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Chapter 1

Brownian Motion

This introduction to stochastic analysis starts with an introduction to Brownian motion.

Brownian Motion is a diffusion process, i.e. a continuous-time Markov process (Bt)t≥0

with continuous sample paths t 7→ Bt(ω). In fact, it is the only nontrivial continuous-

time process that is a Lévy process as well as a martingale and a Gaussian process. A

rigorous construction of this process has been carried out first by N. Wiener in 1923.

Already about 20 years earlier, related models had been introduced independently for

financial markets by L. Bachelier [Théorie de la spéculation, Ann. Sci. École Norm.

Sup. 17, 1900], and for the velocity of molecular motion by A. Einstein [Über die von

der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden

Flüssigkeiten suspendierten Teilchen, Annalen der Physik 17, 1905].

It has been a groundbreaking approach of K. Itô to construct general diffusion processes

from Brownian motion, cf. [. . . ]. In classical analysis, the solution of an ordinary dif-

ferential equation x′(t) = f(t, x(t)) is a function, that can be approximated locally for

t close to t0 by the linear function x(t0) + f(t0, x(t0)) · (t− t0). Similarly, Itô showed,

that a diffusion process behaves locally like a linear function of Brownian motion – the

connection being described rigorously by a stochastic differential equation (SDE).

The fundamental rôle played by Brownian motion in stochastic analysis is due to the

central limit Theorem. Similarly as the normal distribution arises as a universal scal-

ing limit of standardized sums of independent, identically distributed, square integrable

14
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random variables, Brownian motion shows up as a universal scaling limit of Random

Walks with square integrable increments.

1.1 From Random Walks to Brownian Motion

To motivate the definition of Brownian motion below, we first briefly discuss discrete-

time stochastic processes and possible continuous-time scaling limits on an informal

level.

A standard approach to model stochastic dynamics in discrete time is to start from a se-

quence of random variables η1, η2, . . . defined on a common probability space (Ω,A, P ).
The random variables ηn describe the stochastic influences (noise) on the system. Often

they are assumed to be independent and identically distributed (i.i.d.). In this case the

collection (ηn) is also called a white noise, whereas a colored noise is given by depen-

dent random variables. A stochastic process Xn, n = 0, 1, 2, . . . , taking values in Rd is

then defined recursively on (Ω,A, P ) by

Xn+1 = Xn + Φn+1(Xn, ηn+1), n = 0, 1, 2, . . . . (1.1.1)

Here the Φn are measurable maps describing the random law of motion. If X0 and

η1, η2, . . . are independent random variables, then the process (Xn) is a Markov chain

with respect to P .

Now let us assume that the random variables ηn are independent and identically dis-

tributed taking values in R, or, more generally, Rd. The easiest type of a nontrivial

stochastic dynamics as described above is the Random Walk Sn =
n∑

i=1

ηi which satisfies

Sn+1 = Sn + ηn+1 for n = 0, 1, 2, . . . .

Since the noise random variables ηn are the increments of the Random Walk (Sn), the

law of motion (1.1.1) in the general case can be rewritten as

Xn+1 −Xn = Φn+1(Xn, Sn+1 − Sn), n = 0, 1, 2, . . . . (1.1.2)

This equation is a difference equation for (Xn) driven by the stochastic process (Sn).
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16 CHAPTER 1. BROWNIAN MOTION

Our aim is to carry out a similar construction as above for stochastic dynamics in con-

tinuous time. The stochastic difference equation (1.1.2) will then eventually be replaced

by a stochastic differential equation (SDE). However, before even being able to think

about how to write down and make sense of such an equation, we have to identify a

continuous-time stochastic process that takes over the rôle of the Random Walk. For

this purpose, we first determine possible scaling limits of Random Walks when the time

steps tend to 0. It will turn out that if the increments are square integrable and the size

of the increments goes to 0 as the length of the time steps tends to 0, then by the Central

Limit Theorem there is essentially only one possible limit process in continuous time:

Brownian motion.

Central Limit Theorem

Suppose that Yn,i : Ω → Rd, 1 ≤ i ≤ n < ∞, are identically distributed, square-

integrable random variables on a probability space (Ω,A, P ) such that Yn,1, . . . , Yn,n

are independent for each n ∈ N. Then the rescaled sums

1√
n

n∑

i=1

(Yn,i − E[Yn,i])

converge in distribution to a multivariate normal distribution N(0, C) with covariance

matrix

Ckl = Cov[Y
(k)
n,i , Y

(l)
n,i ].

To see, how the CLT determines the possible scaling limits of Random Walks, let us

consider a one-dimensional Random Walk

Sn =

n∑

i=1

ηi, n = 0, 1, 2, . . . ,

on a probability space (Ω,A, P ) with independent increments ηi ∈ L2(Ω,A, P ) nor-

malized such that

E[ηi] = 0 and Var[ηi] = 1. (1.1.3)

Plotting many steps of the Random Walk seems to indicate that there is a limit process

with continuous sample paths after appropriate rescaling:

Stochastic Analysis Andreas Eberle
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To see what appropriate means, we fix a positive integer m, and try to define a rescaled

Random Walk S(m)
t (t = 0, 1/m, 2/m, . . .) with time steps of size 1/m by

S
(m)
k/m = cm · Sk (k = 0, 1, 2, . . .)

for some constants cm > 0. If t is a multiple of 1/m, then

Var[S
(m)
t ] = c2m · Var[Smt] = c2m ·m · t.

Hence in order to achieve convergence of S(m)
t as m → ∞, we should choose cm

proportional to m−1/2. This leads us to define a continuous time process (S(m)
t )t≥0 by

S
(m)
t (ω) :=

1√
m
Smt(ω) whenever t = k/m for some integer k,

and by linear interpolation for t ∈
(
k−1
m
, k
m

]
.
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Figure 1.1: Rescaling of a Random Walk.

Clearly,

E[S
(m)
t ] = 0 for all t ≥ 0,

and

Var[S
(m)
t ] =

1

m
Var[Smt] = t

whenever t is a multiple of 1/m. In particular, the expectation values and variances for a

fixed time t do not depend on m. Moreover, if we fix a partition 0 ≤ t0 < t1 < . . . < tn

such that each ti is a multiple of 1/m, then the increments

S
(m)
ti+1

− S
(m)
ti =

1√
m

(
Smti+1

− Smti

)
, i = 0, 1, 2, . . . , n− 1, (1.1.4)

of the rescaled process (S(m)
t )t≥0 are independent centered random variables with vari-

ances ti+1 − ti. If ti is not a multiple of 1/m, then a corresponding statement holds

approximately with an error that should be negligible in the limit m → ∞. Hence, if

the rescaled Random Walks (S(m)
t )t≥0 converge in distribution to a limit process (Bt)t≥0,

then (Bt)t≥0 should have independent incrementsBti+1
−Bti over disjoint time intervals

with mean 0 and variances ti+1 − ti.

It remains to determine the precise distributions of the increments. Here the Central

Limit Theorem applies. In fact, we can observe that by (1.1.4) each increment

S
(m)
ti+1

− S
(m)
ti =

1√
m

mti+1∑

k=mti+1

ηk
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of the rescaled process is a rescaled sum of m · (ti+1 − ti) i.i.d. random variables

with mean 0 and variance 1. Therefore, the CLT implies that the distributions of the

increments converge weakly to a normal distribution:

S
(m)
ti+1

− S
(m)
ti

D−→ N(0, ti+1 − ti).

Hence if a limit process (Bt) exists, then it should have independent, normally dis-

tributed increments.

Our considerations motivate the following definition:

Definition (Brownian Motion).

(1). Let a ∈ R. A continuous-time stochastic process Bt : Ω → R, t ≥ 0, defined on

a probability space (Ω,A, P ), is called a Brownian motion (starting in a) if and

only if

(a) B0(ω) = a for each ω ∈ Ω.

(b) For any partition 0 ≤ t0 < t1 < . . . < tn, the increments Bti+1
− Bti are

independent random variables with distribution

Bti+1
− Bti ∼ N(0, ti+1 − ti).

(c) P -almost every sample path t 7→ Bt(ω) is continuous.

(2). An Rd-valued stochastic processBt(ω) = (B
(1)
t (ω), . . . , B

(d)
t (ω)) is called a mul-

ti-dimensional Brownian motion if and only if the component processes

(B
(1)
t ), . . . , (B

(d)
t ) are independent one-dimensional Brownian motions.

