.28 (Moduli functor of smooth curves). Let C be a curve with a
non-trivial automorphism α ∈ Aut(C) and let N be a the nodal cubic curve which
we can think of as P1 after glueing 0 and∞. We can construct a family C→ N by
taking the trivial family π : C×P1 → P1 and gluing the fiber π−1(0) with π−1(∞)
via the automorphism α.

0 ∞

α

Figure 12: Family of curves over the nodal cubic obtaining by gluing the fibers
over 0 and ∞ of the trivial family over P1 via α. (It would be more illustrative to
draw a Mobius band as the family of curves over the nodal cubic.)

To show that the moduli functor of curves is not representable, it suffices to
show that C→ N is non-trivial.

Exercise 0.4.29. Show that C→ N is a non-trivial family.

0.4.7 Schemes are sheaves

If F : Sch → Sets is representable by a scheme X (i.e. F = Mor(−, X)), then
F is necessarily a sheaf in the big Zariski topology, that is, for any scheme S,
the presheaf on the Zariski topology of S defined by assigning to an open subset
U ⊂ S the set F (U) is a sheaf on the Zariski topology of S. This is simply stating
that morphisms into the fixed scheme X glue uniquely.

This therefore gives a potential obstruction to the representability of a given
moduli functor F : if F is not a sheaf in the big Zariski topology, then F can not
be representable.

Example 0.4.30. Consider the functor

F : Sch→ Sets, S 7→ {quotients q : OnS � OkS}/ ∼

where quotients q and q′ are identified if there exists an automorphism Ψ of OkS
such that q′ = Ψ ◦ q or equivalently if ker(q) = ker(q′).

If F were representable by a scheme, then since morphisms glue in the Zariski
topology, sections of F should also glue. But it easy to see that this fails:
specializing to k = 1 and S = P1 (with coordinates x and y), consider the cover
S1 = {y 6= 0} = SpecC[xy ] and S2 = {x 6= 0} = SpecC[ yx ]. The quotients

[(1,
x

y
, 0, · · · , 0) : O⊕nS1

→ OS1
] ∈ F (S1) and [(

y

x
, 1, 0, · · · , 0) : O⊕nS2

→ OS2
] ∈ F (S2)
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become equivalent in F (S1 ∩ S2) under the automorphism Ψ = y
x of OS1∩S2 and

do not glue to a section of F (P1). Of course, the issue is that the structure sheaves
on S1 and S2 glue to OP1(1)—not OP1—under Ψ.

The above functor can be modified to define the Grassmanian functor (Def-
inition 0.5.1) where instead of parameterizing free rank k quotients of OnS , we
parameterize locally free quotients.

Example 0.4.31. In Example 0.4.9, we introduced the functor S 7→ X(S)/G(S)
associated to an action of an algebraic group G on a scheme X. Even in simple
examples of free actions, this functor is not a sheaf; see Exercise 0.4.32

Exercise 0.4.32. Consider Gm acting on An+1 \ 0 with the usual scaling action.
Show that the functor S 7→ (An+1 \ 0)(S)/Gm(S) is not a sheaf.

Remark 0.4.33. The obstruction of representability due to non-sheafiness is
intimately related to the existence of automorphisms. Indeed, the presence of a
non-trivial automorphism often implies that a given moduli functor is not a sheaf.

Consider the moduli functor FMg of smooth curves from Example 0.4.7. Let
{Si} be a Zariski-open covering of a scheme S. Suppose we have families of
smooth curves Ci → Si and isomorphisms αij : Ci|Sij

∼→ Cj |Sij on the intersection
Sij := Si ∩ Sj . The requirement that FMg

be a sheaf (when restricted to the
Zariski topology on S) implies that the families Ci → Si glue uniquely to a family
of curves C → S. However, we have not required the isomorphisms αi to be
compatible on the triple intersection (i.e. αij |Sijk ◦ αjk|Sijk = αik|Sijk) as is usual
with gluing of schemes ([Har77, Exercise II.2.12]). For this reason, FMg fails to be
a sheaf.

Exercise 0.4.34. Show that the moduli functors of smooth curves and elliptic
curves are not sheaves by explicitly exhibiting a scheme S, an open cover {Si}
and families of curves over Si that do not glue to a family over S.

0.4.8 Moduli functors of triangles

We will now attempt to define moduli functors of labelled and unlabelled triangles.
Since we are primarily interested in constructing these moduli spaces as topological
spaces, we will consider the category Top of topological spaces and consider
representability as a topological space.

Example 0.4.35 (Labelled triangles). If S is a topological space, then we define
a family of labelled triangles over S as a tuple (T, σ1, σ2, σ3) where T ⊂ S × R2

is a closed subset and σi : S → T are continuous sections for i = 1, 2, 3 of the
projection T → S such that for every s ∈ S, the subset Ts ⊂ R2 is a labelled
triangle with vertices σ1(s), σ2(s), and σ3(s).
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S

T ⊂ S × R2

Figure 13: A family of labelled triangles over a curve.

Likewise, we define the moduli functor of labelled triangles as

FM : Top→ Sets, S 7→ {families (T, σ1, σ2, σ3) of labelled triangles}

We claim this functor is represented by the topological space of full rank 2 × 3
matrices

M :=
{

(x1, y1, x2, y2, x3, y3) | det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
6= 0
}
⊂ R6.

There is a bijection of the set FM (pt) of labelled triangles and M given by taking
the coordinates of the vertices. It is easy to see that this bijection can be promoted
to an equivalence of functors FM

∼→ hM , i.e. to a functorial bijection

FM (S)
∼→ Mor(S,M)

for each S ∈ Top, which assigns a family (T, σi) of labelled triangles to the map
S →M where s 7→ (σ1(s), σ2(s), σ3(s)) ∈ T.

Since FM is representable by the topological space M , we have a universal
family Tuniv ⊂M × R2 with σ1, σ2, σ3 : M → Tuniv. This universal family can be
visualized over the locus (x1, y1) = (0, 0) and (x2, y2) = (1, 0) by taking Figure 3
and drawing the triangles above each point rather than at each point.

Example 0.4.36 (Labelled triangles up to similarity). We say two families
(T, (σi)) and (T′, (σ′i)) of labelled triangles over S ∈ Top are similar if for each
s ∈ S, the labelled triangles Ts and T′s are similar. We define the functor

FM lab : Top→ Sets, S 7→ {families T ⊂ S × R2 of labelled triangles}/ ∼

where ∼ denotes similarity. Recall from (0.2.2) that the assignment of a triangle
to its side lengths yields a bijection between FM lab and

M lab =

(a, b, c)

∣∣∣∣
a+ b+ c = 2
0 < a < b+ c
0 < b < a+ c
0 < c < a+ b

 ;

As in the previous example, this extends to an isomorphism of functors FM lab →
Mor(−,M lab), showing that the topological space M lab represents the functor
FM lab .
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b = 1
a = 1

a+ b = 1

-

(0, 1, 1) (1, 0, 1)

(1, 1, 0)

M lab

a
c

b

Figure 14: The universal family U lab →M lab of labelled triangles up to similarity.
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Example 0.4.37 (Unlabelled triangles up to similarity). In Examples 0.4.35
and 0.4.36, we considered the moduli functor of labelled triangles up to isomorphism
and similarity, respectively. We now consider the unlabelled version.

If S is a topological space, a family of triangles is a closed subset T ⊂ S × R2

such that for all s ∈ S, the fiber Ts ⊂ R2 is a triangle. We say two families T,T′

over S are similar if the fibers Ts and T′s are similar for all s ∈ S.
We define the functor

F : Top→ Sets, S 7→ {families T ⊂ S × R2 of triangles}/ ∼

where ∼ denotes similarity.
This functor is not representable as there are non-trivial families of triangles

T such that all fibers are similar triangles (Proposition 0.4.23). For instance, we
construct a non-trivial family of triangles over S1 by gluing two trivial families
via a symmetry of an equilateral triangle.

Figure 15: A trivial (left) and non-trivial (right) family of equilateral tri-
angles. Image taken from a video produced by Jonathan Wise: see http:

//math.colorado.edu/~jonathan.wise/visual/moduli/index.html.

0.5 Illustrating example: Grassmanian

As an illustration of the utility of the functorial approach, we introduce the Grass-
manian functor Gr(k, n) over Z (Definition 0.5.1) and show that it is representable
by a projective scheme (Proposition 0.5.7). Since the Grassmanian parameterizes
subspaces V of a fixed vector space, this moduli problem does not have non-
trivial symmetries, i.e. automorphisms, and thus we do not need the language
of groupoids or stacks. This also provides a warmup to the representability and
projectivity of Hilbert and Quot schemes (Chapter D).

0.5.1 Functorial definition

The points of the Grassmanian Gr(k, n) are k-dimensional quotients of n-dimensional
space.3 But what are families of k-dimensional quotients over a scheme S? As
motivated by Example 0.4.30, they should be locally free quotients of OnS :

Definition 0.5.1. The Grassmanian functor is

Gr(k, n) : Sch→ Sets

S 7→
{[

OnS � Q
] ∣∣∣∣ Q is a vector bundle of rank k

}
/ ∼

3Alternatively, the points could be considered as k-dimensional subspaces but in these notes,
we will follow Grothendieck’s convention of quotients.
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where [OnS
q
� Q

]
∼ [OnS

q′

� Q′
]

if there exists an isomorphism Ψ: Q
∼→ Q′ such

that
OnS

q
//

q′
  

Q

Ψ

��

Q′

commutes (i.e. q′ = Ψ ◦ q) or equivalently ker(q) = ker(q′).

Pullbacks are defined in the obvious manner. Observe that if k = 1, then
Gr(1, n) ∼= Pn−1.

0.5.2 Representability by a scheme

In this subsection, we show that Gr(k, n) is representable by a scheme (Propo-
sition 0.5.4). Our strategy will be to find a Zariski-open cover of Gr(k, n) by
representable functors; see Definition 0.4.17. Given a subset I ⊂ {1, . . . , n} of size
k, let Gr(k, n)I ⊂ Gr(k, n) be the subfunctor where for a scheme S, Gr(k, n)I(S)

is the subset of Gr(k, n)(S) consisting of surjections OnS
q
� Q such that the

composition

OIS
eI−→ OnS

q
� Q

is an isomorphism, where eI is the canonical inclusion. When there is no possible
ambiguity, we set GrI := Gr(k, n)I .

Lemma 0.5.2. For each I ⊂ {1, . . . , n} of size k, the functor GrI is representable

by affine space Ak×(n−k)
Z

Proof. We may assume that I = {1, . . . , k}. We define a map of functors
φ : Ak×(n−k) → GrI where over a scheme S, a k× (n− k) matrix f = {fi,j} 1≤i≤n

1≤j≤k
of global functions on S is mapped to the quotient

1 f1,1 · · · f1,n−k
1 f2,1 · · · f2,n−k

. . .
...

1 fk,1 · · · fk,n−k

 : OnS → OkS . (0.5.1)

The injectivity of φ(S) : Ak×(n−k)(S) → GrI(S) is clear. To see surjectivity,

let [OnS
q−→ Q] ∈ GrI(S) where by definition OIS

eI−→ OnS
q
� Q is an isomorphism.

The tautological commutative diagram

OnS
q
//

(q◦eI)−1◦q   

Q

(q◦eI)−1

��

OIS

shows that [OnS
q
� Q] = [OnS

(q◦eI)−1◦q
� OIS ] ∈ Gr(k, n)(S). Since the composition

OIS
eI−→ OnS

(q◦eI)−1

� OIS is the identity, the k × n matrix corresponding to (q ◦
eI)
−1 ◦ q has the same form as (0.5.1) for functions fi,j ∈ Γ(S,OS) and therefore

φ(S)({fi,j}) = [OnS
q
� Q] ∈ Gr(k, n)(S).
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Lemma 0.5.3. {GrI} is an open cover of Gr(k, n) where I ranges over all subsets
of size k.

Proof. For a fixed subset I, we first show that GrI ⊂ Gr(k, n) is an open subfunctor.
To this end, we consider a scheme S and a morphism S → Gr(k, n) corresponding to
a quotient q : OnS → Q. Let C denote the cokernel of the composition q ◦ eI : OIS →
Q. Notice that if C = 0, then q is an isomorphism. The fiber product

FI //

��

S

[OnS
q
�Q]

��

GrI // Gr(k, n)

�

of functors is representable by the open subscheme U = S \ Supp(C) (the reader
is encouraged to verify this claim).

To check the surjectivity of
⊔
I FI → S, let s ∈ S be a point. Since κ(s)n

q⊗κ(s)
�

Q⊗κ(s) is a surjection of vector spaces, there is a non-zero k×k minor, given by a

subset I, of the k× n matrix q⊗ κ(s). This implies that [κ(s)n
q⊗κ(s)
� Q⊗ κ(s)] ∈

FI(κ(s)).

Lemmas 0.5.2 and 0.5.3 together imply:

Proposition 0.5.4. The functor Gr(k, n) is representable by a scheme.

!
a

Warning 0.5.5. We will abuse notation by denoting both the functor and
the scheme as Gr(k, n).

Exercise 0.5.6. Use the valuative criterion of properness to show that Gr(k, n)→
SpecZ is proper.

0.5.3 Projectivity of the Grassmanian

We show that the Grassmanian scheme Gr(k, n) is projective (Proposition 0.5.7)
by explicitly providing a projective embedding using the functorial approach. The
Plücker embedding is the map of functors

P : Gr(k, n)→ P(

k∧
OnSpecZ)

defined over a scheme S by mapping a rank k quotient OnS
q
� Q to the correspond-

ing rank 1 quotient
∧k

OnS →
∧k

Q. As both sides are representable by schemes,
the morphism P corresponds to a morphism of schemes via Yoneda’s lemma.

Proposition 0.5.7. The morphism P : Gr(k, n)→ P(
∧k

OnSpecZ) of schemes is
a closed immersion. In particular, Gr(k, n) is a projective scheme.

Proof. Let I ⊂ {1, . . . , n} be a subset which corresponds to a coordinate xI on

P(
∧k

OnSpecZ). Let P(
∧k

OnSpecZ)I be the open locus where xI 6= 0. Viewing
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P(
∧k

OnSpecZ) ∼= Gr(1,
(
n
k

)
), then P(

∧k
OnSpecZ)I ∼= Gr(1,

(
n
k

)
){I} (viewing {I} as

the corresponding subset of {1, . . . ,
(
n
k

)
} of size 1). Since

Gr(k, n)I
PI //

��

P(
∧k

OnSpecZ)I

��

Gr(k, n)
P // P(

∧k
OnSpecZ)

�

is a cartesian diagram of functors, it suffices to show that PI is a closed immersion.
Under the isomorphisms of Lemma 0.5.2, PI corresponds to the map

Ak×(n−k)
Z → A(nk)−1

Z

assigning a k × (n − k) matrix A = {ai,j} to the element of A(nk)−1

Z whose Jth
coordinate, where J ⊂ {1, . . . , n} is a subset of length k distinct from I, is the
{1, . . . , k} × J minor of the k × n block matrix

1 a1,1 · · · a1,n−k
1 a2,1 · · · a2,n−k

. . .
...

1 ak,1 · · · ak,n−k


(of the same form as (0.5.1)). The coordinate xi,j on Ak×(n−k)

Z is the pull back of

the coordinate corresponding to the subset {1, · · · , î, · · · , k, k+ j} (see Figure 16).
This shows that the corresponding ring map is surjective thereby establishing that
PI is a closed immersion.

Figure 16: The minor obtained by removing the ith column and all columns
k + 1, . . . , n other than k + j is precisely ai,j .

Exercise 0.5.8. For a field K, let Gr(k, n)K be the K-scheme Gr(k, n) ×Z K,

and p = [Kn
q
� Q] be a quotient with kernel K = ker(q). Show that there is a

natural bijection of the tangent space

Tp Gr(k, n)K
∼→ Hom(K,Q).

with the vector space of K-linear maps K → Q.

Exercise 0.5.9.

34



(1) Show that the functor P : Gr(k, n) → P(
∧k

OnSpecZ) is injective on points
and tangent spaces.

Hint: You may want to use the identification of the tangent space of Gr(k, n)
from Exercise 0.5.8. Alternatively you can also show it is a monomorphism.

(2) Use Exercise 0.5.6, part (1) above and a criterion for a closed immersion
(c.f.[Har77, Prop. II.7.3]) to provide an alternative proof that Gr(k, n)K is
projective.

0.6 Motivation: why the étale topology?

Why is the Zariski topology not sufficient for our purposes? The short answer is
that there are not enough Zariski-open subsets and that étale morphisms are an
algebro-geometric replacement of analytic open subsets.

0.6.1 What is an étale morphism anyway?

I’m always baffled when a student is intimidated by étale morphisms, especially
when the student has already mastered the conceptually more difficult notions of
say properness and flatness. One reason may be due to the fact that the definition
is buried in [Har77, Exercises III.10.3-6] and its importance is not highlighted
there.

The geometric picture of étaleness that you should have in your head is a
covering space. The precise definition of an étale morphism is of course more
algebraic, and there are in fact many equivalent formulations. This is possibly
another point of intimidation for students as it is not at all obvious why the
different notions are equivalent, and indeed some of the proofs are quite involved.
Nevertheless, if you can take the equivalences on faith, it requires very little effort
to not only internalize the concept, but to master its use.

A1

A1

x2

x

Figure 17: Picture of an étale double cover of A1 \ 0

For a morphism f : X → Y of schemes of finite type over C, the following are
equivalent characterizations of étaleness:

• f is smooth of relative dimension 0 (i.e. f is flat and all fibers are smooth
of dimension 0);

• f is flat and unramified (i.e. for all y ∈ Y (C), the scheme-theoretic fiber Xy

is isomorphic to a disjoint union
⊔
i SpecC of points);

• f is flat and ΩX/Y = 0;
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• for all x ∈ X(C), the induced map ÔY,f(x) → ÔX,x on completions is an
isomorphism; and

• (assuming in addition that X and Y are smooth) for all x ∈ X(C), the
induced map TX,x → TY,f(x) on tangent spaces is an isomorphism.

We say that f is étale at x ∈ X if there is an open neighborhood U of x such that
f |U is étale.

Exercise 0.6.1. Show that f : A1 → A1, x 7→ x2 is étale over A1 \ 0 but is not
étale at the origin.

Try to show this for as many of the above definitions as you can.

Étale and smooth morphisms are discussed in much greater detail and generality
in Section A.3.

0.6.2 What can you see in the étale topology?

Working with the étale topology is like putting on a better pair of glasses allowing
you to see what you couldn’t before. Or perhaps more accurately, it is like getting
magnifying lenses for your algebraic geometry glasses allowing you to visualize
what you already could using your differential geometry glasses.

Example 0.6.2 (Irreducibility of the node). Consider the plane nodal cubic
C defined by y2 = x2(x − 1) in the plane. While there is an analytic open
neighborhood of the node p = (0, 0) which is reducible, there is no such Zariski-
open neighborhood. However, taking a ‘square root’ of x−1 yields a reducible étale
neighborhood. More specifically, define C ′ = Spec k[x, y, t]t/(y

2−x3+x2, t2−x+1)
and consider

C ′ → C, (x, y, t) 7→ (x, y)

Since y2 − x3 + x2 = (y − xt)(y + xt), we see that C ′ is reducible.

Figure 18: After an étale cover, the nodal cubic becomes reducible.
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Example 0.6.3 (Étale cohomology). Sheaf cohomology for the Zarisk-topology
can be extended to the étale topology leading to the extremely robust theory
of étale cohomology. As an example, consider a smooth projective curve C over
C (or equivalently a Riemann surface of genus g), then the étale cohomology
H1(Cét,Z/n) of the finite constant sheaf is isomorphic to (Z/n)2g just like the
ordinary cohomology groups, while the sheaf cohomology H1(C,Z/n) in the
Zariski-topology is 0.

Finally, we would be remiss without mentioning the spectacular application of
étale cohomology to prove the Weil conjectures.

Example 0.6.4 (Étale fundamental group). Have you ever thought that there
is a similarity between the bijection in Galois theory between intermediate field
extensions and subgroups of the Galois group, and the bijection in algebraic
topology between covering spaces and subgroups of the fundamental group? Well,
you’re in good company—Grothendieck also considered this and developed a
beautiful theory of the étale fundamental group which packages Galois groups and
fundamental groups in the same framework.

We only point out here that this connection between étale morphisms and
Galois theory is perhaps not so surprising given that a finite field extension L/K
is étale (i.e. SpecL→ SpecK is étale) if and only if L/K is separable. While we
only defined étaleness above for C-varieties, the general notion is not much more
complicated; see Étale Equivalences A.3.2.

For the reader interested in reading more about étale cohomology or the étale
fundamental group, we recommend [Mil80].

Example 0.6.5 (Quotients by free actions of finite groups). If G is a finite
group acting freely on a projective variety X, then there exists a quotient X/G
as a projective variety. The essential reason for this is that any G-orbit (or in
fact any finite set of points) is contained in an affine variety U , which is the
complement of some hypersurface. Then the intersection V =

⋂
g gU of the

G-translates is a G-invariant affine open containing Gx. One can then show that
V/G = Spec Γ(V,OV )G and that these local quotients glue to form X/G.

