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Lecture 6

The story so far

Summary

1. We know how to do simple t-tests.

2. We know how to fit simple linear models.

3. We saw that the paired t-test is identical to the varying
intercepts linear mixed model.

Now we are ready to look at linear mixed models in detail.
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Lecture 6

Linear mixed models

Linear models

Returning to our SR/OR relative clause data from English
(Grodner and Gibson, Expt 1). First we load the data as usual (not
shown).

gge1crit<-read.table("data/grodnergibson05data.txt",

header=TRUE)

gge1crit$so<-ifelse(gge1crit$condition=="objgap",1,-1)

dat<- gge1crit

dat$logrt<-log(dat$rawRT)

bysubj<-aggregate(logrt~subject+condition,

mean,data=dat)

3 / 49



4/ 49

Lecture 6

Linear mixed models

Linear models

The simple linear model (incorrect for these data):

summary(m0<-lm(logrt~so,dat))$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.883056 0.019052 308.7841 0.0000000

## so 0.062017 0.019052 3.2551 0.0011907
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Lecture 6

Linear mixed models

Linear models

We can visualize the different responses of subjects (four subjects
shown):
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Lecture 6

Linear mixed models

Linear models

Given these differences between subjects, you could fit a separate
linear model for each subject, collect together the intercepts and
slopes for each subject, and then check if the intercepts and slopes
are significantly different from zero.
We will fit the model using log reading times because we
want to make sure we satisfy model assumptions (e.g.,
normality of residuals).
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Linear mixed models

Linear models

There is a function in the package lme4 that computes separate
linear models for each subject: lmList.

library(lme4)

## Loading required package: Matrix

lmlist.fm1<-lmList(logrt~so|subject,dat)
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Linear mixed models

Linear models

Intercept and slope estimates for three subjects:

lmlist.fm1$`1`$coefficients

## (Intercept) so

## 5.769617 0.043515

lmlist.fm1$`28`$coefficients

## (Intercept) so

## 6.10021 0.44814

lmlist.fm1$`37`$coefficients

## (Intercept) so

## 6.61699 0.35537
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Lecture 6

Linear mixed models

Linear models

One can plot the individual lines for each subject, as well as the
linear model m0’s line (this shows how each subject deviates in
intercept and slope from the model m0’s intercept and slopes).
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Linear mixed models

Linear models
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Lecture 6

Linear mixed models

Linear models

To find out if there is an effect of RC type, you can simply check
whether the slopes of the individual subjects’ fitted lines taken
together are significantly different from zero.
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Lecture 6

Linear mixed models

Linear models

t.test(coef(lmlist.fm1)[2])

##

## One Sample t-test

##

## data: coef(lmlist.fm1)[2]

## t = 2.81, df = 41, p-value = 0.0076

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 0.017449 0.106585

## sample estimates:

## mean of x

## 0.062017
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Linear mixed models

Linear models

The above test is exactly the same as the paired t-test and the
varying intercepts linear mixed model on aggregated data:

t.test(logrt~condition,bysubj,paired=TRUE)$statistic

## t

## 2.8102

## also compare with linear mixed model:

summary(lmer(logrt~condition+(1|subject),

bysubj))$coefficients[2,]

## Estimate Std. Error t value

## -0.124033 0.044137 -2.810207
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Linear mixed models

Linear models

I The above lmList model we fit is called repeated measures
regression. We now look at how to model unaggregated data
using the linear mixed model.

I This model is now only of historical interest, and useful only
for understanding the linear mixed model, which is the
modern standard approach.
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Lecture 6

Linear mixed models

Model type 1: Varying intercepts models

Linear mixed models

I The linear mixed model does something related to the above
by-subject fits, but with some crucial twists, as we see below.

I In the model shown in the next slide, the statement
(1|subject)
adjusts the grand mean estimates of the intercept by a term
(a number) for each subject.
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Lecture 6

Linear mixed models

Model type 1: Varying intercepts models

Linear mixed models

Notice that we did not aggregate the data here.

m0.lmer<-lmer(logrt~so+(1|subject),dat)

Abbreviated output:

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.09983 0.3160

Residual 0.14618 0.3823

Number of obs: 672, groups: subject, 42

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.88306 0.05094 115.497

so 0.06202 0.01475 4.205 16 / 49
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Linear mixed models

Model type 1: Varying intercepts models

Linear mixed models

One thing to notice is that the coefficients (intercept and slope) of
the fixed effects of the above model are identical to those in the
linear model m0 above.
The varying intercepts for each subject can be viewed by typing:

ranef(m0.lmer)$subject[,1][1:10]

