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1 Introduction

1.1 Macroscopic physics

In order to describe macroscopic bodies or macroscopic quantities of fluids
or gases, we need only quite few variables. In order to characterize a volume
of water, for example, we need only to specify the total amount amount
(given as the mole number, the number of molecules, or the total mass), the
volume, and the temperature. The volume contains an enormous number of
molecules, but a detailed description of how all these particles move is not
required in the macroscopic description.

If we attempt a microscopic description, we are confronted with an enor-
mous number of quantum eigenstates (∼ 101023

for a mole of matter). There
is no way neither in practice nor in theory to exactly specify the precise quan-
tum state of such macroscopic bodies. Instead, one can try to use statistical
arguments to deal with this microscopic chaos, and this is the approach of
statistical physics.

Statistical physics was founded around 1870 by Boltzmann, Maxwell, and
Gibbs (using classical physics). When quantum mechanics appeared, the
general ideas of statistical mechanics could be adopted with no major diffi-
culty. Statistical physics applied to macroscopic bodies is closely related to
thermodynamics, which was also developed during the 19th century. In ther-
modynamics, our experience on how macroscopic amounts of matter behave
is condensed into a few empirical postulates, the so-called laws of thermody-
namics. There is no reference whatsoever to the atomistic nature of matter.
Thermodynamics gives interrelations between macroscopic variables such as
temperature, pressure, or internal energy. As opposed to statistical mechan-
ics, it does not contain means to calculate them from underlying microscopic
dynamics.

For a large system with N ∼ 1023 particles, there are 3N degrees of free-
dom. Of all there variables, only the few will be macroscopically observable.
Typical examples are the total energy (E), the pressure resulting of particle
collisions with boundary walls, etc. Most of the variables cannot be observed
directly. On a microscopic scale, a macroscopic measurement is ex-
tremely slow and extremely crude. This is the main reason why so few
variables remain macroscopically visible. Typically, the remaining variables
are related to conservation laws of the underlying microscopic description.
Thus, energy, mass, and electric charge are conserved in the microscopic
dynamics and these quantities remain macroscopically visible.

I shall in what follows often use a one-component fluid (a gas or liquid)
as a typical example of a macroscopic system. The one-component fluid is



made up of only one kind of atoms or molecules and is fully characterized by 3
independent state variables, such as the internal energy (E), the volume (V ),
and the number N of atoms or molecules. These variables are all additive or
extensive, i.e. they are proportional to the size of the system. There are
also intensive variables such as temperature (T ) and pressure which are size-
independent. If we add a fourth variable there exists a dependence between
them. For a dilute gas, for example, we have the relation pV = NkT , i.e, p
depends on the remaining 3 variables.

If we disturb the system in question, the the state variables will change,
and the system is said to be out of equilibrium. If it is left undisturbed, the
state variables will eventually no longer change, and the system has estab-
lished a possibly different equilibrium state.
Thermodynamic equilibrium has been reached if (a) no macro-
scopic variables changes in time, and (b) the macroscopic prop-
erties are fully characterized by an independent set of thermody-
namic state variables.
The existence of equilibrium states is of course an idealization that cannot be
fully reached in practice. Usually, at least local equilibrium is well reached
during a very short time. However, some systems exhibit metastable (non-
equilibrium) states with long lifetime. Thus, very pure water which is gently
cooled may reach temperatures below 00C. Another example is ordinary glass
which is in a meta-stable non-crystalline state with frozen-in disorder. After
some centuries, it will eventually reach a crystalline equilibrium state.

The material in these notes has been compiled using primarily Mandl’s
text[1]. A modern but somewhat more highbrow text is Introduction to Mod-
ern Statistical Mechanics by Chandler[2]. For a thorough but yet readable
account of classical thermodynamics I recommend Callen’s book[3].

2 The first law of thermodynamics

The microscopic equations of motion (the Schödinger equation in quantum
physics, or Newton’s equations in classical physics) conserve energy: T +
V = const independent of time. This constant value remains unchanged
during any averaging. This conservation of the total internal energy is the
contents of the first law of thermodynamics. However, because we cannot
observe each individual molecule, the energy transfer is divided into two
parts: One part is connected to changes in macroscopic constraints and
parameters and constitutes the mechanical work W done on the system.
For a one-component fluid this can be written −pdV . The other part is
energy transfer to internal degrees of freedom (molecular vibrations



etc.) which we cannot observe directly but which contributes to the overall
energy balance. This part of the energy transfer is transfer of heat. The
total energy change can thus be written

dE = dW + dQ (1)

Neither work nor heat are state variables, only changes along spe-
cific reaction paths make sense. The first law of thermodynamics states
that the energy is conserved for any closed system, dE = 0.

3 Entropy and the second law

Real processes are always irreversible and proceed in a given direction. Thus
heat always flows from hotter to colder parts when a constraint removed
(removing e.g. an insulating walls). In 1865, Claussius introduced a new
state function in classical thermodynamics, the entropy S, with the property
that

∆S ≥ 0

for any spontaneous process in an isolated system. In the idealized limit of a
fully reversible process, ∆S = 0, and for irreversible processes ∆S > 0. The
entropy to be additive, i.e,

S12 = S1 + S2

for a system made up of two weakly interacting subsystems “1” and “2”.
If internal constraints are removed, the system seeks a new equilibrium.

It is postulated that the new equilibrium state is the state which maximizes
S.

The second law is today usually stated as the existence of an additive
entropy function with the above properties. Originally, Claussius stated the
second law differently by postulating that no spontaneous process from an
initial to a final equilibrium state can have as it only net effect that heat has
been transferred from a colder to a warmer part of the system. From this
postulate, Claussius could then show that an entropy could be defined and
that it had the properties stated here.

3.1 Intensive parameters in terms of S

For a one-component fluid, internal energy (E), volume (V ), and molar (n)
or particle (N) number constitute a maximal independent set av thermo-
dynamic variables, and they are all additive or extensive. When we add a



fourth variable S there must be a dependence,

S = S(E, V,N). (2)

The above relation is called a fundamental relation, and all remaining thermo-
dynamical quantities can be derived from it. The intensive variables temper-
ature (T ), pressure (p), and chemical potential (µ) are defined as derivatives
of the entropy with respect to its extensive variables,

1

T
=

∂S

∂E
p

T
=

∂S

∂V
µ

T
= − ∂S

∂N
,

or,

dS =
1

T
[dE + pdV − µdN ] . (3)

In addition, the system may depend on internal parameters such as for exam-
ple the position x of an internal wall. If the wall is let free, the system seeks
a new equilibrium that maximizes the entropy (E, V,N, x) for fixed E, V,N .

