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What is NR?

» Private non-profite foundation

» Applied research within
= Statistical modelling and analysis
= |nformation and communication technology

» Founded in 1952

» 05 researchers

i
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Statistics Is important in many fields

Finance

Medicine

d




We also do statistical genomics

» NR participates in the bioinformatics core facility.

» Data: Microarrays, SNP, copy humber, sequencing,
methylation.

» Typical tasks:
= Find list of differentially expressed genes.
= Pathway analyses.
= Correlation analyses.
= Survival analyses.
= Sample size calculations.
= Multiple testing adjustment.
= Clustering.




Projects

« Survival and colorectal cancer

« Survival and cervical cancer

« Oxygen-induced complications of prematurity

« Association between SNPs and low back pain

» Genes associated with BMD and osteoporosis

« Antioxidant-rich food and gene expression in blood cells

Kaplan—Meier plot
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Outline

» Hypothesis testing — the general idea.

> Important aspects to know
Null and alternative hypothesis.
P-value.
Type | and type Il errors.
Rejection area.
Significance level and power.

» Some common tests.
» Alternative ways to calculate p-values.

» Multiple hypothesis testing.

i



Statistical inference

Population:

The collection of subjects that we would like to draw conclusions
about.

Sample:

The subcollection considered in the study

Statistical inference:

Draw sample-based conclusions about the population,
controlling for the probability of making false claims.

i



Example: Analysis of microarray data

<
™~

\
/

i



Hypothesis testing

» The results of an experiment can be summarized by
various measures
average
standard deviation
diagrams

» But often the aim is to choose between competing
hypotheses concerning these measures.

i



Hypothesis testing

» Typical: have data and information
= Uncertainty attached to these
= Must draw a conclusion
=  Examples
o |s the new medicine better than the old one?
o Are these genes differentially expressed in tumor and normal cells?

» Hypothesis testing

Method to draw conclusions from uncertain data
Can say something about the uncertainty in the conclusion

i
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Statistical tests (the idea)

1) A population has individuals with an observable feature X that
follows X ~ F(0). We seek if (say) 6 = 0 is violated.

2)  We obtain X-values X,,...X, on a random sample. Sl

3) Atest statistic Z = Z(X,,...Xy) is defined. The observed Z is denoted St
Z.ps- LArge |z, supports violations.

«a«l«

Step 4
4)  Calculate the probability that |Z| =2 |z,,c| (= p-value)

-

Step 5

5)  Conclude that 8 = ( is violated if p-value is small. .

m-' —
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Famous example:

» The Design of Experiments (1935), Sir Ronald A. Fisher

i

A tea party in Cambridge, the 1920ties

A lady claims that she can taste whether milk is poured in cup
before or after the tea

All professors agree: impossible
Fisher: this is statistically interesting!
Organised a test

http://www.maa.org/reviews/ladytea.html 12



The lady tasting tea

» Test with 8 trials, 2 cups in each trial
= In each trial: guess which cup had the milk poured in first

» Binomial experiment
= Independent trials
=  Two possible outcomes, she guesses right cup (success),
wrong cup (failure)
= Constant probability of success in each trial

» X=number of correct guesses in 8 trials, each with probability

of success p
- Xis Binomially (8,p) distributed P(X = z) = (i)pw(l — p)&—=)

i
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The lady tasting tea, cont.

» The null (conservative) hypothesis Hyg
The one we initially believe in

» The alternative hypothesis H;
The new claim we wish to test

» Iy She has no special ability to taste the difference

» H,; She has a special ability to taste the difference

i

NRES

}

p=0.5

p > 0.5

14



How many right to be convinced?

» We expect maybe 3, 4 or 5 correct guesses if she has no
special ability

» Assume [/ correct guesses

= |s there enough evidence to claim that she has a special
ability? If 8 correct guesses this would have been even

more obvious!
=  What if only 6 correct guesses?
o Thenitis not so easy to answer YES or NO

» Need a rule that says something about what it takes to be
convinced.

i
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How many right to be convinced?

