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What is NR? 

► Private non-profite foundation 

► Applied research within 

▪ Statistical modelling and analysis 

▪ Information and communication technology 

► Founded in 1952 

► 65 researchers 

 

www.nr.no 



Statistics is important in many fields 

Statistical 

modelling and 

analysis 

Finance Marine 

Petroleum Medicine 



We also do statistical genomics 

► NR participates in the bioinformatics core facility. 

► Data: Microarrays, SNP, copy number, sequencing, 

methylation. 

► Typical tasks:  

▪ Find list of differentially expressed genes. 

▪ Pathway analyses. 

▪ Correlation analyses.  

▪ Survival analyses. 

▪ Sample size calculations. 

▪ Multiple testing adjustment. 

▪ Clustering. 
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www.ancestor-dna.com 



Projects 
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• Survival and colorectal cancer 

• Survival and cervical cancer 

• Oxygen-induced complications of prematurity  

• Association between SNPs and low back pain 

• Genes associated with BMD and osteoporosis 

• Antioxidant-rich food and gene expression in blood cells 



Outline 

► Hypothesis testing – the general idea. 

► Important aspects to know 
▪ Null and alternative hypothesis. 

▪ P-value. 

▪ Type I and type II errors. 

▪ Rejection area. 

▪ Significance level and power. 

► Some common tests. 

► Alternative ways to calculate p-values. 

► Multiple hypothesis testing. 

 

 

 

6 



Statistical inference 

Population: 

 The collection of subjects that we would like to draw conclusions 

 about. 

 

Sample: 

 The subcollection considered in the study 

 

Statistical inference: 

 Draw sample-based conclusions about the population, 

 controlling for the probability of  making false claims. 
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Slide by O.C. Lingjærde 
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Example: Analysis of microarray data 
Biological question 

Experiment design 

Microarray  

Image analysis 

Filtering 

Normalization 

Statistical analysis 

Clustering/ 

variable selection 
Hypothesis testing Other modeling 
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Hypothesis testing 

► The results of an experiment can be summarized by 

various measures 

▪ average 

▪ standard deviation 

▪ diagrams  

 

► But often the aim is to choose between competing 

hypotheses concerning these measures. 
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Hypothesis testing 

► Typical: have data and information 

▪ Uncertainty attached to these 

▪ Must draw a conclusion 

▪ Examples 

◦ Is the new medicine better than the old one? 

◦ Are these genes differentially expressed in tumor and normal cells?  

 

► Hypothesis testing 

▪ Method to draw conclusions from uncertain data  

▪ Can say something about the uncertainty in the conclusion 

 

 

 

 

 

 



Statistical tests (the idea) 
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1) A population has individuals with an observable feature X that 

follows X ~ F(). We seek if (say)           is violated. 

 

2) We obtain X-values X1,...XN on a random sample. 

 

3) A test statistic Z = Z(X1,...XN) is defined.  The observed Z is denoted 

zobs. Large |zobs| supports violations. 

 

4) Calculate the probability that |Z| ≥ |zobs |   (= p-value) 

 

5) Conclude that            is violated if p-value is small.  

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Slide by O.C. Lingjærde 
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Famous example: The lady tasting tea 

► The Design of Experiments (1935), Sir Ronald A. Fisher 

▪ A tea party in Cambridge, the 1920ties  

▪ A lady claims that she can taste whether milk is poured in cup 

before or after the tea 

▪ All professors agree: impossible 

▪ Fisher: this is statistically interesting! 

▪ Organised a test 

 

 

 

http://www.maa.org/reviews/ladytea.html 
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The lady tasting tea 
► Test with 8 trials, 2 cups in each trial 

▪ In each trial: guess which cup had the milk poured in first 

 

►  Binomial experiment 

▪ Independent trials 

▪ Two possible outcomes, she guesses right cup (success),  

wrong cup (failure) 

▪ Constant probability of success in each trial 

 

 

► X=number of correct guesses in 8 trials, each with probability 

of success p 

▪ X is  Binomially (8,p) distributed 
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The lady tasting tea, cont. 

► The null (conservative) hypothesis 

▪ The one we initially believe in  

►  The alternative hypothesis 

▪ The new claim we wish to test 

 

 

►      She has no special ability to taste the difference 

►       She has a special ability to taste the difference 
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How many right to be convinced? 

 

► We expect maybe 3, 4 or 5 correct guesses if she has no 

special ability 

► Assume 7 correct guesses 

▪ Is there enough evidence to claim that she has a special 

ability? If 8 correct guesses this would have been even 

more obvious!  