In general, a system may be described by the extensive parameters E,
X1, X2, .... . A fundamental relation S(E,X1, X2, ...) is postulated to exist.
For each extensive parameter (E, X1, X2, ... . there corresponds an intensive
parameter (1/T, p1, p2, ...) defined by the partial derivatives of S,

dS =
1

T
[dE − p1dX1 − p2dX2 − ...] . (4)

3.2 Example: Energy and pressure equilibrium

To illustrate the general principles let us consider temperature equalization
of two subsystems isolated from the environment (see Fig. (2)). Initially, the
subsystems are separated by an insulating wall. The amount of energy E1 in
subsystem “1” plays the role of internal parameter. If the wall is removed,
the two parts can exchange energy until a new equilibrium is reached, but
the total energy E = E1+E2 remains fixed. The new equilibrium is the state
which maximizes S. A small energy exchange gives the entropy change

S(E,E1) = S1(E1) + S2(E − E1).

∂S

∂E1

=
1

T1

− 1

T2

; and dS = dE1

(
1

T1

− 1

T2

)



Figure 1: Two subsystems in energy - (left) and pressure (right) equilibrium
with each other

We see that the temperature is constant at equilibrium, T1 = T2. When
T1 6= T2, energy transfer from the hotter to the colder part gives dS > 0
which is thus the direction of the irreversible spontaneous energy transfer
when the insulating wall is removed.

Equilibrium of a system divided by a mobile wall can be treated in a
similar fashion. The pressure defined as p = T ∂S

∂V
. When the wall is moved,

the entropy undergoes a change

dS = dV1 T (p1 − p2)

Thus, both parts have the same pressure at equilibrium, and off equilibrium
the part with the higher pressure will expand.

Let us finally discuss equilibrium under particles exchange. Defining the
chemical potential by µ = −T ∂S

∂N
, we obtain

dS = dN1 T (µ2 − µ1)

Thus, particles flow from the part of highest µ until the chemical potentials
are equal.

4 Microscopic definition of entropy

Our basic goal is to define an entropy starting from the microscopic dynam-
ics which has the correct maximal and additive properties. To this end,
we will need some very basic results from quantum mechanics, and some
postulate of statistical nature. The statistical postulates will lead to an en-
tropy with exactly the same properties as the entropy function of classical
thermodynamics. In addition, we will obtain means of calculating the en-
tropy function and thereby also any other thermodynamic quantity from the
microscopic dynamics, at least in principle.



4.1 Some basic results from quantum mechanics

• The energy (of a confined system) can only take discrete values E0, E1,
E2, ... .

• Every system has a lowest energy state, the ground state ψ0. (Other-
wise, stable atoms, molecules and solids would not exist.)

• In order to measure the energy with precision ∆E, a time t ≥ ~/∆E
is required.

In small systems (atoms, molecules), individual energy levels can be resolved.
In macroscopic systems with level spacing ∼ 10−1023

eV this is not possible,
even in principle.

4.2 Basic postulates of statistical mechanics

• Microstates (individual quantum states) corresponding to the same
macroscopic state variables (E, V , p, etc) cannot be distinguished

• Ensembles (Gibbs) Set set of all systems with the same given macro-
scopic state variables constitutes an ensemble. The observed result
of a macroscopic measurement is the average over the corresponding
ensemble.

• Equal a priory probabilities: Every reachable quantum state in a
closed system is equally probable.

• Equilibrium in a macroscopic system corresponds to the most probable
macrostate consistent with the given constraints.

4.3 The entropy of an isolated system

Consider an isolated, closed system with a specified energy E,

E < Ei < E + ∆E.

The quantum states are symbolized by dots in Figure. Of course, only some
of the quantum states have energies in the required energy window. If we
now add some addition requirement, for instance by specifying some addi-
tion parameter α, the number of allowed states is further reduced. Thus,
the number of allowed states has already the required property that it can
only increase when constraints are released. Let ω(E,α, β, ..) be the allowed



Figure 2: Allowed states of specified energy with an without additional con-
strains

number of states. For a system made up of two weakly interacting parts “1”
and “2”, ω = ω1ω2. In order to have an additive entropy we define

S(E,α, β, ..) = k lnω(E,α, β, ..),

where k is a parameter to our disposal. We recall that the (intensive) tem-
perature parameter as

1

T
=
∂S

∂E

Thus our chosen value of k will determine the temperature unit. By choosing
k as the Boltzmann constant, T will be given in Kelvin.

In principle, the entropy would depend also on the size of the energy
window ∆E, but this dependence is extremely weak and negligible for sys-
tems of macroscopic size. One extreme could be to choose it to be 1 eV,
another extreme one Joule ∼ 1019 eV. The entropy would only change by
k ln 19 ∼ 10−34 J K−1. The reason is the S is proportional to the size of
the system, i.e., the number of available states are of order exp 1023 for a
macroscopic body. Changing the number of states with factors of order say
Avogadro’s number has therefore only a very small effect of the resulting
entropy.

4.4 Microcanonical ensemble

Ensembles describing isolated systems with specified energy as above are
termed microcanonical ensembles. In one-component gases or liquids, the
energy, volume, and particle number furnish a complete description. Each
energy level Ei depends on V andN , and in this way S will be a function of E,
V , and N , and possibly also some internal parameters α, β, ... . Thus we have



obtained the fundamental relation S = S(E, V,N, α, β, ...) which determines
the equilibrium thermodynamics. We recall that the basic intensive variables
are given by the differential

dS =
1

T
(dE + pdV − µdN)

The remaining thermodynamic variables may be expressed in higher-order
derivatives. The specific heat, for example, is given by

CV =

(
∂E

∂T

)
= 1/

∂T

∂E
= − 1

T 2

∂(1/T )

∂E
= −(∂S/∂E)2

∂2S/∂E2

More complicated systems may need more variables (magnetic field, etc) for a
complete description, i.e., a fundamental relation involving more independent
thermodynamic variables.

It is a thermodynamic stability condition that ∂S/∂E = 1/T ≥ 0. Thus,
we can invert the function S(E, V,N, α1, α2...) to obtain E as a function of
the remaining variables, E(S, V,N, α1, α2...). E has the differential

dE = TdS − pdV + µdN +
∂E

∂α1

dα1 + ...

The functions S(E, V,N, α1, α2...) and E(S, V,N, α1, α2...) contain precisely
the same information. When a constraint is removed at constant energy, S
can only increase. Because E is increasing with increasing S, this means
that the energy can only be lowered if a constraint is removed at constant
S. Thus, E behaves a a potential at constant entropy, a “thermodynamic
potential”.

4.5 Example: Lattice vacancies in a solid

Let the energy cost for moving an atom to the surface be ε. n vacancies can
be distributed among N + n lattice sites in ω(n) = (N+n)!

n!N !
different ways.