» Rule: We reject H,, if the observed data have a small probability under
H, (given H, is true).

» Compute the p-value.

The probability to obtain the observed value or something more extreme,
given that H, is true

NB! The P-value is NOT the probability that H, is true

i
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The lady tasting tea, cont.

» Say: she identified 6 cups correctly
» P-value
P(X = 6|H, true)

=PX=6|p=0.5)+PX=7|p=0.5)+PX=8|p=0.5)
=0.1094 + 0.0313 + 0.0039 = 0.1443

» Is this enough to be convinced?

» Need a limit.

= To setit, we must know about the types of errors we can make.
P-value

The probability to obtain the observed value or something more extreme, given that 4, is true

17
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Two types of errors

Hy  true H, true

Accept Ho OK Type |l error

Reject H, Type | error OK

» Type | error most serious
= Wrongly reject the null hypothesis
= Example:
° Hy: person is not guilty
° H, : person is guilty

o To say a person is guilty when he is not is far more serious than to
say he is not guilty when he is.

i



When to reject

>

>

Decide on the hypothesis’ level of significance
= Choose a level of significance a

= This guarantees P(type | error) < a
=  Example

o Level of significance at 0.05 gives 5 % probability to reject a true Hy

Reject o if P-value is less than a

i

P-value

The probability to obtain the observed value or something more extreme, given that £ is true



Important parameters in hypothesis testing

Null hypothesis
Alternative hypothesis
Level of significance

Must be decided upon before we know the results of the experiment

i
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The lady tasting tea, cont.

» Choose 5 % level of significance

» Conduct the experiment

= Say: she identified 6 cups correctly
= |s this evidence enough?

» P-value

P(X = 6|H, true)

=PX=6|p=0.5)+PX=7|p=0.5)+PX=8|p=0.5)
=0.1094 + 0.0313 + 0.0039 = 0.1443

P-value

The probability to obtain the observed value or something more extreme, given that 4, is true

21



The lady tasting tea, cont.

» We obtained a p-value of 0.1443

» The rejection rule says

Reject H, if p-value is less than the level of significance a
Since a = 0.05 we do NOT reject Hy

Small p-value: reject the null hypothesis

Large p-value: keep the null hypothesis

;

22



The lady tasting tea, cont.

» Inthe tea party in Cambridge:
= The lady got every trial correct!

» Comment:

=  Why does it taste different?
o Pouring hot tea into cold milk makes the milk curdle, but not so pouring cold milk
into hot tea*

*http://binomial.csuhayward.edu/applets/appletNullHyp.html
Curdle = a skille seg 23
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Area of rejection

Reject Hyif p-value <
Reject H, if observed x-value = critical value
P(type I error)=P(reject Hy | Hy true)

8 x 8—x
8\ /1 1
=PX = x.|p=0.5) = E (x) (E) (1 — E)

X=X,

x.=7 — P(typelerror)=0.03516 < «a
x. =6 — P(typelerror)=0.1443 > «

Areaofrejection:{x:x = x.} —» {x:x =7}
NB! X’s distribution discrete = no x.: P(X = x.|H,) exactly a

x. lowest possible x-value suchthat P(X = x.| Hy)< «

NRES

i
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Type Il error

P(Typelerror) < «a P(Type Il error) =

Want both errors as small as possible, especially type I.
S is not explicitly given, depends on H;.

There is one S for each possible value of p under H;.