▪ What if only 6 correct guesses? 

◦ Then it is not so easy to answer YES or NO 

► Need a rule that says something about what it takes to be 

convinced. 
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How many right to be convinced? 

 

► Rule: We reject H0  if the observed data have a small probability under 

H0 (given H0 is true). 

 

► Compute the p-value. 

◦ The probability to obtain the observed value or something more extreme, 

given that       is true  

◦ NB! The P-value is NOT the probability that        is true 

 

 
Small p-value: reject the null hypothesis 

Large p-value: keep the null hypothesis 
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The lady tasting tea, cont. 

► Say: she identified 6 cups correctly 

 

 

► P-value 

 

 

 

► Is this enough to be convinced? 

► Need a limit. 

▪ To set it, we must know about the types of errors we can make. 

 

 

 

 

 

P-value 

The probability to obtain the observed value or something more extreme, given that       is true  
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Two types of errors 

 

 

 

 

 

 

► Type I error most serious  

▪ Wrongly reject the null hypothesis 

▪ Example: 

◦      person is not guilty 

◦      person is guilty 

◦ To say a person is guilty when he is not is far more serious than to 
say he is not guilty when he is. 

       true         true 

Accept      

 

OK Type II error 

Reject Type I error OK 
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When to reject 

 

► Decide on the hypothesis’ level of significance  

▪ Choose a level of significance α 

▪ This guarantees  P(type I error) ≤ α 

▪ Example 

◦ Level of significance at 0.05 gives 5 % probability to reject a true 

 

► Reject       if P-value is less than α 

 

 

P-value 

The probability to obtain the observed value or something more extreme, given that       is true  
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Important parameters in hypothesis testing 

 

 

▪ Null hypothesis  

▪ Alternative hypothesis  

▪ Level of significance  

  

 

 

Must be decided upon before we know the results of the experiment 
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The lady tasting tea, cont. 

► Choose 5 % level of significance  

 

► Conduct the experiment 

▪ Say: she identified 6 cups correctly 

▪ Is this evidence enough?  

 

► P-value 

 

 

 

 

 P-value 

The probability to obtain the observed value or something more extreme, given that       is true  
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The lady tasting tea, cont. 

► We obtained a p-value of 0.1443 

 

► The rejection rule says  

▪ Reject       if p-value is less than the level of significance α 

▪ Since α = 0.05 we do NOT reject 

 

 

Small p-value: reject the null hypothesis 

Large p-value: keep the null hypothesis 
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The lady tasting tea, cont. 

► In the tea party in Cambridge: 

▪ The lady got every trial correct! 

 

 

► Comment:  

▪ Why does it taste different? 

◦ Pouring hot tea into cold milk makes the milk curdle, but not so pouring cold milk 

into hot tea*  

 

*http://binomial.csuhayward.edu/applets/appletNullHyp.html 

Curdle = å skille seg 



Area of rejection 
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       true         true 

Accept      

 

OK Type II error 

Reject Type I error OK 
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Type II error 

𝑃(Type I error) ≤ 𝛼 𝑃(Type II error) = 𝛽 

Want both errors as small as possible, especially type I. 

 
𝛽 is not explicitly given, depends on 𝐻1. 
 

There is one 𝛽 for each possible value of p under 𝐻1. 

 

  

 



Example, type II error 
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Power of the test 
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Power function 

Probability Power Power function 
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Expand the number of trials to 16 



30 

Expand the number of trials, cont. 
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Expand the number of trials, cont. 

Compare power curves 

Parallel to experiments: do replications to increase power! 



Statistical tests (the idea) 
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1) A population has individuals with an observable feature X that 

follows X ~ F(). We seek if (say)           is violated. 

 

2) We obtain X-values X1,...XN on a random sample. 

 

3) A test statistic Z = Z(X1,...XN) is defined.  The observed Z is denoted 

zobs. Large |zobs| supports violations. 

 

4) Calculate the probability that |Z| ≥ |zobs |   (= p-value) 

 

5) Conclude that            is violated if p-value is small.  

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Slide by O.C. Lingjærde 



Common tests 
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One sample location tests 

► Purpose: Compare location parameter of a population to a 

known constant value.  

► Example:  

► One sample z-test 

► One sample t-test 

► One sample Wilcoxon signed ranked test (when normality 

cannot be assumed) 
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The one sample t-test 
 

► Data: 

▪ Y = log intensity value of gene. 