This gives

S(n) = k ln
(N + n)!

n!N !
≈ k [(N + n) ln(N + n)− n lnn−N lnN ]

where we in the last step used Stirling’s approximation lnx! ≈ x(lnx − 1).
Further,

1

T
=
∂S

∂E
=

1

ε

∂S

∂n
=
k

ε
[ln(N + n)− lnn] ≈ k

ε
ln
N

n
which gives n = Ne−

ε
kT



Figure 3: A lattice with and without vacancies

5 Systems in contact with heat bath of tem-

perature T

The description of closed systems as above by means of the microcanon-
ical ensemble give in principle a complete description, but it is often not
well suited for tackling practical problems. In the statistical description, the
large number of constraints is often difficult to handle. The the thermody-
namic description, the fundamental relation E(S, V,N, ...) with entropy as
one of the independent variables is often an unpractical starting point for
describing experiments performed at given temperature and/or pressure. It
is, however, possible to obtain equivalent representations in which one or
more extensive variables have been replaced by their intensive counterparts.
The most commonly used is the so-called free energy representation which
describes systems at a given temperatures and where the temperature enters
in place of the entropy as independent parameter. There is an associated
ensemble, the canonical ensemble, which we will now derive.

Consider a subsystem in contact with a much larger heat bath. The
system + bath is isolated from the environment. We want to obtain the
conditional probability pi that the system is in state “i” of energy Ei. The
bath energy is then E−Ei, and the probability is proportional to number of
bath states,

pi = Const× eSr(E−Ei)/k

The reservoir is very large, E � Ei, i.e.

Sr(E − Ei) ≈ Sr(E)− Ei∂Sir/∂E = Sr(E)− Ei/T (5)

Thus, pi = Ce−
Ei
kT

where C is another constant, which is determined by
∑

i pi = C
∑
e−

Ei
kT = 1



In the expansion in Eq. (5) we have tactically stopped after the first-order
term involving ∂Sir/∂E. The bath entropy is of order of the bath size Nr.
Each time we differentiate with respect the extensive parameter E the order
of magnitude goes down one order with respect to size. Thus, the the first
derivative is of order 1 (the intensive 1/T ). The next, second term would be
of order (1 / bath size) and can be dropped for very large reservoirs.

5.1 The Canonical Ensemble

In summary we have found that the probability for state “i” is given by

pi = Ce−
Ei
kT ≡ Ce−βEi (β =

1

kT
)

where

1

C
= Z(T, V,N, α1, ...) =

∑
i

e−βEi

Z, the inverse of the normalization constant, depends explicitly on T . Via
the energy levels Ei it also depends on V and N , and, where applicable, on
additional parameters α1, α2, .... The probabilities gives another ensemble
which describes systems in contact with large energy reservoirs of a given
temperature T , the canonical ensemble.

5.2 Mean energy in the canonical ensemble

〈E〉 =
∑

piEi =

∑
iEie

−βEi∑
i e

−βEi
= − 1

Z

∂Z

∂β
= −∂ lnZ

∂β



We show later that the entropy of the ensemble is

S = −k
∑

i

pi ln pi (Boltzmann’s entropy definition),

and this gives

Ei = −kT

(
ln pi + ln

∑
i

e−βEi

)
= −kT (ln pi + lnZ) ,

〈E〉 =
∑

piEi = −kT
∑

i

pi ln pi − kT lnZ
∑

i

pi = TS − kT lnZ

The function F (T, V,N, α1, ...) = −kT lnZ(T, V,N, α1, ...) = 〈E〉 − TS has
been termed free energy. The inverse normalization Z is usually called the
partition function.

5.3 Thermodynamics expressed in the free energy

We saw above that F = −kT lnZ = E − TS. From the known differential
of E we obtain

dF = dE − TdS − SdT = TdS − TdS − SdT − pdV + µdN or

dF = −SdT − pdV + µdN

Thus the entropy is obtained from (∂F/∂T )V N , the pressure from the volume
derivative, and chemical potential from (∂F/∂N)TV Remaining quantities
can be obtained from higher derivatives. Consider e.g. the specific heat CV .
We have

E = −∂ lnZ

∂β

CV =
∂E

∂T
= − 1

kT 2

∂E

∂β
=

1

kT 2

∂2 lnZ

∂β2
= − 1

kT 2

∂2(βF )

∂β2

5.4 Example: Lattice vacancies in a solid (Canonical
ensemble)

Let as before the energy cost for moving an atom to the surface be ε. A lattice
site can be either filled (energy 0) or empty (energy ε), with probabilities C
and C exp(−ε/kT ). Further, C = 1 + exp(−ε/kT ) ≈ 1 when kT � ε. Thus,

n = Ne−ε/kT



i.e. the same result that we obtained earlier by considering the lattice as an
isolated system in the microcanonical ensemble. Generally, it can be shown
that the different ensembles give the same averages in the thermodynamic
limit N →∞ (cf. Mandl, problem 2.8).

5.5 Energy fluctuations in the canonical ensemble

The microcanonical and canonical ensembles cannot of course be fully equiv-
alent. For small systems, there is a distinct difference when the system is
isolated and within a given energy window and when it can exchange energy
with heat bath. In the latter case, the energy can fluctuate. However, in
the thermodynamic limit of large systems, the relative size of these fluctu-
ations goes down as 1/

√
N , and it this limit the two ensembles do give the

same result for the average thermodynamic functions. This point is further
illustrated by Problem 2.8 in Mandl[1].

As a measure of energy fluctuation we choose the root mean square fluc-
tuation defined by

(∆E)2 = 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2,

〈E〉 =
∑

i

piEi = −∂Z/∂β
Z

, 〈E2〉 =
∑

i

piE
2
i = −∂

2Z/∂β2

Z
,

(∆E)2 =
∂2Z/∂β2

Z
−
(
∂Z/∂β

Z

)2

=
∂

∂β

[
∂Z/∂β

Z

]
= −∂〈E〉

∂β

The derivative ∂〈E/∂β is extensive and thus of order N . Consequently,
the fluctuation are of order

√
N , and negligible compared to 〈E〉(∼ N) in

the thermodynamic limit. The derivative in question can be related to the
specific heat as follows:

(∆E)2 =
∂〈E〉
∂β

= kT 2CV = O(N), (
∂

∂β
= −kT 2 ∂

∂T
)



∆E

〈E〉
= O

(
1√
N

)
.

5.6 Heat and work

Consider a system at constant T with energy E =
∑

i pEi.
Make a slow volume change,

Ei(V ) → Ei(V ) +
∂Ei

∂V
dV, pi → pi + dpi,

which gives

dE =
∑

i

dpiEi +
∑

i

pidEi = dE1 + dE2

Interpretation of dE1 =
∑
dpiEi

For transitions between two equilibrium states:

ln pi = β(F − Ei)∑
i

dpiEi = F
∑

i

dpi − kT
∑

i

dpi ln pi∑
i

dpi = 0

−k
∑

i

pi ln dpi = −k d

[∑
i

pi ln pi

]
= dS

Thus,

dE1 =
∑

i

dpiEi = TdS

Interpretation of dE2 =
∑
pidEi

Do a very slow volume change of an isolated system. According to Ehrenfest’s
adiabatic theorem of quantum mechanics, no quantum transitions will occur,
i.e. a system initially in state Ei will end up in state Ei + Ei. This means
that dpi = 0. The change in energy is

dE2 =
∑

i

pidEi =
∑

i

pi
∂Ei

∂V
dV.