Thus the increments of a d-dimensional Brownian motion are independent over disjoint

time intervals and have a multivariate normal distribution:

Bt − Bs ∼ N(0, (t− s) · Id) for any 0 ≤ s ≤ t.
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Remark. (1). Continuity: Continuity of the sample paths has to be assumed sepa-

rately: If (Bt)t≥0 is a one-dimensional Brownian motion, then the modified pro-

cess (B̃t)t≥0 defined by B̃0 = B0 and

B̃t = Bt · I{Bt∈R\Q} for t > 0

has almost surely discontinuous paths. On the other hand, it satisfies (a) and (b)

since the distributions of (B̃t1 , . . . , B̃tn) and (Bt1 , . . . , Btn) coincide for all n ∈ N

and t1, . . . , tn ≥ 0.

(2). Spatial Homogeneity: If (Bt)t≥0 is a Brownian motion starting at 0, then the

translated process (a+Bt)t≥0 is a Brownian motion starting at a.

(3). Existence: There are several constructions and existence proofs for Brownian mo-

tion. In Section 1.3 below we will discuss in detail the Wiener-Lévy construction

of Brownian motion as a random superposition of infinitely many deterministic

paths. This explicit construction is also very useful for numerical approximations.

A more general (but less constructive) existence proof is based on Kolmogorov’s

extension Theorem, cf. e.g. [Klenke].

(4). Functional Central Limit Theorem: The construction of Brownian motion as

a scaling limit of Random Walks sketched above can also be made rigorous.

Donsker’s invariance principle is a functional version of the central limit The-

orem which states that the rescaled Random Walks (S
(m)
t ) converge in distribu-

tion to a Brownian motion. As in the classical CLT the limit is universal, i.e., it

does not depend on the distribution of the increments ηi provided (1.1.3) holds,

cf. Section ??.

Brownian motion as a Lévy process.

The definition of Brownian motion shows in particular that Brownian motion is a Lévy

process, i.e., it has stationary independent increments (over disjoint time intervals). In

fact, the analogues of Lévy processes in discrete time are Random Walks, and it is rather

obvious, that all scaling limits of Random Walks should be Lévy processes. Brownian
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motion is the only Lévy process Lt in continuous time with paths such that E[L1] =

0 and Var[L1] = 1. The normal distribution of the increments follows under these

assumptions by an extension of the CLT, cf. e.g. [Breiman: Probability]. A simple

example of a Lévy process with non-continuous paths is the Poisson process. Other

examples are α-stable processes which arise as scaling limits of Random Walks when

the increments are not square-integrable. Stochastic analysis based on general Lévy

processes has attracted a lot of interest recently.

Let us now consider consider a Brownian motion (Bt)t≥0 starting at a fixed point a ∈
Rd, defined on a probability space (Ω,A, P ). The information on the process up to time

t is encoded in the σ-algebra

FB
t = σ(Bs | 0 ≤ s ≤ t)

generated by the process. The independence of the increments over disjoint intervals

immediately implies:

Lemma 1.1. For any 0 ≤ s ≤ t, the increment Bt −Bs is independent of FB
s .

Proof. For any partition 0 = t0 ≤ t1 ≤ . . . ≤ tn = s of the interval [0, s], the increment

Bt − Bs is independent of the σ-algebra

σ(Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1)

generated by the increments up to time s. Since

Btk = Bt0 +

k∑

i=1

(Bti − Bti−1
)

and Bt0 is constant, this σ-algebra coincides with σ(Bt0 , Bt1 , . . . , Btn). Hence Bt −Bs

is independent of all finite subcollections of (Bu |0 ≤ u ≤ s) and therefore independent

of FB
s .

Brownian motion as a Markov process.

As a process with stationary increments, Brownian motion is in particular a time-homo-

geneous Markov process. In fact, we have:

University of Bonn 2015/2016
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Theorem 1.2 (Markov property). A Brownian motion (Bt)t≥0 in Rd is a time-homo-

geneous Markov process with transition densities

pt(x, y) = (2πt)−d/2 · exp
(
−|x− y|2

2t

)
, t > 0, x, y ∈ Rd,

i.e., for any Borel set A ⊆ Rd and 0 ≤ s < t,

P [Bt ∈ a | FB
s ] =

ˆ

A

pt−s(Bs, y) dy P -almost surely.

Proof. For 0 ≤ s < t we have Bt = Bs + (Bt − Bs) where Bs is FB
s -measurable, and

Bt −Bs is independent of FB
s by Lemma 1.1. Hence

P [Bt ∈ A | FB
s ](ω) = P [Bs(ω) +Bt − Bs ∈ A] = N(Bs(ω), (t− s) · Id)[A]

=

ˆ

A

(2π(t− s))−d/2 · exp
(
−|y − Bs(ω)|2

2(t− s)

)
dy P -almost surely.

Remark (Heat equation as backward equation and forward equation). The tran-

sition function of Brownian motion is the heat kernel in Rd, i.e., it is the fundamental

solution of the heat equation
∂u

∂t
=

1

2
∆u.

More precisely, pt(x, y) solves the initial value problem

∂

∂t
pt(x, y) =

1

2
∆xpt(x, y) for any t > 0, x, y ∈ Rd,

(1.1.5)

lim
tց0

ˆ

pt(x, y)f(y) dy = f(x) for any f ∈ Cb(R
d), x ∈ Rd,

where ∆x =
d∑

i=1

∂2

∂x2i
denotes the action of the Laplace operator on the x-variable. The

equation (1.1.5) can be viewed as a version of Kolmogorov’s backward equation for
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Brownian motion as a time-homogeneous Markov process, which states that for each

t > 0, y ∈ Rd and f ∈ Cb(R
d), the function

v(s, x) =

ˆ

pt−s(x, y)f(y) dy

solves the terminal value problem

∂v

∂s
(s, x) = −1

2
∆xv(s, x) for s ∈ [0, t), lim

sրt
v(s, x) = f(x). (1.1.6)

Note that by the Markov property, v(s, x) = (pt−sf)(x) is a version of the conditional

expectation E[f(Bt) | Bs = x]. Therefore, the backward equation describes the depen-

dence of the expectation value on starting point and time.

By symmetry, pt(x, y) also solves the initial value problem

∂

∂t
pt(x, y) =

1

2
∆ypt(x, y) for any t > 0, and x, y ∈ Rd,

(1.1.7)

lim
tց0

ˆ

g(x)pt(x, y) dx = g(y) for any g ∈ Cb(R
d), y ∈ Rd.

The equation (1.1.7) is a version of Kolmogorov’s forward equation, stating that for

g ∈ Cb(R
d), the function u(t, y) =

´

g(x)pt(x, y) dx solves

∂u

∂t
(t, y) =

1

2
∆yu(t, y) for t > 0, lim

tց0
u(t, y) = g(y). (1.1.8)

The forward equation describes the forward time evolution of the transition densities

pt(x, y) for a given starting point x.

The Markov property enables us to compute the marginal distributions of Brownian

motion:

Corollary 1.3 (Finite dimensional marginals). Suppose that (Bt)t≥0 is a Brownian

motion starting at x0 ∈ Rd defined on a probability space (Ω,A, P ). Then for any
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n ∈ N and 0 = t0 < t1 < t2 < . . . < tn, the joint distribution of Bt1 , Bt2 , . . . , Btn is

absolutely continuous with density

fBt1 ,...,Btn
(x1, . . . , xn) = pt1(x0, x1)pt2−t1(x1, x2)pt3−t2(x2, x3) · · ·ptn−tn−1(xn−1, xn)

=

n∏

i=1

(2π(ti − ti−1))
−d/2 · exp

(
−1

2

n∑

i=1

|xi − xi−1|2
ti − ti−1

)
.(1.1.9)

Proof. By the Markov property and induction on n, we obtain

P [Bt1 ∈ A1, . . . , Btn ∈ An]

= E[P [Btn ∈ An | FB
tn−1

] ; Bt1 ∈ A1, . . . , Btn−1 ∈ An−1]

= E[ptn−tn−1(Btn−1 , An) ; Bt1 ∈ A1, . . . , Btn−1 ∈ An−1]

=

ˆ

A1

· · ·
ˆ

An−1

pt1(x0, x1)pt2−t1(x1, x2) · · ·

·ptn−1−tn−2(xn−2, xn−1)ptn−tn−1(xn−1, An) dxn−1 · · · dx1

=

ˆ

A1

· · ·
ˆ

An

(
n∏

i=1

pti−ti−1
(xn−1, xn)

)
dxn · · · dx1

for all n ≥ 0 and A1, . . . , An ∈ B(Rd).