 

▪ Assume 

 

 

► Test:                         against 

 

 

► Under      , the test statistic  t =
𝑌 −𝜇0

𝑠/ 𝑛
                                                                                         

        is T distributed with n-1 degrees of freedom 

 

 
  

          𝑝 − value=𝑃 𝑇 ≥ 𝑡𝑜𝑏𝑠,𝑛−1 𝐻0 + 𝑃 𝑇 ≤ −𝑡𝑜𝑏𝑠,𝑛−1 𝐻0 = 2 ∙ 𝑃(𝑇 ≥ 𝑡𝑜𝑏𝑠,𝑛−1|𝐻0) 

𝐻0 is rejected if 𝑡obs,n−1 ≤ −𝑡𝛼
2
,𝑛−1

or 𝑡obs,n−1 ≥ 𝑡𝛼
2
,𝑛−1

   



Two sample tests 

► Purpose: Compare the mean of two different groups. 

► Two types of problems: 

▪ Two treatments – same subjects: 

◦ Measure cholesterol level before and after diet 

◦ Measure gene expression in tumor cell before and after 

radiation. 

▪ Same treatment – two groups of subjects: 

◦ Measure cholesterol level in men and women. 

◦ Intervention study: One group given antioxidant enriched diet, 

another antioxidant deprived diet. Measure difference in change 

in gene expression. 

36 
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Two-sample problems: Paired data 

    
 

 

  

  

 

   

 

Test statistic 

is T-distributed under        

with n-1 degrees of freedom (n=n1=n2) 
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Two-sample problems:  different samples 

is under          t-distributed with n1+n2-2 

 degrees of freedom 

sf is a common std.dev. for both groups 

s1 and s2 are the empirical std.dev.  

of X1 and X2, respectively 

 

Test statistic 



More ways to calculate p-values 

► So far, all p-values have been calculated from 

       P(|Z| ≥ |zobs | | 𝐻0). 

► This is easy when the distribution of Z is known (e.g. 

binomial, normal, student t). 

► Often the distribution of Z is not known. 

► Can use permutation tests instead.  

▪ Find the distribution of Z by permutations. 
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Simple example 

► Two groups, three measurements in each group. 

► 𝑋𝐴: 8, 11, 12. 𝑋𝐵: 7, 9, 10. 

► We want to test if Z= 𝑋𝐴,𝑖 −  𝑋𝐵,𝑖
3
𝑖=1

3
𝑖=1 =0 vs Z>0. 

► The observed value: Z=31-26=5. 

► How likely is Z=5 under the null hypothesis? 

▪ Do not know the distribution of Z. 

► Solution: Permute the labels A and B. 

▪ Find all possible ways to permute the measurements in two 

groups with three observations in each group. 

40 



Simple example: Permutation p-value 

A B Z A B Z 

8, 11,12 7, 9, 10 5 7, 9, 10 8, 11, 12 -5 

7, 11, 12 8, 9, 10 3 8, 9, 10 7, 11, 12 -3 

7, 8, 12 9, 10,11 -3 9, 10,11 7, 8, 12 3 

7, 8, 11 9, 10, 12 -5 9, 10, 12 7, 8, 11 5 

9, 11, 12 7, 8, 10 7 7, 8, 10 9, 11, 12 -7 

8, 9, 12 7, 10, 11 1 7, 10, 11 8, 9, 12 -1 

8, 9, 11 7, 10, 12 -1 7, 10, 12 8, 9, 11 1 

10, 11, 12 7, 8, 9 9 7, 8, 9 10, 11, 12 -9 

8, 10, 12 7, 9, 11 3 7, 9, 11 8, 10, 12 -3 

8, 10, 11 7, 9, 12 1 7, 9, 12 8, 10, 11 -1 

41 This p-value is exact. 

𝑝 − value=P(𝑍 ≥ 5) = 0.1 + 0.05 + 0.05 = 0.20 

Do not reject the null hypothesis. 



Often, the number of possible 
permutations is huge 

► Example: 30 individuals, 15 cases and 15 controls. 

► Number of possible permutations 30
15

 = 155 117 520. 

► Impossible to calculate test statistic for alle permutations. 

► Instead we can sample the case/control labels randomly a 

large number of times. 

► Get approximate p-value. 

► This is called Monte Carlo sampling 
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Permutation tests – general example  

► Data: Gene set measurements for cases and control group.  

► For each gene i=1,…,n, a test statistic 𝑡𝑖 is calculated. 

► Permute the case and control labels → new dataset 

► Calculate new 𝑡𝑖,𝑏
∗ for the permuted sample.  