Under the specified conditions, the heat transfer dQ is zero, and the entire
energy change is an adiabatic work dW = −pdV . Thus,

dE2 = dW = −pdV

and ∑
i

pi
∂Ei

∂V
= −p

The foregoing analysis shows that

dE = TdS − pdV,

and because only state functions are involved, the above result is valid for
both reversible and irreversible changes. Under reversible changes, we have
also shown that dW = −pdV and dQ = TdS. Under irreversible changes,
TdS > dQ, and because

dE = TdS − pdV = dQ+ dW,

this means that

−dW = work obtained from system < pdV.

This means that the maximal work that one can obtain from a system is the
reversible work.

5.7 Claussius’ inequality

In order to obtain useful work of a composite system, there must be some
differences in intensive variables between its different parts, differences that



can be equalized when constraints are removed. If there is, say, a temperature
difference between a subsystem and its surroundings, work can be obtained
when energy (heat) is allowed to be exchanged. Let us consider a subsystem
enclosed in a surrounding at temperature T0 and pressure p0. Constraints
are released such that energy can flow between subsystem and surroundings,
and some work ∆A is delivered to the outside world.

The reservoir receives reversibly the heat ∆Q from the system. If the
system also expands ∆V , the surrounding changes its entropy by

∆S0 = − 1

T0

[∆Q+ p0∆V ].

Total entropy change:

∆Stot = ∆S + ∆S0 = ∆S − ∆Q+ p0∆V

T0

≥ 0

The system: ∆Q = ∆E −∆W

Work obtained: −∆W ≤ − [∆E − T0∆S + p0∆V ] ≡ −∆A

Thus the function

A = E − T0S + p0V

gives the maximum work that can be extracted from the system plus its
surrounding.
Special cases:

• Processes at constant T0 = T , and V : Maximum work given by
F (T, V ) = E − TS (Helmholtz free energy)

• Processes at constant T0 = T , and p0 = p: Maximum work given by
G(T, p) = E + pV − TS, the Gibbs’ free energy.

5.8 Heat engines

Heat engine: A machine is each cycle receiving heat (Q1) from one reservoir
at temperature T1, delivering heat (Q2) to another reservoir T2 (T2 < T1),
and delivering work W = Q1 −Q2. Total entropy change

∆S = −Q1

T1

+
Q1 −W

T2

≥ 0

The efficiency η = W/Q1 fulfills

η ≤ T1 − T2

T1



5.9 Change of variables in thermodynamic equations

We have so far expressed the complete thermodynamic information on a
system in two different ways:

Energy representation

E = E(S, V,N) dE = TdS − pdV + µdN

Free energy representation

F = F (T, V,N) dF = −SdT − pdV + µdN

When going from S to T = ∂E/∂S as independent variable, we also changed
the dependent variable from E to F = E − S ∂E

∂S
. The change in dependent

variable is needed in order not to loose information. In the mono-atomic ideal
gas, for example, we have E(T ) = 3NkT/2 which contains no information
at all about the pressure.

Legendre transforms - simple example

Consider two simple functional relations

y = f(x) = x2, ȳ = (x− a)2.

We want to take p = dy/dx (dȳ/dx) as new independent variable (compare
S ⇒ T = ∂E/∂S).



p = f ′(x) = g(x) = 2x

x = g−1(p) =
p

2

y(p) = y(g−1(p)) =
p2

4

p = f ′(x− a) = g(x− a) = 2(x− a)

x = g−1(p) + a =
p

2
+ a

ȳ(p) = ȳ(g−1(p) + a)

= y(p) =
p2

4

All information about a has been lost when taking p = dy/dx as
independent variable!

The functional relation y = y(p) = F (p) constitutes actually a differential
equation

y = F (y′); y′ = F−1(y)

which can be solved to obtain

dy

F−1(y)
= dx;

∫
dy

F−1(y)
= x+ C.

The relation y = F (y′) contains no information of the integration constant
C.

Going back to the functional relationship E = f(T, V,N), we find in a
similar manner ∫

dE

f−1(E)
= S + C(V,N)

with an unknown C(V,N), and the fundamental relation E(S, V,N) cannot
be constructed.

Resolution: Change dependent variable

Define a new dependent variable via a so-called Legendre transformation

z(p) = y(x)− x
∂y

∂x
= y − px; dz = pdx− pdx− xdp = −xdp.

A new Legendre transformation takes us back!

z − p
∂z

∂p
= z + xp = y(x)



Application to thermodynamics

Let us start from the fundamental relation in the energy representation,

E = E(S, V,N) dE = TdS − pdV + µdN.

By making Legendre transformations with respect to S, V , and N we obtain
fundamental equations in new variables:

F (T, V,N) (Helmholtz’ free energy)

H(S, p,N) (Enthalpy)

G(T, p,N) (Gibbs’ free energy)

Ω(T, V, µ) (The Grand potential)

Each “thermodynamic potential” above (F (T, V,N),H(S, p,N), orG(T, p,N))
contains precisely the same information about the thermodynamics and pro-
vide fundamental relations when expressed in their natural independent vari-
ables. The explicit expressions are

F (T, V,N) = E − S
∂E

∂S
= E − TS

H(S, p,N) = E − V
∂E

∂V
= E + pV



G(T, p,N) = E − S
∂E

∂S
− V

∂E

∂V
= E − TS + pV

Ω(T, V, µ) = E − S
∂E

∂S
−N

∂N

∂µ
= E − TS − µN

In the corresponding differentials, the extensive variable “X” (X = S, V, or
N) is replaced by the corresponding intensive variable “q” (q = T,−p, or µ.
For instance, we find

dG = dE − d(TS) + d(pV ) = TdS − pdV + µdN − TdS − SdT + pdV + V dp

= −SdT + V dp+ µdN

In this way we find

dF = −SdT − pdV + µdN

dH = TdS + V dp− µdN

dG = −SdT + V dp+ µdN

dΩ = −SdT − pdV −Ndµ

Minimal properties of the thermodynamic potentials

We have already shown that the energy tends to a minimum for processes
at constant S, V,N and that the free energy F has the same property at
constant T, V,N . The remaining potentials behave in an analogous way. Let
α be some internal parameter of the system. For the energy E(S, V,N, α) we
have

dE = TdS − pdV + µdN + β1dα+ β2dα
2

where β1 = 0 and β2 > 0 at equilibrium. When we make Legendre transfor-
mations to obtain, say, G(T, p,N) we obtain

dG = d(E − TS + pV ) = −SdT + V dp+ β1dα+ β2dα
2

which shows that G has a minimum at constant T, V, µ.