However, if X is not projective, the quotient does not necessarily exist as
a scheme. As with most phenomenon for smooth proper varieties that are not-
projective, a counterexample is provided by Hironaka’s examples of smooth, proper
3-folds; [Har77, App. B, Ex. 3.4.1]. One can construct an example which has
a free action by G = Z/2 such that there is an orbit Gx not contained in any
G-invariant affine open. This shows that X/G cannot exist as a scheme; indeed,
if it did, then the image of x under the finite morphism X → X/G would be
contained in some affine and its inverse would be an affine open containing Gx.
See [Knu71, Ex. 1.3] or [Ols16, Ex. 5.3.2] for details.

Nevertheless, for any free action of a finite group G on a scheme X, there
does exist a G-invariant étale morphism U → X from an affine scheme, and the
quotients U/G can be glued in the étale topology to construct X/G as an algebraic
space. The upshot is that we can always take quotients of free actions by finite
groups, a very desirable feature given the ubiquity of group actions in algebraic
geometry; this however comes at the cost of enlarging our category from schemes
to algebraic spaces.

Example 0.6.6 (Artin approximation). Artin approximation is a powerful and
extremely deep result, due to Michael Artin, which implies that most properties
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which hold for the completion ÔX,x of the local ring is also true in an étale
neighborhood of x. More precisely, let F : Sch /X → Sets be a functor locally of
finite presentation (i.e. satisfying the functorial property of Proposition A.1.2),

â ∈ F (ÔX,x) and N a positive integer. Under the weak hypothesis of excellency on
X (which holds if X is locally of finite type over Z or a field), Artin approximation
states that there exists an étale neighborhood (X ′, x′)→ (X,x) with κ(x′) = κ(x)
and an element a′ ∈ F (X ′) agreeing with a on the Nth order neighborhood of x.

For example, in Example 0.6.2, it’s not hard to use properties of power series
rings to establish that ÔC,p ∼= C[[x, y]]/(y2−x2) (e.g. take a power series expansion
of
√
x− 1), which is reducible. If we consider the functor

F : Sch /C → Sets, (C ′
π−→ C) 7→ {decompositions C ′ = C ′1 ∪ C ′2}

then applying Artin approximation yields an étale cover C ′ → C with C ′ reducible.
Of course, we already knew this from an explicit construction in Example 0.6.2,
but hopefully this example shows the potential power of Artin approximation.

0.6.3 Working with the étale topology: descent theory

Another reason why the étale topology is so useful is that many properties of
schemes and their morphisms can be checked on étale covers. For instance, you
already know that to check if a scheme X is noetherian, finite type over C, reduced
or smooth, it suffices to find a Zariski-open cover {Ui} such that the property
holds for each Ui. Descent theory implies the same with respect to a collection
{Ui → U} of étale morphisms such that

⊔
i Ui → U is surjective: X has the

property if and only if each Ui does. Descent theory is developed in Chapter B
and is used to prove just about everything concerning algebraic spaces and stacks.

0.7 Moduli stacks: moduli with automorphisms

The failure of the representability of the moduli functors of curves and vector
bundles is a motivating factor for introducing moduli stacks, which encode the
automorphisms groups as part of the data. We will synthesize the approaches
from Section 0.3 on moduli groupoids and Section 0.4 on moduli functors.

0.7.1 Specifying a moduli stack

To define a moduli stack, we need to specify

1. families of objects;

2. how two families of objects are isomorphic; and

3. how families pull back under morphisms.

Notice the difference from specifying a moduli functor (Section 0.4.2) is that rather
than specifying when two families are isomorphic, we specify how.

To specify a moduli stack in the algebro-geometric setting, we need to specify
for each scheme T a groupoid FamT of families of objects over T . As a natural
generalization of functors to sets, we could consider assignments

F : Sch→ Groupoids, T 7→ FamT .
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This presents the technical difficulty of considering functors between the category
of schemes and the ‘category’ of groupoids. Morphisms of groupoids are functors
but there are also morphisms of functors (i.e. natural transformations) which we
call 2-morphisms. This leads to a ‘2-category’ of groupoids.

What is actually involved in defining such an assignment F? In addition
to defining the groupoids FamT over each scheme T , we need pullback functors
f∗ : FamT → FamS for each morphism f : S → T . But what should be the

compatibility for a composition S
f−→ T

g−→ U of schemes? Well, there should
be an isomorphism of functors (i.e. a 2-morphism) µf,g : (f∗ ◦ g∗) ∼→ (g ◦ f)∗.
Should the isomorphisms µf,g satisfy a compatibility condition under triples

S
f−→ T

g−→ U
h−→ V ? Yes, but we won’t spell it out here (although we encourage

the reader to work it out). Altogether this leads to the concept of a pseudo-
functor (see [SP, Tag 003N]). We will take another approach however in specifying
prestacks that avoids specifying such compatibility data.

0.7.2 Motivating the definition of a prestack

Instead of trying to define an assignment T 7→ FamT , we will build one massive
category X encoding all of the groupoids FamT which will live over the category
Sch of schemes. Loosely speaking, the objects of X will be a family a of objects
over a scheme S, i.e. a ∈ FamS . If a ∈ FamS and b ∈ FamT , a morphism a→ b
in X will be a morphism f : S → T together with an isomorphism a

∼→ f∗b.
A prestack over Sch is a category X together with functor p : X→ Sch, which

we visualize as

X

p

��

a
α //

_

��

b_

��

Sch S
f
// T

where the lower case letters a, b are objects in X and the upper case letters S, T are
objects in Sch. We say that a is over S and α : a→ b is over f : S → T . Moreover,

we need to require certain natural axioms to hold for X
p−→ Sch. This will be

given in full later but vaguely we need to require the existence and uniqueness
of pullbacks: given a map S → T and object b ∈ X over T , there should exist an
arrow a

α−→ b over f satisfying a suitable universal property. See Definition 1.3.1
for a precise definition.

Given a scheme S, the fiber category X(S) is the category of objects over S
whose morphisms are over idS . If X is built from the groupoids FamS as above,
then the fiber category X(S) = FamS .

Example 0.7.1 (Viewing a moduli functor as a moduli prestack). A moduli
functor F : Sch→ Sets can be encoded as a moduli prestack as follows: we define
the category XF of pairs (S, a) where S is a scheme and a ∈ F (S). A map
(S′, a) → (S, a) is a map f : S′ → S such that a′ = f∗a, where f∗ is convenient
shorthand for F (f) : F (S)→ F (S′). Observe that the fiber categories XF (S) are
equivalent (even equal) to the set F (S).

Example 0.7.2 (Moduli prestack of smooth curves). We define the moduli
prestack of smooth curves as the category Mg of families of smooth curves C→ S
together with the functor p : Mg → Sch where (C→ S) 7→ S. A map (C′ → S′)→

39

http://stacks.math.columbia.edu/tag/003N


(C→ S) is the data of maps α : C′ → C and f : S′ → S such that the diagram

C′

��

α // C

��

S′
f
// S

�

is cartesian.

Example 0.7.3 (Moduli prestack of vector bundles). Let C be a fixed smooth,
connected and projective curve over C, and fix integers r ≥ 0 and d. We define the
moduli prestack of vector bundles on C as the category MC,r,d of pairs (E,S) where
S is a scheme and E is a vector bundle on CS = C ×C S together with the functor
p : MC,r,d → Sch /C, (E,S) 7→ S. A map (E′, S′) → (E,S) consists of a map of
schemes f : S′ → S together with a map E → (id×f)∗E

′ of OCS -modules whose
adjoint is an isomorphism (i.e. for any choice of pull back (id×f)∗E, the adjoint
map (id×f)∗E → E′ is an isomorphism). Note that a map (E′, S)→ (E,S) over
the identity map idS consists simply of an isomorphism E′ → E.

Remark 0.7.4. We have formulated morphisms using the adjoint because the
pull back is only defined up to isomorphism while the pushforward is canonical.
If we were to instead parameterize the total spaces of vector bundles (i.e. A(E)
rather than E), then a morphism (V ′, S′)→ (V, S) would consist of morphisms
α : V ′ → V and f : S′ → S such that V ′ → V ×CS CS′ is an isomorphism of vector
bundles.

0.7.3 Motivating the definition of a stack

A stack is to a prestack as a sheaf is to a presheaf. The concept could not be more
intuitive: we require that objects and morphisms glue uniquely.

Example 0.7.5 (Moduli stack of sheaves over a point). Define the category X

over Sch of pairs (E,S) where E is a sheaf of abelian groups on a scheme S, and
the functor p : X→ Sch given by (E,S) 7→ S. A map (E′, S′)→ (E,S) in X is a
map of schemes f : S′ → S together with a map E → f∗E

′ of OS′ -modules whose
adjoint is an isomorphism.

You already know that morphisms of sheaves glue [Har77, Exercise II.1.15]:
let E and F be sheaves on schemes S and T , and let f : S → T be a map. If {Si}
is a Zariski-open cover of S, then giving a morphism α : (E,S) → (F, T ) is the
same data as giving morphisms αi : (E|Si , Si)→ (F, T ) such that αi|Sij = αj |Sij .

You also know how sheaves themselves glue [Har77, Exercise II.1.22]—it is
more complicated than gluing morphisms since sheaves have automorphisms and
given two sheaves, we prefer to say that they are isomorphic rather than equal.
If {Si} is a Zariski-open cover of a scheme S, then giving a sheaf E on S is
equivalent to giving a sheaf Ei on Si and isomorphisms φij : Ei|Sij → Ej |Sij such
that φik = φjk ◦ φij on the triple intersection Sijk.

In an identical way, we could have considered the moduli stack of O-modules,
quasi-coherent sheaves or vector bundles.

The definition of a stack simply axiomitizes these two natural gluing concepts;
it is postponed until Definition 1.4.1.

Exercise 0.7.6. Convince yourself that Examples 0.7.2 and 0.7.3 satisfy the same
gluing axioms. (See also Propositions 1.4.6 and 1.4.9.)
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0.7.4 Motivating the definition of an algebraic stack

There are functors F : Sch→ Sets that are sheaves when restricted to the Zariski
topology on any scheme T but that are not necessarily representable by schemes;
see for instance ????. In a similar way, there are prestacks X that are stacks
but that are not sufficiently algebro-geometric. If we wish to bring our algebraic
geometry toolkit (e.g. coherent sheaves, commutative algebra, cohomology, ...)
to study stacks in a similar way that we study schemes, we must impose an
algebraicity condition.

The condition we impose on a stack to be algebraic is very natural. Recall
that a functor F : Sch→ Sets is representable by a scheme if and only if there is
a Zariski-open cover {Ui ⊂ F} such that Ui is an affine scheme. Similarly, we will
say that a stack X→ Sch is algebraic if

• there is a smooth cover {Ui → X} where each Ui is an affine scheme.

To make this precise, we need to define what it means for {Ui → X} to be a smooth
cover. Just like in the definition of Zariski-open cover (Definition 0.4.17(3)), we
require that for every morphism T → X from a scheme T , the fiber product
(fiber products of prestacks will be formally introduced in §1.3.5) Ui ×X T is
representable (by an algebraic space) such that

⊔
i Ui ×X T → T is a smooth and

surjective morphism. See Definition 2.1.5 for the precise definition of an algebraic
stack.

Constructing a smooth cover of a given moduli stack is a geometric problem
inherent to the moduli problem. It can often be solved by ridigifying the moduli
problem by parameterizing additional information. This concept is best absorbed
in examples.

Example 0.7.7 (Moduli stack of elliptic curves). An elliptic curve (E, p) over C
is embedded into P2 via OE(3p) such that E is defined by a Weierstrass equation
y2z = x(x− z)(x− λz) for some λ 6= 0, 1 [Har77, Prop. 4.6]. Let U = A1 \ {0, 1}
with coordinate λ. The family E ⊂ U × P2 of elliptic curves defined by the
Weierstrass equation gives a smooth (even étale) cover U →M1,1.

Example 0.7.8 (Moduli stack of smooth curves). For any smooth, connected
and projective curve C of genus g ≥ 2, the third tensor power ω⊗3

C is very ample
and gives an embedding C ↪→ P(H0(C,ω⊗3

c )) ∼= P5g−6. There is a Hilbert scheme
H parameterizing closed subschemes of P5g−6 with the same Hilbert polynomial
as C ⊂ P5g−6, and there is a locally closed subscheme H ′ ⊂ H parameterizing
smooth subschemes such that ω⊗3

C
∼= OC(1). The universal subscheme over H ′

yields a smooth cover H ′ →Mg.

Example 0.7.9 (Moduli stack of vector bundles). For any vector bundle E of
rank r and degree d on a smooth, connected and projective curve C, the twist E(m)
is globally generated for sufficiently large m. Taking N = h0(C,E(m)), we can
view E as a quotient OC(−m)N � E. There is a Quot scheme Qm parameterizing

quotients OC(−m)N
π
� F with the same Hilbert polynomial as E and a locally

closed subscheme Q′m ⊂ Q parameterizing quotients where E is a vector bundle
and such that the induced map H0(π ⊗ OC(m)) : CN → H0(C,E(m)) is an
isomorphism. The universal quotient over Q′m defines a smooth map Q′m →MC,r,d

and the collection {Q′m →MC,r,d} over m� 0 defines a smooth cover.
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0.7.5 Deligne–Mumford stacks and algebraic spaces

A Deligne–Mumford stack can be defined in two equivalent ways:

• a stack X such that there exists an étale (rather than smooth) cover {Ui → X}
by schemes; or

• an algebraic stack such that all automorphisms groups of field-valued points
are étale, i.e. discrete (e.g. finite) and reduced.

The moduli stacks Mg and Mg are Deligne–Mumford for g ≥ 2, but MC,r,d is
not. Similarly, an algebraic space can be defined in two equivalent ways:

• a sheaf (i.e. a contravariant functor F : Sch→ Sets that is a sheaf in the big
étale topology) such that there exists an étale cover {Ui → F} by schemes;
or

• an algebraic stack such that all automorphisms groups of field-valued points
are trivial.

In other words, an algebraic space is an algebraic stack without any stackiness.

Table 1: Schemes, algebraic spaces, Deligne–Mumford stacks, and algebraic stacks
are obtained by gluing affine schemes in certain topologies

Algebro-geometric space Type of object Obtained by gluing

Schemes sheaf affine schemes in the
Zariski topology

Algebraic spaces sheaf affine schemes in the
étale topology

Deligne–Mumford stacks stack affine schemes in the
étale topology

Algebraic stacks stack affine schemes in the
smooth topology

Example 0.7.10 (Quotients by finite groups). Quotients by free actions of finite
groups exist as algebraic spaces! See Corollary 2.1.9.

0.8 Moduli stacks and quotients

One of the most important examples of a stack is a quotient stack [X/G] arising
from an action of a smooth algebraic group G on a scheme X. The geometry of
[X/G] couldn’t be simpler: it’s the G-equivariant geometry of X.

Similar to how toric varieties provide concrete examples of schemes, quotient
stacks provide both concrete examples useful to gain geometric intuition of general
algebraic stacks and a fertile testing ground for conjectural results. On the other
hand, it turns out that many algebraic stacks are quotient stacks (or at least
locally quotient stacks) and therefore any (local) property that holds for quotient
stacks also holds for many algebraic stacks.
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0.8.1 Motivating the definition of the quotient stack

The quotient functor Sch→ Sets defined by S 7→ X(S)/G(S) is not a sheaf even
when the action is free (see Example 0.4.31). We therefore first need to consider a
better notion for a family of orbits.

For simplicity, let’s assume that G and X are defined over C. For x ∈ X(C),
there is a G-equivariant map σx : G→ X defined by g 7→ g ·x. Note that two points
x, x′ are in the same G-orbit (say x = hx′), if and only if there is a G-equivariant
morphism ϕ : G→ G (say by g 7→ gh) such that σx = σx′ ◦ ϕ.

We can try the same thing for a T -point T
f−→ X by considering

G× T
f
//

p2

��

X, (g, t) � // g · f(t)

T

and noting that f : G× T → X is a G-equivariant map. If we define a prestack
consisting of such families, it fails to be a stack as objects don’t glue: given a

Zariski-cover {Ti} of T , maps Ti
fi−→ X and isomorphisms of the restrictions to

Tij , the trivial bundles G× Ti → Ti will glue to a G-torsor P → T but it will not
necessarily be trivial (i.e. P ∼= G× T ). It is clear then how to correct this using
the language of G-torsors (see Section C.3):

Definition 0.8.1 (Quotient stack). We define [X/G] as the category over Sch
whose objects over a scheme S are diagrams

P

��

f
// X

S

where P → S is a G-torsor and f : P → X is a G-equivariant morphism. A

morphism (P ′ → S′, P ′
f ′−→ X) → (P → S, P

f−→ X) consists a maps g : S′ → S
and ϕ : P ′ → P of schemes such that the diagram

P ′

��

ϕ
//

f ′

##

P

��

f
// X

S′
g
// S

�

commutes with the left square cartesian.

There is an object of [X/G] over X given by the diagram

G×X

p2

��

σ // X

X,
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where σ denotes the action map. This corresponds to a map X → [X/G] via a
2-categorical version of Yoneda’s lemma.

The map X → [X/G] is a G-torsor even if the action of G on X is not free.
We state that again: the map X → [X/G] is a G-torsor even if the action
of G on X is not free. Pause for a moment to appreciate how remarkable that
is!

In particular, the map X → [X/G] is smooth and it follows that [X/G] is
algebraic. At the expense of enlarging our category from schemes to algebraic
stacks, we are able to (tautologically) construct the quotient [X/G] as a ‘geometric
space’ with desirable geometric properties.

Example 0.8.2. Specializing to the case that X = SpecC is a point, we define
the classifying stack of G as the category BG := [SpecC/G] of G-torsors P → S.
The projection SpecC→ BG is not only a G-torsor; it is the universal G-torsor.
Given any other G-torsor P → S, there is a unique map S → BG and a cartesian
diagram

P

��

// SpecC

��

S // BG.

�

Exercise 0.8.3. What is the universal family over the quotient stack [X/G]?

0.8.2 Moduli as quotient stacks

Moduli stacks can often be described as quotient stacks, and these descriptions
can be leveraged to establish properties of the moduli stack.

Example 0.8.4 (Moduli stack of smooth curves). In Example 0.7.8, the em-

bedding of a smooth curve C via C
|ω⊗3
C |
↪→ P5g−6 depends on a choice of basis

H0(C,ω⊗3
C ) ∼= C5g−5 and therefore is only unique up to a projective automor-

phism, i.e. an element of PGL5g−5 = Aut(P5g−6). The action of the algebraic
group PGL5g−5 on the scheme H ′, parameterizing smooth subschemes such that
ωC ∼= OC(3), yields an identification Mg

∼= [H ′/PGL5g−6]. See Theorem 2.1.11.

Example 0.8.5 (Moduli stack of vector bundles). In Example 0.7.9, the presenta-
tion of a vector bundle E as a quotient OC(−m)N � E depends on a choice of basis
H0(C,E(m)) ∼= CN . The algebraic group PGLN−1 acts on the scheme Q′m, pa-
rameterizing vector bundle quotients of OC(−m)N such that CN ∼→ H0(C,E(m)),
yields an identification MC,r,d

∼=
⋃
m�0[Q′m/PGLN−1]. See Theorem 2.1.15.

0.8.3 Geometry of [X/G]

While the definition of the quotient stack [X/G] may appear abstract, its geometry
is very familiar. The table below provides a dictionary between the geometry of a
quotient stack [X/G] and the G-equivariant geometry of X. The stack-theoretic
concepts on the left-hand side will be introduced later. For simplicity we work
over C.
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Table 2: Dictionary

Geometry of [X/G] G-equivariant geometry of X

C-point x ∈ [X/G] orbit Gx

automorphism group Aut(x) stabilizer Gx

function f ∈ Γ([X/G],O[X/G]) G-equivariant function f ∈ Γ(X,OX)G

map [X/G]→ Y to a scheme Y G-equivariant map X → Y

line bundle G-equivariant line bundle (or lineariza-
tion)

quasi-coherent sheaf G-equivariant quasi-coherent sheaf

tangent space T[X/G],x normal space TX,x/TGx,x to the orbit

coarse moduli space [X/G]→ Y geometric quotient X → Y

good moduli space [X/G]→ Y good GIT quotient X → Y

0.9 Constructing moduli spaces as projective va-
rieties

One of the primary reasons for introducing algebraic stacks to begin with is to
ensure that a given moduli problem M is in fact represented by a bona fide algebro-
geometric space equipped with a universal family. Many geometric questions can
be answered (and arguably should be answered) by studying the moduli stack M

itself. However, even in the presence of automorphisms, there still may exist a
scheme—even a projective variety— that closely approximates the moduli problem.
If we are willing to sacrifice some desirable properties (e.g. a universal family),
we can sometimes construct a more familiar algebro-geometric space—namely a
projective variety—where we have the much larger toolkit of projective geometry
(e.g., Hodge theory, birational geometry, intersection theory, ...) at our disposal.

In this section, we present a general strategy for a constructing a moduli space
specifically as a projective variety.

0.9.1 Boundedness

The first potential problem is that our moduli problem may simply have too many
objects so that there is no hope of representing it by a finite type or quasi-compact
scheme. We say that a moduli functor or stack M over C is bounded if there exists
a scheme X of finite type over C and a family of objects E over X such that every
object E of M is isomorphic to a fiber E ∼= Ex for some (not necessarily unique)
x ∈ X(C).

Example 0.9.1. Let Vect be the algebraic stack over C where objects over a
scheme S consist of vector bundles. Since we have not specified the rank, VectC
is not bounded. In fact, if we let Vectr ⊂ Vect be the substack parameterizing
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vector bundles of rank r, then Vect =
⊔
r≥0 Vectr While Vect is locally of finite

type over C, it is not of finite type (or equivalently quasi-compact).