## [1] -0.1039283 0.0771948 -0.2306209 0.2341978 0.0088279 -0.0953633

## [7] -0.2055713 -0.1553708 0.0759436 -0.3643671
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Linear mixed models

Model type 1: Varying intercepts models

Visualizing random effects

Here is another way to summarize the adjustments to the grand
mean intercept by subject. The error bars represent 95%
confidence intervals.

library(lattice)

print(dotplot(ranef(m0.lmer,condVar=TRUE)))
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Linear mixed models

Model type 1: Varying intercepts models

Visualizing random effects

## $subject

subject
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Lecture 6

Linear mixed models

Model type 1: Varying intercepts models

Linear mixed models

The model m0.lmer above prints out the following type of linear
model. i indexes subject, and j indexes items.
Once we know the subject id and the item id, we know which
subject saw which condition:

subset(dat,subject==1 & item == 1)

## subject item condition rawRT so logrt

## 6 1 1 objgap 320 1 5.7683

yij = β0 + u0i + β1 × soij + εij (1)

The only new thing here is the by-subject adjustment to the
intercept.
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Linear mixed models

Model type 1: Varying intercepts models

Linear mixed models

I Note that these by-subject adjustments to the intercept u0i
are assumed by lmer to come from a normal distribution
centered around 0:
u0i ∼ Normal(0, σu0)

I The ordinary linear model m0 has one intercept β0 for all
subjects, whereas the linear mixed model with varying
intercepts m0.lmer has a different intercept (β0 + u0i) for
each subject i.

I We can visualize the adjustments for each subject to the
intercepts as shown below.
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Linear mixed models

Model type 1: Varying intercepts models

Linear mixed models
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Linear mixed models

Model type 1: Varying intercepts models

Formal statement of varying intercepts linear mixed model

i indexes subjects, j items.

yij = β0 + u0i + (β1)× soij + εij (2)

Variance components:

I u0 ∼ Normal(0, σu0)
I ε ∼ Normal(0, σ)
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Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Linear mixed models

Note that, unlike the figure associated with the lmlist.fm1 model
above, which also involves fitting separate models for each subject,
the model m0.lmer assumes different intercepts for each subject
but the same slope.
We can have lmer fit different intercepts AND slopes for each
subject.
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Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Linear mixed models
Varying intercepts and slopes by subject

We assume now that each subject’s slope is also adjusted:

yij = β0 + u0i + (β1 + u1i)× soij + εij (3)

That is, we additionally assume that u1i ∼ Normal(0, σu1).

m1.lmer<-lmer(logrt~so+(1+so||subject),dat)

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.1006 0.317

subject.1 so 0.0121 0.110

Residual 0.1336 0.365

Number of obs: 672, groups: subject, 42

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.8831 0.0509 115.50

so 0.0620 0.0221 2.81

25 / 49



26/ 49

Lecture 6

Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Linear mixed models

These fits for each subject are visualized below (the red line shows
the model with a single intercept and slope, i.e., our old model
m0):
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Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Linear mixed models
Comparing lmList model with varying intercepts model

Compare this model with the lmlist.fm1 model we fitted earlier:
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Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Visualizing random effects

print(dotplot(ranef(m1.lmer,condVar=TRUE)))
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Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Visualizing random effects

## $subject
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Linear mixed models

Model type 2: Varying intercepts and slopes model (no correlation)

Formal statement of varying intercepts and varying slopes
linear mixed model

i indexes subjects, j items.

yij = β0 + u0i + (β1 + u1i)× soij + εij (4)

Variance components:

I u0 ∼ Normal(0, σu0)
I u1 ∼ Normal(0, σu1)
I ε ∼ Normal(0, σ)
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models

I The estimate of the effect by participant is smaller than when
we fit a separate linear model to the subject’s data.

I This is called shrinkage in linear mixed models: the individual
level estimates are shunk towards the mean slope.