Remark (Brownian motion as a Gaussian process). The corollary shows in particular

that Brownian motion is a Gaussian process, i.e., all the marginal distributions in (1.1.9)

are multivariate normal distributions. We will come back to this important aspect in the

next section.

Wiener Measure

The distribution of Brownian motion could be considered as a probability measure on

the product space (Rd)[0,∞) consisting of all maps x : [0,∞) → Rd. A disadvantage

of this approach is that the product space is far too large for our purposes: It contains

extremely irregular paths x(t), although at least almost every path of Brownian motion

is continuous by definition. Actually, since [0,∞) is uncountable, the subset of all
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continuous paths is not even measurable w.r.t. the product σ-algebra on (Rd)[0,∞).

Instead of the product space, we will directly consider the distribution of Brownian

motion on the continuous path spaceC([0,∞),Rd). For this purpose, we fix a Brownian

motion (Bt)t≥0 starting at x0 ∈ Rd on a probability space (Ω,A, P ), and we assume that

every sample path t 7→ Bt(ω) is continuous. This assumption can always be fulfilled by

modifying a given Brownian motion on a set of measure zero. The full process (Bt)t≥0

can then be interpreted as a single path-space valued random variable (or a "random

path").

ω Ω

x0

Rd

t

B(ω)

Figure 1: B : Ω → C([0,∞),Rd), B(ω) = (Bt(ω))t≥0.

Figure 1.2: B : Ω → C([0,∞),Rd), B(ω) = (Bt(ω))t≥0.

We endow the space of continuous paths x : [0,∞) → Rd with the σ-algebra

B = σ(Xt | t ≥ 0)

generated by the coordinate maps

Xt : C([0,∞),Rd) → Rd, Xt(x) = xt, t ≥ 0.

Note that we also have

B = σ(Xt | t ∈ D)

for any dense subset D of [0,∞), because Xt = lim
s→t

Xs for each t ∈ [0,∞) by con-

tinuity. Furthermore, it can be shown that B is the Borel σ-algebra on C([0,∞),Rd)

endowed with the topology of uniform convergence on finite intervals.
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Theorem 1.4 (Distribution of Brownian motion on path space). The map B : Ω →
C([0,∞),Rd) is measurable w.r.t. the σ-algebras A/B. The distribution P ◦ B−1 of B

is the unique probability measure µx0 on (C([0,∞),Rd),B) with marginals

µx0

[
{x ∈ C([0,∞),Rd) : xt1 ∈ A1, . . . , xtn ∈ An}

]
(1.1.10)

=
n∏

i=1

(2π(ti − ti−1))
−d/2

ˆ

A1

· · ·
ˆ

An

exp

(
−1

2

n∑

i=1

|xi − xi−1|2
ti − ti−1

)
dxn · · · dx1

for any n ∈ N, 0 < t1 < . . . < tn, and A1, . . . , An ∈ B(Rd).

Definition. The probability measure µx0 on the path space C([0,∞),Rd) determined

by (1.1.10) is called Wiener measure (with start in x0).

Remark (Uniqueness in distribution). The Theorem asserts that the path space distri-

bution of a Brownian motion starting at a given point x0 is the corresponding Wiener

measure. In particular, it is uniquely determined by the marginal distributions in (1.1.9).

Proof of Theorem 1.4. For n ∈ N, 0 < t1 < . . . < tn, and A1, . . . , An ∈ B(Rd), we

have

B−1({Xt1 ∈ A1, . . . , Xtn ∈ An}) = {ω : Xt1(B(ω)) ∈ A1, . . . , Xtn(B(ω)) ∈ An}
= {Bt1 ∈ A1, . . . , Btn ∈ An} ∈ A.

Since the cylinder sets of type {Xt1 ∈ A1, . . . , Xtn ∈ An} generate the σ-algebra B, the

map B is A/B-measurable. Moreover, by corollary 1.3, the probabilities

P [B ∈ {Xt1 ∈ A1, . . . , Xtn ∈ An}] = P [Bt1 ∈ A1, . . . , Btn ∈ An],

are given by the right hand side of (1.1.10). Finally, the measure µx0 is uniquely deter-

mined by (1.1.10), since the system of cylinder sets as above is stable under intersections

and generates the σ-algebra B.
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Definition (Canonical model for Brownian motion.). By (1.1.10), the coordinate pro-

cess

Xt(x) = xt, t ≥ 0,

on C([0,∞),Rd) is a Brownian motion starting at x0 w.r.t. Wiener measure µx0 . We

refer to the stochastic process (C([0,∞),Rd),B, µx0, (Xt)t≥0) as the canonical model

for Brownian motion starting at x0.

1.2 Brownian Motion as a Gaussian Process

We have already verified that Brownian motion is a Gaussian process, i.e., the finite

dimensional marginals are multivariate normal distributions. We will now exploit this

fact more thoroughly.

Multivariate normals

Let us first recall some basics on normal random vectors:

Definition. Suppose that m ∈ Rn is a vector and C ∈ Rn×n is a symmetric non-

negative definite matrix. A random variable Y : Ω → Rn defined on a probability

space (Ω,A, P ) has a multivariate normal distribution N(m,C) with mean m and

covariance matrix C if and only if its characteristic function is given by

E[eip·Y ] = eip·m− 1
2
p·Cp for any p ∈ Rn. (1.2.1)

If C is non-degenerate, then a multivariate normal random variable Y is absolutely

continuous with density

fY (x) = (2π detC)−1/2 exp

(
−1

2
(x−m) · C−1(x−m)

)
.
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A degenerate normal distribution with vanishing covariance matrix is a Dirac measure:

N(m, 0) = δm.

Differentiating (1.2.1) w.r.t. p shows that for a random variable Y ∼ N(m,C), the

mean vector is m and Ci,j is the covariance of the components Yi and Yj . Moreover, the

following important facts hold:

Theorem 1.5 (Properties of normal random vectors).

(1). A random variable Y : Ω → Rn has a multivariate normal distribution if and

only if any linear combination

p · Y =
n∑

i=1

piYi, p ∈ Rn,

of the components Yi has a one dimensional normal distribution.

(2). Any affine function of a normally distributed random vector Y is again normally

distributed:

Y ∼ N(m,C) =⇒ AY + b ∼ N(Am+ b, ACA⊤)

for any d ∈ N, A ∈ Rd×n and b ∈ Rd.

(3). If Y = (Y1, . . . , Yn) has a multivariate normal distribution, and the components

Y1, . . . , Yn are uncorrelated random variables, then Y1, . . . , Yn are independent.

Proof. (1). follows easily from the definition.

(2). For Y ∼ N(m,C), A ∈ Rd×n and b ∈ Rd we have

E[eip·(AY+b)] = eip·bE[ei(A
⊤p)·Y ]

= eip·bei(A
⊤p)·m− 1

2
(A⊤p)·CA⊤p

= eip·(Am+b)− 1
2
p·ACA⊤

for any p ∈ Rd,

i.e., AY + b ∼ N(Am+ b, ACA⊤).
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(3). If Y1, . . . , Yn are uncorrelated, then the covariance matrix Ci,j = Cov[Yi, Yj] is a

diagonal matrix. Hence the characteristic function

E[eip·Y ] = eip·m− 1
2
p·Cp =

n∏

k=1

eimkpk− 1
2
Ck,kp

2
k

is a product of characteristic functions of one-dimensional normal distributions.

Since a probability measure on Rn is uniquely determined by its characteristic

function, it follows that the adjoint distribution of Y1, . . . , Yn is a product measure,

i.e. Y1, . . . , Yn are independent.

If Y has a multivariate normal distributionN(m,C) then for any p, q ∈ Rn, the random

variables p · Y and q · Y are normally distributed with means p · m and q · m, and

covariance

Cov[p · Y, q · Y ] =
n∑

i,j=1

piCi,jqj = p · Cq.

In particular, let {e1, . . . , en} ⊆ Rn be an orthonormal basis consisting of eigenvectors

of the covariance matrix C. Then the components ei · Y of Y in this basis are uncor-

related and therefore independent, jointly normally distributed random variables with

variances given by the corresponding eigenvectors λi:

Cov[ei · Y, ej · Y ] = λiδi,j , 1 ≤ i, j ≤ n. (1.2.2)

Correspondingly, the contour lines of the density of a non-degenerate multivariate nor-

mal distribution N(m,C) are ellipsoids with center at m and principal axes of length
√
λi given by the eigenvalues ei of the covariance matrix C.
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Figure 1.3: Level lines of the density of a normal random vector Y ∼

N

((
1

2

)
,

(
1 1

−1 1

))
.