Hy true Hi true
Accept Ho OK Type Il error
Reject Hg Type | error OK




Example, type Il error

P(typell error)=P(notreject H, | H, true)

p=0.7:

8
=P(X<6|p=0.7) = Z (x) 0.7X(1 — 0.7)8X=0.7447

P(notreject Hy|lp = 0.7) = 1 — P(reject Hylp = 0.7)
1—PX=27|p=0.7)=1—-—((1—-PX <7|p =0.7))
6

x=0

If p=0.7 - wrongly accept Hy in 74.47% of times.

i
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Power of the test

The probability that a false H is rejected

P(reject Hy|H7 true) = 1 — P(accept Hy|H; true) =1 — (3

Test with large power:
larger probability to draw the right conclusion
to reject a false null hypothesis than a test with low power

Because of the connection between @ and 3 will decreasing «
also decrease the power of the test.

i
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Power function

Probability 5 Power
0.6 0.8936243 | 0.10637568
0.7 0.7447017 | 0.25529833
0.8 0.4966835 | 0.50331648
0.9 0.1868953 | 0.81310473
0.99 0.002690078 | 0.9973099

Power function

i

Ve
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Expand the number of trials to 16

Assume she guesses 12 correct (12 of 16, before 6 of 8)
P-value = P(X > 12|H true) = 0.038 — Hj rejected!
Significance probability dropps from 0.1443 til 0.038

Point: we tend to think ”proportionally” — wrong!
The lower number of trials, the more often we register biased outcomes

The proportionally equal good result becomes more significant

i

NRES
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Expand the number of trials, cont.

n=106 — z. =12
p=0.7
P(type II error) = S0 (19)(0.7)*(1 — 0.7)15=* = 0.5501

Probability for type Il error at p = 0.7 dropps from 0.7747 to 0.5501

i
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Expand the number of trials, cont.

-
Compare power curves | /

n=16

A J

Parallel to experiments: do replications to increase power!

i
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Statistical tests (the idea)

1) A population has individuals with an observable feature X that
follows X ~ F(0). We seek if (say) § = () Is violated.

2)  We obtain X-values X,,...X, on a random sample. Sl

3) Atest statistic Z = Z(X,,...Xy) is defined. The observed Z is denoted St
Z.ps- LArge |z, supports violations.

«a«l«

Step 4
4)  Calculate the probability that |Z| =2 |z,,c| (= p-value)

-

Step 5

5)  Conclude that 8 = ( is violated if p-value is small. .

m-' —
——
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Common tests

;

33



One sample location tests

>

v v v Vv

Purpose: Compare location parameter of a population to a
known constant value.

Example:
One sample z-test
One sample t-test

One sample Wilcoxon signed ranked test (when normality
cannot be assumed)

i
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The one sample t-test

» Data:
= Y =log intensity value of gene.

=  Assume
Yi,....Y, ~ N(u,o?)

» Test: Hy:p = py against Hy @ # pg

» Under Hy, the test statistic =2 /\/—

is T distributed with n-1 degrees of freedom

Hy isrejected if typg 1 < —ta O tobs,n—1 = ta, ;
’ 2 2’

p — value=P(T = t,psn_1|Ho) + P(T < —topsn_1|Ho) =2 P(T = topsn1|Ho)

r
m*



Two sample tests

» Purpose: Compare the mean of two different groups.

» Two types of problems:

= Two treatments — same subjects:
o Measure cholesterol level before and after diet

o Measure gene expression in tumor cell before and after
radiation.

= Same treatment — two groups of subjects:
o Measure cholesterol level in men and women.

o Intervention study: One group given antioxidant enriched diet,
another antioxidant deprived diet. Measure difference in change
In gene expression.

i
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Two-sample problems: Paired data

X1; = measure person ¢ before diet

Ex.: Measurements of cholesterol level . .
X5, = measure person ¢ after diet

= H,: no effect of the diet

Person no. Before diet After diet D (difference) 5 5
Xi; ~ N(p1,07) Xoi ~ N(p2,03)

1 560 239 5.69-2.39=3 30

2 500 540 5.90-5.40=0.50

3 465 405 He: i — 1 — 0 He - e — 0
4 409 231 0 H1 = H2 LT e F
5 638  5.79

6 538 434

7 655 574 o

8 6.39 5.48 Test statistic

9 700 6.0l 5o b B

10 831 54l 8.31-5.41=2.90 t=<am) —samyom P = X1 - X2
t=4.247

is T-distributed under Hj
Degrees of freedom: 10-1=9

P-value (two-sided test)
2"P(T4>4.247) ~0.002 <0.05

» Conclusion: reject H,

with n-1 degrees of freedom (h=n1=n2)