Exercise 0.9.2. Show that Vectr is isomorphic to the classifying stack BGLr
(Example 0.8.2).

Example 0.9.3. Let V be the stack of all vector bundles over a smooth, connected
and projective curve C. The stack V is clearly not bounded since we haven’t
specified the rank and degree. But even the substack MC,r,d of vector bundles
with prescribed rank and degree is not bounded! For example, on P1, there are
vector bundles O(−d)⊕ O(d) of rank 2 and degree 0 for every d ∈ Z, and not all
of them can arise as the fibers of a single vector bundle on a finite type C-scheme.

Exercise 0.9.4. Prove that MC,r,d is not bounded for any curve C.

Although MC,r,d is not bounded, we will study the substack Mss
C,r,d of semistable

vector bundles which is bounded. Semistable vector bundles admit a number of
remarkable properties with boundedness being one of the most important.

0.9.2 Compactness

Projective varieties are compact so if we are going to have any hope to construct
a projective moduli space, the moduli stack better be compact as well. However,
many moduli stacks such as Mg are not compact as they don’t have enough objects.
This is in contrast to the issue of non-boundedness where there may be too many
objects.

0 1 λ

Figure 19: The family of elliptic curves y2z = x(x− z)(x− λz) degenerates to the
nodal cubic over λ = 0, 1.

The scheme-theoretic notion for compactness is properness—universally closed,
separated and of finite type. There is a conceptual criterion to test properness
called the valuative criterion which loosely speaking requires one-dimensional
limits to exist. The usefulness of the valuative criterion is arguably best witnessed
through studying moduli problems.

More precisely, a moduli stack M of finite type over C is proper (resp. uni-
versally closed, separated) if for every DVR R with fraction field K and for any
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diagram

SpecK //

��

M

SpecR,

;;

(0.9.1)

after possibly allowing for an extension of R, there exists a unique extension (resp.
there exists an extension, resp. there exists at most one extension) of the above
diagram.4 Since M is a moduli stack, a map SpecK → M corresponds to an
object E× over SpecK and a dotted arrow corresponds to a family of objects E
over SpecR and an isomorphism E|SpecK

∼= E×. In other words, properness of
M means that every object E∗ over the punctured disk SpecK extends uniquely
(after possibly allowing for an extension of R) to a family E of objects over the
entire disk SpecR.

Example 0.9.5. The moduli stack Mg of smooth curves is not proper as exhibited
in Figure 19. The pioneering insight of Deligne and Mumford is that there is
a moduli-theoretic compactification! Namely, there is an algebraic stack Mg

parameterizing Deligne–Mumford stable curves, i.e. proper curves C with at worst
nodal singularities such that any smooth rational subcurve P1 ⊂ C intersects the
rest of the curve along at least three points. The stack Mg is a proper algebraic
stack (due to the stable reduction theorem for curves) and contains Mg as an
open substack.

Example 0.9.6. Let Mss
C,r,d be the moduli stack parameterizing semistable vector

bundles over a curve of prescribed rank and degree. We will later show that Mss
C,r,d

is an algebraic stack of finite type over C. Langton’s semistable reduction theorem
states that Mss

C,r,d is universally closed, i.e. satisfies the existence part of the above
valuative criterion.

However Mss
C,r,d is not separated as there may exist several non-isomorphic

extensions of a vector bundle on CK to CR. Indeed, let E be vector bundle and
consider the trivial family EK on CK . This extends to trivial family ER over CR
but the data of an extension

SpecK
[EK ]

//

��

Mss
C,r,d

SpecR,

[ER]

::

also consists of an isomorphism ER|CK = EK
∼→ EK or equivalently a K-point of

Aut(E). There are many such isomorphisms and some don’t extend to R-points.
The automorphism group of a vector bundle is a positive dimensional (affine)
algebraic group containing a copy of Gm corresponding to scaling. For instance,
if π ∈ K is a uniformizing parameter, the automorphism 1/π ∈ Gm(K) does not
extend to Gm(R) so (ER, id) and (ER, 1/π) give non-isomorphic extensions of EK .
In a similar way, any moduli stack which has an object with a positive dimensional
affine automorphism group is not separated.

4The valuative criterion can be equivalently formulated by replacing the local curve SpecR
with a smooth curve C and SpecK with a puncture curve C \ p.
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0.9.3 Enlarging a moduli stack

It is often useful to consider enlargements X ⊂ M of a given moduli stack X

by parameterizing a larger collection of objects. For instance, rather than just
considering smooth or Deligne–Mumford stable curve, you could consider all
curves, or rather than considering semistable vector bundles, you could consider
all vector bundles or even all coherent sheaves.

Let’s call an object of M semistable if is isomorphic to an object of X; in this
way, we can view X = Mss ⊂M as the substack of semistable objects. Often it is
easier to show properties (e.g. algebraicity) for M and then infer the corresponding
property for Mss.

0.9.4 The six steps toward projective moduli

In the setting of a moduli stack Mss of semistable objects and an enlargement
Mss ⊂ M, we outline the steps to construct a projective moduli scheme M ss

approximating Mss.5

Step 1 (Algebraicity): M is an algebraic stack locally of finite type over C.

This requires first defining M by specifying both (1) families of objects over
an arbitrary C-scheme S, (2) how two families are isomorphic, and (3) how
families pull back; see Section 0.7.1. One must then check that M is a stack.

To check that M is an algebraic stack locally of finite type over C entails
finding a smooth cover of {Ui → M} by affine schemes (see Section 0.7.4)
where each Ui is of finite type over C.

An alternative approach is to verify ‘Artin’s criteria’ for algebraicity which
essentially amounts to verifying local properties of the moduli problem and
in particular requires an understanding of the deformation and obstruction
theory.

Step 2 (Openness of semistability): semistability is an open condition, i.e. Mss ⊂
M is an open substack.

If E is an object of M over T , one must show that the locus of points t ∈ T
such that the restriction Et is semistable is an open subset of T . Indeed,
just like in the definition of an open subfunctor, a substack Mss ⊂M is open
if and only if for all maps T →M, the fiber product Mss ×M T is an open
subscheme of T . This ensures in particular that Mss is also an algebraic
stack locally of finite type.

Step 3 (Boundedness of semistability): semistability is bounded, i.e. Mss is of
finite type over C.

One must verify the existence of a scheme T of finite type over C and a
family E of objects over T such that every semistable object E ∈ Mss(C)
appears as a fiber of E; see Section 0.9.1. In other words, one must exhibit
a surjective map U →M from a scheme U of finite type. It is worth noting
that since we already know M is locally of finite type, the finite typeness
of M is equivalent to quasi-compactness; boundedness is casual term often
used to refer to this property.

5The calligraphic font Mss denotes an algebraic stack while the Roman font Mss denotes an
algebraic space. This notation will be continued throughout the notes.
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Step 4 (Existence of coarse/good moduli space): there exists either a coarse or
good moduli space Mss →M ss where M ss is a separated algebraic space.

The algebraic space M ss can be viewed as the best possible approximation
of Mss which is an algebraic space. If automorphisms are finite and Mss is a
proper Deligne–Mumford stack, the Keel–Mori theorem ensures that there
exists a coarse moduli space π : Mss →M ss with M ss proper; this means that
(1) π is universal for maps to algebraic spaces and (2) π induces a bijection
between the isomorphism classes of C-points of Mss and the C-points of
M ss.

In the case of infinite automorphisms, we often cannot expect the exis-
tence of a coarse moduli space (as defined above) and we therefore relax
the notion to a good moduli space π : Mss → M ss which may identify non-
isomorphic objects. In fact, it identifies precisely the C-points whose closures
in Mss intersect in an analogous way to the orbit closure equivalence relation
in GIT. A good moduli space is also universal for maps to algebraic spaces
even if this property is not obvious from the definitions. We will use an
analogue of the Keel–Mori theorem which ensures the existence of a proper
good moduli space as long as Mss can be verified to be both ‘S-complete’
and ‘Θ-reductive’.

Step 5 (Semistable reduction): Mss is universally closed, i.e. satisfies the existence
part of the valuative criterion for properness.

This requires checking that any family of objects E× over a punctured DVR
or smooth curve C× = C \ p has at least one extension to a family of objects
over C after possibly taking an extension of C; see Section 0.9.2. For moduli
problems with finite automorphisms, the uniqueness of the extension can
usually be verified, which implies the properness of M. For moduli problems
with infinite affine automorphism groups, the extension is never unique.
While M is therefore not separated, you can often still verify a condition
called ‘S-completeness’, which enjoys properties analogous to separatedness.
This property is often referred to as stable or semistable reduction.

As a consequence, we conclude that M ss is a proper algebraic space.

Step 6 (Projectivity): a tautological line bundle on Mss descends to an ample line
bundle on M ss.

This is often the most challenging step in this process. It requires a solid
understanding of the geometry of the moduli problem and often relies on
techniques in higher dimensional geometry.

0.9.5 An alternative approach using Geometric Invariant
Theory

The approach outlined above is by no means the only way to construct moduli
spaces. One alternative approach is Mumford’s Geometric Invariant Theory,
which has been wildly successful in both constructing and studying moduli spaces.
The main idea is to rigidify the moduli stack Mss (e.g. Mg) by parameterizing

additional data (e.g. a stable curve C and an embedding C
|ω⊗3
C |
↪→ PN ) in such way

that it represented by a projective scheme X and such that the different choices
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of additional data correspond to different orbits for the action of an algebraic
group G acting on X. This provides an identification of the moduli stack Mss

as an open substack of the quotient stack [X/G]. Given a choice of equivariant
embedding X ↪→ Pn, GIT constructs the quotient as the projective variety

X//G := Proj
⊕
d≥0

Γ(X,O(d))G

The rational map X 99K X//G is defined on an open subscheme Xss, which we
call the GIT semistable locus. To make this procedure work (and this is the hard
part!), one must show that an element x ∈ X is GIT semistable if and only if the
corresponding object of [X/G] is semistable (i.e. is in Mss).

One of the striking features of GIT is that it handles all six steps at once and
in particular constructs the moduli space as a projective variety. Moreover, if we
do not know a priori how to compactify a moduli problem, GIT can sometimes
tell you how.

Example 0.9.7 (Deligne–Mumford stable curves). Using the quotient presenta-

tion Mg = [H ′/PGL5g−6] of Example 0.8.4, the closure H
′

of H ′ in the Hilbert
scheme inherits an action of PGL5g−6 and one must show than an element in H ′ is
GIT semistable if and only if the corresponding curve is Deligne–Mumford stable.

Example 0.9.8 (Semistable vector bundles). Using the quotient presentation

Mss
C,r,d = [Q′m/PGLN−1] of Example 0.8.5, the closure Q

′
m has a PGLN−1-action

and one must show that an element in Q
′
m is GIT semistable if and only if the

corresponding quotient is semistable.

0.9.6 Trichotomy of moduli spaces

Table 3: The trichotomy of moduli

No Auts Finite Auts Infinite Auts

Type of space Algebraic variety /
space

Deligne–Mumford
stack

algebraic
stack

Defining
property

Zariski/étale-locally
an affine scheme

étale-locally an affine
scheme

smooth-locally an
affine scheme

Examples Pn, Gr(k, n), Hilb,
Quot

Mg MC,r,d

Quotient
stacks [X/G]

action is free finite stabilizers any action

Existence of
moduli varieties
/ spaces

already an algebraic
variety/space

coarse moduli
space

good moduli space

Notes

For a more detailed exposition of the moduli stack of triangles, we recommend
Behrend’s notes [Beh14].
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Chapter 1

Sites, sheaves and stacks

1.1 Grothendieck topologies and sites

We would like to consider a topology on a scheme where étale morphisms are the
open sets. This doesn’t make sense using the conventional notion of a topological
space so we simply adapt our definitions.

Definition 1.1.1. A Grothendieck topology on a category S consists of the follow-
ing data: for each object X ∈ S, there is a set Cov(X) consisting of coverings of
X, i.e. collections of morphisms {Xi → X}i∈I in S. We require that:

(1) (identity) If X ′ → X is an isomorphism, then (X ′ → X) ∈ Cov(X).

(2) (restriction) If {Xi → X}i∈I ∈ Cov(X) and Y → X is any morphism, then
the fiber products Xi ×X Y exist in S and the collection {Xi ×X Y →
Y }i∈I ∈ Cov(Y ).

(3) (composition) If {Xi → X}i∈I ∈ Cov(X) and {Xij → Xi}j∈Ji ∈ Cov(Xi)
for each i ∈ I, then {Xij → Xi → X}i∈I,j∈Ji ∈ Cov(X).

A site is a category S with a Grothendieck topology.

Example 1.1.2 (Topological spaces). If X is a topological space, let Op(X)
denote the category of open sets U ⊂ X where there is a unique morphism U → V
if U ⊂ V and no other morphisms. We say that a covering of U (i.e. an element of
Cov(U)) is a collection of open immersions {Ui → U}i∈I such that U =

⋃
i∈I Ui.

This defines a Grothendieck topology on Op(X).
In particular, if X is a scheme, the Zariski-topology on X yields a site, which

we refer to as the small Zariski site on X.

Example 1.1.3 (Small étale site). If X is a scheme, the small étale site on X is
the category Xét of étale morphisms U → X such that a morphism (U → X)→
(V → X) is simply an X-morphism U → V (which is necessarily étale). In other
words, Xét is the full subcategory of Sch /X consisting of schemes étale over X. A
covering of an object (U → X) ∈ Xét is a collection of étale morphisms {Ui → U}
such that

⊔
i Ui → U is surjective.

Example 1.1.4 (Big Zariski and étale sites). The big Zariski site (resp. big étale
site) is the category Sch where a covering of a scheme U is a collection of open
immersions (resp. étale morphisms) {Ui → U} in Sch such that

⊔
i Ui → U is

surjective. We denote these sites as SchZar and SchÉt.
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Example 1.1.5 (Localized categories and sites). If S is a category and S ∈ S,
define the category S/S whose objects are maps T → S in S. A morphism
(T ′ → S) → (T → S) is a map T ′ → T over S. If S is a site, S/S is also a site
where a covering of T → S in S/S is a covering {Ti → T} in S.

Applying this construction for a scheme S yields the big Zariski and étale sites
(Sch /S)Zar and (Sch /S)Ét over a scheme S.

Replacing étale morphisms with other properties of morphisms yields other
sites.

1.2 Presheaves and sheaves

Recall that if X is a topological space, a presheaf of sets on X is simply a
contravariant functor F : Op(X) → Sets on the category Op(X) of open sets.
The sheaf axiom translates succinctly into the condition that for each covering
U =

⋃
i Ui, the sequence

F (U)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj)

is exact (i.e. is an equalizer diagram), where the two maps F (Ui)⇒ F (Ui ∩ Uj)
are induced by the two inclusions Ui ∩ Uj ⊂ Ui and Ui ∩ Uj ⊂ Uj . Also note that
the intersections Ui ∩ Uj can also be viewed as fiber products Ui ×X Uj .

1.2.1 Definitions

Definition 1.2.1. A presheaf on a category S is a contravariant functor S→ Sets.

Remark 1.2.2. If F : S→ Sets is a presheaf and S
f−→ T is a map in S, then the

pullback F (f)(b) of an element b ∈ F (T ) is sometimes denoted as f∗b or b|S .

Definition 1.2.3. A sheaf on a site S is a presheaf F : S → Sets such that for
every object S and covering {Si → S} ∈ Cov(S), the sequence

F (S)→
∏
i

F (Si)⇒
∏
i,j

F (Si ×S Sj) (1.2.1)

is exact, where the two maps F (Si)⇒ F (Si ×S Sj) are induced by the two maps
Si ×S Sj → Si and Si ×S Sj → Si.

Remark 1.2.4. The exactness of (1.2.1) means that it is an equalizer diagram:
F (S) is precisely the subset of

∏
i,j F (Si ×S Sj) consisting of elements whose

images under the two maps F (Si)⇒ F (Si ×S Sj) are equal.

Example 1.2.5 (Schemes are sheaves). If X is a scheme, then Mor(−, X) : Sch→
Sets is a sheaf on SchÉt since morphisms glue uniquely in the étale topology. Indeed,
Proposition B.2.1 implies that the sheaf axiom holds for a cover given by a single
morphism S′ → S which is étale and surjective. The sheaf axiom for an an étale
covering {Si → S} can be easily reduced to this case (see ??).

Similarly, if Y → X is a morphism of schemes, then MorX(−, Y ) : Sch /X →
Sets is a sheaf on (Sch /X)Ét. We will abuse notation by using X and X → Y to
denote the sheaves Mor(−, X) and MorX(−, Y ).
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Exercise 1.2.6. Let F be a presheaf on Sch.

(1) Show that F is a sheaf on SchÉt if and only if for every étale surjective
morphism S′ → S of schemes, the sequence F (S) → F (S′) ⇒ S′ ×S S′ is
exact.

(2) Show that F is a sheaf on SchÉt if and only if

• F is a sheaf in the big Zariski topology SchZar; and

• or every étale surjective morphism S′ → S of affine schemes, the
sequence F (S)→ F (S′)⇒ F (S′ ×S S′) is exact.

Exercise 1.2.7. If X → Y is a surjective smooth morphism of schemes, show
that X → Y is an epimorphism of sheaves on SchÉt.

1.2.2 Morphisms and fiber products

A morphism of presheaves or sheaves is by definition a natural transformation.
By Yoneda’s lemma (Lemma 0.4.1), if X is a scheme and F is a presheaf on
Sch, a morphism α : X → F (which we interpret as a morphism of presheaves
Mor(−, X)→ F ) corresponds to an element in F (X), which by abuse of notation
we also denote by α.

Given morphisms F
α−→ G and G′

β−→ G of presheaves on a category S, consider
the presheaf

S→ Sets

S 7→ F (S)×G(S) G
′(S) = {(a, b) ∈ F (S)×G′(S) |αS(a) = βS(b)} .

(1.2.2)

Exercise 1.2.8.

(1) Show that that (1.2.2) is a fiber product F ×G G′ in Pre(S). (This is a
generalization of Exercise 0.4.16 but the same proof should work.)

(2) Show that if F , G and G′ are sheaves on a site S, then so is F ×G G′. In
particular, (1.2.2) is also a fiber product F ×G G′ in Sh(S).

1.2.3 Sheafification

Theorem 1.2.9 (Sheafification). Let S be a site. The forgetful functor Sh(S)→
Pre(S) admits a left adjoint F 7→ F sh, called the sheafification.

Proof. A presheaf F on S is called separated if for every covering {Si → S} of an
object S, the map F (S)→

∏
i F (Si) is injective (i.e. if sections glue, they glue

uniquely). Let Presep(S) be the full subcategory of Pre(S) consisting of separated
presheaves. We will construct left adjoints

Sh(S) �
�

// Presep(S) �
�

//

sh2

vv

Pre(S).

sh1

vv

For F ∈ Pre(S), we define sh1(F ) by S 7→ F (S)/ ∼ where a ∼ b if there exists a
covering {Si → S} such that a|Si = b|Si for all i.

For F ∈ Presep(S), we define sh2(F ) by

S 7→
{(
{Si → S}, {ai}

) ∣∣∣∣where {Si → S} ∈ Cov(S) and ai ∈ F (Si)
such that ai|Sij = aj |Sij for all i, j

}
/ ∼
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where ({Si → S}, {ai}) ∼ ({S′j → S}, {a′j}) if ai|Si×SS′j = a′j |Si×SS′j for all i, j.
The details are left to the reader.

Remark 1.2.10 (Topos). A topos is a category equivalent to the category of
sheaves on a site. Two different sites may have equivalent categories of sheaves,
and the topos can be viewed as a more fundamental invariant. While topoi are
undoubtedly useful in moduli theory, they will not play a role in these notes.

1.3 Prestacks

In Section 0.7.1, we motivated the concept of a prestack on a category S as a
generalization of a presheaf S→ Sets. By trying to keep track of automorphisms,
we were naively led to consider a ‘functor’ F : S→ Groupoids but decided instead
to package this data into one large category X over S parameterizing pairs (a, S)
where S ∈ S and a ∈ F (S).

1.3.1 Definition of a prestack

Let S be a category and p : X → S be a functor of categories. We visualize this
data as

X

p

��

a
α //

_

��

b_

��

S S
f
// T

where the lower case letters a, b are objects of X and the upper case letters S, T
are objects of S. We say that a is over S and α : a→ b is over f : S → T .

Definition 1.3.1. A functor p : X→ S is a prestack over a category S if

(1) (pullbacks exist) for any diagram

a //
_

��

b_

��

S // T

of solid arrows, there exist a morphism a→ b over S → T ; and

(2) (universal property for pullbacks) for any diagram

a //
$$

_

��

b //
_

��

c_

��

R // S // T

of solid arrows, there exists a unique arrow a→ b over R→ S filling in the
diagram.

!
a

Warning 1.3.2. When defining and discussing prestacks, we often simply
write X instead of X→ S. In most examples it is clear what the functor X→ S is.
When necessary, we denote the projection by pX : X→ S.

Moreover, when defining a prestack X, we often only define the objects and
morphisms in X, and we leave the definition of the composition law to the reader.
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Remark 1.3.3. Axiom (2) above implies that the pullback in Axiom (1) is unique
up to unique isomorphism. We often write f∗b or simply b|S to indicate a choice
of a pullback.

Definition 1.3.4. If X is a prestack over S, the fiber category X(S) over S ∈ S is
the category of objects in X over S with morphisms over idS .