5.10 The Euler equation and the Gibbs-Duhem rela-
tion

Let us consider a simple one-component fluid with the fundamental rela-
tion E(S, V,N). Only extensive parameters are involved, and they are all



proportional to the size of the system,

λE(S, V,N) = E(λS, λV, λN).

Differentiation with respect to λ yields

E = TS − pV + µN (Euler’s equation) (6)

and since we also know dE = TdS − pdV + µdN we have

SdT − V dp+Ndµ = 0 (Gibbs-Duhem relation) (7)

According to Eq. (6) we obtain zero result when all independent extensive
parameters are converted to intensive parameters (the is no longer informa-
tion about the size of the system).

Consider e.g. G(T, p,N) with only one extensive parameter. We must
have G(T, p,N) = g(T, p)N , N being the Gibbs free energy per particle, and
as ∂G/∂N = µ, we have

G(T, p,N) = Nµ(T, p)

for a one-component fluid. For a fluid with several components,

G(T, p,N1, N2, ...) = N1µ1(T, p,N1/N,N2/N...)

+N2µ1(T, p,N1/N,N2/N, ...) + ...

For the grand potential Ω(T, V, µ) we find in a similar manner Ω(T, V, µ) =
V ω(T, µ) where ω is the potential per unit volume. Because ∂Ω/∂V = −p,
we have ω = −p, and

Ω(T, V, µ) = −p(T, µ)V.

6 The third law of thermodynamics

The history of the third law goes back to Nernst in the 19th century and
states that the entropy of pure crystalline materials goes to zero when T →
0. The third law is basically inconsistent with classical physics but has a
natural explanation in quantum statistics. In quantum statistics, we have
S(E) = k lnω(E), and thus as the energy tends to the lowest possible state
E0, the ground state, the number of accessible states must tend to 1. In the
idealized case the ground state would be non-degenerate, ω(E0) = 1, but it
is sufficient that the the degeneracy is small compared to exp(N) in order to
have a macroscopically negligible entropy at zero temperature.

Some consequences are:



a) cV → 0 This follows from the fact that

S(T )− S(0) =

∫ T

0

cV dT

T

is finite.

b) The volume expansion coefficient tends to zero, because(
∂V

∂T

)
p

=
∂2G

∂p∂T
= −

(
∂S

∂p

)
T

→ 0

c) The pressure increase with T tends to zero,(
∂p

∂T

)
V

= − ∂2F

∂V ∂T
=

(
∂S

∂V

)
T

→ 0

7 The classical ideal gas

The “ideal gas approximation” means that

• The gas is sufficiently dilute so that the differences between Bose and
Fermi statistics can be neglected

• The interaction between the gas molecules is sufficiently weak

Let us first consider N point particles moving inside a container of volume
V

H =
N∑

k=1

p2
k

2m
.

Let ni be the number of particles in quantum state “i”. We have N =
∑

i ni.
The gas is classic in the above sense if ni � 1.



7.1 Calculating the partition sum

a) N = 1 We obtain Z(T, V, 1) =
∑

i e
−βεi(V )

b) N = 2 Already now in principle bosons (integer spin) and fermions (half-
integer spin) give different results. There can be at most one particle in each
state for fermion, whereas in case of bosons a one-particle state can be doubly
occupied:

Z(T, V, 2) =
1

2

∑
i6=j

e−β(εi+εj

[
+
∑

i

e−2βεi

]
,

The last term above involving double occupancy only occurs for bosons. The
factor 1/2 in the first term account for the fact that the gas particles are
identical, the state “i,j” is the same as “j,i”. When the gas is sufficiently
dilute, the probability for multiple occupancies is negligible The
occupation numbers ∼ N/V , a double occupancy ∼ (N/V )2, and so on.

For N particles:

Z(T, V,N) =
1

N !

∑
all i unequal

e−β(εi1
+εi2

+...+εiN
)

[+ terms where two or more states coincides (bosons only)]

≈ 1

N !

∑
i1,i2,...iN

e−β(εi1
+εi2

+...+εiN
)

where the last approximations holds only for sufficiently dilute gases. Thus,
in the dilute limit

Z(T, V,N) ≈ 1

N !

∑
i1,i2,...iN

e−β(εi1
+εi2

+...+εiN
) =

1

N !
ZN(T, V,N = 1)

The problem has been reduced to the calculation of Z for one particle.

7.2 Calculating one-particle states

In 1D we have

p̂2

2m
ψ(x) = εψ(x)

p̂ = −i~ ∂

∂x

With periodic boundary conditions over a distance L, we find ψ(x) = eipxi/~

where pL/~ = 2πn. Thus, only momenta pn = 2π~n/L = nh/L are allowed,



and they are a distance h/L from one another. This corresponds to a uniform
density Dp = 1/(pn − pn−1) = L/h.

In three dimensions we have

p̂2

2m
ψ(r) = − ~2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂x2

]
ψ(r) = εψ(r)

We again use periodic boundary conditions over a box V = L × L × L,
ψ(x, y, z) = ψ(x+ L, y, z) etc, which gives

ψ(r) = eip·r/~ and εp =
p2

2m
.

The periodic boundary conditions in x, y, z gives

pxL = nxh, pyL = nyh, pzL = nzh

and each allowed p points occupies a cube of volume h3/(L×L×L) = h3/V .
Thus, the allowed p points are evenly spaced with a density Dp = V/h3 in
momentum space.

7.3 Partition sum

Z(T, V, 1) =
∑
pn

e−β
p2

n
2m =

V

h3

∫
d3p e−β p2

2m

=
V

h3

(∫ ∞

−∞
dpxe

−β
p2
x

2m

)3

= V

(
2πmkT

~2

)3/2

where we have used that
∫∞
−∞ exp(−x2) =

√
π. We next use the approxima-

tion Z(T, V,N) ≈ Z(T, V, 1)N/N ! and Stirling’s approximation N ! ≈ (N/e)N

to obtain

F (T, V,N) = −kT lnZ(T, V,N) = −NkT ln

[
eV

N

(
2πmkT

~2

)3/2
]
.

7.4 Gas particles with internal degrees of freedom

If the gas is composed of polyatomic molecules, each particle in addition
to the translational energy (p2/2m) has internal excitations “i” (rotations,
vibrations, etc.),

εp,i =
p2

2m
+ εi.



The partition sum for one particle now becomes

Z(T, V,N = 1) = Ztransl(T, V, 1)
∑

i

e−βεi = Ztransl(T, V, 1)× Zint(T, 1)

and

F (T, V,N) = −kT ln
(Z(T, V, 1)N

N !
= Ftransl(T, V,N) + Fint(T,N),

where Ftransl(T, V,N) is the free energy for point particles, and

Fint(T,N) = −NkT ln
∑

i

e−βεi (independent of V).