Conversely, we can generate a random vector Y with distribution N(m,C) from i.i.d.

standard normal random variables Z1, . . . , Zn by setting

Y = m+
n∑

i=1

√
λiZiei. (1.2.3)

More generally, we have:

Corollary 1.6 (Generating normal random vectors). Suppose that C = UΛU⊤ with

a matrix U ∈ Rn×d, d ∈ N, and a diagonal matrix Λ = diag(λ1, . . . , λd) ∈ Rd×d with

nonnegative entries λi. If Z = (Z1, . . . , Zd) is a random vector with i.i.d. standard

normal random components Z1, . . . , Zd then

Y = UΛ1/2Z +m

has distribution N(m,C).
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Proof. Since Z ∼ N(0, Id), the second assertion of Theorem 1.5 implies

Y ∼ N(m,UΛU⊤).

Choosing for U the matrix (e1, . . . , en) consisting of the orthonormal eigenvectors

e1, . . . , en of C, we obtain (1.2.3) as a special case of the corollary. For computational

purposes it is often more convenient to use the Cholesky decomposition

C = LL⊤

of the covariance matrix as a product of a lower triangular matrix L and the upper

triangular transpose L⊤:

Algorithm 1.7 (Simulation of multivariate normal random variables).

Given: m ∈ Rn, C ∈ Rn×n symmetric and non-negative definite.

Output: Sample y ∼ N(m,C).

(1). Compute the Cholesky decomposition C = LL⊤.

(2). Generate independent samples z1, . . . , zn ∼ N(0, 1) (e.g. by the Box-Muller

method).

(3). Set y := Lz +m.

Gaussian processes

Let I be an arbitrary index set, e.g. I = N, I = [0,∞) or I = Rn.

Definition. A collection (Yt)t∈I of random variables Yt : Ω → Rd defined on a proba-

bility space (Ω,A, P ) is called a Gaussian process if and only if the joint distribution

of any finite subcollection Yt1, . . . , Ytn with n ∈ N and t1, . . . , tn ∈ I is a multivariate

normal distribution.
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The distribution of a Gaussian process (Yt)t∈I on the path space RI or C(I,R) endowed

with the σ-algebra generated by the maps x 7→ xt, t ∈ I , is uniquely determined by

the multinormal distributions of finite subcollections Yt1, . . . , Ytn as above, and hence

by the expectation values

m(t) = E[Yt], t ∈ I,

and the covariances

c(s, t) = Cov[Ys, Yt], s, t ∈ I.

A Gaussian process is called centered, if m(t) = 0 for any t ∈ I .

Example (AR(1) process). The autoregressive process (Yn)n=0,1,2,... defined recur-

sively by Y0 ∼ N(0, v0),

Yn = αYn−1 + εηn for n ∈ N,

with parameters v0 > 0, α, ε ∈ R, ηn i.i.d. ∼ N(0, 1), is a centered Gaussian process.

The covariance function is given by

c(n, n+ k) = v0 + ε2n for any n, k ≥ 0 if α = 1,

and

c(n, n + k) = αk ·
(
α2nv0 + (1− α2n) · ε2

1− α2

)
for n, k ≥ 0 otherwise.

This is easily verified by induction. We now consider some special cases:

α = 0: In this case Yn = εηn. Hence (Yn) is a white noise, i.e., a sequence of inde-

pendent normal random variables, and

Cov[Yn, Ym] = ε2 · δn,m for any n,m ≥ 1.

α = 1: Here Yn = Y0+ε
n∑

i=1

ηi, i.e., the process (Yn) is a Gaussian Random Walk, and

Cov[Yn, Ym] = v0 + ε2 ·min(n,m) for any n,m ≥ 0.

We will see a corresponding expression for the covariances of Brownian motion.
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α < 1: For α < 1, the covariances Cov[Yn, Yn+k] decay exponentially fast as k → ∞.

If v0 = ε2

1−α2 , then the covariance function is translation invariant:

c(n, n+ k) =
ε2αk

1− α2
for any n, k ≥ 0.

Therefore, in this case the process (Yn) is stationary, i.e., (Yn+k)n≥0 ∼ (Yn)n≥0 for all

k ≥ 0.

Brownian motion is our first example of a nontrivial Gaussian process in continuous

time. In fact, we have:

Theorem 1.8 (Gaussian characterization of Brownian motion). A real-valued stoch-

astic process (Bt)t∈[0,∞) with continuous sample paths t 7→ Bt(ω) and B0 = 0 is a

Brownian motion if and only if (Bt) is a centered Gaussian process with covariances

Cov[Bs, Bt] = min(s, t) for any s, t ≥ 0. (1.2.4)

Proof. For a Brownian motion (Bt) and 0 = t0 < t1 < . . . < tn, the increments Bti −
Bti−1

, 1 ≤ i ≤ n, are independent random variables with distribution N(0, ti − ti−1).

Hence,

(Bt1 − Bt0 , . . . , Btn − Btn−1) ∼
n⊗

i=1

N(0, ti − ti−1),

which is a multinormal distribution. Since Bt0 = B0 = 0, we see that




Bt1
...

Btn


 =




1 0 0 . . . 0 0

1 1 0 . . . 0 0
. . .

. . .

1 1 1 . . . 1 0

1 1 1 . . . 1 1







Bt1 − Bt0
...

Btn −Btn−1




also has a multivariate normal distribution, i.e., (Bt) is a Gaussian process. Moreover,

since Bt = Bt −B0, we have E[Bt] = 0 and

Cov[Bs, Bt] = Cov[Bs, Bs] + Cov[Bs, Bt − Bs] = Var[Bs] = s
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for any 0 ≤ s ≤ t, i.e., (1.2.4) holds.

Conversely, if (Bt) is a centered Gaussian process satisfying (1.2.4), then for any 0 =

t0 < t1 < . . . < tn, the vector (Bt1 − Bt0 , . . . , Btn − Btn−1) has a multivariate normal

distribution with

E[Bti − Bti−1
] = E[Bti ]−E[Bti−1

] = 0, and

Cov[Bti −Bti−1
, Btj −Btj−1

] = min(ti, tj)−min(ti, tj−1)

−min(ti−1, tj) + min(ti−1, tj−1)

= (ti − ti−1) · δi,j for any i, j = 1, . . . , n.

Hence by Theorem 1.5 (3), the increments Bti −Bti−1
, 1 ≤ i ≤ n, are independent with

distribution N(0, ti − ti−1), i.e., (Bt) is a Brownian motion.

Symmetries of Brownian motion

A first important consequence of the Gaussian characterization of Brownian motion are

several symmetry properties of Wiener measure:

Theorem 1.9 (Invariance properties of Wiener measure). Let (Bt)t≥0 be a Brown-

ian motion starting at 0 defined on a probability space (Ω,A, P ). Then the following

processes are again Brownian motions:

(1). (−Bt)t≥0 (Reflection invariance)

(2). (Bt+h − Bh)t≥0 for any h ≥ 0 (Stationarity)

(3). (a−1/2Bat)t≥0 for any a > 0 (Scale invariance)

(4). The time inversion (B̃t)t≥0 defined by

B̃0 = 0, B̃t = t · B1/t for t > 0.

Stochastic Analysis Andreas Eberle



1.2. BROWNIAN MOTION AS A GAUSSIAN PROCESS 35

Proof. The proofs of (1), (2) and (3) are left as an exercise to the reader. To show (4),

we first note that for each n ∈ N and 0 ≤ t1 < . . . < tn, the vector (B̃t1 , . . . , B̃tn) has a

multivariate normal distribution since it is a linear transformation of (B1/t1 , . . . , B1/tn),

(B0, B1/t2 , . . . , B1/tn) respectively. Moreover,

E[B̃t] = 0 for any t ≥ 0,

Cov[B̃s, B̃t] = st · Cov[B1/s, B1/t]

= st ·min(
1

s
,
1

t
) = min(t, s) for any s, t > 0, and

Cov[B̃0, B̃t] = 0 for any t ≥ 0.