——
——



Two-sample problems:

different samples

Ex.: Measurements of
cholesterol level,
12 men and 9 women
Men (X7) Women (X2)
1 9.65 6.11
2 5.17 4.70
3 6.48 6.87
4 7.58 7.20
5 6.50 8.49
6 6.09 7.07
7 5.75 6.58
8 7.99 7.02
9 5.63 6.62
10 8.05
11 .88
12 6.28
» t=0.48
» P-value (two-sided test)
2*P(T,4>0.48) ~0.64 >0.05
»  Conclusion: Do not reject H,

i

m
o

X1; = measure man ?
X2; = measure woman j

Xq; ~ N(p1,07) Xo; ~ N(pi2,03)

Assume o} = 0}

Hy:pr —p2=0Hy i pr —pa#0

Test statistic

_ _Xh—X
t= 1 1
Sf Tll TLQ
. (n1—1)s74(na—1})s3
where sy = \/ P

is under Hy t-distributed with n;+n,-2
degrees of freedom

s; is a common std.dev. for both groups
sl and s2 are the empirical std.dev.

of X; and X,, respectively

38




More ways to calculate p-values

» So far, all p-values have been calculated from
P(Z] 2 [Zyps | | Ho).

» This is easy when the distribution of Z is known (e.g.

binomial, normal, student t).
» Often the distribution of Z is not known.

» Can use permutation tests instead.
Find the distribution of Z by permutations.

i
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Simple example

Two groups, three measurements in each group.
X,.8,11,12. X5: 7, 9, 10.

We want to test if Z=Y7_; X, ; — >:7_; X5 ;=0 vs Z>0.
The observed value: Z=31-26=5.

v v v v Y%

How likely is Z=5 under the null hypothesis?
= Do not know the distribution of Z.

» Solution: Permute the labels A and B.

= Find all possible ways to permute the measurements in two
groups with three observations in each group.

m*
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Simple example: Permutation p-value

A B A B z < |
8,11,12 7,9, 10 ,9,10 | 811,12 -5
o
7,11,12 | 8,9,10 9,10 | 711,12 |3 _°
X
7,8, 12 9,10,11 ,10,11 | 7,8,12 3 f o
¢ ST
7,8,11 9,10, 12 ,10,12 | 7,8,11 5 53
o
9,11,12 7,8, 10 ,8,10 | 9,11,12 7 S -
8,9, 12 7,10, 11 ,10,11 | 8,9,12 -1
[{e]
8,9, 11 7,10, 12 ,10,12 | 8,9,11 1 s |
10,11,12 | 7,8,9 .8,9 10,11, 12 -9 | \
-5 0 5
8, 10, 12 7,9, 11 ,9,11 | 8,10, 12 -3
XA-XB
8,10,11 | 7,9,12 ,9,12 | 8,10, 11 -1

i

NRES

}

p — value=P(Z = 5) = 0.1 + 0.05 4+ 0.05 = 0.20
Do not reject the null hypothesis.

This p-value is exact. 41



Often, the number of possible
permutations Is huge

>

>

Example: 30 individuals, 15 cases and 15 controls.
. . 30 —
Number of possible permutations (;.) = 155 117 520.

Impossible to calculate test statistic for alle permutations.

Instead we can sample the case/control labels randomly a
large number of times.

Get approximate p-value.

This is called Monte Carlo sampling

i

m
—— 42
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Permutation tests — general example

Data: Gene set measurements for cases and control group.
For each gene i=1,...,n, a test statistic t; is calculated.
Permute the case and control labels — new dataset
Calculate new t; ,* for the permuted sample.

Repeat B times, B=10 000 or 100 000.

vy v v v v Y

The t;,*, b=1,...,B now form a distribution for ¢; under the null
hypothesis.