7.5 Thermodynamics, equations of state

The internal excitations give a volume-independent contribution to F , which
means that they do not contribute to the pressure. A simple calculation
yields

p = −∂Ftransl

∂V
=

∂

∂V
NkT (lnV + const) =

NkT

V
, pV = NkT.

The energy is E = F − T∂F/∂T = −∂ ln(Ztransl Zint)/∂β, and Ztransl =
const× T 3N/2. This gives

E =
3

2
NkT + Eint(T )

For most diatomic gases, the vibrations are frozen out at 300K and do not
contribute to CV , whereas the rotations contribute ∼ NkT (cf. problem 7.1
- 7.2).

7.6 Entropy

We have S = −∂F/∂T which gives

S = Nk

[
ln
V

N
+

3

2
lnT +

5

2
+

3

2
ln

2πmk

~2

]
+ Sint(T,N),

where the first part comes from the translation motion. This is evidently not
valid when T → 0.



7.7 Range of validity of the classical approximation

In the classical approximation, multiply occupied states are not treated cor-
rectly which allows us to approximate Z(N) = ZN(1)/N !. This in turn
requires that the mean number ni of particles in state “i” is small, ni � 1.
Now,

ni = N
e−βεi∑
j e

−βεj
= N

e−βεi

Z(1)
� 1

for all εi, and in particular for the zero-momentum state ε0 = 0. Thus,

N

Z(1)
=
N

V

(
~2

2πmkT

)3/2

� 1.

The quantity λ = (~2/2πmkT )1/2 is the de Broglie wavelength of a particle of
energy πkT , and thus λ << (V/N)1/3 in order for the classical approximation
to hold.

7.8 Notes on real gases

In a real gas the molecules interact,

U =
∑
i<j

v(|ri − rj|),

which gives corrections at higher densities. This leads to modifications of the
equation of state of the form (“virial expansion”)

p =
NkT

V

[
1 +

N

V
B(T ) +

(
N

V

)2

C(T ) + ...

]
where the leading correction has the form (cf. problem 7.7)

B(T ) =
1

2

∫
d3r(1− e−βv(r)).

A well-known semi-empirical equation of state is due to van der Waals,[
p+

(
N

V

)2

a

] [
1− N

V
b

]
=
NkT

V

Here, the parameter b represents the “volume” of the molecule (the hard-
core repulsion at short distances). At far distances, closed-shell molecules will
experience a weak attraction (“van der Waals attraction”)∼ 1/R6, which will
lower the pressure. This attraction is modeled by the parameter a. The van
der Waals equation usually gives a good qualitative or even semi-quantitative
description of condensation phenomena.



7.9 Classical statistical mechanics

Quantum statistics:

• Classical Hamiltonian H(p1,p2, ..., r1, r2, ...), substitute pν → −i~∇ν

• Solve Schrödinger Eq. HΨi = EiΨ

• Form the partition sum Z =
∑

i e
−βEi

Classical approx: When ~ → 0, rν ,pν can be measured simultaneously,
and the levels become more and more densely spaced. If V is slowly varying,
and the particles non-interacting, we can approximately regard it constant
over many de Broglie wavelength, and is seems plausible that we can treat the
problem like the ideal gas. This means that the number of one-particle levels
can be approximated as dγ = (1/h3)d3r d3p, The argument can be extended
to many particles which also interact, and thus in the classical limit we replace
sum over states with integrals over a 6N-dimensional phase space made of
of the 3N coordinates and 3N momenta, dΓ = (1/h3Nd3r1 d

3r2...d
3p1 d

3p2....
This was exactly how statistical mechanics was handled before the quantum
era. Thus, the classical entropy is

Sclass(E, V,N) = k ln[∆Γ/h3N ],

where ∆Γ is the volume of the accessible part of phase space (accessible when
the various constraints are applied). Today we know that the proper unit for
volumes in phase space is h3N . Different units of phase space volume give
different additive constants to the entropy, and thus entropy could not be
defined on an absolute scale before quantum mechanics was discovered. In a
similar fashion the classical partition function becomes

Zclass =
1

h3N

∫
e−βH(p1,p2,...,r1,r2,...) dΓ

A well-known result in the classical limit is the so-called equipartition
theorem. Assume that H only consists of quadratic terms, H = a1q

2
1 +

a2q
2
2 + .... (qi is a coordinate or momentum).

E =

∫
dq1dq2...e

−β(a1q1+a2q2+...)(a1q1 + a2q2 + ...)∫
dq1dq2...e=β(a1q2

1+a2q2
2+...)

=
∑

i

∫
dqie

−βa1q2
i aiq

2
i∫

dqie−βa1q2
i

=
∑

i

kT

2

Thus, every quadratic term in H contributes kT/2 to E and k/2 to CV in
the classical limit. In a classical gas of monatomic molecules we have N



quadratic terms and CV = 3
2
Nk. For vibrating atoms in a solid we have

3N oscillators and 6N quadratic terms, giving CV = 3Nk in the classical
(high-T) limit (the Dulong-Petit law).

8 Thermodynamics of the harmonic oscilla-

tor and applications

The description of the quantized electromagnetic field leads naturally to a
problem involving harmonic oscillators. The same is true for vibrations in
molecules and solids. In both cases, the energy levels are of the form

E =
∑

ν

~ων [nν + 1/2]

where {ωnu} are the eigenfrequencies, and nν = 0, 1, 2, ... is the oscillator
quantum number for mode “ν”. If we measure the energy relative the the
ground-state energy E0 = (1/2)

∑
ν ~ων we can regard the system as a system

of bosons which occupies the energy levels {ων}. These bosons are termed
photons in the case of electromagnetic radiation, and phonons in the case of
atomic vibrations in solids.

8.1 Thermodynamics of a single oscillator

For a single oscillator we have En = ~ω[n+ 1/2] which gives (x = β~ω)

Z =
∞∑
n

e−βEn = e−x/2

∞∑
n

e−nx =
e−β~ω/2

1− e−β~ω

〈E〉 = −∂Z
∂β

= ~ω
[

1

eβ~ω − 1
+

1

2

]
Introducing

n̄ =
1

eβ~ω − 1

we have E−E0 = ~n̄. We can thus consider the oscillator as an energy level
~ω occupied with 0, 1, 2, ... bosons. The quantity n̄ is the mean occupation
number.

In the limit kT � ~ω, the excitation energy is exponentially small, E =
E0 = O(e−β~ω), which implies that the specific heat is exponentially small as
well, CV = O(e−β~ω).



In the opposite limit kT � ~ω, we have

E − E0 =
~ω

eβ~ω − 1
≈ ~ω

1 + β~ω − 1
= kT

which is the classical result (E = kT, CV = k). For oscillations in molecules
or solids, there is an upper limit ωmax, and thus the specific heat is classical
(Nk) when kT � ωmax. In the case of the electromagnetic field, there is no
upper limit of photon energies, but only photons with ~ω < kT contributes
appreciably to the energy density.