Hence (B̃t)t≥0 is a centered Gaussian process with the covariance function of Brownian

motion. By Theorem 1.8, it only remains to show that P -almost every sample path

t 7→ B̃t(ω) is continuous. This is obviously true for t > 0. Furthermore, since the finite

dimensional marginals of the processes (B̃t)t≥0 and (Bt)t≥0 are multivariate normal

distributions with the same means and covariances, the distributions of (B̃t)t≥0 and

(Bt)t≥0 on the product space R(0,∞) endowed with the product σ-algebra generated by

the cylinder sets agree. To prove continuity at 0 we note that the set



x : (0,∞) → R

∣∣∣∣∣∣
lim
tց0

t∈Q

xt = 0





is measurable w.r.t. the product σ-algebra on R(0,∞). Therefore,

P


lim

tց0

t∈Q

B̃t = 0


 = P


lim

tց0

t∈Q

Bt = 0


 = 1.

Since B̃t is almost surely continuous for t > 0, we can conclude that outside a set of

measure zero,

sup
s∈(0,t)

|B̃s| = sup
s∈(0,t)∩Q

|B̃s| −→ 0 as tց 0,

i.e., t 7→ B̃t is almost surely continuous at 0 as well.
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Remark (Long time asymptotics versus local regularity, LLN). The time inversion

invariance of Wiener measure enables us to translate results on the long time asymp-

totics of Brownian motion (t ր ∞) into local regularity results for Brownian paths

(t ց 0) and vice versa. For example, the continuity of the process (B̃t) at 0 is equiva-

lent to the law of large numbers:

P

[
lim
t→∞

1

t
Bt = 0

]
= P

[
lim
sց0

sB1/s = 0

]
= 1.

At first glance, this looks like a simple proof of the LLN. However, the argument is based

on the existence of a continuous Brownian motion, and the existence proof requires

similar arguments as a direct proof of the law of large numbers.

Wiener measure as a Gaussian measure, path integral heuristics

Wiener measure (with start at 0) is the unique probability measure µ on the continuous

path space C([0,∞),Rd) such that the coordinate process

Xt : C([0,∞),Rd) → Rd, Xt(x) = xt,

is a Brownian motion starting at 0. By Theorem 1.8, Wiener measure is a centered

Gaussian measure on the infinite dimensional space C([0,∞),Rd), i.e., for any n ∈ N

and t1, . . . , tn ∈ R+, (Xt1 , . . . , Xtn) is normally distributed with mean 0. We now "de-

rive" a heuristic representation of Wiener measure that is not mathematically rigorous

but nevertheless useful:

Fix a constant T > 0. Then for 0 = t0 < t1 < . . . < tn ≤ T , the distribution of

(Xt1 , . . . , Xtn) w.r.t. Wiener measure is

µt1,...,tn(dxt1 , . . . , dxtn) =
1

Z(t1, . . . , tn)
exp

(
−1

2

n∑

i=1

|xti − xti−1
|2

ti − ti−1

)
n∏

i=1

dxti ,

(1.2.5)

where Z(t1, . . . , tn) is an appropriate finite normalization constant, and x0 := 0. Now

choose a sequence (τk)k∈N of partitions 0 = t
(k)
0 < t

(k)
1 < . . . < t

(k)
n(k) = T of the interval
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[0, T ] such that the mesh size max
i

|t(k)i+1− t
(k)
i | tends to zero. Taking informally the limit

in (1.2.5), we obtain the heuristic asymptotic representation

µ(dx) =
1

Z∞
exp


−1

2

T̂

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt


 δ0(dx0)

∏

t∈(0,T ]

dxt (1.2.6)

for Wiener measure on continuous paths x : [0, T ] → Rd with a "normalizing constant"

Z∞. Trying to make the informal expression (1.2.6) rigorous fails for several reasons:

• The normalizing constant Z∞ = lim
k→∞

Z(t
(k)
1 , . . . , t

(k)
n(k)) is infinite.

• The integral
T́

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt is also infinite for µ-almost every path x, since typical

paths of Brownian motion are nowhere differentiable, cf. below.

• The product measure
∏

t∈(0,T ]

dxt can be defined on cylinder sets but an extension to

the σ-algebra generated by the coordinate maps on C([0,∞),Rd) does not exist.

Hence there are several infinities involved in the informal expression (1.2.6). These

infinities magically balance each other such that the measure µ is well defined in contrast

to all of the factors on the right hand side.

In physics, R. Feynman introduced correspondingly integrals w.r.t. "Lebesgue measure

on path space", cf. e.g. the famous Feynman Lecture notes [...], or Glimm and Jaffe [ ...

].

Although not mathematically rigorous, the heuristic expression (1.2.5) can be a very

useful guide for intuition. Note for example that (1.2.5) takes the form

µ(dx) ∝ exp(−‖x‖2H/2) λ(dx), (1.2.7)

where ‖x‖H = (x, x)
1/2
H is the norm induced by the inner product

(x, y)H =

T̂

0

dx

dt

dy

dt
dt (1.2.8)
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of functions x, y : [0, T ] → Rd vanishing at 0, and λ is a corresponding "infinite-

dimensional Lebesgue measure" (which does not exist!). The vector space

H = {x : [0, T ] → Rd : x(0) = 0, x is absolutely continuous with
dx

dt
∈ L2}

is a Hilbert space w.r.t. the inner product (1.2.8). Therefore, (1.2.7) suggests to consider

Wiener measure as a standard normal distribution on H . It turns out that this idea can

be made rigorous although not as easily as one might think at first glance. The difficulty

is that a standard normal distribution on an infinite-dimensional Hilbert space does not

exist on the space itself but only on a larger space. In particular, we will see in the next

sections that Wiener measure µ can indeed be realized on the continuous path space

C([0, T ],Rd), but µ-almost every path is not contained in H!

Remark (Infinite-dimensional standard normal distributions). The fact that a stan-

dard normal distribution on an infinite dimensional separable Hilbert space H can not

be realized on the space H itself can be easily seen by contradiction: Suppose that µ

is a standard normal distribution on H , and en, n ∈ N, are infinitely many orthonormal

vectors in H . Then by rotational symmetry, the balls

Bn =

{
x ∈ H : ‖x− en‖H <

1

2

}
, n ∈ N,

should all have the same measure. On the other hand, the balls are disjoint. Hence by

σ-additivity,
∞∑

n=1

µ[Bn] = µ
[⋃

Bn

]
≤ µ[H ] = 1,

and therefore µ[Bn] = 0 for all n ∈ N. A scaling argument now implies

µ[{x ∈ H : ‖x− h‖ ≤ ‖h‖/2}] = 0 for all h ∈ H ,

and hence µ ≡ 0.

1.3 The Wiener-Lévy Construction

In this section we discuss how to construct Brownian motion as a random superposi-

tion of deterministic paths. The idea already goes back to N. Wiener, who constructed
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Brownian motion as a random Fourier series. The approach described here is slightly

different and due to P. Lévy: The idea is to approximate the paths of Brownian mo-

tion on a finite time interval by their piecewise linear interpolations w.r.t. the sequence

of dyadic partitions. This corresponds to a development of the Brownian paths w.r.t.

Schauder functions ("wavelets") which turns out to be very useful for many applica-

tions including numerical simulations.

Our aim is to construct a one-dimensional Brownian motion Bt starting at 0 for t ∈
[0, 1]. By stationarity and independence of the increments, a Brownian motion defined

for all t ∈ [0,∞) can then easily be obtained from infinitely many independent copies

of Brownian motion on [0, 1]. We are hence looking for a random variable

B = (Bt)t∈[0,1] : Ω −→ C([0, 1])

defined on a probability space (Ω,A, P ) such that the distribution P ◦ B−1 is Wiener

measure µ on the continuous path space C([0, 1]).

A first attempt

Recall that µ0 should be a kind of standard normal distribution w.r.t. the inner product

(x, y)H =

1
ˆ

0

dx

dt

dy

dt
dt (1.3.1)

on functions x, y : [0, 1] → R. Therefore, we could try to define

Bt(ω) :=

∞∑

i=1

Zi(ω)ei(t) for t ∈ [0, 1] and ω ∈ Ω, (1.3.2)

where (Zi)i∈N is a sequence of independent standard normal random variables, and

(ei)i∈N is an orthonormal basis in the Hilbert space

H = {x : [0, 1] → R | x(0) = 0, x is absolutely continuous with (x, x)H <∞}.
(1.3.3)

However, the resulting series approximation does not converge in H:
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Theorem 1.10. Suppose (ei)i∈N is a sequence of orthonormal vectors in a Hilbert space

H and (Zi)i∈N is a sequence of i.i.d. random variables with P [Zi 6= 0] > 0. Then the

series
∞∑
i=1

Zi(ω)ei diverges with probability 1 w.r.t. the norm on H .

Proof. By orthonormality and by the law of large numbers,

∥∥∥∥∥
n∑

i=1

Zi(ω)ei

∥∥∥∥∥

2

H

=
n∑

i=1

Zi(ω)
2 −→ ∞

P -almost surely as n→ ∞.