Exercise 1.3.5. Show that the fiber category X(S) is a groupoid.

!
a

Warning 1.3.6. Our terminology is not standard. Prestacks are usually
referred to as categories fibered in groupoids. In the literature (c.f. [Vis05], [Ols16])
a prestack is sometimes defined as a category fibered in groupoids together with
Axiom (1) of a stack (Definition 1.4.1).

It is also standard to call a morphism b→ c in X cartesian if it satisfies the
universal property in (2) and p : X→ S a fibered category if for any diagram as in
(1), there exists a cartesian morphism a→ b over S → T . With this terminology,
a prestack (as we’ve defined it) is a fibered category where every arrow is cartesian
or equivalently where every fiber category X(S) is a groupoid.

1.3.2 Examples

Example 1.3.7 (Presheaves are prestacks). If F : S→ Sets is a presheaf, we can
construct a prestack XF as the category of pairs (a, S) where S ∈ S and a ∈ F (S).
A map (a′, S′) → (a, S) is a map f : S′ → S such that a′ = f∗a, where f∗ is
convenient shorthand for F (f) : F (S)→ F (S′). Observe that the fiber categories
XF (S) are equivalent (even equal) to the set F (S). We will often abuse notation
by conflating F and XF .

Example 1.3.8 (Schemes are prestacks). For a scheme X, applying the previous
example to the functor Mor(−, X) : Sch→ Sets yields a prestack XX . This allows
us to view a scheme X as a prestack and we will often abuse notation by referring
to XX as X.

Example 1.3.9 (Prestack of smooth curves). We define the prestack Mg over
Sch as the category of families of smooth curves C→ S of genus g, i.e. smooth
and proper morphisms C→ S (of finite presentation) of schemes such that every
geometric fiber is a connected curve of genus g. A map (C′ → S′)→ (C→ S) is
the data of maps α : C′ → C and f : S′ → S such that the diagram

C′

��

α // C

��

S′
f
// S

�

is cartesian. Note that the fiber category Mg(C) over SpecC is the groupoid of
smooth connected projective complex curves C of genus g such that MorMg(C)(C,C

′) =
IsomSch /C(C,C ′).

Example 1.3.10 (Prestack of vector bundles). Let C be a fixed smooth connected
projective curve over C, and fix integers r ≥ 0 and d. We define the prestack
MC,r,d over Sch /C where objects are pairs (E,S) where S is a scheme over C
and E is a vector bundle on CS = C ×C S. A map (E′, S′)→ (E,S) consists of a
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map of schemes f : S′ → S together with a map E → (id×f)∗E
′ of OCS -modules

whose adjoint is an isomorphism (i.e. for any choice of pullback (id×f)∗E, the
adjoint map (id×f)∗E → E′ is an isomorphism).

Exercise 1.3.11. Verify that Mg and MC,r,d are prestacks.

Definition 1.3.12 (Quotient and classifying prestacks). Let G→ S be a group
scheme acting on a scheme X → S via σ : G×S X → X. We define the quotient
prestack [X/G]pre as the category over Sch /S where the fiber category over an
S-scheme T is quotient groupoid [X(T )/G(T )] of the (abstract) group G(T ) acting
on the set X(T ); see Example 0.3.6. A morphism (T ′ → X) → (T → X) over
T ′ → T is an element γ ∈ G(T ′) such that (T ′ → X) = γ · (T ′ → T → X) ∈ X(T ′)

We now define the prestack [X/G] (which we will call the quotient stack) as
the category over Sch /S whose objects over an S-scheme T are diagrams

P

��

f
// X

T

where P → T is a G-torsor (see ??) and f : P → X is a G-equivariant morphism.

A morphism (P ′ → T ′, P ′
f ′−→ X)→ (P → T, P

f−→ X) consists a maps g : T ′ → T
and ϕ : P ′ → P of schemes such that the diagram

P ′

��

ϕ
//

f ′

##

P

��

f
// X

T ′
g
// T

�

commutes with the left square cartesian. See Section 0.8.1 for motivation of the
above definition.

We define the classifying prestack as BSG = [S/G] arising as the special case
when X = S. When S is understood, we simply write BG.

Exercise 1.3.13. Verify that [X/G]pre and [X/G] are prestacks over Sch /S.

1.3.3 Morphisms of prestacks

Definition 1.3.14.

(1) A morphism of prestacks f : X → Y is a functor f : X → Y such that the
diagram

X

pX
��

f
// Y

pY
��

S

strictly commutes, i.e. for every object a ∈ Ob(X), the schemes pX(a) =
pY(f(a)) are equal.
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(2) If f, g : X→ Y are morphisms of prestacks, a 2-morphism (or 2-isomorphism)
α : f → g is a natural transformation α : f → g such that for every object
a ∈ X, the morphism αa : f(a) → g(a) in Y (which is an isomorphism) is
over the identity in S. We often describe the 2-morphism α schematically as

X

f
&&

g

88�� α Y.

(3) We define the category MOR(X,Y) whose objects are morphisms of prestacks
and whose morphisms are 2-morphisms.

(4) We say that a diagram

X×Y Y′

g′

��

f ′
//

�� α

Y′

g

��

X
f

// Y

together with a 2-isomorphism α : g ◦ f ′ ∼→ f ◦ g′ is 2-commutative.

(5) A morphism f : X → Y of prestacks is an isomorphism if there exists a
morphism g : Y→ X and 2-isomorphisms g ◦ f ∼→ idX and f ◦ g ∼→ idY.

Exercise 1.3.15. Show that any 2-morphism is an isomorphism of functors, or
in other words that MOR(X,Y) is a groupoid.

Exercise 1.3.16. Let f : X→ Y be a morphism of prestacks over a category S.

(a) Show that f is fully faithful if and only if fS : X(S)→ Y(S) is fully faithful
for every S ∈ S.

(b) Show that f is an isomorphism if and only if fS : X(S) → Y(S) is an
equivalence of categories for every S ∈ S.

A prestack X is equivalent to a presheaf if there is a presheaf F and an
isomorphism between X and the stack XF corresponding to F (see Example 1.3.7).

Exercise 1.3.17. Let G→ S be a group scheme acting on a scheme X → S via
σ : G×S X → X. Show that the prestacks [X/G]pre and [X/G] are equivalent to
presheaves if and only if the action is free (i.e. (σ, p2) : G×S X → X ×S X is a
monomorphism).

1.3.4 The 2-Yoneda lemma

Recall that Yoneda’s lemma (Lemma 0.4.1) implies that for a presheaf F : S→ Sets
on a category S and an object X ∈ S, there is a bijection Mor(S, F )

∼→ F (S), where
we view S as a presheaf via Mor(−, S). We will need an analogue of Yoneda’s
lemma for prestacks. First we recall that an object S ∈ S defines a prestack over
S, which we also denote by S, whose objects over T ∈ S are morphisms T → S
and a morphism (T → S)→ (T ′ → S) is an S-morphism T → T ′.

Lemma 1.3.18 (The 2-Yoneda Lemma). Let X be a prestack over a category S

and S ∈ S. The functor

MOR(S,X)→ X(S), f 7→ fS(idS)

is an equivalence of categories.
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Proof. We will construct a quasi-inverse Ψ: X(S)→ MOR(S,X) as follows.

On objects: For a ∈ X(S), we define Ψ(a) : S → X as the morphism of

prestacks sending an object (T
f−→ S) (of the prestack corresponding to S) over T

to a choice of pullback f∗a ∈ X(T ) and a morphism (T ′
f ′−→ S)→ (T

f−→ S) given
by an S-morphism g : T ′ → T to the morphism f ′∗a→ f∗a uniquely filling in the
diagram

f ′∗a //
%%

��

f∗a //
_

��

a_

��

T ′
g
// T

f
// S,

using Axiom (2) of a prestack.

On morphisms: If α : a′ → a is a morphism in X(S), then Ψ(α) : Ψ(a′)→ Ψ(a)

is defined as the morphism of functors which maps a morphism T
f−→ S (i.e. an

object in S over T ) to the unique morphism f∗a′ → f∗a filling in the diagram

f∗a′ //

��

f∗a

��
a′

α // a

over

T

f

��

S

using again Axiom (2) of a prestack.

We leave the verification that Ψ is a quasi-inverse to the reader.

We will use the 2-Yoneda lemma, often without mention, throughout these
notes in passing between morphisms S → X and objects of X over S.

Example 1.3.19 (Quotient stack presentations). Consider the prestack [X/G]
in Definition 1.3.12 arising from a group action σ : G×S X → X. The object of
[X/G] over X given by the diagram

G×S X

p2

��

σ // X

X

corresponds via the 2-Yoneda lemma (Lemma 1.3.18) to a morphism X → [X/G].

Exercise 1.3.20.

(1) Show that there is a morphism p : X → [X/G]pre and a 2-commutative
diagram

G×S X
σ //

p2

��
�
 α

X

p

��

X
p
// [X/G]pre

(2) Show that X → [X/G]pre is a categorical quotient among prestacks, i.e. for
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any 2-commutative diagram

G×S X
σ //

p2

��
�
 α

X

ϕ

��

p

��

X
p
//

ϕ

//

[X/G]pre

�� τ

Z

of prestacks, there exists a morphism χ : [X/G]pre → Z and a 2-isomorphism
β : ϕ

∼→ χ ◦ p which is compatible with α and τ (i.e. the two natural

transformations ϕ ◦ σ β◦σ−−→ χ ◦ p ◦ σ χ◦α−−→ χ ◦ p ◦ p2 and ϕ ◦ σ τ−→ ϕ ◦ p2
β◦p2−−−→

χ ◦ p ◦ p2 agree.

1.3.5 Fiber products

We discuss fiber products for prestacks and in particular prove their existence.
Recall that for morphisms X → Y and Y ′ → Y of presheaves on a category S,
the fiber product can be constructed as the presheaf mapping an object S ∈ S

to the fiber product X(S)×Y (S) Y
′(S) of sets. Essentially the same construction

works for morphisms X → Y and Y′ → Y of prestacks but since we are dealing
with groupoids rather than sets, the fiber category over an object S ∈ S should be
the fiber product X(S)×Y(S) Y

′(S) of groupoids.
The reader may first want to work on Exercises 1.3.24 and 1.3.25 on fiber

products of groupoids as they not only provide a warmup to fiber products of
prestacks but motivate its construction.

Construction 1.3.21. Let f : X→ Y and g : Y′ → Y be morphisms of prestacks
over a category S. Define the prestack X×Y Y′ over S as the category of triples
(x, y′, γ) where x ∈ X and y′ ∈ Y′ are objects over the same object S := pX(x) =
pY′(y

′) ∈ S, and γ : f(x)
∼→ g(y′) is an isomorphism in Y(S). A morphism

(x1, y
′
1, γ1)→ (x2, y

′
2, γ2) consists of a triple (f, χ, γ′) where f : pX(x1) = pY′(y

′
1)→

pY′(y
′
2) = pX(x2) is a morphism in S, and χ : x1

∼→ x2 and γ′ : y′1
∼→ y′2 are

morphisms in X and Y′ over f such that

f(x1)
f(χ)
//

γ1

��

f(x2)

γ2

��

g(y′1)
g(γ′)

//// g(y′2)

commutes.
Let p1 : X×YY

′ → X and p2 : X×YY
′ → X denote the projections (x, y′, γ) 7→ x

and (x, y′, γ) 7→ y′. There is a 2-isomorphism α : f ◦ p1
∼→ g ◦ p2 defined on an

object (x, y′, γ) ∈ X×Y Y
′ by α(x,y′,γ) : f(x)

γ−→ g(y′). This yields a 2-commutative
diagram

X×Y Y′

p1

��

p2 // Y′

g

��

X
f

// Y

?Gα (1.3.1)
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Theorem 1.3.22. The prestack X×Y Y′ together with the morphisms p1 and p2

and the 2-isomorphism α as in (1.3.1) satisfy the following universal property: for
any 2-commutative diagram

T

q2 ..

q1 00

X×Y Y′

p2

??

p1 ��

KS
τ

Y′

g

��

X
f

?? Y
KS

α

with 2-isomorphism τ : f ◦ q1
∼→ g ◦ q2, there exist a morphism h : T → X ×Y Y′

and 2-isomorphisms β : q1 → p1 ◦ h and γ : q2 → p2 ◦ h yielding a 2-commutative
diagram

T

q2 ..

q1 00

h // X×Y Y′

p2

??

p1 ��
⇑β

⇓γ

Y′

g

��

X
f

?? Y
KS

α

such that

f ◦ q1

f(β)
//

τ

��

f ◦ p1 ◦ h

α◦h
��

g ◦ q2

g(γ)
// g ◦ p2 ◦ h

commutes. The data (h, β, γ) is unique up to unique isomorphism.

Proof. We define h : T → X ×Y Y′ on objects by t 7→
(
q1(t), q2(t), f(q1(t))

τt−→
g(q2(t))

)
and on morphisms as (t

Ψ−→ t′) 7→ (pT(Ψ), q1(Ψ), q2(Ψ)). There are
equalities of functors q1 = p1 ◦ h and q2 = p2 ◦ h so we define β and γ as the
identity natural transformation. The remaining details are left to the reader.

Definition 1.3.23. We say that a 2-commutative diagram

X′

��

//

|� α

Y′

��

X // Y

is cartesian if it satisfies the universal property of Theorem 1.3.22.

1.3.6 Examples of fiber products

Exercise 1.3.24.
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(1) If C
f−→ D and D′

g−→ D are morphisms of groupoids, define the groupoid
C×DD′ whose objects are triples (c, d′, δ) where c ∈ C and d′ ∈ D′ are objects,
and δ : f(c)

∼→ g(d′) is an isomorphism in D. A morphism (c1, d
′
1, δ1) →

(c2, d
′
2, δ2) is the data of morphisms γ : c1

∼→ c2 and δ′ : d′1
∼→ d′2 such that

f(c1)
f(γ)
//

δ1

��

f(c2)

δ2

��

g(d′1)
g(δ′)

// // g(d′2)

commutes. Formulate a university property for fiber products of groupoids
and show that C×D D′ satisfies it.

(2) If f : X → Y and g : Y′ → Y are morphisms of prestacks over a category S,
show that for every S ∈ S, the fiber category (X×Y Y′)(S) is a fiber product
X(S)×Y(S) Y

′(S) of groupoids.

Exercise 1.3.25. Let G be a group acting on a set X via σ : G×X → X. Let
[X/G] denote the quotient groupoid (Exercise 0.3.7) with projection p : X →
[X/G].

(1) Show that there are cartesian diagrams

G×X σ //

p2

��
�	

X

p

��

X
p
// [X/G]

and

G×X
(σ,p2)

//

��
��

X ×X

p×p
��

[X/G]
∆ // [X/G]× [X/G].

(2) Show that if P → T is any G-torsor and P → X is a G-equivariant map,
there is a morphism T → [X/G], unique up to unique isomorphism, and a
cartesian diagram

P //

��
��

X

��

T // [X/G].

(If G→ S is a smooth affine group scheme, we will later see that [X/G] is an
algebraic stack and that X → [X/G] is G-torsor (Theorem 2.1.8). Therefore
the G-torsor X → [X/G] and the identity map X → X is the universal
family over [X/G] (corresponding to the identiy map [X/G]→ [X/G]).

(3) Assume in addition that G→ S is a smooth group scheme. If T → [X/G] is
any morphism from a scheme T , show that there is an étale cover T ′ → T
and a commutative diagram

T ′

��

//

��

X

��

T // [X/G].

Exercise 1.3.26.
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(1) If x ∈ X, show that there is a morphism BGx → [X/G] of groupoids and a
cartesian diagram

Gx //

��
��

X

p

��

BGx // [X/G].

(2) Let φ : H → G be a homomorphism of groups. Show that there is an
induced morphism BH → BG of groupoids and that BH ×BG pt ∼= [G/H].
If G′ → G is a homomorphism of groups, can you describe BH ×BG BG′?

Exercise 1.3.27 (Magic Square). Let X be a prestack. Show that for any
morphism a : S → X and b : T → X, there is a cartesian diagram

S ×X T

�	

//

��

S × T

a×b
��

X
∆ // X× X.

Exercise 1.3.28 (Isom presheaf).

(1) Let X be a prestack over a category S and let a and b be objects over S ∈ S.
Recall that S/S denotes the localized category whose objects are morphisms
T → S in S and whose morphisms are S-morphisms. Show that

IsomX(S)(a, b) : S/S → Sets

(T
f−→ S) 7→ MorX(T )(f

∗a, f∗b),

where f∗a and f∗b are choices of a pullback, defines a presheaf on S/S.

(2) Show that there is a cartesian diagram

IsomX(S)(a, b)

��

//

��

S

(a,b)

��

X
∆ // X× X.

(3) Show that the presheaf AutX(T )(a) = IsomX(T )(a, a) is naturally a presheaf
in groups.

Exercise 1.3.29. If n ≥ 2, show that [An/Gnm] ∼= [A1/Gm]× · · · × [A1/Gm]︸ ︷︷ ︸
n times

.

Exercise 1.3.30.

(1) Show that if H → G is a morphism of group schemes over a scheme S, there
is an induced morphism of prestacks BH → BG over Sch /S.

(2) Show that BH ×BG S ∼= [G/H].

1.4 Stacks

In this subsection, we will define a stack over a site S as a prestack X such
that objects and morphisms glue uniquely in the Grothendieck topology of S
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(Definition 1.4.1). Verifying a given prestack is a stack reduces to a descent
condition on objects and morphisms with respect to the covers of S. The theory of
descent is discussed in Section B.1 and is essential for verifying the stack axioms.

For a motivating example, consider the prestack of sheaves (Example 0.7.5) over
the big Zariski site (Sch)Zar whose objects over a scheme S are sheaves of abelian
groups. Since sheaves and morphisms of sheaves glue in the Zariski-topology, this
is a stack. It is also a stack in the big étale site (Sch)Ét and this requires the
analogous gluing results in the étale topology (Propositions B.1.3 and B.1.5).

1.4.1 Definition of a stack

Definition 1.4.1. A prestack X over a site S is a stack if the following conditions
hold for all coverings {Si → S} of an object S ∈ S:

(1) (morphisms glue) For objects a and b in X over S and morphisms φi : a|Si → b
such that φi|Sij = φj |Sij as displayed in the diagram

a|Sij

??

��

a|Si

��

φi

  

a|Sj

??

φj

==
a // b over Sij

??

��

Si

��

Sj

??
S,

there exists a unique morphism φ : a→ b with φ|Si = φi.

(2) (objects glue) For objects ai over Si and isomorphisms αij : ai|Sij → aj |Sij ,
as displayed in the diagram

ai|Sij
αij−−→ aj |Sij

??

��

ai

��

aj

?? a
over Sij

??

��

Si

��

Sj

?? S

satisfying the cocycle condition αij |Sijk ◦ αjk|Sijk = αik|Sijk on Sijk, then
there exists an object a over S and isomorphisms φi : a|Si → ai such that
αij ◦ φi|Sij = φj |Sij on Sij .

Remark 1.4.2. There is an alternative description of the stack axioms analogous
to the sheaf axiom of a presheaf F : S → Sets, i.e. that F (S) →

∏
i F (Si) ⇒∏

i,j F (Si ×S Sj) is exact for coverings {Si → S}. Namely, we add an additional
layer to the diagram corresponding to triple intersections and the stack axiom
translates to the ‘exactness’ of

X(S) //
∏
i X(Si)

//
//
∏
i,j X(Si ×S Sj)

//

//
//
∏
i,j,k X(Si ×S Sj ×S Sk).

Exercise 1.4.3. Show that Axiom (1) is equivalent to the condition that for all ob-
jects a and b of X over S ∈ S, the Isom presheaf IsomX(S)(a, b) (see Exercise 1.3.28)
is a sheaf on S/S.
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A morphism of stacks is a morphism of prestacks.

Exercise 1.4.4 (Fiber product of stacks). Show that if X→ Y and Y′ → Y are
morphisms of stacks over a site S, then X×Y Y′ is also a stack over S.

1.4.2 Examples of stacks

Example 1.4.5 (Sheaves and schemes are stacks). Recall that if F is a presheaf
on a site S, we can construct a prestack XF over S as the category of pairs (a, S)
where S ∈ S and a ∈ F (S) (see Example 1.3.7). If F is a sheaf, then XF is a stack.
We often abuse notation by writing F also as the stack XF .

Since schemes are sheaves on SchÉt (Example 1.2.5), a scheme X defines a
stack over SchÉt (where objects over a scheme S are morphisms S → X), which
we also denote as X.

Let Mg denote the prestack of families of smooth curves C→ S of genus g; see
Example 1.3.9.

Proposition 1.4.6 (Moduli stack of smooth curves). If g ≥ 2, then Mg is a stack
over SchÉt.

Proposition 1.4.7 (Properties of Families of Smooth Curves). Let C→ S be a
family of smooth curves of genus g ≥ 2. Then for k ≥ 3, Ω⊗k

C/S is relatively very

ample and π∗(Ω
⊗k
C/S) is a vector bundle of rank (2k − 1)(g − 1).

Proof. Axiom (1) translates to: for families of smooth curves C→ S and D→ S
of genus g and commutative diagrams

CSij

��

// CSi

��

//

fi

''
C

��

f
// D

��

Sij // Si //

�

S

�

of solid arrows for all i, j (i.e. morphisms fi : CSi → D such that fi|CSij =

fj |CSij ), there exists a unique morphism filling in the diagram (i.e. fi = f |CSi ).
The existence and uniqueness of f follows from étale descent for morphisms
(Proposition B.2.1). The fact that f is an isomorphism also follows from étale
descent (Proposition B.4.1).

