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Part 1 : Famous traps !
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Part 1 : Famous traps !

Trap #1- Spurious relationship, correlation 6= causality

What do you think of the correlation of 0.99 between the two variables
illustrated below ?
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Part 1 : Famous traps !

Trap #1- Spurious relationship, correlation 6= causality

What do you think of the correlation of 0.52 between two daily returns
of French stocks in 2 different sectors (food and construction) ?
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Part 1 : Famous traps !

Trap #1- Build your one spurious relationship !

Exercise 1 : Build a time series independently of the co2 curve, but
with an estimated correlation > 0.95 with it !
Exercise 2 : Same question with CAC40 !
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Part 1 : Famous traps !

Trap #1- Spurious relationship !

There are at least two problems :

The ESTIMATOR of correlation is not consistent in presence of
trend or seasonality !
When it is (stationary time series for instance), then a THIRD
variable can explain the observed correlations.

Never forget HUMAN THINKING !
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Part 1 : Famous traps !

Trap #2- Overfitting

Here are some data from a physical phenomenon. What is your
preferred model (2nd order polynomial or interpolation spline) ?
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Part 1 : Famous traps !

Trap #2- Overfitting
The same models, estimated on a training set of 20 data, chosen at
random (empty points). Are the performances similar on the test set
(filled points) ?
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Part 1 : Famous traps !

Trap #2- Overfitting

Always look at the model performances on other data than the
training set→ external validation, cross-validation
A good model should behave similarly on training & test sets
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Part 2 : A guiding example
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Part 2 : A guiding example

What follows is freely adapted from the book
The elements of Statistical learning, of T. Hastie, R. Tibshirani, J.
Friedman (Springer, 2nd edition), available on internet.

We consider a simulated example for classification, where 2
populations "blue" and "red" are drawn from 2 mixtures of Gaussian
distributions.

The aim is to find a rule to decide in which group a new individual
should be classed.
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Part 2 : A guiding example

Construction of the training sets

Step 1 : Simulate 10 points M1
1 , . . . ,M

1
10 for the "blue", drawn from

N(µ1,Σ), and 10 points M2
1 , . . . ,M

2
10 for the "red", from N(µ2,Σ)
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Part 2 : A guiding example

Step 2 : Simulate a sample of size 100 as a mixture of N(M1
i ,Σ

′) for
the "blue", and N(M2

i ,Σ
′) for the "red"
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Part 2 : A guiding example

Bayes classifier

If we knew the simulation procedure, that is the distributions fX |G=i ,
then we could use the Bayes classifier. Let x be a new point to classify.

if P(G = 1|X = x) > P(G = 2|X = x), then decide that x is "blue"
if P(G = 1|X = x) < P(G = 2|X = x), then decide that x is "red"
if P(G = 1|X = x) = P(G = 2|X = x), then ?

Here :

P(G = i |X = x) =
0.5fX |G=i(x)

0.5fX |G=1(x) + 0.5fX |G=2(x)
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Part 2 : A guiding example

Remark. Define Ĝ(x) as a decision rule at point x , and consider the
0-1 loss function :

L(1,1) = L(2,2) = 0
L(1,2) = L(2,1) = α > 0

Then the Bayes classifier Ĝ minimizes the Expected Prediction Loss
E [L(G, Ĝ(X ))]. It is enough to show that it is true knowing X = x :

EPLx = E [L(G, Ĝ(X ))|X = x ]

= L(1, Ĝ(x))P(G = 1|X = x) + L(2, Ĝ(x))P(G = 2|X = x)

The Bayes classifier cancels L(i , Ĝ(x)) where P(G = i |X = x) is the
highest.
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Part 2 : A guiding example

The (optimal) frontier, obtained with Bayes classifier.
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Part 2 : A guiding example

Classifiers from samples based on linear regression

For each sample point define a value Y which is equal to 1 if "blue"
and 0 otherwise, and let Ŷ (x) be the prediction at a new point x :

Ŷ (x) = β̂0 + β̂1x1 + β̂2x2

A classifier is :
if Ŷ (x) > 0.5, then decide that x is "blue"
if Ŷ (x) < 0.5, then decide that x is "red"
if Ŷ (x) = 0.5, then ?
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Part 2 : A guiding example