» The p-value of t; can be calculated as

number of permutations with |t; ,*| = |t;]

m- Pi = number of permutations 5

i



General example - illustration

Original data
cases controls
1 2 3 .. 16 17 ... 30
1 5342 11... 13569... 88 41
2 256 34 143 ... 57 29...192 ¢,

genes

N 72 153 86... 120134 ...356 tn

_#[t T = (|t
P1 = B

_#|t | 2 |t
P2 = B

. #ltn,b*l = |tn|
pn - B

i

NRES

Permutation data

cases controls
7 4 29 .. 1 18 9 ..
1 35 93 45.. 53 103 68
2 189 103 38... 256 39 97
n 238 255108 ... 72 194 86
cases controls
16 3 23 .. 2 25 8 ..
1 135 11 98 ... 42 103 293
2 57 143115 ... 34 204 142
n 120 86 53 ... 153 122 94

44



Examples of use of permutation tests

» SAM
Differential expression.

» GSEA
Enrichment of gene sets.

» Hyperbrowser
Many different applications.

;
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Multiple hypothesis testing

i



Often we don’t test just one hypothesis

» Instead
. Large number of hypotheses tested simultaneously
Samples

12 ... ... n 1

G > L — H,

e 2 L— H ;

n

c :

S m - tm—’ H[;H

» Many genes — many hypotheses tested simultaneously

- H(?, gene number i is not differentially expressed
P1, ---; Pm are the p-values associated with each test statistic
NRES

i
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Example: 10 000 genes

» Q:isgeneg,g=1, ..., 10000, differentially expressed?

» Gives 10 000 null hypothesis: Hj, ..., H}? %00
= H} : gene 1 not differentially expressed

» Assume: no genes differentially expressed, i.e. H{ true for all g

» Significance level a = 0.01

The probability to incorrectly conclude that one gene is differentially
expressed is 0.01.

i

Level of significance o guarantee that P(type I error) < «
P(type I error) = P(reject Hyo|Hy true)




Example: 10 000 genes, cont.

» Significance level o = 0.01
=  When 10 000 tests:

o Expect 10 000 - & = 10000 - 0.01 = 100 genes to have
p-value below 0.01 by chance

» We expect to find that 100 genes are differentially expressed, when in
fact none of them are!

» Many tests — many false positive conclusions
= This is not good!

i
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The problem of multiple hypothesis
testing

» When performing several tests, the chance of getting one
or more false positives increases.

» Multiple testing problem: Need to control the risk of false

positives (type | error) when performing a large number of
tests.

i
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Bad solution to the multiple testing
problem

» The big DON'T: It is not permissible to perform several
tests and only present those that gave the desired
outcome.

51



All against all correlations

Example data: Large B-cell ymphoma data.

Correlation between gene expression signatures.

Pearson correlation sign_ sign_ sign_

P-value germB lymph prolif BHP6
sign_germB 1.00000 0.16336 -0.05530 -0.08362
Germinal center B cell sign. 0.0113 0.3938 0.1967
sign_lymph 0.16336 1.00000 -0.31586 -0.02660
Lymph node signature 0.0113 <.0001 0.6818
sign_prolif -0.05530 -0.31586 1.00000 0.14079
Proliferation signature 0.3938 <.0001 0.0292
BHP6 -0.08362 -0.02660 0.14079 1.00000
BMP6 0.1967 0.6818 0.0292

MHC 0.17837 0.15082 -0.13411 0.08650
MHC class II signature 0.0056 0.0194 0.0379 0.1817

Computing all pairwise correlations and then presenting
only those that are statistically significant is not

N
m—'-,—_? acceptable.



Large scale t-testing

» Example data: Expression from 100 genes. Perform t-test
for each gene.