Axiom (2) is more difficult: we must show that given diagrams

Ci|Sij

##

αij
//

&&
Cj |Sij

��

// Cj

πj

��

// C

��

Sij // Sj //

�

S

�

for all i, j where πi : Ci → Si are families of smooth curves of genus g and
αij : Ci|Sij → Cj |Sij are isomorphisms satisfying the cocycle condition αij ◦ αjk =
αik, there is family of smooth curves C→ S and isomorphisms φi : C|Si → Ci such
that αij ◦ φi|CSij = φj |CSij .
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We will use the following property of families of smooth curves: for a family
of smooth curves π : C → S, ω⊗3

C/S is relatively very ample on S (as g > 2) and

F := π∗ω
⊗3
C/S is a vector bundle of rank 5(g − 1). In particular, ω⊗3

C/S yields a

closed immersion C ↪→ P(F ) over S.
Therefore, if we set Ei = (πi)∗(ωCi/Si), there is a closed immersion Ci ↪→ P(Ei)

over Si. The isomorphisms αij induce isomorphisms βij : Ei|Sij → Ej |Sij satisfying
the cocycle condition βij ◦ βjk = βik on Sijk. Descent for quasi-coherent sheaves
(Proposition B.1.5) implies there is a quasi-coherent sheaf E on S and isomorphisms
Ψi : E|Sij → Ei such that βij ◦Ψi|Sij = Ψj |Sij . It follows again from descent that
E is in fact a vector bundle (Proposition B.4.4). Pictorially, we have

P(Eij) // P(Ei) // P(E)

Ci|Sij
, �

;;

��

// Ci

��

//
, �

;;

C

��

- 


;;

Sij // Si // S.

Since the preimages of Ci ⊂ P(Ei) and Cj ⊂ P(Ej) in P(Eij) are equal, it follows
from descent for closed subschemes (Proposition B.3.1) that there exists C→ S
and isomorphisms φi such that αij ◦ φi|CSij → φj |CSij . Since smoothness and

properness are étale-local property on the target (Proposition B.4.1), C→ S is
smooth and proper. The geometric fibers of C→ S are connected genus g curves
since the geometric fibers of Ci → Si are.

Exercise 1.4.8.

(1) Show that the prestack M0 is a stack on SchÉt isomorphic to B PGL2.

(2) Show that the moduli stack M1,1, whose objects are families of elliptic curves
(see Example 0.4.26) is a stack on SchÉt.

(3) Can you show that M1 is a stack on SchÉt?

Let C be a smooth connected projective curve over C, and fix integers r ≥ 0
and d. Recall from Example 1.3.10 that MC,r,d denotes the prestack over Sch /C
consisting of pairs (E,S) where S is a scheme over C and E is a vector bundle on
CS .

Proposition 1.4.9 (Moduli stack of vector bundles over a curve). For all integers
r, d with r ≥ 0, MC,r,d is a stack over (Sch /C)Ét.

Proof. The prestack MC,r,d is a stack: Axioms (1) and (2) are precisely descent
for morphisms of quasi-coherent sheaves (Propositions B.1.3 and B.1.5) coupled
with the fact that the property of a quasi-coherent sheaf being a vector bundle is
étale-local (Proposition B.4.4).

Let G→ S be a smooth affine group scheme acting on a scheme X → S. Let
[X/G] be the prestack defined in Definition 1.3.12 whose objects over a scheme S
are G-torsors P → S together with G-equivariant maps P → X. The following
proposition justifies calling [X/G] the quotient stack.
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Proposition 1.4.10 (Quotient stack). The prestack [X/G] is a stack.

Proof. Axiom (1) follows from descent for morphisms of schemes (Proposition B.2.1).
For Axiom (2), if {Ti → T} is an étale covering and (Pi → Ti,Pi → X) are objects
over Ti with isomorphisms on the restrictions satisfying the cocycle condition,
then the existence of a G-torsor P→ T follows from descent for G-torsors (Propo-
sition C.3.11) and the existence of P→ X follows from descent for morphisms of
schemes (Proposition B.2.1).

1.4.3 Stackification

To any presheaf F on a site S, there is a sheafification F → F sh which is a left
adjoint to the inclusion, i.e. Mor(F sh, G)→ Mor(F,G) is bijective for any sheaf G
on S (Theorem 1.2.9). Similarly, there is a stackification X→ Xst of any prestack
X over S.

Theorem 1.4.11 (Stackification). If X is a prestack over a site S, there exists a
stack Xst, which we call the stackification, and a morphism X→ Xst of prestacks
such that for any stack Y over S, the induced functor

MOR(Xst,Y)→ MOR(X,Y) (1.4.1)

is an equivalence of categories.

Proof. As in the construction of the sheafification (see the proof of Theorem 1.2.9),
we construct the stackification in stages. Most details are left to the reader.

First, given a prestack X, we can construct a prestack Xst1 satisfying Axiom
(1) and a morphism X→ Xst1 of prestacks such that

MOR(Xst1 ,Y)→ MOR(X,Y)

is an equivalence for all prestacks Y satisfying Axiom (1). Specifically, the objects
of Xst1 are the same as X, and for objects a, b ∈ X over S, T ∈ S, the set of
morphisms a→ b in Xst1 over a given morphism f : S → T is the global sections
Γ(S, IsomX(S)(a, f

∗b)sh) of the sheafification of the Isom presheaf (Exercise 1.3.28).
Second, given a prestack X satisfying Axiom (1), we construct a stack X and a

morphism X→ Xst of prestacks such that (1.4.1) is an equivalence for all stacks Y.
An object of Xst over S ∈ S is given by a triple consisting of a covering {Si → S},
objects ai of X over Si, and isomorphisms αij : ai|Sij → aj |Sij satisfying the
cocycle condition αij |Sijk ◦ αjk|Sijk = αik|Sijk on Sijk. Morphisms(

{Si → S}, {ai}, {αij}
)
→
(
{Tµ → T}, {bµ}, {βµν}

)
in Xst over S → T are defined as follows: first consider the induced cover {Si ×S
Tµ → S}i,µ and choose pullbacks ai|Si×STµ and bµ|Si×STµ . A morphism is then
the data of maps Ψiµ : ai|Si×STµ → bµ|Si×STµ for all i, µ which are compatible
with αij and βµν (i.e. Ψjν ◦ αij = βµν ◦Ψiµ on Sij ×T Tµν).

Exercise 1.4.12. Show that stackification commutes with fiber products: if
X→ Y and Z→ Y are morphisms of prestacks, then (X×Y Z)st ∼= Xst ×Yst Zst.

Exercise 1.4.13. Recall the prestacks [X/G]pre and [X/G] from Definition 1.3.12.

(1) Show that [X/G]pre satisfies Axiom (1) of a stack.
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(2) Show that the [X/G] is isomorphic to the stackification of [X/G]pre and that
[X/G]pre → [X/G] is fully faithful.

Exercise 1.4.14. Extending Exercise 1.3.20, show that X → [X/G] is is a
categorical quotient among stacks.

Notes

Grothendieck topologies and stacks were introduced in [SGA4] and our exposition
closely follows [Art62], [Vis05], and [Ols16, Ch. 2].
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Chapter 2

Algebraic spaces and stacks

2.1 Definitions of algebraic spaces and stacks

We present a streamlined approach to defining algebraic spaces (Definition 2.1.2),
Deligne–Mumford stacks (Definition 2.1.4) and algebraic stacks (Definition 2.1.5),
and we verify the algebraicity of quotient stacks (Theorem 2.1.8), the moduli
stack of curves (Theorem 2.1.11) and the moduli stack of vector bundles (Theo-
rem 2.1.15).

2.1.1 Algebraic spaces

Definition 2.1.1 (Morphisms representable by schemes). A morphism X → Y

of prestacks (or presheaves) over Sch is representable by schemes if for every
morphism V → Y from a scheme, the fiber product X×Y V is a scheme.

If P is a property of morphisms of schemes (e.g. surjective or étale), a morphism
X→ Y of prestacks representable by schemes has property P if for every morphism
V → Y from a scheme, the morphism X×Y V → V of schemes has property P.

Definition 2.1.2. An algebraic space is a sheaf X on SchÉt such that there exist
a scheme U and a surjective étale morphism U → X representable by schemes.

The morphism U → X is called an étale presentation. Morphisms of algebraic
spaces are by definition morphisms of sheaves. Any scheme is an algebraic space.

2.1.2 Deligne–Mumford stacks

Definition 2.1.3 (Representable morphisms). A morphism X→ Y of prestacks
(or presheaves) over Sch is representable if for every morphism V → Y from a
scheme V , the fiber product X×Y V is an algebraic space.

If P is a property of morphisms of schemes which is étale-local on the source
(e.g., surjective, étale, or smooth), we say that a representable morphism X→ Y

of prestacks has property P if for every morphism V → Y from a scheme and étale
presentation U → X×Y V by a scheme, the composition U → X×Y V → V has
property P.

Definition 2.1.4. A Deligne–Mumford stack is a stack X over SchÉt such that
there exist a scheme U and a surjective, étale and representable morphism U → X.
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The morphism U → X is called an étale presentation. Morphisms of Deligne–
Mumford stacks are by definition morphisms of stacks. Any algebraic space is a
Deligne–Mumford stack via Example 1.3.7.

2.1.3 Algebraic stacks

Definition 2.1.5. An algebraic stack is a stack X over SchÉt such that there
exist a scheme U and a surjective, smooth and representable morphism U → X.

The morphism U → X is called a smooth presentation. For any smooth-local
property P of schemes, we can say that X has P if U does. Morphisms of algebraic
stacks are by definition morphisms of prestacks. Any scheme, algebraic space or
Deligne–Mumford stack is also an algebraic stack.

!
a

Warning 2.1.6. The definitions above are not standard as most authors also
add a representability condition on the diagonal. They are nevertheless equivalent
to the standard definitions: we show in ?? that the diagonal of an algebraic
space is representable by schemes and that the diagonal of an algebraic stack is
representable.

Exercise 2.1.7 (Fiber products). Show that fiber products exist for algebraic
spaces, Deligne–Mumford stacks and algebraic stacks

2.1.4 Algebraicity of quotient stacks

We will now show that if G is a smooth affine group scheme acting on an algebraic
space U over a base T , the quotient stack [U/G] is algebraic and U → [U/G] is a
G-torsor (Theorem 2.1.8).

Since we want to allow for the case that U is not a scheme, we need to
generalize a few definitions. An action of a smooth affine group scheme G→ T on
an algebraic space U over T is a morphism σ : G×T U → U satisfying the same
axioms as in Definition C.1.7, and we define as in Definition 1.3.12 the quotient
stack [U/G] as the stackification of the prestack [U/G]pre, whose fiber category
over an T -scheme S is the quotient groupoid [U(S)/G(S)]. Objects of [U/G]
over an T -scheme S are G-torsors P → S and G-equivariant morphisms S → U .
Since morphisms to algebraic spaces glue uniquely in the étale topology (by
definition), the argument of Proposition 1.4.10 shows that [U/G] is a stack. Using
Definition 2.1.3, the morphism U → [U/G] is a G-torsor if for every morphism
S → X from a scheme S, the algebraic space U ×X S with the induced G-action
is a G-torsor over S.

Theorem 2.1.8 (Algebraicity of Quotient Stacks). If G→ T is a smooth, affine
group scheme acting on an algebraic space U → T , the quotient stack [U/G] is
an algebraic stack over T such that U → [U/G] is a G-torsor and in particular
surjective, smooth and affine.

Proof. Set X = [U/G]. We need to show that for any map S → X from a scheme,
the fiber product US := U ×X S is a G-torsor over S. It follows from the definition
of [U/G] as the stackification of [U/G]pre that there exists an étale cover S′ → S
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of schemes and a commutative diagram

S′

��

// U

��

S // X.

In the commutative cube

US′ //

��

{{

S′

��

��

G× U //

��

U

��

US //

{{

S

��

U // X

the front, back, top and bottom squares are cartesian, and US is a sheaf. Since
G × U → U is a G-torsor, so is US′ → S′. By Effective Descent for G-torsors
(Proposition C.3.11), US → S is a G-torsor.

Corollary 2.1.9. If G is a finite group acting freely on an algebraic space U ,
then the quotient sheaf U/G is an algebraic space.

Proof. Theorem 2.1.8 implies that U/G is an algebraic stack and that U → U/G
is a G-torsor so in particular finite, étale, surjective and representable by schemes.
Taking U ′ → U to be any étale presentation by a scheme, the composition
U ′ → U → U/G yields an étale presentation of U/G.

Remark 2.1.10. This resolves the troubling issue from Example 0.6.5 where we
saw that the quotient of a finite group acting freely on a scheme need not exist as
a scheme. In addition, it shows that the category of algebraic spaces is reasonably
well-behaved as it is closed under taking quotients by free actions of finite groups.

2.1.5 Algebraicity of Mg

We now show that Mg is an algebraic stack. The main idea is quite simple: every

smooth connected projective curve C is tri-canonically embedded C
|ω⊗3
C |
↪→ P5g−6 and

the locally closed subscheme H ′ ⊂ HilbP (P5g−6) parameterizing smooth families
of tri-canonically embedded curves provides a smooth presentation H ′ →Mg

Theorem 2.1.11 (Algebraicity of the stack of smooth curves). If g ≥ 2, then Mg

is an algebraic stack over SpecZ.

Proof. As in the proof that Mg is a stack (Proposition 1.4.6), we will use Properties
of Families of Smooth Curves (Proposition 1.4.7) which implies that for a family
of smooth curves π : C → S, ω⊗3

C/S is relatively very ample on S (as g > 2) and

π∗ω
⊗3
C/S is a vector bundle of rank 5(g − 1). In particular, ω⊗3

C/S yields a closed
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immersion C ↪→ P(π∗ω
⊗3
C/S) over S. By Riemann–Roch, the Hilbert polynomial of

any fiber Cs ↪→ P5g−6
κ(s) is given by

P (n) := χ(OCs(n)) = deg(ω⊗3n
Cs

) + 1− g = (6n− 1)(g − 1).

Let

H := HilbP (P5g−6
Z )

by the Hilbert scheme parameterizing closed subschemes of P5g−6 with Hilbert
polynomial P (Theorem D.0.1). Let C ↪→ P5g−6 × H be the universal closed
subscheme and let π : C → H. We claim that there is a unique locally closed
subscheme H ′ ⊂ H consisting of points h ∈ H satisfying

(a) Ch → Specκ(h) is smooth and geometrically connected; and

(b) Ch ↪→ P5g−6
κ(h) is embedded by the complete linear series ω⊗3

Ch/κ(h).

(c) denoting C′ = C|H′ → H ′, the coherent sheaves ω⊗3
C′/H′ and OC′(1) differ by

a pullback of a line bundle from H ′.

Since the condition that a fiber of a proper morphism (of finite presentation)
is smooth is an open condition on the target (Corollary A.3.8), the condition
that Ch is smooth is open. Consider the Stein factorization [Har77, Cor. 11.5]

C→ H̃ = SpecH π∗OC → H where C→ H̃ has geometrically connected fibers and

H̃ → H is finite. Since the kernel and cokernel of OH → π∗OC have closed support
(as they are coherent), H̃ → H is an isomorphism over an open subscheme of
H, which is precisely where the fibers of C→ H are geometrically connected. In
summary, the set of h ∈ H satisfying (a) is an open subscheme of H, which we
will denote by H1.

The relative canonical sheaf ωC1/H1
of the family C1 := C|H1

is a line bundle.
As a consequence Theorem 2.1.12, there exists a locally closed subscheme H2 ↪→ H1

such that a morphism T → H1 factor through H2 if and only if ωC1/H1
|CT and

OC(1)|CT differ by the pullback of a line bundle on T . In particular, (c) holds
and for every h ∈ H2, there is an isomorphism ω⊗3

Ch/κ(h)
∼= OCh(1). To arrange

(b), consider the restriction of the universal curve π2 : C2 → H2. There is a
canonical map α : H0(P5g−6,O(1))⊗OH2

→ (π2)∗ωC2/H2
of vector bundles of rank

5g − 5 on H2 whose fiber over a point h ∈ H2 is the map αh : H0(P5g−6
κ(h) ,O(1))→

H0(Ch, ω
⊗3
Ch/κ(h)). The closed locus defined by the support of coker(α) is precisely

the locus where αh is not an isomorphism (as the vector bundles have the same
rank). The closed subscheme H ′ = H2 \ Supp(coker(α)) satisfies (a)-(c).

The group scheme PGL5g−5 = Aut(P5g−6
Z ) over Z acts naturally on H: if

g ∈ Aut(P5g−6
S ) and [D ⊂ P5g−6

S ] ∈ H(S), then g · [D ⊂ P5g−6
S ] = [g(D) ⊂ P5g−6

S ].
The closed subscheme H ′ ⊂ H is PGL5g−5-invariant and we claim that Mg

∼=
[H ′/PGL5g−5]. This establishes the theorem since [H ′/PGL5g−5] is algebraic
(Theorem 2.1.8).

Consider the morphism H ′ → Mg which forgets the embedding, i.e. assigns

a closed subscheme C ⊂ P5g−6
S to the family C→ S. This morphism descends to

a morphism Ψpre : [H ′/PGL5g−5]pre → Mg of prestacks. The map Ψpre is fully

faithful since for a family C ⊂ P5g−6
S of closed subschemes in H ′, any automorphism

of C → S induces an automorphism of ω⊗3
C/S and therefore an automorphism of

P5g−6
S preserving C.
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Since Mg is a stack (Theorem 2.1.8), the universal property of stackifica-
tion yields a morphism Ψ: [H ′/PGL5g−5] → Mg. Since [H ′/PGL5g−5]pre →
[H ′/PGL5g−5] is fully faithful (Exercise 1.4.13), so is Ψ. It remains to check that
Ψ is essentially surjective. For this, it suffices to check that if π : C→ S is a family
of smooth curves, then there exists an étale cover {Si → S} such that each C|Si is
in the image of H ′ →Mg. Since π∗ωC/S is locally free of rank 5g − 5 and there is

a closed immersion C ↪→ P(π∗ω
⊗3
C/S) over S, we may simply take {Si} to be any

Zariski-open cover (and thus étale cover) where π∗ω
⊗3
C/S is free.

The above proof used the following fact asserting under certain hypotheses,
for a morphism X → S and a line bundle L on X, the locus in S consisting of
points s ∈ S such that L|Xs is trivial is closed. See [SP, Tag 0BEZ,Tag 0BF0]
(and [Mum70, Cor. II.5.6, Thm. III.10] for the case when X is a product over S) .

Theorem 2.1.12. Let f : X → S be a flat, proper morphism of finite presentation
with geometrically integral fibers. Let L be a line bundle on X. Assume that for
any morphism T → S, the base change fT : XT → T satisfies OT

∼→ (fT )∗OXT .
Let L be a line bundle on X. Then there exists a closed subscheme Z ↪→ S of
finite presentation such that a morphism T → S factors through Z if and only if
L|XT is the pullback of a line bundle on T .

Exercise 2.1.13. Let f : X → S be a morphism as in Theorem 2.1.12. Define
the Picard functor of f : X → S as

PicX/S : Sch /S → Sets, T 7→ Pic(XT )/f∗T Pic(T ).

Show that the above theorem is equivalent to the diagonal morphism PicX/S →
PicX/S ×S PicX/S of presheaves over Sch /S being representable by closed immer-
sions, i.e. PicX/S is separated over S.

Exercise 2.1.14. Show that M1,1 is an algebraic stack.

2.1.6 Algebraicity of MC,r,d

We now show that the stack of vector bundles over a fixed curve is algebraic.

Theorem 2.1.15 (Algebraicity of the stack of vector bundles). Let C be a smooth,
projective and connected curve over a field k, and let r and d be integers with
r ≥ 0. The stack MC,r,d is an algebraic stack over Spec k.

Proof. For any vector bundle E on C of rank r and degree d, by Serre vanishing
E(m) is globally generated and H1(C,E(m)) = 0 for m� 0. In particular,

Γ(C,E(m))⊗ OC � E(m)

is surjective which by construction induces an isomorphism on global sections. By
Riemann–Roch, the Hilbert polynomial of E is

P (n) = χ(E(n)) = deg(E(n)) + rk(E(n))(1− g) = d+ rn+ r(1− g).

For any scheme S, we have the diagram

C × S
p1

||

p2

##
C S.
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For each integer m, consider the substack Mm
C,r,d parameterizing families E of

vector bundles on C × S over S such that p∗1p2,∗E(m)→ E(m) is surjective and
R1p2,∗E(m) = 0. It follows from Cohomology and Base Change [Har77, Thm
III.12.11] that Mm

C,r,d ⊂MC,r,d is an open substack.

For each m, let Nm = P (m) and consider the Quot scheme

Qm := QuotP (C,OC(−m)Nm)

parameterizing quotients OC(−m)Nm � F with Hilbert polynomial P (Theo-
rem D.0.2). Let OC×Qm(−m)Nm → Em be the universal quotient on C ×Qm and
consider the induced map

Ψ: ONmQm
∼→ p2,∗O

Nm
C×Qm → p2,∗(Em(m))

The cokernel of Ψ has closed support in Qm and its complement Q′m ⊂ Qm is
precisely the locus over which Ψ is an isomorphism.