The Theorem again reflects the fact that a standard normal distribution on an infinite-

dimensional Hilbert space can not be realized on the space itself.

To obtain a positive result, we will replace the norm

‖x‖H =




1
ˆ

0

∣∣∣∣
dx

dt

∣∣∣∣
2

dt




1
2

on H by the supremum norm

‖x‖sup = sup
t∈[0,1]

|xt|,

and correspondingly the Hilbert space H by the Banach space C([0, 1]). Note that the

supremum norm is weaker than the H-norm. In fact, for x ∈ H and t ∈ [0, 1], the

Cauchy-Schwarz inequality implies

|xt|2 =

∣∣∣∣∣∣

t
ˆ

0

x′s ds

∣∣∣∣∣∣

2

≤ t ·
t

ˆ

0

|x′s|2 ds ≤ ‖x‖2H ,

and therefore

‖x‖sup ≤ ‖x‖H for any x ∈ H.
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There are two choices for an orthonormal basis of the Hilbert space H that are of par-

ticular interest: The first is the Fourier basis given by

e0(t) = t, en(t) =

√
2

πn
sin(πnt) for n ≥ 1.

With respect to this basis, the series in (1.3.2) is a Fourier series with random coeffi-

cients. Wiener’s original construction of Brownian motion is based on a random Fourier

series. A second convenient choice is the basis of Schauder functions ("wavelets") that

has been used by P. Lévy to construct Brownian motion. Below, we will discuss Lévy’s

construction in detail. In particular, we will prove that for the Schauder functions, the

series in (1.3.2) converges almost surely w.r.t. the supremum norm towards a contin-

uous (but not absolutely continuous) random path (Bt)t∈[0,1]. It is then not difficult to

conclude that (Bt)t∈[0,1] is indeed a Brownian motion.

The Wiener-Lévy representation of Brownian motion

Before carrying out Lévy’s construction of Brownian motion, we introduce the Schauder

functions, and we show how to expand a given Brownian motion w.r.t. this basis of

function space. Suppose we would like to approximate the paths t 7→ Bt(ω) of a Brow-

nian motion by their piecewise linear approximations adapted to the sequence of dyadic

partitions of the interval [0, 1].

1

1

An obvious advantage of this approximation over a Fourier expansion is that the values

of the approximating functions at the dyadic points remain fixed once the approximating
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partition is fine enough. The piecewise linear approximations of a continuous function

on [0, 1] correspond to a series expansion w.r.t. the base functions

e(t) = t , and

en,k(t) = 2−n/2e0,0(2
nt− k), n = 0, 1, 2, . . . , k = 0, 1, 2, . . . , 2n − 1, , where

e0,0(t) = min(t, 1− t)+ =





t for t ∈ [0, 1/2]

1− t for t ∈ (1/2, 1]

0 for t ∈ R \ [0, 1]

.

1

1

e(t)

1

2−(1+n/2)

k · 2−n (k + 1)2−n

en,k(t)
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0.5

1

e0,0(t)

The functions en,k (n ≥ 0, 0 ≤ k < 2n) are called Schauder functions. It is rather

obvious that piecewise linear approximation w.r.t. the dyadic partitions corresponds to

the expansion of a function x ∈ C([0, 1]) with x(0) = 0 in the basis given by e(t)

and the Schauder functions. The normalization constants in defining the functions en,k

have been chosen in such a way that the en,k are orthonormal w.r.t. the H-inner product

introduced above.

Definition. A sequence (ei)i∈N of vectors in an infinite-dimensional Hilbert space H is

called an orthonormal basis (or complete orthonormal system) of H if and only if

(1). Orthonormality: (ei, ej) = δij for any i, j ∈ N, and

(2). Completeness: Any h ∈ H can be expressed as

h =

∞∑

i=1

(h, ei)Hei.

Remark (Equivalent characterizations of orthonormal bases). Let ei, i ∈ N, be

orthonormal vectors in a Hilbert spaceH . Then the following conditions are equivalent:

(1). (ei)i∈N is an orthonormal basis of H .

(2). The linear span

span{ei | i ∈ N} =

{
k∑

i=1

ciei

∣∣∣∣∣ k ∈ N, c1, . . . , ck ∈ R

}
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is a dense subset of H .

(3). There is no element x ∈ H, x 6= 0, such that (x, ei)H = 0 for every i ∈ N.

(4). For any element x ∈ H , Parseval’s relation

‖x‖2H =

∞∑

i=1

(x, ei)
2
H (1.3.4)

holds.

(5). For any x, y ∈ H ,

(x, y)H =
∞∑

i=1

(x, ei)H(y, ei)H . (1.3.5)

For the proofs we refer to any book on functional analysis, cf. e.g. [Reed and Simon:

Methods of modern mathematical physics, Vol. I].

Lemma 1.11. The Schauder functions e and en,k (n ≥ 0, 0 ≤ k < 2n) form an or-

thonormal basis in the Hilbert space H defined by (1.3.3).

Proof. By definition of the inner product on H , the linear map d/dt which maps an

absolutely continuous function x ∈ H to its derivative x′ ∈ L2(0, 1) is an isometry

from H onto L2(0, 1), i.e.,

(x, y)H = (x′, y′)L2(0,1) for any x, y ∈ H.

The derivatives of the Schauder functions are the Haar functions

e′(t) ≡ 1,

e′n,k(t) = 2n/2(I[k·2−n,(k+1/2)·2−n)(t)− I[(k+1/2)·2−n,(k+1)·2−n)(t)) for a.e. t.
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1

1

e′(t)

1

2−n/2

−2−n/2

k · 2−n

(k + 1)2−n

e′n,k(t)

It is easy to see that these functions form an orthonormal basis in L2(0, 1). In fact,

orthonormality w.r.t. the L2 inner product can be verified directly. Moreover, the linear

span of the functions e′ and e′n,k for n = 0, 1, . . . , m and k = 0, 1, . . . , 2n−1 consists of

all step functions that are constant on each dyadic interval [j ·2−(m+1), (j+1) ·2−(m+1)).

An arbitrary function in L2(0, 1) can be approximated by dyadic step functions w.r.t.

the L2 norm. This follows for example directly from the L2 martingale convergence

Theorem, cf. ... below. Hence the linear span of e′ and the Haar functions e′n,k is dense

in L2(0, 1), and therefore these functions form an orthonormal basis of the Hilbert space

L2(0, 1). Since x 7→ x′ is an isometry from H onto L2(0, 1), we can conclude that e and

the Schauder functions en,k form an orthonormal basis of H .

The expansion of a function x : [0, 1] → R in the basis of Schauder functions can now

be made explicit. The coefficients of a function x ∈ H in the expansion are

(x, e)H =

1
ˆ

0

x′e′ dt =

1
ˆ

0

x′ dt = x(1)− x(0) = x(1)
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(x, en,k)H =

1
ˆ

0

x′e′n,k dt = 2n/2
1
ˆ

0

x′(t)e′0,0(2
nt− k) dt

= 2n/2
[
(x((k +

1

2
) · 2−n)− x(k · 2−n))− (x((k + 1) · 2−n)− x((k +

1

2
) · 2−n))

]
.

Theorem 1.12. Let x ∈ C([0, 1]). Then the expansion

x(t) = x(1)e(t)−
∞∑

n=0

2n−1∑

k=0

2n/2∆n,kx · en,k(t),

∆n,kx =

[
(x((k + 1) · 2−n)− x((k +

1

2
) · 2−n))− (x((k +

1

2
) · 2−n)− x(k · 2−n))

]

holds w.r.t. uniform convergence on [0, 1]. For x ∈ H the series also converges w.r.t.

the stronger H-norm.

Proof. It can be easily verified that by definition of the Schauder functions, for each

m ∈ N the partial sum

x(m)(t) := x(1)e(t)−
m∑

n=0

2n−1∑

k=0

2n/2∆n,kx · en,k(t) (1.3.6)

is the polygonal interpolation of x(t) w.r.t. the (m+1)-th dyadic partition of the interval

[0, 1]. Since the function x is uniformly continuous on [0, 1], the polygonal interpola-

tions converge uniformly to x. This proves the first statement. Moreover, for x ∈ H ,

the series is the expansion of x in the orthonormal basis of H given by the Schauder

functions, and therefore it also converges w.r.t. the H-norm.