8.2 Black-body radiation

Consider a photon gas in a cavity of volume V . The photons (oscillator
eigenmode) may be labeled by its momentum ~q and polarization λ, and
there are two independent polarizations for each q. In a finite cavity, the
momentum becomes discretized. As in the case of the ideal gas, we find
uniform density of q points Dq = V/(8π3). We count the energy relative the
the ground state and use ωqλ = cq to obtain

E =
∑
qλ

~ωq

eβ~ωq − 1
=

2V

8π3

∫ ∞

0

~cq
eβ~cq − 1

4πq2dq =
V ~
π2c3

∫ ∞

0

ω3

eβ~ω − 1
dω.

The energy density per unit volume and frequency is thus

u(T, ω) =
~
π2c3

ω3

eβ~ω − 1
,

the black-body radiation law discovered by Planck. In the classical limit,
ucl(T, ω) → ω2/(π2c3), and the energy would diverge.

The integrated energy density per unit volume, or the radiation pressure
is

u(T ) =
~
π2c3

∫ ∞

0

ω3

e
~ω
kT − 1

dω = T 4 ~k4

π2c3~4

∫ ∞

0

x3

ex − 1
= KT 4

where the constant has the value K = 5.67 × 10−8 J m−2 s−1 K−4. The T 4

law is an immediate consequence of the linear dispersion ωq = const × q.
Low energy lattice vibrations behave in a similar way, and consequently the
lattice vibrations in solids contributes ∼ const × T 4 to the internal energy
and ∼ const × T 3 to the specific heat at low temperatures.



8.3 Lattice vibrations in solids

Lattice vibrations in solids leads to coupled harmonic oscillators. For peri-
odic solids, the oscillator eigenmodes are traveling waves with energies ~ωqλ.
Thus, the excitation energy of the lattice is

E − E0 =
∑

q∈Bz,λ

~ωq

eβ~ωq − 1

The number of q points in the Brillouin zone is the number of unit cell N , and
there are 3 modes per atom in the unit cell for each q. At high temperature,
each oscillator becomes classical, and each atom contributes 3k to the specific
heat. As the temperature is lowered, more and more modes are frozen out,
and the specific heat tends to 0.

8.4 Einstein model

The simplest model of lattice vibrations is to approximate ωqλ by a constant
ω0:

E − E0 ≈
~ω0

eβ~ω0 − 1

∑
q∈Bz,λ

= 3Nat
~ω0

eβ~ω0 − 1

The high-temperature limit 3NatkT is correctly reproduced. At low tem-
peratures, however, the Einstein approximation gives an exponentially small
contribution to E − E0 and CV . The correct behavior, however, is that
CV ∼ T 3 at low T , and the reason is that there are always long-wavelength
phonons with ~ω < kT for any T .

8.5 Lattice specific heat at low temperatures

At low T , modes ωqλ > kT/~ are frozen out and give an exponentially small
contribution. Thus only long wavelength acoustic modes ωqλ ≈ vλ|q| need to
be considered, and each such mode contribute ∼ k to CV . The contributing
longitudinal modes, for example, fall within a sphere |q| < kT/(~vL), and as
the mode density in q-space is V/(8π3) we find a contribution

V

8π3

4π

3

(
kT

~vL

)3

k

to CV . Adding the contribution from the remaining two acoustic modes we
find

CV ∼
V k4

6π2~3

(
1

v3
1

+
1

v3
2

+
1

v3
3

)
T 3, T → 0.



For low ω, the foregoing analysis shows that the density of modesD(ω)dω =
(V/(8π3)4π3q2dq is

D(ω) ∼ V

2π2

(
1

v3
1

+
1

v3
2

+
1

v3
3

)
ω2 (8)

Debye approximated D(ω) by Eq. (8) all the way up to a cut-off ωD chosen
so as to have the correct total number of modes. In this way both the high
and low T behavior is correct.

V

2π2

(
1

v3
1

+
1

v3
2

+
1

v3
3

)
ω3

D

3
= 3Nat

This gives D(ω) = 9Natω
2/ω3

D, ω < ωD, and (ΘD = ~ωD/k)

CV =
9Natk

ω3
D

∫ ωD

0

(β~ω)2eβω

(eβω − 1)2ω
2dω

= 9Natk

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex dx

(ex − 1)2

9 Systems with varying particle number

When solving problems in statistical mechanics it often complicates the calcu-
lations to strictly maintain constraints like keeping the energy or the particle
number fixed. The canonical ensemble was obtained from the microcanonical
one by relaxing the constraint of a fixed total energy. We now want to relax
the constraint of keeping the particle number fixed. This will lead to the
so-called grand canonical ensemble, which describes a system in contact with
a heat and particle reservoir.

Relaxing the constraint of a fixed particle number greatly simplifies the
treatment of, for example, the Bose and Fermi quantum gases.

The system + bath is isolated from the environment. We want to obtain
the conditional probability pi(N) that the system has N particles and is in
state “i” of energy Ei(N). The bath energy is then E−Ei, and the bath has
N0 − N particles. The probability pi(N) is proportional to number of bath
states,

pi = const × eSr(E−Ei,N0−N)/k

The reservoir is very large, E � Ei, i.e. Sr(E − Ei, N0 − N) ≈ Sr(E) −
Ei∂S/∂E −N∂S/∂N = Sr(E)− Ei/T + µN/T Thus, pi(N) = Ce−

(Ei−µN)

kT



where C is another constant, which is determined by
∑

i,N pi(N) = C
∑
e−

Ei−µN

kT =
1

In summary we have found that the probabilities pi(N) is given by

pi(N) = Ce−β(Ei(N)−µN)

where

1

C
≡ Z(T, V, µ, α1, ...) =

∑
i,N

e−β(Ei(N)−µN) =
∑
N

Z(T, V,N, α1, ...)e
µN .

As we shall see, the so-called grand partition sum Z(T, V, µ, α1, ...), contains
a complete description of the thermodynamics of systems in contact with a
heat and particle reservoir. As seen above, it can also be expressed in the
canonical partition sum Z(N) The partition sum Z depends explicitly on T
and µ, and via the energy levels is also depends on V and possibly other
external parameters α1, α2....

9.1 Thermodynamics in the Grand Ensemble

We start by computing the mean energy and particle number:

〈N〉 =
∑
i,N

Npi(N) =

∑
i,N Ne

−β(Ei−µN)∑
i,N e

−β(Ei−µN)
= kT

1

Z
∂Z
∂µ

= kT
∂ lnZ
∂µ



〈E − µN〉 =
∑
i,N

(Ei − µN)piEi =

∑
i,N(Ei − µN)e−β(Ei−µN)∑

i,N e
−β(Ei−µN)

= −∂ lnZ
∂β

〈E〉 = −∂ lnZ
∂β

− µkT
∂ lnZ
∂µ

In a similar way all equilibrium thermodynamic variables can be expressed
in partial derivatives of lnZ.