» H.°: geneiis not differentially expressed, i=1,...,100.

m
o

Rank Gene P-value Rank Gene P-value
1 GENE84X 0.00037 13 GENE6X 0.02083
2 GENE73X 0.00431 14 GENE71X 0.02401
3 GENE48X 0.00544 15 GENE49X 0.02463
4 GENE1X 0.00725 16 GENE38X 0.02751
5 GENE81X 0.00769 17 GENE46X 0.02804
6 GENE91X 0.00793 18 GENE75X 0.02892
7 GENE96X 0.00803 19 GENE36X 0.04072
8 GENE22X 0.00907 20 GENE83X 0.04519
9 GENE95X 0.00977 21 GENE8X 0.04608

10 GENES8X 0.01734 22 GENE21X 0.05213
11 GENETTX 0.01911 23 GENE78X 0.06940
12 GENE33X 0.01974 24 GENE16X 0.07046

i

Presenting only those with small p-values is
Inappropriate when we have done 100 tests!

53



Other cases where multiple testing
OCCUrS

» A researcher wants to compare incidence of disease
between rural and urban populations. He finds a difference
for two out of ten common diseases (P=0.02 and 0.03
resp.)

» A researcher wants to check if health depends on social
status. Both health and status can be measured in many
different, although similar ways. He checks all
combinations.

» A researcher cannot decide which is more appropriate to
use: Pearson correlation or Spearman. He picks the one
with the lowest p-value.

r
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Corrected p-values

The original p-values do not tell the full story.

Instead of using the original p-values for decision making, we
should use corrected ones.

i
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False positive rate under multiple
tests

» Result: If you perform N tests at a significance level a, then
the probability of having at least one false positive is at
most Nxa.

» In many cases, the risk will be less, but it is also true when
some of the null-hypotheses are actually wrong.

» May use this to formulate a multiple test that controls the
overall risk of having a false positive.

i
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Bonferroni’s p-value correction

» If you perform N tests at a significance level a/N, then the
probability of having at least one false positive is at most a.

» If you run N tests, multiply all the p-values by N to get the
Bonferroni corrected p-values.

» The probability of getting a Bonferroni corrected p-value
less than a for a true null-hypothesis is at most a.

i
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Large scale t-testing

» T-tests done for 100 genes. Bonferroni correction requires

us to multiply all p-values by 100.

Rank

m_ﬂ: Only the smallest p-value survives Bonferroni correction.
=

Gene
GENE84X
GENE7 3X
GENE48X
GENE1X
GENE81X
GENE91X
GENE96X
GENE22X
GENE95X
GENE58X
GENE77X
GENE33X

P-value
0.00037
0.00431
.00544
.00725
.00769
.00793
.00803
.00907
.00977
.01734
.01911
.01974

O O OO OO OC OO o

Rank
13
14
15
16
17
18
19
20
21
22
23
24

Gene
GENE6X
GENE71X
GENE49X
GENE38X
GENE46X
GENE75X
GENE36X
GENE83X
GENE8X
GENE21X
GENE78X
GENE16X

oo oo oococooooowd

-value
.02083
.02401
.02463
.02751
.02804
.02892
.04072
.04519
.04608
.05213
.06940
.07046

58



Large scale T-testing

Microarrays now contain more than 40 000 probes: Too many
to test them one by one and hope that they can survive the

Bonferroni correction.
Assume a = 0.05, N = 40000.

H,': gene i is not differentially expressed, i=1,...,40000.
Reject H,' if p; - 40000 < 0.05,
l.e. if p; <0.0000025.

The original p-value must be very small in order to reject.

i
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Bonferroni correction

» Remember:

The probability that a false Hy is rejected:
P(reject Hy|Hy true) = 1 — P(accept Hy|Hy true) =1 —

Because of the connection between o and § will decreasing «
also decrease the power of the test.

» Problem: very low power!

i
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Summary of Bonferroni correction

It is the most well-known multiple testing correction:

>

>

>

>

Very simple.

Always correct: no model assumptions, no assumption of
Independence.

Gives one new p-value for each test.

Useable even if some hypotheses are false.

However, Bonferroni-correction is often conservative!