► Repeat B times, B=10 000 or 100 000. 

► The 𝑡𝑖,𝑏
∗, b=1,…,B now form a distribution for 𝑡𝑖 under the null 

hypothesis. 

► The p-value of 𝑡𝑖 can be calculated as 

 

𝑝𝑖 =
number of permutations with |𝑡𝑖,𝑏

∗| ≥ |𝑡𝑖|

number of permutations B
 

43 



120    86  53  …     153  122  94 

  57    143 115  …     34  204  142 

 135    11   98  …      42  103  293 

189  103  38 …     256  39   97 

General example - illustration 
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  53  42    11 …     135  69 …   88  

256  34  143 …       57  29 … 192 

cases controls 

  1     2    3   …        16  17  …    30 

1  

2  

. 

. 

 

n 

 

cases controls 

16    3    23   …        2      25      8  …  

1  

2  

. 

. 

 

n 

 

. 

. 

. 

𝑡1 

𝑡2 

𝑡𝑛 

𝑡1,1
∗ 

𝑡2,1
∗ 

𝑡𝑛,1
∗ 

𝑡1,𝐵
∗ 

𝑡2,𝐵
∗ 

𝑡𝑛,𝐵
∗ 

 72  153    86 …   120 134  … 356 

  

Original data 

 35    93   45 …      53  103  68 

cases controls 

  7     4    29 ...           1    18     9   …     

1  

2  

. 

. 

 

n 

 

238  255 108 …      72  194 86 

Permutation data 

genes 

𝑝1 =
#|𝑡1,𝑏

∗| ≥ |𝑡1|

 B
 

𝑝2 =
#|𝑡2,𝑏

∗| ≥ |𝑡2|

 B
 

𝑝𝑛 =
#|𝑡𝑛,𝑏

∗| ≥ |𝑡𝑛|

 B
 

. 

. 

. 



Examples of use of permutation tests 

► SAM  

▪ Differential expression. 

► GSEA  

▪ Enrichment of gene sets. 

► Hyperbrowser 

▪ Many different applications. 
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Multiple hypothesis testing 

46 



Often we don’t test just one hypothesis 
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► Instead 

▪  Large number of hypotheses tested simultaneously 

 

 

 

 

 

 

► Many genes  many hypotheses tested simultaneously 

 

▪      gene number i is not differentially expressed   

▪                 are the p-values associated with each test statistic 
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Example: 10 000 genes 

► Q: is gene g, g = 1, …, 10 000, differentially expressed? 

► Gives 10 000 null hypothesis:  

▪    :  gene 1 not differentially expressed 

▪ … 

 

► Assume: no genes differentially expressed, i.e.         true for all g 

 

► Significance level                  
▪ The probability to incorrectly conclude that one gene is differentially 

expressed is 0.01. 
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Example: 10 000 genes, cont. 

► Significance level 

▪ When 10 000 tests: 

◦ Expect                                                           genes to have                     

p-value below 0.01 by chance 

 

► We expect to find that 100 genes are differentially expressed, when in 

fact none of them are! 

 

► Many tests → many false positive conclusions 

▪ This is not good! 

 



The problem of multiple hypothesis 
testing 

 

► When performing several tests, the chance of getting one 

or more false positives increases. 

► Multiple testing problem: Need to control the risk of false 

positives (type I error) when performing a large number of 

tests. 
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Bad solution to the multiple testing 
problem 

► The big DON’T: It is not permissible to perform several 

tests and only present those that gave the desired 

outcome. 
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All against all correlations 

Example data: Large B-cell lymphoma data. 

Correlation between gene expression signatures. 
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Computing all pairwise correlations and then presenting 

only those that are statistically significant is not 

acceptable. 



Large scale t-testing 

► Example data: Expression from 100 genes. Perform t-test 

for each gene. 

► 𝐻𝑖
0: gene i is not differentially expressed, i=1,…,100. 
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Presenting only those with small p-values is 

inappropriate when we have done 100 tests! 



Other cases where multiple testing 
occurs 

► A researcher wants to compare incidence of disease 

between rural and urban populations. He finds a difference 

for two out of ten common diseases (P=0.02 and 0.03 

resp.) 

► A researcher wants to check if health depends on social 

status. Both health and status can be measured in many 

different, although similar ways. He checks all 

combinations. 

► A researcher cannot decide which is more appropriate to 

use: Pearson correlation or Spearman. He picks the one 

with the lowest p-value. 
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Corrected p-values 

 

The original p-values do not tell the full story. 