Linear frontier : classification rate 73.5 %
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Part 2 : A guiding example

Quadratic frontier : classification rate 79.5 %
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Part 2 : A guiding example

5th order polynomial frontier : classification rate 88 %
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Part 2 : A guiding example

Nearest Neighbors Classifiers

Let Nk (x) the number of k -nearest neighbors of x , and Ŷ (x) the
proportion of these neighbors that belong to the "blue" :

Ŷ (x) =
1
k

∑
xi∈Nk (x)

Yi

We can define a classifier by :
if Ŷ (x) > 0.5, then decide that x is "blue"
if Ŷ (x) < 0.5, then decide that x is "red"
if Ŷ (x) = 0.5, then ?
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Part 2 : A guiding example

kNN with k = 30 : classification rate 84 %
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Part 2 : A guiding example

kNN with k = 10 : classification rate 88 %
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Part 2 : A guiding example

kNN with k = 1 : classification rate 100 %
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Part 2 : A guiding example

Temporary conclusions

kNN is closer to the optimal method
Parameters to estimate : k and d (polynomial degree)
A classification rate of 100% is NOT the aim (see trap #2
’overfitting’...)
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Part 2 : A guiding example

Error decomposition & bias-variance tradeoff

Assume that Y (x) is deterministic, and let x be a new point. Denote
µ(x) = E [Ŷ (x)]. The quadratic error (risk) is decomposed as :

QE(x) = E
[(

Ŷ (x)− Y (x)
)2
]

= (Y (x)− µ(x))2 + var
[
Ŷ (x)

]
= Bias2 + Variance

Remarks
for kNN, the bias is ≈ 0
for the linear model, the bias is 0 if there is no model error (good
basis functions).
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Part 2 : A guiding example

The curse of dimensionality

Exercise : Let X1, . . . ,Xn i.i.d. uniforms on [−1,1]d , and consider the
norm ‖h‖∞ = max1≤j≤d |hj |.

What is the distribution of R = min1≤i≤n‖Xi‖∞, the distance of the
closest point to 0 ?
What’s happening when d →∞?
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Part 2 : A guiding example

Boxplots for the distribution of the closest point to 0.
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Part 2 : A guiding example

In high dimensions, the sample points are close to the boundaries
In 15D, the distance to the closest point is around 0.6

There are no neighbors in high dimensions→ kNN cannot be used.
More generally any local method cannot be used.
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Part 2 : A guiding example

Validation

Internal validation (on the training set only)
External validation : Validate on a separate "test" set
Cross validation : Choose the training set and test set inside the
data (see later).
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Part 2 : A guiding example

Validation results on the example

Linear frontier : classification rate 72.8 % (learning : 73.5 %)
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Part 2 : A guiding example

Quadratic frontier : classification rate 77.5 % (learning : 79.5 %)
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Part 2 : A guiding example

5th order poly. frontier : classification rate 84.5 % (learning : 88 %)
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Part 2 : A guiding example

kNN with k = 30 : classification rate 80.2 % (learning : 84 %)
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Part 2 : A guiding example

kNN with k = 10 : classification rate 84.9 % (learning : 88 %)
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Part 2 : A guiding example

kNN with k = 1 : classification rate 82 % (learning : 100 %)
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Part 2 : A guiding example

Conclusions

The performance difference between training and test set is
increasing with model complexity
The performance on test sets does not always increase with
model complexity
Complex models sometimes take crazy decisions :

I 5th order polynomial : boundaries of the x-axis
I kNN for k = 1 : islands in the middle
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Part 2 : A guiding example

Cross validation

k-fold cross validation (CV) consists in choosing training & test sets
among the data, and rotating them.
CV errors are computed by averaging.

(source : The elements of Statistical learning, T. Hastie, R. Tibshirani, J. Friedman)

Define K ’folds’ F1, . . . ,FK in your data. For k = 1, . . . ,K , do :
Estimate the model without Fk and predict on Fk

Compute an error criterion (e.g. MSE) L−k on the predicted values
Compute the CV error by averaging : 1

k
∑K

k=1 L−k
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Part 2 : A guiding example

Cross-validation results on the example
Parameter k of kNN can be chosen by cross-validation
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