I The less data we have from a given subject, the more the
shrinkage.
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs

Let’s randomly delete some data from one subject:

set.seed(4321)

## choose some data randomly to remove:

rand<-rbinom(1,n=16,prob=0.5)
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs

dat[which(dat$subject==37),]$rawRT

## [1] 770 536 686 578 457 487 2419 884 3365 233 715 671 1104 281

## [15] 1081 971

dat$deletedRT<-dat$rawRT

dat[which(dat$subject==37),]$deletedRT<-

ifelse(rand,NA,

dat[which(dat$subject==37),]$rawRT)
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs

Now subject 37’s estimates are going to be pretty wild:

subset(dat,subject==37)$deletedRT

## [1] 770 NA 686 578 NA NA NA NA 3365 233 NA 671 1104 NA

## [15] NA 971
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs

## original no pooling estimate:

lmList.fm1_old<-lmList(log(rawRT)~so|subject,dat)

coefs_old<-coef(lmList.fm1_old)

intercepts_old<-coefs_old[1]

colnames(intercepts_old)<-"intercept"

slopes_old<-coefs_old[2]

## subject 37's original estimates:

intercepts_old$intercept[37]

## [1] 6.617

slopes_old$so[37]

## [1] 0.35537
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs

## on deleted data:

lmList.fm1_deleted<-lmList(log(deletedRT)~so|subject,dat)

coefs<-coef(lmList.fm1_deleted)

intercepts<-coefs[1]

colnames(intercepts)<-"intercept"

slopes<-coefs[2]

## subject 37's new estimates on deleted data:

intercepts$intercept[37]

## [1] 6.6879

slopes$so[37]

## [1] 0.38843
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs
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Linear mixed models

Shrinkage in linear mixed models

Shrinkage in linear mixed models
The effect of missing data on estimation in LMMs

I What we see here is that the estimates from the hierarchical
model are barely affected by the missingness, but the
estimates from the no-pooling model are heavily affected.

I This means that linear mixed models will give you more robust
estimates (think Type M error!) compared to no pooling
models.

I This is one reason why linear mixed models are such a big
deal.
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Linear mixed models

Varying intercepts and slopes model, with crossed random effects for subjects and for items

Crossed subjects and items in LMMs

Subjects and items are fully crossed:

head(xtabs(~subject+item,dat))

## item

## subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Linear mixed models

Varying intercepts and slopes model, with crossed random effects for subjects and for items

Linear mixed models

Linear mixed model with crossed subject and items random effects.

m2.lmer<-lmer(logrt~so+(1+so||subject)+(1+so||item),dat)
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Linear mixed models

Varying intercepts and slopes model, with crossed random effects for subjects and for items

Linear mixed models

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.10090 0.3177

subject.1 so 0.01224 0.1106

item (Intercept) 0.00127 0.0356

item.1 so 0.00162 0.0402

Residual 0.13063 0.3614

Number of obs: 672, groups: subject, 42; item, 16

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.8831 0.0517 113.72

so 0.0620 0.0242 2.56
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Linear mixed models

Varying intercepts and slopes model, with crossed random effects for subjects and for items

Visualizing random effects
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Linear mixed models

Varying intercepts and slopes model, with crossed random effects for subjects and for items

Visualizing random effects
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Linear mixed models

Model type 3: Varying intercepts and varying slopes, with correlation

Linear mixed models

Linear mixed model with crossed subject and items random effects.

m3.lmer<-lmer(logrt~so+(1+so|subject)+(1+so|item),

dat)

## boundary (singular) fit: see ?isSingular

45 / 49



46/ 49

Lecture 6

Linear mixed models

Model type 3: Varying intercepts and varying slopes, with correlation

Linear mixed models

Linear mixed model with crossed subject and items random effects.

Random effects:

Groups Name Variance Std.Dev. Corr

subject (Intercept) 0.10103 0.3178

so 0.01228 0.1108 0.58

item (Intercept) 0.00172 0.0415

so 0.00196 0.0443 1.00 <= degenerate

Residual 0.12984 0.3603

Number of obs: 672, groups: subject, 42; item, 16

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.8831 0.0520 113.09

so 0.0620 0.0247 2.51
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Linear mixed models

Model type 3: Varying intercepts and varying slopes, with correlation

Formal statement of varying intercepts and varying slopes
linear mixed model with correlation

i indexes subjects, j items.

yij = α+ u0i + w0j + (β + u1i + w1j) ∗ soij + εij (5)

where εij ∼ Normal(0, σ) and

Σu =

(
σ2u0 ρuσu0σu1

ρuσu0σu1 σ2u1

)
Σw =

(
σ2w0 ρwσw0σw1

ρwσw0σw1 σ2w1

)
(6)(

u0
u1

)
∼ N

((
0
0

)
,Σu

)
,

(
w0

w1

)
∼ N

((
0
0

)
,Σw

)
(7)
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Linear mixed models

Model type 3: Varying intercepts and varying slopes, with correlation

Visualizing random effects
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Linear mixed models

Model type 3: Varying intercepts and varying slopes, with correlation

Visualizing random effects
These are degenerate estimates
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