Instead of using the original p-values for decision making, we 

should use corrected ones. 

55 



False positive rate under multiple 
tests 

► Result: If you perform N tests at a significance level α, then 

the probability of having at least one false positive is at 

most Nxα. 

► In many cases, the risk will be less, but it is also true when 

some of the null-hypotheses are actually wrong. 

► May use this to formulate a multiple test that controls the 

overall risk of having a false positive. 
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Bonferroni’s p-value correction 

► If you perform N tests at a significance level α/N, then the 

probability of having at least one false positive is at most α. 

► If you run N tests, multiply all the p-values by N to get the 

Bonferroni corrected p-values. 

► The probability of getting a Bonferroni corrected p-value 

less than α for a true null-hypothesis is at most α. 
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Large scale t-testing 

► T-tests done for 100 genes. Bonferroni correction requires 

us to multiply all p-values by 100. 
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Only the smallest p-value survives Bonferroni correction. 



Large scale T-testing 

Microarrays now contain more than 40 000 probes: Too many 

to test them one by one and hope that they can survive the 

Bonferroni correction. 

Assume 𝛼 = 0.05,𝑁 = 40000. 

𝐻0
𝑖: gene i is not differentially expressed, i=1,…,40000. 

Reject 𝐻0
𝑖 if 𝑝𝑖 ∙ 40000 ≤ 0.05, 

i.e. if 𝑝𝑖 ≤ 0.0000025. 

The original p-value must be very small in order to reject. 
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Bonferroni correction 

► Remember: 

 

 

 

 

 

 

► Problem:  very low power! 

 



Summary of Bonferroni correction 

It is the most well-known multiple testing correction: 

► Very simple. 

► Always correct: no model assumptions, no assumption of 

independence. 

► Gives one new p-value for each test. 

► Useable even if some hypotheses are false. 

However, Bonferroni-correction is often conservative! 
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The problem of conservative corrections 

 

1. Need very small p-values to reject 

2. The power of the test is low. 
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𝐻0 



Alternative p-value corrections 

Several (less conservative) methods exist. 

Two groups of methods: 

► Methods that control the family-wise error rate (FWER). 

► Methods that control the false discovery rate (FDR). 
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Alternative p-value corrections 

► Possible outcomes from      hypothesis tests: 

 No. true No. false Total 

No. accepted       T 

No. rejected      V 

Total 
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Family-wise error rate (FWER) 

► The probability of at least one type I error 

▪   

 

► Control FWER at a level  

▪ Procedures that modify  the adjusted p-values separately 

◦ Single step procedures   

▪ More powerful procedures adjust sequentially, from the smallest to the 

largest, or vice versa  
◦ Step-up and step-down methods 

 

 

► The Bonferroni correction controls the FWER 



Methods that control the FWER 

► Bonferroni 

► Sidak 

► Bonferroni-Holm 

► Westfall & Young 

66 
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False discovery rate (FDR)  
 

► The expected proportion of type I errors among the 

rejected hypotheses  

▪   

► Example: If 100 null hypotheses are rejected, with 

and FDR of 5%, 5 of them will be false positives. 

► Various procedures  
▪ The Benjamini and Hochberg procedure  

▪ Other versions 
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The Benjamini and Hochberg procedure 

► Let                        be an ordering of  

 

► Let                          be the corresponding null hypotheses 

 

► The following adjusted p-values 𝑝 (𝑖) control the FDR when the 

unadjusted p-values pi are independently distributed 

 

 

 

► Variations exist (higher power) 

 

𝑝 (𝑖) = 𝑚𝑖𝑛𝑘∈ 𝑖,…,𝑛

𝑛 ∙ 𝑝(𝑘)

𝑘
 



Example: Adjusting to control the FDR 
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The Benjamini-Hochberg approach 

► Controls the FDR. 

► Assume independent p-values. 

► Commonly used. 

► Applies to a set of p-values, not to individual p-values. 

► Does not tell you which p-values are false positives, only 

how many of them are. 

70 



Guidelines 

Decide whether you want to control the FWER or the FDR. 

► Are you most afraid of getting stuff on your significant list 

that should not have been there? 

▪ Choose FWER. 

► Are you most afraid of missing out on interesting stuff? 

▪ Choose FDR. 
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Summary 

► Always try to decide what you want to test and how before 

looking at the results. 

► Always keep multiple testing in mind when you are testing 

more than one hypothesis. 

► When testing many hypotheses, it is usually desirable to 

control the FDR. 

► For a smaller number of hypotheses, controlling the FWER 

may be the right choice. 
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