NRES

i
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The problem of conservative corrections

1. Need very small p-values to reject H,

2. The power of the test is low.

i
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Alternative p-value corrections

Several (less conservative) methods exist.
Two groups of methods:
» Methods that control the family-wise error rate (FWER).

» Methods that control the false discovery rate (FDR).

i
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Alternative p-value corrections

» Possible outcomes fromm hypothesis tests:

No. true No. false Total

No. accepted [ T m— R
No. rejected Vv g R
Total ™Mo m — My m

V' = no. of type I errors [false positives]
T = no. of type II errors |false negatives]

P(type I error) = P(reject Hy|Hy true)
P(type II error) = P(accept Hy|H; true)

i



Family-wise error rate (FWER)

» The probability of at least one type | error

' FWER = P(V > 1)

» Control FWER at a level «

=  Procedures that modify the adjusted p-values separately
Single step procedures

=  More powerful procedures adjust sequentially, from the smallest to the
largest, or vice versa

Step-up and step-down methods

» The Bonferroni correction controls the FWER

}

A
m V' = no. of type I errors [false positives]
~ P(type I error) = P(reject Ho|Hg true)

i




Methods that control the FWER

>
>
>
>

i

Bonferroni
Sidak
Bonferroni-Holm

Westfall & Young

66



False discovery rate (FDR)

» The expected proportion of type | errors among the
rejected hypotheses

« FDR = E[(V/R)|R > 0|P(R > 0)

» Example: If 100 null hypotheses are rejected, with
and FDR of 5%, 5 of them will be false positives.

» Various procedures
The Benjamini and Hochberg procedure
Other versions

V = no. of type I errors [false positives]
R = total no. of rejected Hy
P(type I error) = P(reject Hy|Hy true)

i




The Benjamini and Hochberg procedure

» Let P@)s;--»P(n) be an ordering of Pi;---;Pn

» Let Hél),...,Hé”) be the corresponding null hypotheses

» The following adjusted p-values p;, control the FDR when the
unadjusted p-values p, are independently distributed

- . n - P
P@) = MiNge(,.. n) 2

» Variations exist (higher power)

m*
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Example: Adjusting to control the FDR

Rank P-value FDR (5%)

1 0.00082 * 19 / 3 = 0.01083

2 0.00143 * 19 / 3 = 0.01083

3 0.00171 * 19 / 3 = 0.01083

4 0.00242 * 19 / 4 = 0.01150

5 0.00538 * 19 / 5 = 0.02044

6 0.00905 * 19 / 6 = 0.02867

7 0.01241 * 19 / 7 = 0.03368

8 0.03512 * 19 / 8 = 0.08341

9 0.04366 * 19 / 9 = 0.09217

10 0.07431 * 19 / 10 = 0.014119

11 0.14253 * 19 / 11 = 0.024619

12 0.15675 * 19 / 12 = 0.24819

13 0.21415 * 19 / 13 = 0.31299

14 0.25134 * 19 / 14 = 0.34110

15 0.41526 * 19 / 156 = 0.52600

16 0.46761 * 19 / 16 = 0.55529

17 0.57738 * 19 / 17 = 0.64531

18 0.75464 * 19 / 18 = 0.79656
0.89514 * 19 / 19 = 0.89514

i
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The Benjamini-Hochberg approach

Controls the FDR.
Assume independent p-values.
Commonly used.

Applies to a set of p-values, not to individual p-values.

v v v v Vv

Does not tell you which p-values are false positives, only
how many of them are.

i
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Guidelines

Decide whether you want to control the FWER or the FDR.

» Are you most afraid of getting stuff on your significant list
that should not have been there?

Choose FWER.

» Are you most afraid of missing out on interesting stuff?
Choose FDR.

i
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Summary
» Always try to decide what you want to test and how before
looking at the results.

» Always keep multiple testing in mind when you are testing
more than one hypothesis.

» When testing many hypotheses, it is usually desirable to
control the FDR.

» For a smaller number of hypotheses, controlling the FWER
may be the right choice.

i
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