9.2 The Grand Potential

We saw above that all thermodynamic quantities could be expressed in lnZ
it its partial derivatives. Let us define the grand potential by

Ω(T, V, µ) = −kt lnZ.

The foregoing result for 〈E〉 can then be rewritten as

〈E〉 = Ω− T
∂Ω

∂T
− µ

∂Ω

∂µ
,

i.e., 〈E〉 is a Legendre transform of Ω(T, V, µ). The backward transform then
yields (E and N are understood to be the averaged quantities)

Ω(T, V, µ) = E − S
∂E

∂S
−N

∂E

∂N
= E − TS − µN

dΩ = TdS − pdV + µdN − TdS − SdT − µdN −Ndµ

= −SdT − pdV −Ndµ

9.3 Particle fluctuations

Knowing the statistical weights pi(N) the fluctuations in N can also be ob-
tained. We have (∆N)2 = 〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2 , and

〈N〉 = kT
∂ lnZ
∂µ

, 〈N2〉 =

∑
i,N N

2e−β(Ei−µN)∑
i,N e

−β(Ei−µN)
= (kT )2∂

2Z
∂µ2

/Z

(∆N)2 =
(kT )2

Z2

[
Z ∂

2Z
∂µ2

−
(
∂Z
∂µ

)2
]

= (kT )2∂
2lnZ
∂µ2

= kT
∂〈N〉
∂µ

Thus, ∆N/〈N〉 ∝ 1/
√
〈N〉 and are negligible in the thermodynamic limit.



9.4 Bose and Fermi quantum gases

Consider a system of non-interacting identical particles with one-particle
levels ε1, ε2, ε3, .... The energy and particle number can be written

E =
∑

k

nk εk, N =
∑

k

nk,

where nk = 0, 1 in the case of Fermions (half-integer spin), and nk =
0, 1, 2, 3, ... in the case of Bosons (integral spin). In the grand ensemble
with no constraint on N we can sum the occupation numbers independently,
which greatly simplifies the analysis:

Z =
∑
n1

e−β(ε1−µ)n1

∑
n2

e−β(ε2−µ)n2

∑
n3

e−β(ε3−µ)n3 ... = Z1Z2Z3....

Zk =
∑
nk

e−β(εk−µ)nk , Ω = −kT lnZ = −kT
∑

k

lnZk ≡
∑

k

Ωk

〈nk〉 = −∂Ωk

∂µ

Fermions: Zk =
1∑

nk=0

e−β(εk−µ)nk = 1 + e−β(εk−µ)

〈nk〉 ≡ fFD(εk) =
1

1 + eβ(εk−µ)

Bosons: Zk =
∞∑

nk=0

e−β(εk−µ)nk =
1

1− e−β(εk−µ)

〈nk〉 ≡ fBE(εk) =
1

eβ(εk−µ) − 1

Classical gas: 〈nk〉 ≡ fMB(εk) = Ae−βεk = eβ(µ−εk)

The classical approximation is valid when all nk � 1 and is the limiting case
of both statistics. We notice fBE(ε) > fMB(ε) > fFD(ε).

9.5 The degenerate electron gas

The electron-gas is an often used model for those properties which are not
sensitive the the lattice structure. At T = 0, all states are occupied up to
a certain energy εF , and all states above are empty. At finite T , there is a
transition region of width ∼ kT in which fFD(ε) differs appreciably from its
T = 0 limit. The Fermi energy εF is typically of the order 5-10 eV and is



thus much larger than kT (∼ 25 meV at room temperature); the Fermi gas
is said to be degenerate. Only electrons within ∼ kT from the Fermi energy
are affected by thermal excitations. This leads to a dramatic reduction of
the specific heat compared to the classical Boltzmann gas.

9.6 The Fermi gas at zero temperature

We consider a gas of non-interacting Fermions enclosed in a box V = L ×
L×L. With periodic boundary conditions, the one-particle orbitals are plane
waves, φk(r) = (1/

√
V exp(ik · r) of energies εk = ~2k2/(2m). The periodic

boundary conditions make k discrete, k = 2π
L

(nx, ny, nz), which means that
they are uniformly distributed with density Dk = V/(8π3). At T = 0, all
states with |k| < kF are filled, and all other empty (~2k2

F/(2m) = εF ).

n ≡ N

V
= 2

1

8π3

4π

3
k3

F =
k3

F

3π2



The Fermi wave-vector thus only depends on the density, kF = (3π2n)1/3.
We also notice that εF ∝ k2

F ∝ n2/3, and that E/V ∝ nεF ∝ n5/3. The
degenerate Fermi gas is thus quite incompressible, and E/V increases rapidly
with density.

9.7 Density of states per unit energy

In what follows it proves convenient to introduce a density of states D(ε)
and N(ε) =

∫ ε

0
D(ε′)dε′. N(ε) equals the number of states within the sphere

k <
√

2mε/~ in k-space, which gives

N(ε) =
2

8π3

4π

3

(
2mε

~2

)3/2

=
1

3π2~3
(2mε)3/2 ∝ ε3/2

D(ε) =
dN

dε
=

(2m)3/2

2π2~3

√
ε ∝

√
ε.

In 1D the the density of k-points is 1/(2π) per unit length, and in 2D it is
1/(4π2) per unit area (systems which can be realized today as nanoscopic
micro structures). In 1D, the “sphere” volume ∝ k ∝

√
ε, and in 2D it is

∝ k2 ∝ ε. Thus, D1D(ε) ∝ 1/
√
ε, and D2D(ε) ∝ dε/dε = 1.



9.8 The Fermi-gas specific heat

In the dilute classical Boltzmann gas, every particle is affected by a temper-
ature change. The specific heat per particle is here 3

2
k. In the degenerate

Fermi gas, on the other hand, only electrons near the Fermi surface can be
excited thermally. This leads to a dramatic reduction of the specific heat.
Assuming that only electrons within ∼ kT contribute, and that each particle
in this thin shell each contributes ∼ k per particle, we find

CV

V
∼ n

kT

εF
k = nk

T

TF

(kTF = εF ).

A more accurate analysis shows (cf. Ibach-Lüth chapter 6.4, Mandl problem
11.3)

CV

V
=
π2

3
D(εF )k2T =

π2

2
nk

T

TF

.

9.9 Specific heat from phonons and electrons at low
temperatures

At room temperature, the lattice gives a contribution ∼ Natk to CV , and
because the number of electrons is of the same order as Nat, the contribu-
tion from the electrons is completely overshadowed. At low temperatures,
however, the lattice contribution tends to zero at T 3, and the electronic con-
tribution becomes visible:

CV = γT + βT 3
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