The Quot scheme Qm inherits a natural action from GL such that Q′m is
invariant. The morphism Q′m → Mm

C,r,d, defined by [OC(−m)Nm � F ] 7→ F ,
factors to a yield a morphism Ψpre : [Q′m/GLNm ]pre →Mm

C,r,d of prestacks. The
map Ψpre is fully faithful since any automorphism of a family F ∈Mm

C,r,d(S) of

vector bundles on C × S induces an automorphism of p2,∗F(m) = ONmS which
is an element of GLNm(S), and this element acts on OC(−m)Nm preserving the
quotient F .

Since MC,r,d is a stack (Proposition 1.4.9), there is an induced morphism
Ψ: [Q′m/GLNm ]→Mm

C,r,d of stacks which is also fully faithful (Exercise 1.4.13)
and by construction essentially surjective. We conclude that

MC,r,d =
⋃
m

[
Q′m/GLNm

]
and the result follows from the algebraicity of quotient stacks (Theorem 2.1.8.

Remark 2.1.16. Note that while MC,r,d itself is not quasi-compact (??), the
proof establishes that any quasi-compact open substack of MC,r,d is a quotient
stack.

2.1.7 Survey of important results

We will develop the foundations of algebraic spaces and stacks in the forthcoming
chapters but it is worth first highlighting some of the most important results.

The importance of the diagonal

When overhearing others discussing algebraic stacks, you may have wondered
what’s all the fuss about the diagonal? Well, I’ll tell you—the diagonal encodes
the stackiness!

First and foremost, the diagonal X→ X×X of an algebraic stack is representable
and the diagonal X → X ×X of an algebraic space is representable by schemes.
Many authors in fact include this condition in the definition of algebraicity.
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Recall that if X is a prestack over Sch and x, y are objects over a scheme T ,
then there is a cartesian diagram

IsomX(T )(x, y) //

��

T

(x,y)

��

X
∆ // X× X;

see Exercise 1.3.28. Axiom (1) of a stack is the condition that IsomX(T )(x, y)
is a sheaf on (Sch /T )Ét and Representability of the Diagonal (??) shows that
IsomX(T )(x, y) is an algebraic space. Moreover, AutX(T )(x) = IsomX(T )(x, x) is
naturally a sheaf in groups and thus a group algebraic space over T . Taking T to
be the spectrum of a field K, we define the stabilizer of x : SpecK → X as

Gx := AutX(K)(a).

For schemes (resp. separated schemes), the diagonal is an immersion (resp.
closed immersion). For algebraic stacks, the diagonal is not necessarily a monomor-
phism as the fiber over (x, x) : SpecK → X× X, or in other words the stabilizer
Gx, may be non-trivial. Properties of the diagonal in fact characterize algebraic
spaces and Deligne–Mumford stacks: an algebraic stack is an algebraic space (resp.
Deligne–Mumford stack) if and only if X → X → X is a monomorphism (resp.
unramified)—see ??. Properties of the stabilizer also provide characterizations as
in the table below:

Table 2.1: Characterization of algebraic spaces and Deligne–Mumford stacks

Type of space Property of the diagonal Property of stabilizers

algebraic space monomorphism trivial

Deligne–Mumford stack unramified discrete and reduced
groups

algebraic stack arbitrary arbitrary

As a consequence of these characterizations, we will generalize Corollary 2.1.9:
the quotient of a free action of a smooth algebraic group on an algebraic space
exists as an algebraic space. We will also be able to establish that Mg is Deligne–
Mumford rather than just algebraic (Theorem 2.1.11).

We now summarize additional important properties of algebraic spaces, Deligne–
Mumford stacks and algebraic stacks. The reader may also wish to consult Table 3
for a brief recap of the trichotomy of moduli spaces.

Properties of algebraic spaces

• If R ⇒ X is an étale equivalence relation of schemes, the quotient sheaf
X/R is an algebraic space.

• If X is a quasi-separated algebraic space, there exists a dense open subspace
U ⊂ X which is a scheme.

75



• If X → Y is a separated and quasi-finite morphism of noetherian algebraic
spaces, then there exists a factorization X ↪→ X̃ → Y where X ↪→ X̃ is
an open immersion and X̃ → Y is finite (Zariski’s Main Theorem). In
particular, X → Y is quasi-affine.

Properties of Deligne–Mumford stacks

• If R ⇒ X is an étale groupoid of scheme, the quotient stack [X/R] is a
Deligne–Mumford stack.

• If X is a Deligne–Mumford stack (e.g. algebraic space), there exists a scheme
U and a finite morphism U → X.

• If X is a Deligne–Mumford stack and x ∈ X(k) is any field-valued point,
there exists an étale neighborhood [Spec(A)/G]→ X of x where G is a finite
group, which can be arranged to be the stabilizer of x (Local Structure of
Deligne–Mumford Stacks).

• If X is a separated Deligne–Mumford stack, there exists a coarse moduli
space X→ X where X is a separated algebraic space (Keel-Mori theorem).

Properties of algebraic stacks

• If R⇒ X is a smooth groupoid of scheme, the quotient stack [X/R] is an
algebraic stack.

• If X is an algebraic stack of finite type over an algebraically closed field k
with affine diagonal, any point x ∈ X(k) with linearly reductive stabilizer
has an affine étale neighborhood [Spec(A)/Gx]→ X of x where G is a finite
group (Local Structure of Algebraic Stacks).

• Let X be an algebraic stack of finite type over an algebraically closed field k
of characteristic 0 with affine diagonal. If X is S-complete and Θ-reductive,
there exists a good moduli space X→ X where X is a separated algebraic
space of finite type over k.

Notes

Deligne–Mumford and algebraic stacks were first introduced in [DM69] and
[Art74]—and in both cases referred to as algebraic stacks—with conventions
slightlly different than ours. Namely, [DM69, Def. 4.6] assumed in addition to the
existence of an étale presentation that the diagonal is representable by schemes
(which is automatic if the diagonal is separated and quasi-compact). On the
other hand, [Art74, Def. 5.1] assumed in addition to the existence of a smooth
presentation that the stack is locally of finite type over an excellent Dedekind
domain. We will not use the term Artin stack which is often used to refer to
algebraic stacks that satisfy Artin’s axioms (e.g. algebraic stacks locally of finite
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type over an excellent scheme with quasi-compact and separated diagonal) as
Artin stacks.

We follow the conventions of [Ols16] and [SP] (with the exception that we
work over the site SchÉt while [SP] works over Schfppf).
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Appendix A

Properties of morphisms

In this appendix, we recall definitions and summarize properties for certain types
morphisms of schemes—locally of finite presentation, flat, smooth, étale, and
unramified.

We pay particular attention to properties that can be described functorially,
i.e. properties of schemes and their morphisms that can be characterized in terms
of their functors. The following properties of morphisms can be characterized
functorially:

• separated, universally closed and proper;

• locally of finite presentation; and

• smooth, étale and unramified.

Such descriptions are particularly advantageous for us since we systematically
study moduli problems via functors and stacks. For example, the valuative
criterion for properness for Mg amounts to checking that every family of curves
over a punctured curve (i.e. over the generic point of a DVR) can be extended
uniquely (after possibly a finite extension of the curve) to the entire curve (i.e.
DVR). Similarly, the smoothness of Mg can be shown by using the functorial
formal lifting criterion for smoothness.

A.1 Morphisms locally of finite presentation

A morphism of schemes f : X → Y is locally of finite type (resp. locally of finite
presentation) if for all affine open SpecB ⊂ Y and SpecA ⊂ f−1(SpecB), there is
surjection A[x1, . . . , xn]→ B of A-algebras (resp. a surjection φ : A[x1, . . . , xn]→
B such that the ideal ker(φ) ⊂ A[x1, . . . , xn]) is finitely generated). If in addition
f is quasi-compact (resp. quasi-compact and quasi-separated), we say that f is of
finite type (resp. of finite presentation).

Remark A.1.1. When Y is locally noetherian, these two notions coincide. How-
ever, in the non-noetherian setting even closed immersions may not be locally of
finite presentation; e.g. SpecC ↪→ SpecC[x1, x2, . . .]. Since functors and stacks
are defined in these notes on the entire category of schemes, it is often necessary
to work with non-noetherian schemes. In particular, when defining a moduli
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functor or stack, we need to specify what families of objects are over possibly
non-noetherian schemes. Morphisms of finite presentation are better behaved than
morphisms of finite type and so we often use the former condition. For example,
when defining a family of smooth curves π : C→ S, we require not only that π is
proper and smooth, but also of finite presentation.

The following is a very useful functorial criterion for a morphism to be locally
of finite presentation. First recall that an inverse system (or projective system) in
a category C is a partially ordered set (I,≥) which is filtered (i.e. for every i, j ∈ I
there exists k ∈ I such that k ≥ i and k ≥ j) together with a functor I → C.

Proposition A.1.2. A morphism f : X → Y of schemes is locally of finite
presentation if and only if for every inverse system {SpecAλ}λ∈I of schemes over
Y , the natural map

colim−−−→
λ

MorY (SpecAλ, X)→ MorY (Spec(colim−−−→
λ

Aλ), X) (A.1.1)

is bijective.

We won’t include a proof here but we will mention a conceptual reason for
why you might expect this to be true: any ring A (e.g. C[x1, x2, . . .]) is the union
(or colimit) of its finitely generated subalgebras Aλ. The requirement that any
map SpecA→ X factors through SpecAλ → X for some λ can be viewed as the
condition that specifying SpecA→ X over Y depends on only a finite amount of
data and therefore can is a type of finiteness condition on X over Y . We encourage
the reader to convince themselves the above proposition holds in the case of a
morphism of affine schemes.

Remark A.1.3. As we desire to define and study moduli stacks X that are of
finite type over a field k, the following analogous condition to (A.1.1) better hold:
for all inverse system {SpecAλ}λ∈I of k-schemes, the natural functor

colim−−−→
λ

MORk(SpecAλ,X)→ MORk(Spec(colim−−−→
λ

Aλ),X)

is an equivalence. It turns out for many moduli stacks, this condition can be
checked directly even before knowing algebraicity. In fact, this locally of finite
presentation condition (often also referred to as limit-preserving) is the first axiom
in Artin’s criteria for algebraicity.

A.2 Flatness

You can’t get very far in moduli theory without internalizing the concept of flatness.
While its definition is seemingly abstract and algebraic, it is a magical geometric
property of a morphism X → Y that ensures that fibers Xy ‘vary nicely’ as y ∈ Y
varies. This principle is nicely illustrated by the fact that a subscheme X ⊂ PnY is
flat over an integral scheme Y if and only if the function assigning a point y to
the Hilbert polynomial of the fiber Xy ⊂ Pnκ(y) is constant (Proposition A.2.5).
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A.2.1 Definition and equivalences

A morphism f : X → Y of schemes is flat if for all affine opens SpecB ⊂ Y and
SpecA ⊂ f−1(SpecB), the ring map B → A is flat, i.e. the functor

−⊗B A : Mod(B)→ Mod(A)

is exact. More generally, a quasi-coherent OX -module F is flat over Y if for all affine
opens as above, Γ(SpecA,F) is a flat B-module, i.e. the functor −⊗BΓ(SpecA,F)
is exact.

Flat Equivalences A.2.1. Let f : X → Y be a morphism of schemes and F be
a quasi-coherent OX -module. The following are equivalent:

(1) F is flat over Y ;

(2) There exists a Zariski-cover {SpecBi} of Y and {SpecAij} of f−1(SpecBi)
such that Γ(SpecAij ,F) is flat as an Bi-module under the ring map Bi →
Aij ;

(3) For all x ∈ X, the OX,x-module Fx is flat as an OY,y-module.

(4) The functor

QCoh(Y )→ QCoh(X), G 7→ f∗G⊗OX F

is exact.

If x ∈ X, we say that a morphism f : X → Y of schemes is flat at x (resp. a
quasi-coherent OX -module F is flat at x) if there exists a Zariski-open neighborhood
U ⊂ X containing x such that f |U (resp. F|U ) is flat over Y . This is equivalent
to the flatness of OX,x (resp. Fx) as an OY,y-module.

A.2.2 Useful geometric properties

Proposition A.2.2 (Flat Morphisms are Open). Let f : X → Y be a morphism
of schemes. If f is flat and locally of finite presentation, then f(U) ⊂ Y is open
for every open U ⊂ X.

The following simple corollary will be used to reduce certain properties of flat
and locally of finite presentation morphisms to the affine case.

Corollary A.2.3. If f : X → Y is a faithfully flat and locally of finite presentation
morphism of schemes and {Vi} is an affine open cover of Y , then there exist an
open cover {Uij}j∈J of f−1(Vi) for each i such that Uij is quasi-compact and
f(Uij) = Vi.

Proposition A.2.4 (Flatness Criterion over Smooth Curves). Let C be an integral
and regular scheme of dimension 1 (e.g. the spectrum of a DVR or a smooth
connected curve over a field) and X → C a quasi-compact and quasi-separated
morphism of schemes. A quasi-coherent OX-module F is flat over C if and only
if every associated point of F maps to the generic point of C.

Recall that if X ⊂ PnK is a subscheme and F is a quasi-coherent OX -module,
the Hilbert polynomial of F is PF(n) = χ(X,F(n)) ∈ Q[n].
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Proposition A.2.5 (Flatness vs the Hilbert Polynomial). Let Y be an integral
scheme and X ⊂ PnY a closed subscheme. A quasi-coherent OX-module F is flat
over Y if and only if the function

Y → Q[n], y 7→ PF|Xy

assigning a point y ∈ Y to the Hilbert polynomial of the restriction F|Xy to the
fiber Xy ⊂ Pnκ(y) is constant.

Proposition A.2.6 (Generic flatness). Let f : X → S be a finite type morphism
of schemes and F be a finite type quasi-coherent OX-module. If S is reduced,
there exists an open dense subscheme U ⊂ S such that XU → U is flat and of
presentation and such that F|XU is flat over U and of finite presentation as on
OXU -module.

A.2.3 Faithful flatness

For a ring A, an A-module M is faithfully flat if for all non-zero map φ : N → N ′

of A-modules, the induced map φ⊗AM : N ⊗AM → N ′ ⊗AM is also non-zero.

Faithfully Flat Equivalences A.2.7. Let R be a ring and M be an A-module.
The following are equivalent:

(1) M is faithfully flat;

(2) for any A-module N and non-zero element n ∈ N , the map M → N ⊗M
given by m 7→ m⊗ n is non-zero;

(3) for any non-zero A-module N , we have N ⊗AM is non-zero;

(4) the functor −⊗RM : Mod(R)→ Mod(R) is faithfully exact, i.e. a sequence
N ′ → N → N ′′ of A-modules is exact if and only if N ′⊗AM → N ⊗AM →
N ′′ ⊗AM is exact; and

(5) M is flat and for all maximal ideals m ⊂ A, the quotient M/mM is non-zero.

If in addition M = B is an A-algebra, then the above are also equivalent to:

(6) SpecB → SpecA is flat and surjective.

A morphism f : X → Y of schemes is faithfully flat if f is flat and surjective.
This is equivalent to the condition that f∗ : QCoh(Y )→ QCoh(X) is faithfully
exact. It is also equivalent to the condition that a quasi-coherent OY -module (resp.
a morphism of quasi-coherent OY -modules) is zero if and only if its pullback is.

A.3 Étale, smooth and unramified morphisms

A.3.1 Smooth morphisms

A morphism f : X → Y of schemes is smooth if f is locally of finite presentation
and flat, and the geometric fiber X

κ(y)
= X ×Y Specκ(y) of any point y ∈ Y is

regular.

Smooth Equivalences A.3.1. Let f : X → Y be morphism of schemes locally
of finite presentation. The following are equivalent:

(1) f is smooth;
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(2) f is formally smooth, i.e. for any surjection A→ A0 of rings with nilpotent
kernel and any commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a dotted arrow filling in the diagram;

(This is often referred to as the Formal Lifting Criterion for Smoothness.)

(3) for every point x ∈ X, there exist affine open neighborhoods SpecB of f(x)
and SpecA ⊂ f−1(SpecB) of x and an A-algebra isomorphism

B ∼=
(
A[x1, . . . , xn]/(f1, . . . , fr)

)
g

for some f1, . . . , fr, g ∈ A[x1, . . . , xn] with r ≤ n such that the determinant

det(
δfj
δxi

)1≤i,j≤r ∈ B of the Jacobi matrix, defined by the partial derivatives
with respect first r xi’s, is a unit.

(This is often referred to as the Jacobi Criterion for Smoothness.)

If in addition X and Y are locally of finite type over an algebraically closed field
K, then the above are equivalent to:

(4) for all x ∈ X(K), there is an isomorphism ÔX,x ∼= ÔY,y[[x1, . . . , xr]] of

ÔY,y-algebras.

If f : X → Y is a smooth morphism of schemes, then ΩX/Y is a locally free
OX -module of finite rank. If Y is connected, the rank of ΩX/Y is the dimension
of any fiber.

A.3.2 Étale morphisms

A morphism f : X → Y of schemes is étale if f is smooth of relative dimension 0
(i.e. f is smooth and dimXy = 0 for all y ∈ Y ).

Étale Equivalences A.3.2. Let f : X → Y be morphism of schemes locally of
finite presentation. The following are equivalent:

(1) f is étale;

(2) f is smooth and ΩX/Y = 0;

(3) f is flat and for all y ∈ Y , the fiber Xy is isomorphic to a disjoint union⊔
i SpecKi where each Ki is separable field extension of κ(y); (This is exactly

the condition that f is flat and unramified; see Section A.3.3.)

(4) f is formally étale, i.e. for any surjection A → A0 of rings with nilpotent
kernel and any commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists a unique dotted arrow filling in the diagram;

(This is often referred to as the Formal Lifting Criterion for Étaleness.)

83



(5) for every point x ∈ X, there exist affine open neighborhoods SpecB of f(x)
and SpecA ⊂ f−1(SpecB) of x and an A-algebra isomorphism

B ∼=
(
A[x1, . . . , xn]/(f1, . . . , fn)

)
g

for some f1, . . . , fn, g ∈ A[x1, . . . , xn] such that the determinant det(
δfj
δxi

)1≤i,j≤n ∈
B is a unit.

(This is often referred to as the Jacobi criterion for étaleness.)

If in addition X and Y are locally of finite type over an algebraically closed field
K, then the above are equivalent to:

(6) for all x ∈ X(K), the induced map ÔY,y → ÔX,x on completions is an
isomorphism

If in addition X and Y are smooth over K, then the above are equivalent to:

(7) for all x ∈ X(K), the induced map TX,x → TY,y on tangent spaces is an
isomorphism.

A.3.3 Unramified morphisms

A morphism f : X → Y of schemes is unramified if f is locally of finite type and
every geometric fiber is discrete and reduced. Note that this second condition is
equivalent to requiring that for all y ∈ Y , the fiber Xy is isomorphic to a disjoint
union

⊔
i SpecKi where each Ki is separable field extension of κ(y).

!
a

Warning A.3.3. We are following the conventions of [RG71] and [SP] rather
than [EGA] as we only require that f is locally of finite type rather than locally
of finite presentation.

Unramified Equivalences A.3.4. Let f : X → Y be morphism of schemes
locally of finite type. The following are equivalent:

(1) f is unramified;

(2) ΩX/Y = 0;

(3) f is formally unramifed, i.e. for any surjection A → A0 of rings with
nilpotent kernel and any commutative diagram

SpecA0
//

� _

��

X

f

��

SpecA //

;;

Y

of solid arrows, there exists at most one dotted arrow filling in the diagram.

(This is often referred to as the Formal Lifting Criterion for Unramifiedness.)

If in addition X and Y are locally of finite type over an algebraically closed field
K, then the above are equivalent to:

(4) for all x ∈ X(K), the induced map ÔY,y → ÔX,x on completions is surjective.

A.3.4 Further properties

The following proposition states that any smooth morphism X → Y is étale locally
(on the source and target) of the form AnR → SpecR and in particular has sections
étale locally on the target.
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Proposition A.3.5. Let X → Y be a morphism of schemes which is smooth at
a point x ∈ X. There exists affine open subschemes SpecA ⊂ X and SpecB ⊂ Y
with x ∈ SpecA, and a commutative diagram

X

��

SpecA

��

oo // AnB

{{

Y SpecBoo

where U → AnB is étale.

Proposition A.3.6 (Fiberwise criteria for étaleness/smoothness/unramifiedness).
Consider a diagram

X

��

//

S

Y

��

of schemes where X → S and Y → S are locally of finite presentation. Assume
that X → S is flat in the étale/smooth case. Then X → Y is étale (resp. smooth,
unramified) if and only if Xs → Ys is for all s ∈ S.

Remark A.3.7. With the same hypotheses, let x ∈ X be a point with image
s ∈ S. Then X → Y is étale (resp. smooth, unramified) at x ∈ X if and only if
Xs → Ys is at x.

Corollary A.3.8. If f : X → Y is a proper morphism of finite presentation, then
the set y ∈ Y such that Xy → Specκ(y) is smooth defines an open subset.

Proof. By Remark A.3.7, if y ∈ Y is a point such that Xy → Specκ(y) is smooth,
then f : X → Y is smooth in an open neighborhood of Xy. If Z ⊂ X is the closed
locus where f : X → Y is not smooth, then f(Z) ⊂ Y is precisely the locus where
the fibers of f are not smooth. Since f is proper, f(Z) is closed.