Applying the expansion to the paths of a Brownian motions, we obtain:

Corollary 1.13 (Wiener-Lévy representation). For a Brownian motion (Bt)t∈[0,1] the

series representation

Bt(ω) = Z(ω)e(t) +
∞∑

n=0

2n−1∑

k=0

Zn,k(ω)en,k(t), t ∈ [0, 1], (1.3.7)
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holds w.r.t. uniform convergence on [0, 1] for P -almost every ω ∈ Ω, where

Z := B1, and Zn,k := −2n/2∆n,kB (n ≥ 0, 0 ≤ k ≤ 2n − 1)

are independent random variables with standard normal distribution.

Proof. It only remains to verify that the coefficients Z and Zn,k are independent with

standard normal distribution. A vector given by finitely many of these random variables

has a multivariate normal distribution, since it is a linear transformation of increments

of the Brownian motion Bt. Hence it suffices to show that the random variables are

uncorrelated with variance 1. This is left as an exercise to the reader.

Lévy’s construction of Brownian motion

The series representation (1.3.7) can be used to construct Brownian motion starting

from independent standard normal random variables. The resulting construction does

not only prove existence of Brownian motion but it is also very useful for numerical

implementations:

Theorem 1.14 (P. Lévy 1948). Let Z and Zn,k (n ≥ 0, 0 ≤ k ≤ 2n−1) be independent

standard normally distributed random variables on a probability space (Ω,A, P ). Then

the series in (1.3.7) converges uniformly on [0, 1] with probability 1. The limit process

(Bt)t∈[0,1] is a Brownian motion.

The convergence proof relies on a combination of the Borel-Cantelli Lemma and the

Weierstrass criterion for uniform convergence of series of functions. Moreover, we will

need the following result to identify the limit process as a Brownian motion:

Lemma 1.15 (Parseval relation for Schauder functions). For any s, t ∈ [0, 1],

e(t)e(s) +

∞∑

n=0

2n−1∑

k=0

en,k(t)en,k(s) = min(t, s).
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Proof. Note that for g ∈ H and s ∈ [0, 1], we have

g(s) = g(s)− g(0) =

1
ˆ

0

g′ · I(0,s) = (g, h(s))H ,

where h(s)(t) :=
t́

0

I(0,s) = min(s, t). Hence the Parseval relation (1.3.4) applied to

the functions h(s) and h(t) yields

e(t)e(s) +
∑

n,k

en,k(t)en,k(s)

= (e, h(t))(e, h(s)) +
∑

n,k

(en,k, h
(t))(en,k, h

(s))

= (h(t), h(s)) =

1
ˆ

0

I(0,t)I(0,s) = min(t, s).

Proof of Theorem 1.14. We proceed in 4 steps:

(1). Uniform convergence for P -a.e. ω: By the Weierstrass criterion, a series of func-

tions converges uniformly if the sum of the supremum norms of the summands is

finite. To apply the criterion, we note that for any fixed t ∈ [0, 1] and n ∈ N, only

one of the functions en,k, k = 0, 1, . . . , 2n − 1, does not vanish at t. Moreover,

|en,k(t)| ≤ 2−n/2. Hence

sup
t∈[0,1]

∣∣∣∣∣
2n−1∑

k=0

Zn,k(ω)en,k(t)

∣∣∣∣∣ ≤ 2−n/2 ·Mn(ω), (1.3.8)

where

Mn := max
0≤k<2n

|Zn,k|.
We now apply the Borel-Cantelli Lemma to show that with probability 1, Mn

grows at most linearly. Let Z denote a standard normal random variable. Then

we have

P [Mn > n] ≤ 2n · P [|Z| > n] ≤ 2n

n
· E[|Z| ; |Z| > n]

=
2 · 2n
n ·

√
2π

∞̂

n

xe−x2/2 dx =

√
2

π

2n

n
· e−n2/2
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for any n ∈ N. Since the sequence on the right hand side is summable, Mn ≤ n

holds eventually with probability one. Therefore, the sequence on the right hand

side of (1.3.8) is also summable for P -almost every ω. Hence, by (1.3.8) and the

Weierstrass criterion, the partial sums

B
(m)
t (ω) = Z(ω)e(t) +

m∑

n=0

2n−1∑

k=0

Zn,k(ω)en,k(t), m ∈ N,

converge almost surely uniformly on [0, 1]. Let

Bt = lim
m→∞

B
(m)
t

denote the almost surely defined limit.

(2). L2 convergence for fixed t: We now want to prove that the limit process (Bt)

is a Brownian motion, i.e., a continuous Gaussian process with E[Bt] = 0 and

Cov[Bt, Bs] = min(t, s) for any t, s ∈ [0, 1]. To compute the covariances we first

show that for a given t ∈ [0, 1] the series approximation B(m)
t of Bt converges

also in L2. Let l, m ∈ N with l < m. Since the Zn,k are independent (and hence

uncorrelated) with variance 1, we have

E[(B
(m)
t − B

(l)
t )2] = E



(

m∑

n=l+1

2n−1∑

k=0

Zn,ken,k(t)

)2

 =

m∑

n=l+1

∑

k

en,k(t)
2.

The right hand side converges to 0 as l, m→ ∞ since
∑
n,k

en,k(t)
2 <∞ by Lemma

1.15. Hence B(m)
t , m ∈ N, is a Cauchy sequence in L2(Ω,A, P ). Since Bt =

lim
m→∞

B
(m)
t almost surely, we obtain

B
(m)
t

m→∞−→ Bt in L2(Ω,A, P ).

(3). Expectations and Covariances: By the L2 convergence we obtain for any s, t ∈
[0, 1]:

E[Bt] = lim
m→∞

E[B
(m)
t ] = 0, and

Cov[Bt, Bs] = E[BtBs] = lim
m→∞

E[B
(m)
t B(m)

s ]

= e(t)e(s) + lim
m→∞

m∑

n=0

2n−1∑

k=0

en,k(t)en,k(s).
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Here we have used again that the random variables Z and Zn,k are independent

with variance 1. By Parseval’s relation (Lemma 1.15), we conclude

Cov[Bt, Bs] = min(t, s).

Since the process (Bt)t∈[0,1] has the right expectations and covariances, and, by

construction, almost surely continuous paths, it only remains to show that (Bt) is

a Gaussian process in oder to complete the proof:

(4). (Bt)t∈[0,1] is a Gaussian process: We have to show that (Bt1 , . . . , Btl) has a mul-

tivariate normal distribution for any 0 ≤ t1 < . . . < tl ≤ 1. By Theorem 1.5,

it suffices to verify that any linear combination of the components is normally

distributed. This holds by the next Lemma since

l∑

j=1

pjBtj = lim
m→∞

l∑

j=1

pjB
(m)
tj P -a.s.

is an almost sure limit of normally distributed random variables for any

p1, . . . , pl ∈ R.

Combining Steps 3, 4 and the continuity of sample paths, we conclude that (Bt)t∈[0,1] is

indeed a Brownian motion.

Lemma 1.16. Suppose that (Xn)n∈N is a sequence of normally distributed random vari-

ables defined on a joint probability space (Ω,A, P ), and Xn converges almost surely to

a random variable X . Then X is also normally distributed.

Proof. Suppose Xn ∼ N(mn, σ
2
n) with mn ∈ R and σn ∈ (0,∞). By the Dominated

Convergence Theorem,

E[eipX ] = lim
n→∞

E[eipXn ] = lim
n→∞

eipmne−
1
2
σ2
np

2

.

The limit on the right hand side only exists for all p, if either σn → ∞, or the sequences

σn and mn both converge to finite limits σ ∈ [0,∞) and m ∈ R. In the first case,

the limit would equal 0 for p 6= 0 and 1 for p = 0. This is a contradiction, since
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characteristic functions are always continuous. Hence the second case occurs, and,

therefore

E[eipX ] = eipm− 1
2
σ2p2 for any p ∈ R,

i.e., X ∼ N(m, σ2).

So far, we have constructed Brownian motion only for t ∈ [0, 1]. Brownian motion on

any finite time interval can easily be obtained from this process by rescaling. Brownian

motion defined for all t ∈ R+ can be obtained by joining infinitely many Brownian

motions on time intervals of length 1:

B(1)

B(2)

B(3)

1 2 3

Theorem 1.17. Suppose thatB(1)
t , B

(2)
t , . . . are independent Brownian motions starting

at 0 defined for t ∈ [0, 1]. Then the process

Bt := B
(⌊t⌋+1)
t−⌊t⌋ +

⌊t⌋∑

i=1

B
(i)
1 , t ≥ 0,

is a Brownian motion defined for t ∈ [0,∞).
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The proof is left as an exercise.