Proposition A.3.9. Let X → Y be a smooth morphism of noetherian schemes.
For any point x ∈ X with image y ∈ Y ,

dimx(X) = dimy(Y ) + dimx(Xy).
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Appendix B

Descent

It is hard to overstate the importance of descent in moduli theory. The central idea
of descent is as simple as it is powerful. You already know that many properties
of schemes and their morphisms can be checked on a Zariski-cover, and descent
theory states that they can also be checked on étale covers or even faithfully flat
covers. For example, if Y ′ → Y is étale and surjective, then a morphism X → Y
is proper if and only if X ×Y Y ′ → Y ′ is.

The applications of descent reach far beyond moduli theory. For instance, it
can be used to reduce statements about schemes over a field k to the case when k
is algebraically closed since k → k is faithfully flat, or reduce statements over a
local noetherian ring A to its completion Â since A→ Â is faithfully flat.

References: [BLR90, Ch.6], [Vis05], [Ols16, Ch. 4], [SP, Tag 0238], [EGA,
§IV.2], and [SGA1, §VIII.7] (other descent results are scattered throughout EGA
and SGA).

B.1 Descent for quasi-coherent sheaves

Descent theory rests on the following algebraic fact.

Proposition B.1.1. If φ : A→ B is a faithfully flat ring map, then the sequence

A
φ
// B

b7→b⊗1
//

b7→1⊗b
// B ⊗A B

is exact. More generally, if M is an A-module, the sequence

M
m 7→m⊗1

// M ⊗A B
m⊗b7→m⊗b⊗1

//

m⊗b7→m⊗1⊗b
// M ⊗A B ⊗A B (B.1.1)

is exact.

Remark B.1.2. By Faithfully Flat Equivalences A.2.7, A→ B and M →M⊗AB
are necessarily injective.

Proof. Since A→ B is faithfully flat, the sequence (B.1.1) is exact if and only if
the sequence

M ⊗A B
m⊗b′ 7→m⊗1⊗b′

// M ⊗A B ⊗A B
m⊗b⊗b′ 7→m⊗b⊗1⊗b′

//

m⊗b⊗b′ 7→m⊗1⊗b⊗b′
// M ⊗A B ⊗A B ⊗A B
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is exact. The above sequence can be rewritten as

M ⊗A B
x 7→x⊗1

// (M ⊗A B)⊗B (B ⊗A B)
x⊗y 7→x⊗y⊗1

//

x⊗y 7→x⊗1⊗y
// (M ⊗A B)⊗B (B ⊗A B)⊗B (B ⊗A B)

which is precisely sequence (B.1.1) applied to ring B → B⊗AB given by b 7→ 1⊗b
and the B-module M⊗AB. Since this ring map has a section B⊗AB → B given by
b⊗b′ 7→ bb′, we can assume that in the statement φ : A→ B has a section s : B → A
with s ◦ φ = idA. Let x ∈ M ⊗A B such that x ⊗ 1 = 1 ⊗ x ∈ M ⊗A B ⊗A B.
Applying idM ⊗ idB ⊗s : M ⊗A B ⊗A B → M ⊗A B ⊗A A ∼= M ⊗A B to the
identity x ⊗ 1 = 1 ⊗ x yields that x = (idM ⊗s)(x) ∈ M where idM ⊗s denotes
the composition M ⊗A B →M ⊗A A

∼→M .

Proposition B.1.3. Let f : X → Y be a faithfully flat morphism of schemes
that is either quasi-compact or locally of finite presentation. Let F and G be
quasi-coherent OY -modules. Let p1, p2 denote the two projections X ×Y X → X

and q denote the composition X ×Y X
pi−→ X

f−→ Y . Then the sequence

HomOY (F,G)
f∗
// HomOX (f∗F, f∗G)

p∗1 //

p∗2

// HomOX×Y X
(q∗F, q∗G)

is exact.

Remark B.1.4. The special case that F = OY implies that 0 → Γ(Y,G)
f∗−→

Γ(X, f∗G)
p∗1−p

∗
2−−−−→ Γ(X ×Y X, q∗G) is exact. When X and Y are affine, this is

precisely Proposition B.1.1.

Proof. This can be reduced to Proposition B.1.1 by first reducing to the case
that Y is affine. If f is quasi-compact, we reduce to the case that X is affine by
choosing a finite affine cover {Ui} and replacing X with the affine scheme

⊔
i Ui.

If f is locally of finite presentation, we apply Corollary A.2.3 to reduce to the
quasi-compact case. We leave the details to the reader.

Proposition B.1.5. Let f : X → Y be a faithfully flat morphism of schemes that
is either quasi-compact or locally of finite presentation. Let F be a quasi-coherent
OX-module and α : p∗1F → p∗2F an isomorphism of OX×YX-modules satisfying the
cocycle condition p∗12α ◦ p∗23α = p∗13α on X ×Y X ×X Y . Then there exists a quasi-
coherent OY -module G and an isomorphism φ : F → f∗G such that p∗1φ = p∗2φ ◦ α
on X ×Y X. The data (F, φ) is unique up to unique isomorphism.

Remark B.1.6. The following diagram may be useful to internalize the above
statement:

p∗12α ◦ p∗23α = p∗13α p∗1F
α−→ p∗2 F ∃G

X ×Y X ×Y X
p12 //

p23 //

p13 // X ×Y X
p1 //

p2

// X
f
// Y

Keep in mind the special case that X =
⊔
i Yi where {Yi} is an open covering of

Y in which case the above fiber products correspond to intersections.
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The cocycle condition p∗12α ◦ p∗23α = p∗13α should be understood as the com-
mutativity of

p∗12p
∗
1F

p∗12α // p∗12p
∗
2F p∗23p

∗
1F

p∗23α

��

p∗13p
∗
1F

p∗13α // p∗13p
∗
2F p∗23p

∗
2F

and the condition that p∗1φ = p∗2φ ◦ α should be understood as the commutativity
of

p∗1F
p∗1φ //

α

��

p∗1f
∗G

p∗2F
p∗2φ // p∗2f

∗G.

Remark B.1.7. Propositions B.1.3 and B.1.5 together can be reformulated as
the statement that the category QCoh(Y ) is equivalent to the category of descent
datum for X → Y , denoted by QCoh(X → Y ). Here the objects of QCoh(X → Y )
are pairs (F, α) consisting of a quasi-coherent OX -module F and an isomorphism
α : p∗1F → p∗2F satisfying the cocycle condition. A morphism (F′, α′)→ (F, α) is a
morphism β : F′ → F such that

p∗1F
′ α′ //

p∗1β

��

p∗2F
′

p∗2β

��

p∗1F
α // p∗2F

commutes.

B.2 Descent for morphisms

The following result implies that if Z is a scheme, the functor Mor(−, Z) : Sch→
Sets is a sheaf in the fppf topology.

Proposition B.2.1. Let f : X → Y be a faithfully flat morphism of schemes
that is either quasi-compact or locally of finite presentation. If g : X → Z is any
morphism to a scheme such that p1 ◦ g = p2 ◦ g on X ×Y X, then there exists a
unique morphism h : Y → Z filling in the commutative diagram

X ×Y X
p1 //

p2

// X
f
//

g

��

Y

h

��

Z

of solid arrows.

B.3 Descending schemes

Proposition B.3.1 (Effective Descent for Open and Closed Immersions). Let
f : X → Y be a faithfully flat morphism of schemes that is either quasi-compact
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or locally of finite presentation. If Z ⊂ X is a closed (resp. open) subscheme such
that p1

−1(Z) = p−1
2 (Z) as closed (resp. open) subschemes of X ×Y X, then there

exists a closed (resp. open) subscheme W ⊂ Y such that Z = f−1(W ).

To formulate effective descent for morphisms that are not monomorphisms,
we need to specify an isomorphism of pullbacks satisfying a cocycle condition.
We will use the following notation: if f : X → Y and W → Y are morphisms of
schemes, we denote f∗W as the fiber product X ×Y W .

Proposition B.3.2 (Effective Descent for Affine Immersions). Let f : X → Y be
a faithfully flat morphism of schemes that is either quasi-compact or locally of
finite presentation. If Z → X is an affine morphism and α : p1

∗(Z)
∼→ p∗2(Z) is an

isomorphism over X×Y X satisfying p∗12α◦p∗23α = p∗13α, then there exists an affine
morphism W → Y and an isomorphism φ : Z → f∗(W ) such that p∗1φ = p∗2φ ◦ α.

Remark B.3.3. It is helpful to interpret the above statement using the diagram

p∗12α ◦ p∗23α = p∗13α p∗1Z
α−→ p∗2Z

����

Z

��

// W

��

X ×Y X ×Y X
p12 //

p23 //

p13 // X ×Y X
p1 //

p2

// X
f
// Y.

Proposition B.3.4 (Effective Descent for Quasi-affine Immersions). Let f : X →
Y be a faithfully flat morphism of schemes that is either quasi-compact or locally of
finite presentation. If Z → X is a quasi-affine morphism and α : p1

∗(Z)
∼→ p∗2(Z)

is an isomorphism over X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α, then there exists
an quasi-affine morphism W → Y and an isomorphism φ : Z → f∗(W ) such that
p∗1φ = p∗2φ ◦ α.

Proposition B.3.5 (Effective Descent for Separated and Locally Quasi-finite
morphisms). Let f : X → Y be a faithfully flat morphism of schemes that is either
quasi-compact or locally of finite presentation. If Z → X is a separated and locally
quasi-finite morphism of schemes and α : p1

∗(Z)
∼→ p∗2(Z) is an isomorphism over

X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α, then there exists an quasi-affine morphism
W → Y and an isomorphism φ : Z → f∗(W ) such that p∗1φ = p∗2φ ◦ α.

Corollary B.3.6. Let P be one of the following properties of morphisms of
schemes: open immersion, closed immersion, locally closed immersion, affine,
quasi-affine or separated and locally quasi-finite. Let f : X → Y be a faithfully flat
morphism of schemes that is either quasi-compact or locally of finite presentation.
Let Q→ Y be a map of presheaves and consider the fiber product

QX

��

// Q

��

X
f
// Y.

If QX is a scheme and QX → X has P, then Q is a scheme and Q→ Y has P.

Proof. As QX is the pullback of Q, there is a canonical isomorphism α : p∗1QX →
p∗2QX satisfying the cocycle condition. By Propositions B.3.1, B.3.2, B.3.4
and B.3.5, there exists a quasi-affine morphism W → Y that pulls back to
QX → X. The reader to left to check that the natural map Q → W is an
isomorphism.
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B.4 Descending properties of schemes and their
morphisms

B.4.1 Descending properties of morphisms

Proposition B.4.1 (Properties flat local on the target). Let Y ′ → Y be a
faithfully flat morphism of schemes that is either quasi-compact or locally of finite
presentation. Let P be one of the following properties of a morphism of schemes:

(i) isomorphism;

(ii) surjective;

(iii) proper;

(iv) flat;

(v) smooth;

(vi) étale;

(vii) unramified.

Then X → Y has P if and only if X ×Y Y ′ → Y ′ does.

Proposition B.4.2 (Properties smooth local on the source). Let X ′ → X be
a smooth and surjective morphism of schemes. Let P be one of the following
properties of a morphism of schemes:

(i) surjective;

(ii) smooth;

Then X → Y has P if and only if X ′ → X → Y does.

Proposition B.4.3 (Properties étale local on the source). Let X ′ → X be an
étale and surjective morphism of schemes. Let P be one of the following properties
of a morphism of schemes:

(i) surjective;

(ii) étale;

(iii) smooth.

Then X → Y has P if and only if X ′ → X → Y does.

MORE PROPERTIES TO BE ADDED

B.4.2 Descent for properties of quasi-coherent sheaves

Proposition B.4.4. Let f : X → Y be a faithfully flat morphism of schemes that
is either quasi-compact or locally of finite presentation. Let P ∈ {finite type, finite
presentation, vector bundle} be a property of quasi-coherent sheaves. If G is a
quasi-coherent OY -module, then G has P if and only if f∗G does. If X and Y are
noetherian, then the same holds for the property of coherence.
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Appendix C

Algebraic groups and actions

C.1 Algebraic groups

C.1.1 Group schemes

Definition C.1.1. A group scheme over a scheme S is a morphism π : G → S
of schemes together with a multiplication morphism µ : G×S G→ G, an inverse
morphism ι : G→ G and an identity morphism e : S → G (with each morphism
over S) such that the following diagrams commute:

G×S G×S G
idG×µ//

µ×idG

��

G×S G

µ

��

G×S G
µ

// G

Associativity

G

(ι,idG)

��

(idG,ι)
//

e◦π

%%

G×S G

µ

��

G×S G
µ

// G

Law of inverse

G

(idG,e◦π)

��

(e◦π,idG)
//

idG

%%

G×S G

µ

��

G×S G
µ

// G

Law of identity

A morphism φ : H → G of schemes over S is a morphism of group schemes if
µG ◦ (φ× φ) = φ ◦ µH . A closed subgroup of G is a closed subscheme H ⊂ G such

that H → G
µG−−→ G×G factors through H ×H.

Remark C.1.2. If G and S are affine, then by reversing the arrows above gives
Γ(G,OG) the structure of a Hopf algebra of Γ(S,OS).

Exercise C.1.3. Show that a group scheme over S is equivalently defined as a
scheme G over S together with a factorization

Sch /S //

MorS(−,G)
##

Gps

��

Sets

where Gps→ Sets is the forgetful functor.
(We are not requiring that there exists a factorization; the factorization is part

of the data. Indeed, the same scheme can have multiple structures as a group
scheme, e.g. Z/4 and Z/2× Z/2 over C.)

Example C.1.4. The following examples of group schemes are the most relevant
for us. Let S = SpecR and V be a free R-module of finite rank:
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1. The multiplicative group scheme over R is Gm,R = SpecR[t]t with comulti-
plication µ∗ : R[t]t → R[t]t ⊗R R[t′]t′ given by t 7→ tt′.

2. The additive group scheme over R is Ga,R = SpecR[t] with comultiplication
µ∗ : R[t]→ R[t]⊗R R[t′] given by t 7→ t+ t′.

3. The general linear group on V is

GL(V ) = Spec(Sym∗(End(V ))det)

with the comultiplication µ∗ : Sym∗(End(V ))→ Sym∗(End(V ))⊗RSym∗(End(V ))
which can be defined as following: choose a basis v1, . . . , vn of V and
let xij : V → V where vi 7→ vj and vk 7→ 0 if k 6= 0, and then define
µ∗(xij) = xi1x

′
1j + · · ·+ xinx

′
nj .

4. The special linear group on V is SL(V ) is the closed subgroup of GL(V )
defined by det = 1.

5. The projective linear group PGLn is the affine group scheme

Proj(Sym∗(End(V )))det

with the comultiplication defined similarly to GL(V ).

We write GLn,R = GL(Rn), SLn,R = GL(Rn) and PGLn,R = PGL(Rn). We often
simply write Gm, GLn, SLn and PGLn when there is no possible confusion on
what the base is.

Exercise C.1.5. (1) Provide functorial descriptions of each of the group schemes
above.

(2) Show that any abstract group G can be given the structure of a group scheme⊔
g∈G S over any base S. Provide both explicit and functorial descriptions.

Exercise C.1.6. Show that a group scheme G→ S is trivial if and only if the
fiber Gs is trivial for each s ∈ S.

C.1.2 Group actions

Definition C.1.7. An action of a group scheme G
π−→ S on a scheme X

p−→ S is
a morphism σ : G×S X → X over S such that the following diagrams commute:

G×S G×S X
idG×σ//

σ×idG

��

G×S X

σ

��

G×S X
σ // G

Compatibility

X
e◦p,idX//

idX

##

G×S X

σ

��

X
Law of identity

If X → S and Y → S are schemes with actions of G→ S, a morphism f : X → Y
of schemes over S is G-equivariant if σY ◦ (id×f) = f ◦ σX , and is G-invariant if
G-equivariant and Y has the trivial G-action.

Exercise C.1.8. Show that giving a group action of G → S on X → S is the
same as giving an action of the functor MorS(−, G) : Sch /S → Gps on the functor
MorS(−, X) : Sch /S → Sets.

(This requires first spelling out what it means for a functor to groups to act on
a functor to sets.)
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C.1.3 Representations

To define a representation, for simplicity we specialize to the case when S = SpecR
and G are affine. The case that most interests us of course is when R is a field. A
representation (or comodule) of a group scheme G→ SpecR is an R-module V
together with a homomorphism σ̂ : V → Γ(G,OG) ⊗R V (often referred to as a
coaction).

A representation V of G induces an action of G on A(V ) = Spec Sym∗ V , which
we refer to as a linear action. Morphisms of representations and subrepresentations
are defined in the obvious way.

Exercise C.1.9. If R = k is a field and V is a finite dimensional vector space,
show that giving V the structure as a representation is the same as giving a
homomorphism G→ GL(V ) of group schemes.

A representation V of G is irreducible if for every subrepresentation W ⊂ V is
either 0 or V .

Example C.1.10 (Diagonaliable group schemes). If A is a finitely generated
abelian group, we let R[A] be the free R-module generated by elements of A. The
R-module R[A] has the structure of an R-algebra with multiplication on generators
induced from multiplication in A. The comultiplication R[A]→ R[A]⊗R → R[A′]
defined by a 7→ a⊗ a′ defines a group scheme D(A) = SpecR[A] over SpecR. A
group scheme G over SpecR is diagonalizable if G ∼= D(A) for some A.

If A = Zr, then D(A) = Grm,A is the r-dimensional torus. If A = Z/n,
then D(A) = µn = Spec k[t]/(tn − 1). The classification of finitely generated
abelian groups implies that any diagonalizable group scheme is a product of
Grm × µn1 × · · ·µnk .

Exercise C.1.11. Describe D(A) as a functor Sch /R→ Gps.

Each element a ∈ A defines a one-dimensional representation Wa = A of D(A)
defined by the coaction Wa → R[A]⊗RWa defined by 1 7→ a⊗ 1.

Proposition C.1.12. Any free representation of a diagonalizable group scheme
is a direct sum of one-dimensional representations.

Proof. Let G = D(A) and let V = Ar be a free representation of G with coaction
σ̂ : V → R[A]⊗R V . Then for each a ∈ A,

Va := {v ∈ V | σ̂(v) = a⊗ v}

is isomorphic toW dimVa
a asG-representations. Then V ∼= ⊕a∈AVa asG-representations.

The details are left to the reader.

If V is a representation of an affine group scheme G over SpecR with coaction
σ̂, the invariant subrepresentation is defined as V G = {v ∈ V | σ̂(v) = 1 ⊗ v}.
Observe that V G = V0 using the notation in the proof above.

C.2 Properties of algebraic groups

An algebraic group over a field k if a group scheme G of finite type over k. While
we are not assuming that G is affine nor smooth. We are primarily interested in
affine algebraic groups.
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Algebraic Group Facts C.2.1. Let G be an affine algebraic group over a field
k.

(1) Every representation V of G is a union of its finite dimensional subrepresen-
tations.

(2) There exists a finite dimensional representation V and a closed immersion
G ↪→ GL(V ) of group schemes.

(3) If G acts on an affine scheme X of finite type over k, there exist a finite
dimensional representation V of G and a G-invariant closed immersion
X ↪→ A(V ).

(4) If char(k) = 0, then G is smooth.

C.3 Principal G-bundles

The following definition of a principal G-bundle is an algebraic formulation of the
topological notion of a fiber bundle P → X with fiber G where G acts freely on
P and P → X is G-invariant (i.e. equivariant with respect to the trivial action of
G on X) with fibers isomorphic to G.

C.3.1 Definition and equivalences

Definition C.3.1. Let G→ S be a flat group scheme locally of finite presentation.
A principal G-bundle over an S-scheme X is flat morphism P → X locally of
finite presentation with an action of G via σ : G×S P → P such that P → X is
G-invariant and

(σ, p2) : G×S P → P ×X P, (g, p) 7→ (gp, p)

is an isomorphism.
A principal G-bundle is also often referred to as a G-torsor (see Defini-

tion C.3.12 and Exercise C.3.13).

Morphisms of principal G-bundles are G-equivariant morphisms.

Exercise C.3.2. Show that P → X is principal G-bundle over the S-scheme X
if and only if P → X is a principal G×S X-bundle over the X-scheme X.

Exercise C.3.3. Show that a morphism of principal G-bundles is necessarily an
isomorphism.

We call a principal G-bundle P → X trivial if there is a G-equivariant isomor-
phism P ∼= G×X where G acts on G×X via multiplication on the first factor.
The following proposition characterizes principal G-bundles as morphisms P → X
which are locally trivial.

Proposition C.3.4. Let G→ S be a flat group scheme locally of finite presenta-
tion and P → X be a G-equivariant morphism of S-scheme where X has the trivial
action. Then P → X is a principal G-bundle if and only if there exists a faithfully
flat and locally of finite presentation morphism X ′ → X, and an isomorphism
P ×X X ′ → G ×S X ′ of principal G-bundles over X ′. Moreover, if G → S is
smooth, then X ′ → X can be arranged to be étale.
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Proof. The ⇒ direction follows from the definition by taking X ′ = P → X. For
⇐, after base changing G→ S by X → S, we assume that G is defined over X (see
Exercise C.3.2). Let GX′ and PX′ be the base changes of G and P along X ′ → X.
The base change of the action map (σ, p2) : G×X P → P ×X P along X ′ → X is
the action map GX′ ×X′ PX′ → PX′ ×X′ PX′ of GX′ acting on PX′ over X ′. Since
PX′ is trivial, this latter action map is an isomorphism. Since the property of being
an isomorphism descends along faithfully flat and locally of finite presentation
morphisms (Proposition B.4.1), we conclude that (σ, p2) : G×X P → P ×X P is
an isomorphism.

The final statement follows from the fact that smooth morphisms have sections
étale-locally (Proposition A.3.5).

Exercise C.3.5. Let L/K be a finite Galois extension and G = Gal(L/K) be
the finite group scheme over SpecK. Show that SpecL→ SpecK is a principal
G-bundle.

Exercise C.3.6. If X is a scheme, show that there there is an equivalence of
categories

{line bundles on X} → {principal Gm-bundle on X}
L 7→ A(L) \ 0

between the groupoids of line bundles on X and Gm-torsors on X and (where the
only morphisms allowed are isomorphisms). If L is a line bundle (i.e. invertible
OX -module), then A(L) denotes the total space Spec Sym∗ L∨ and 0 denotes the
zero section X → A(L).

Exercise C.3.7.

(1) Show that the standard projection An+1 \ 0→ Pn is a principal Gm-bundle.

(2) For each line bundle O(d) on Pn, explicitly determine the corresponding
principal Gm-bundle. In particular, for which d does O(d) correspond to the
principal Gm-bundle of (1).

Exercise C.3.8. Let X be a scheme

(1) If E is a vector bundle on X of rank n, define the frame bundle is the functor

FrameX(E) : Sch /X → Sets, (T → X) 7→ {trivializations α : f∗E
∼→ OnT }.

Show that FrameX(E) is representable by scheme and that FrameX(E)→ X
is a principal GLn-bundle.

(2) If P → X is a principal GLn-bundle, then define P ×GLn An := (P ×
An)/GLn where GLn acts diagonally via its given action on P and the
standard action on An. (The action is free and the quotient (P ×An)/GLn
can be interpreted as the sheafification of the quotient presheaf Sch /X →
Sets taking T 7→ (P × An)(T )/GLn(T ) in the big Zariski (or big étale)
topology or equivalently as the algebraic space quotient (???). Show that
(P × An)/GLn is representable by scheme and is the total space of a vector
bundle over X.

(3) show that there there is an equivalence of categories

{vector bundles on X} → {principal GLn-bundles on X}
E 7→ FrameX(E)

locally free sheaf associated to (P × An)/GLn ← [ (P → X)
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between the groupoids of vector bundles on X and principal GLn-bundles
on X.

Exercise C.3.9. What is the GL2-torsor on P1×P1 corresponding to O(1)�O(1)?

Exercise C.3.10. Let G → S be a smooth, affine group scheme. Let P → X
and Q→ X be principal G-bundles. Show that the functor

IsomX(P,Q) : Sch /X → Sets

(T
f−→ X) 7→ Isomprincipal G-bundles/T(f∗P, f∗Q)

is representable by a scheme which is a principal G-bundle over X.

C.3.2 Descent for principal G-bundles

Proposition C.3.11 (Effective Descent for Principal G-bundles). Let G→ S be
a flat and affine group scheme of finite presentation Let f : X → Y be a faithfully
flat morphism of schemes over S that is either quasi-compact or locally of finite
presentation. If P → X is a principal G-bundle and α : p1

∗(P )
∼→ p∗2(P ) is an

isomorphism of principal G-bundles over X ×Y X satisfying p∗12α ◦ p∗23α = p∗13α,
then there exists a principal G-bundle Q→ Y and an isomorphism φ : P → f∗(Q)
of principal G-bundles such that p∗1φ = p∗2φ ◦ α.

C.3.3 G-torsors

A G-torsor is a categorical generalization of a principal G-bundle which makes
sense with respect to any sheaf of groups on a site.

Definition C.3.12. Let S be a site and G a sheaf of groups on S. A G-torsor on
S is a sheaf P of sets on S with a left action σ : G× P → P of G such that

(a) For every object X ∈ S, there exists a covering {Xi → X} such that
P (Xi) 6= 0, and

(b) The action map (σ, p2) : G× P → P × P is an isomorphism.

Exercise C.3.13. If G→ S is a flat and affine group scheme of finite presentation,
show that any G-torsor on the big étale topology (Sch /S)Ét is representable by a
principal G-bundle.
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Appendix D

Hilbert and Quot schemes

In this section, we state that the Hilbert and Quot functors are representable by
a projective scheme. Let X → S be a projective morphism of noetherian schemes
and OX(1) be a relatively ample line bundle on X. Let P ∈ Q[z] be a polynomial.

Theorem D.0.1. The functor

HilbP (X/S) : Sch /S → Sets

(T → S) 7→
{

subschemes Z ⊂ X ×S T flat and finitely presented over T
such that Zt ⊂ X ×S κ(t) has Hilbert polynomial P for all t ∈ T

}
is represented by a scheme projective over S.

Theorem D.0.2. If F is a coherent sheaf on X, the functor

QuotP (F/X/S) : Sch /S → Sets

(T
f−→ S) 7→

{
quotients f∗F → Q of finite presentation such that
Qt on X ×S κ(t) has Hilbert polynomial P for all t ∈ T

}
is represented by a scheme projective over S.

Remark D.0.3.

(1) Theorem D.0.1 is a special case of Theorem D.0.2 by taking F = OX .

(2) A morphism of noetherian schemes X → S is projective if there is a coherent
sheaf E on S such that there is a closed immersion X ↪→ P(E) over S
[EGA, §II.5], [SP, Tag 01W8]. The definition of projectivity in [Har77,
II.4] is stronger as it requires X ↪→ PnS . There is an intermediate notion
of strongly projective morphisms requiring X ↪→ P(E) where E is a vector
bundle over S. In this case if X → S is strongly projective, one can show
that HilbP (X/S)→ S and QuotP (F/X/S)→ S are also strongly projective;
[?].

(3) When T is noetherian, the conditions that Z be finitely presented and Q be
of finite presentation in the definitions of HilbP (X/S) and QuotP (F/X/S)
are superfluous.

These theorems are the backbone of many results in moduli theory and in
particular are essential for establishing properties about the moduli stacks Mg
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of stable curves and Vss
r,d of vector bundles over a curve. While the reader could

safely treat these results as black boxes (and we encourage some readers to do
this), it is also worthwhile to dive into the details. The proof follows the same
strategy as the construction of the Grassmanian (Proposition 0.5.7) but it involves
several important new ingredients: Castelnuovo–Mumford regularity and flattening
stratifications.
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Appendix E

Artin approximation

In this section, we discuss the deep result of Artin Approximation (Theorem E.0.10)
which can be vaguely expressed as the following principle:

Principle. Algebraic properties that hold for the completion ÔS,s of the
local ring of a scheme S at a point s also hold in an étale neighborhood
(S′, s′)→ (S, s).

Artin approximation is related to another equally deep and powerful result
known as Néron–Popescu Desingularization (Theorem E.0.4). Both Artin Ap-
proximation and Néron–Popescu are difficult theorems which we will not attempt
to prove here. However, we will show at least how Artin Approximation easily
follows from Néron–Popescu Desingularization.

E.0.1 Néron–Popescu Desingularization

Definition E.0.1. A ring homomorphism A → B of noetherian rings is called
geometrically regular if A→ B is flat and for every prime ideal p ⊂ A and every
finite field extension k(p)→ k′ (where k(p) = Ap/p), the fiber B ⊗A k′ is regular.

Remark E.0.2. It is important to note that A → B is not assumed to be of
finite type. In the case that A→ B is a ring homomorphism (of noetherian rings)
of finite type, then A→ B is geometrically regular if and only if A→ B is smooth
(i.e. SpecB → SpecA is smooth).

Remark E.0.3. It can be shown that it is equivalent to require the fibers B⊗A k′
to be regular only for inseparable field extensions k(p) → k′. In particular, in
characteristic 0, A→ B is geometrically regular if it is flat and for every prime
ideal p ⊂ A, the fiber B ⊗A k(p) is regular.

Theorem E.0.4 (Néron–Popescu Desingularization). Let A → B be a ring
homomorphism of noetherian rings. Then A→ B is geometrically regular if and
only if B = colim−−−→Bλ is a direct limit of smooth A-algebras.

Remark E.0.5. This was result was proved by Néron in [Nér64] in the case that
A and B are DVRs and in general by Popescu in [Pop85], [Pop86], [Pop90]. We
recommend [Swa98] and [SP, Tag 07GC] for an exposition on this result.
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Example E.0.6. If l is a field and ls denotes its separable closure, then l→ ls is
geometrically regular. Clearly, ls is the direct limit of separable field extensions
l→ l′ (i.e. étale and thus smooth l-algebras). If l is a perfect field, then any field
extension l→ l′ is geometrically regular—but if l→ l′ is not algebraic, it is not
possible to write l′ is a direct limit of étale l-algebras. On the other hand, if l is a
non-perfect field, then l→ l is not geometrically regular as the geometric fiber is
non-reduced and thus not regular.

In order to apply Néron–Popescu Desingularization, we will need the following
result, which we will also accept as a black box. The proof is substantially easier
than Néron–Popescu’s result but nevertheless requires some effort.

Theorem E.0.7. If S is a scheme of finite type over a field k or Z and s ∈ S is
a point, then OS,s → ÔS,s is geometrically regular.

Remark E.0.8. See [EGA, IV.7.4.4] or [SP, Tag 07PX] for a proof.

Remark E.0.9. A local ring A is called a G-ring if the homomorphism A→ Â
is geometrically regular. We remark that one of the conditions for a scheme S to
be excellent is that every local ring is a G-ring. Any scheme that is finite type
over a field or Z is excellent.

E.0.2 Artin Approximation

Let S be a scheme and consider a contravariant functor

F : Sch /S → Sets

where Sch /S denotes the category of schemes over S. An important example of a
contravariant functor is the functor representing a scheme: if X is a scheme over
S, then the functor representing X is:

hX : Sch /S → Sets, (T → S) 7→ MorS(T,X). (E.0.1)

We say that F is locally of finite presentation or limit preserving if for every
direct limit lim−→Bλ of OS-algebras Bλ (i.e. a direct limit of commutative rings Bλ
together with morphisms SpecBλ → S), the natural map

lim−→F (SpecBλ)→ F (Spec lim−→Bλ)

is bijective. This should be viewed as a finiteness condition on the functor F .
Indeed, a scheme X is locally of finite presentation over S if and only if its function
MorS(−, X) is (Proposition A.1.2).

Theorem E.0.10 (Artin Approximation). Let S be an excellent scheme (e.g. a
scheme of finite type over a field or Z) and let

F : Sch /S → Sets

be a limit preserving contravariant functor. Let s ∈ S be a point and ξ̂ ∈
F (Spec ÔS,s). For any integer N ≥ 0, there exist a residually-trivial étale mor-
phism

(S′, s′)→ (S, s) and ξ′ ∈ F (S′)

such that the restrictions of ξ̂ and ξ′ to Spec(OS,s/m
N+1
s ) are equal.
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Remark E.0.11. The following theorem was originally proven in [Art69, Cor. 2.2]
in the case that S is of finite type over a field or an excellent dedekind domain.
We also recommend [BLR90, §3.6] for an accessible account of the case of excellent
and henselian DVRs.

Remark E.0.12. The condition that (S′, s′)→ (S, s) is residually trivial means
that the extension of residue fields κ(s) → κ(s′) is an isomorphism. To make
sense of the restriction ξ′ to Spec(OS,s/m

N+1
s ), note that since (S′, s′)→ (S, s) is a

residually-trivial étale morphism, there are compatible identifications OS,s/m
N+1
s

∼=
OS′,s′/m

N+1
s′ ).

Remark E.0.13. It is not possible in general to find ξ′ ∈ F (S′) restricting to

ξ̂ or even such that the restrictions of ξ′ and ξ̂ to SpecOS,s/m
n+1
s agree for all

n ≥ 0. For instance, F could be the functor Mor(−,A1) representing the affine

line A1 and ξ̂ ∈ ÔS,s could be a non-algebraic power series.

E.0.3 Alternative formulation of Artin Approximation

Consider the functor F : Sch /S → Sets representing an affine scheme X =
SpecA[x1, . . . , xn]/(f1, . . . , fm) of finite type over an excellent affine scheme S =
SpecA. Restricted to the category of affine schemes over S (or equivalently
A-algebras), the functor is:

F : AffSch /S → Sets

SpecB 7→ {a = (a1, . . . , an) ∈ B⊕n | fi(a) = 0 for all i}

Applying Artin Approximation to the functor F , we obtain:

Corollary E.0.14. Let R be an excellent ring and A be a finitely generated
R-algebra. Let m ⊂ A be a maximal ideal. Let f1, . . . , fm ∈ A[x1, . . . , xn] be

polynomials. Let â = (â1, . . . , ân) ∈ Âm be a solution to the equations f1(x) =
· · · = fm(x) = 0. Then for every N ≥ 0, there exist a residually-trivial étale ring
homomorphism (A,m)→ (A′,m′) and a solution a′ = (a′1, . . . , a

′
n) ∈ A′⊕n to the

equations f1(x) = · · · = fm(x) = 0 such that a′ ∼= â mod mN+1.

Remark E.0.15. Although this corollary may seem weaker than Artin Approxi-
mation, it is not hard to see that it in fact directly implies Artin Approximation.
Indeed, writing S = SpecA, we may write ÔS,s as a direct limit of finite type
A-algebras and since F is limit preserving, we can find a commutative diagram

Spec ÔS,s

��

ξ̂

))
SpecA[x1, . . . , xn]/(f1, . . . , fm)

ξ
// F.

The vertical morphism corresponds to a solution â = (â1, . . . , ân) ∈ Ô⊕nS,s to the
equations f1(x) = · · · = fm(x) = 0. Applying Corollary E.0.14 yields the desired
étale morphism (SpecA′, s′)→ (SpecA, s) and a solution a′ = (a′1, . . . , a

′
n) ∈ A′⊕n
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to the equations f1(x) = · · · = fm(x) = 0 agreeing with â up to order N (i.e.
congruent modulo mN+1). This induces a morphism

ξ′ : SpecA′ → SpecA[x1, . . . , xn]/(f1, . . . , fm)→ F

which agrees with ξ̂ : Spec ÔS,s → F to order N .

Alternatively, we can state Corollary E.0.14 using henselian rings. Recall that
a local ring (A,m) is called henselian if the following analogue of the implicit
function theorem holds: if f1, . . . , fn ∈ A[x1, . . . , xn] and a = (a1, . . . , an) ∈
(A/m)⊕n is a solution to the equations f1(x) = · · · = fn(x) = 0 modulo m and
det
(
∂fi
∂xj

(a)
)
i,j=1,...,n

6= 0, then there exists a solution a = (a1, . . . , an) ∈ A⊕n

to the equations f1(x) = · · · = fn(x) = 0. Equivalently, if (A,m) is a local
k-algebra with A/m ∼= k, then (A,m) is henselian if every étale homomorphism
(A,m)→ (A′,m′) of local rings with A/m ∼= A′/m′ is an isomorphism. Also, if S
is a scheme and s ∈ S is a point, one defines the henselization OhS,s of S at s to be

OhS,s = lim−→
(S′,s′)→(S,s)

Γ(S′,OS′)

where the direct limit is over all étale morphisms (S′, s′)→ (S, s). In other words,
OhS,s is the local ring of S at s in the étale topology.

Corollary E.0.16. Let (A,m) be an excellent local henselian ring (e.g. the
henselization of the local ring of a scheme of finite type over a field or Z). Let

f1, . . . , fm ∈ A[x1, . . . , xn]. Suppose that â = (â1, . . . , ân) ∈ Â⊕n is a solution to
the equations f1(x) = · · · = fm(x) = 0. For any integer N ≥ 0, there exists a
solution a = (a1, . . . , an) ∈ A⊕n to the equations f1(x) = · · · = fm(x) = 0 such
that â ∼= a mod mN+1.

E.0.4 A first application of Artin Approximation

The next corollary states an important fact which you may have taken for granted:
if two schemes are formally isomorphic at two points, then they are isomorphic in
the étale topology.

Corollary E.0.17. Let X1, X2 be schemes of finite type over an excellent scheme
S. Suppose x1 ∈ X1, x2 ∈ X2 are points such that ÔX1,x1

and ÔX2,x2
are iso-

morphic as OS-algebras. Then there exists a common residually-trivial étale
neighborhood

(X3, x3)

&&yy

(X1, x1) (X2, x2) .

(E.0.2)

Proof. The functor

F : Sch /X1 → Sets, (T → X1) 7→ Mor(T,X2)

is limit preserving as it can be identified with the representable functor
MorX1

(−, X2×X1) corresponding to the finite type morphism X2×X1 → X1. The

104



isomorphism ÔX1,x1
∼= ÔX2,x2 provides an element of F (Spec ÔX1,x1). By applying

Artin Approximation with N = 1, we obtain a diagram as in (E.0.2) with X3 → X1

étale at x3 with κ(x2)
∼→ κ(x3) and such that OX2,x2

/m2
x2
→ OX3,x3

/m2
x3

is an

isomorphism. By Lemma E.0.18, ÔX2,x2
→ ÔX3,x3

is surjective. But we also know

that ÔX3,x3
is abstractly isomorphic to ÔX2,x2

and since any surjective endomor-

phism of a noetherian ring is an isomorphism, we conclude that ÔX2,x2 → ÔX3,x3

is an isomorphism and therefore that (X3, x3)→ (X2, x2) is étale.

Lemma E.0.18. Let (A,mA)→ (B,mB) be a local homomorphism of noetherian
complete local rings. If A/m2

A → B/m2
B is surjective, so is A→ B.

Proof. This follows from the following version of Nakayama’s lemma for noetherian
complete local rings (A,m): if M is a (not-necessarily finitely generated) A-module
such that

⋂
k m

kM = 0 and m1, . . . ,mn ∈ F generate M/mM , then m1, . . . ,mn

also generate M (see [Eis95, Exercise 7.2]).

E.0.5 Néron–Pescue Desingularization =⇒ Artin Approx-
imation

By Theorem E.0.7, the morphism OS,s → ÔS,s is geometrically regular. By

Néron–Popescu Desingularization (Theorem E.0.4), ÔS,s = lim−→Bλ is a direct
limit of smooth OS,s-algebras. Since F is limit preserving, there exist λ, a

factorization OS,s → Bλ → ÔS,s and an element ξλ ∈ F (SpecBλ) whose restriction

to F (Spec ÔS,s) is ξ̂.
Let B = Bλ and ξ = ξλ. Geometrically, we have a commutative diagram

Spec ÔS,s
g
//

ξ̂

''

&&

SpecB

��

ξ
// F

SpecOS,s

where SpecB → SpecOS,s is smooth. We claim that we can find a commutative
diagram

S′

##

� � // SpecB

��

SpecOS,s

(E.0.3)

where S′ ↪→ SpecB is a closed immersion, (S′, s′) → (SpecOS,s, s) is étale, and
the composition SpecOS,s/m

N+1
s → S′ → SpecB agrees with the restriction of

g : Spec ÔS,s → SpecB.1

To see this, observe that the B-module of relative differentials ΩB/OS,s is
locally free. After shrinking SpecB around the image of the closed point under

1This is where the approximation occurs. It is not possible to find a morphism S′ → SpecB →
SpecOS,s which is étale at a point s′ over s such that the composition Spec ÔS,s → S′ → SpecB
is equal to g.
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Spec ÔS,s → SpecB, we may assume ΩB/OS,s is free with basis db1, . . . , dbn. This
induces a homomorphism OS,s[x1, . . . , xn]→ B defined by xi 7→ bi and provides a
factorization

SpecB //

��

AnOS,s

yy

SpecOS,s

where SpecB → AnOS,s is étale. We may choose a lift of the composition

OS,s[x1, . . . , xn]→ B → ÔS,s → OS,s/m
N+1
s

to a morphism OS,s[x1, . . . , xn]→ OS,s. This gives a section s : SpecOS,s → AnOS,s
and we define S′ as the fibered product

S′� _

��

// SpecOS,s� _

s

��

SpecB //

�

AnOS,s .

This gives the desired Diagram E.0.3. The composition ξ′ : S′ → SpecB
ξ−→ F is

an element which agrees with ξ̂ up to order N .
By “standard direct limit” methods, we may “smear out” the étale morphism

(S′, s′) → (SpecOS,s, s) and the element ξ′ : S′ → F to find an étale morphism

(S′′, s′′) → (S, s) and an element ξ′′ : S′′ → F agreeing with ξ̂ up to order N .
Since this may not be standard for everyone, we spell out the details. Let
SpecA ⊂ S be an open affine containing s. We may write S′ = SpecA′ and
A′ = OS,s[y1, . . . , yn]/(f ′1, . . . , f

′
m). As OS,s = lim−→g/∈ms

Ag, we can find an element

g /∈ ms and elements f ′′1 , . . . , f
′′
m ∈ Ag[y1, . . . , yn] restricting to f ′1, . . . , f

′
m. Let

S′′ = SpecAg[y1, . . . , yn]/(f ′′1 , . . . , f
′′
m) and s′′ ∈ S′′ be the image of s′ under S′ →

S′′. Then S′′ → S is étale at s′′. As A′ = lim−→h/∈ms
Ahg[y1, . . . , yn]/(f ′1, . . . , f

′
m)

and F is limit preserving, we can, after replacing g with hg, find an element
ξ′′ ∈ F (S′′) restricting to ξ′ and, in particular, agreeing with ξ̂ up to order N .
Finally, we shrink S′′ around s′′ so that S′′ → S is étale everywhere.
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[Pop85] Dorin Popescu, General Néron desingularization, Nagoya Math. J. 100
(1985), 97–126.
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