1.4 The Brownian Sample Paths

In this section we study some properties of Brownian sample paths in dimension one.

We show that a typical Brownian path is nowhere differentiable, and Hölder-continuous

with parameter α if and only if α < 1/2. Furthermore, the set Λa = {t ≥ 0 : Bt = a}
of all passage times of a given point a ∈ R is a fractal. We will show that almost surely,

Λa has Lebesgue measure zero but any point in Λa is an accumulation point of Λa.

We consider a one-dimensional Brownian motion (Bt)t≥0 with B0 = 0 defined on a

probability space (Ω,A, P ). Then:

Typical Brownian sample paths are nowhere differentiable

For any t ≥ 0 and h > 0, the difference quotient Bt+h−Bt

h
is normally distributed with

mean 0 and standard deviation

σ[(Bt+h − Bt)/h] = σ[Bt+h −Bt]/h = 1/
√
h.

This suggests that the derivative

d

dt
Bt = lim

hց0

Bt+h −Bt

h

does not exist. Indeed, we have the following stronger statement.

Theorem 1.18 (Paley, Wiener, Zygmund 1933). Almost surely, the Brownian sample

path t 7→ Bt is nowhere differentiable, and

lim sup
sցt

∣∣∣∣
Bs − Bt

s− t

∣∣∣∣ = ∞ for any t ≥ 0.
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Note that, since there are uncountably many t ≥ 0, the statement is stronger than claim-

ing only the almost sure non-differentiability for any given t ≥ 0.

Proof. It suffices to show that the set

N =

{
ω ∈ Ω

∣∣∣∣ ∃ t ∈ [0, T ], k, L ∈ N ∀ s ∈ (t, t +
1

k
) : |Bs(ω)− Bt(ω)| ≤ L|s− t|

}

is a null set for any T ∈ N. Hence fix T ∈ N, and consider ω ∈ N . Then there exist

k, L ∈ N and t ∈ [0, T ] such that

|Bs(ω)−Bt(ω)| ≤ L · |s− t| holds for s ∈ (t, t +
1

k
). (1.4.1)

To make use of the independence of the increments over disjoint intervals, we note that

for any n > 4k, we can find an i ∈ {1, 2, . . . , nT} such that the intervals ( i
n
, i+1

n
),

( i+1
n
, i+2

n
), and ( i+2

n
, i+3

n
) are all contained in (t, t+ 1

k
):

i−1
n

i
n

i+1
n

i+2
n

i+3
n

t t + 1
k

1/k > 4/n

Hence by (1.4.1), the bound

∣∣∣B j+1
n
(ω)− B j

n
(ω)
∣∣∣ ≤

∣∣∣B j+1
n
(ω)− Bt(ω)

∣∣∣+
∣∣∣Bt(ω)−B j

n
(ω)
∣∣∣

≤ L · (j + 1

n
− t) + L · ( j

n
− t) ≤ 8L

n

holds for j = i, i+ 1, i+ 2. Thus we have shown that N is contained in the set

Ñ :=
⋃

k,L∈N

⋂

n>4k

nT⋃

i=1

{∣∣∣B j+1
n

− B j
n

∣∣∣ ≤ 8L

n
for j = i, i+ 1, i+ 2

}
.
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We now prove P [Ñ ] = 0. By independence and stationarity of the increments we have

P

[{∣∣∣B j+1
n

−B j
n

∣∣∣ ≤ 8L

n
for j = i, i+ 1, i+ 2

}]

= P

[∣∣∣B 1
n

∣∣∣ ≤ 8L

n

]3
= P

[
|B1| ≤

8L√
n

]3
(1.4.2)

≤
(

1√
2π

16L√
n

)3

=
163
√
2π

3 · L
3

n3/2

for any i and n. Here we have used that the standard normal density is bounded from

above by 1/
√
2π. By (1.4.2) we obtain

P

[ ⋂

n>4k

nT⋃

i=1

{∣∣∣B j+1
n

− B j
n

∣∣∣ ≤ 8L

n
for j = i, i+ 1, i+ 2

}]

≤ 163
√
2π

3 · inf
n>4k

nTL3/n3/2 = 0.

Hence, P [Ñ ] = 0, and therefore N is a null set.

Hölder continuity

The statement of Theorem 1.18 says that a typical Brownian path is not Lipschitz contin-

uous on any non-empty open interval. On the other hand, the Wiener-Lévy construction

shows that the sample paths are continuous. We can almost close the gap between these

two statements by arguing in both cases slightly more carefully:

Theorem 1.19. The following statements hold almost surely:

(1). For any α > 1/2,

lim sup
sցt

|Bs − Bt|
|s− t|α = ∞ for all t ≥ 0.

(2). For any α < 1/2,

sup
s,t∈[0,T ]

s 6=t

|Bs − Bt|
|s− t|α < ∞ for all T > 0.
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Hence a typical Brownian path is nowhere Hölder continuous with parameter α > 1/2,

but it is Hölder continuous with parameter α < 1/2 on any finite interval. The critical

case α = 1/2 is more delicate, and will be briefly discussed below.

Proof of Theorem 1.19. The first statement can be shown by a similar argument as in

the proof of Theorem 1.18. The details are left to the reader.

To prove the second statement for T = 1, we use the Wiener-Lévy representation

Bt = Z · t +
∞∑

n=0

2n−1∑

k=0

Zn,ken,k(t) for any t ∈ [0, 1]

with independent standard normal random variables Z,Zn,k. For t, s ∈ [0, 1] we obtain

|Bt − Bs| ≤ |Z| · |t− s|+
∑

n

Mn

∑

k

|en,k(t)− en,k(s)|,

where Mn := max
k

|Zn,k| as in the proof of Theorem 1.14. We have shown above that

by the Borel-Cantelli Lemma, Mn ≤ n eventually with probability one, and hence

Mn(ω) ≤ C(ω) · n

for some almost surely finite constant C(ω). Moreover, note that for each s, t and n, at

most two summands in
∑

k |en,k(t)− en,k(s)| do not vanish. Since |en,k(t)| ≤ 1
2
· 2−n/2

and |e′n,k(t)| ≤ 2n/2, we obtain the estimates

|en,k(t)− en,k(s)| ≤ 2−n/2, and (1.4.3)

|en,k(t)− en,k(s)| ≤ 2n/2 · |t− s|. (1.4.4)

For given s, t ∈ [0, 1], we now choose N ∈ N such that

2−N ≤ |t− s| < 21−N . (1.4.5)

By applying (1.4.3) for n > N and (1.4.4) for n ≤ N , we obtain

|Bt −Bs| ≤ |Z| · |t− s|+ 2C ·
(

N∑

n=1

n2n/2 · |t− s|+
∞∑

n=N+1

n2−n/2

)
.

By (1.4.5) the sums on the right hand side can both be bounded by a constant multiple of

|t− s|α for any α < 1/2. This proves that (Bt)t∈[0,1] is almost surely Hölder-continuous

of order α.
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Law of the iterated logarithm

Khintchine’s version of the law of the iterated logarithm is a much more precise state-

ment on the local regularity of a typical Brownian path at a fixed time s ≥ 0. It implies

in particular that almost every Brownian path is not Hölder continuous with parameter

α = 1/2. We state the result without proof:

Theorem 1.20 (Khintchine 1924). For s ≥ 0, the following statements hold almost

surely:

lim sup
tց0

Bs+t − Bs√
2t log log(1/t)

= +1, and lim inf
tց0

Bs+t − Bs√
2t log log(1/t)

= −1.

For the proof cf. e.g. Breiman, Probability, Section 12.9.

By a time inversion, the Theorem translates into a statement on the global asymptotics

of Brownian paths:

Corollary 1.21. The following statements hold almost surely:

lim sup
t→∞

Bt√
2t log log t

= +1, and lim inf
t→∞

Bt√
2t log log t

= −1.

Proof. This follows by applying the Theorem above to the Brownian motion B̂t =

t · B1/t. For example, substituting h = 1/t, we have

lim sup
t→∞

Bt√
2t log log(t)

= lim sup
hց0

h · B1/h√
2h log log 1/h

= +1

almost surely.

The corollary is a continuous time analogue of Kolmogorov’s law of the iterated log-

arithm for Random Walks stating that for Sn =
n∑

i=1

ηi, ηi i.i.d. with E[ηi] = 0 and

Var[ηi] = 1, one has

lim sup
n→∞

Sn√
2n log log n

= +1 and lim inf
n→∞

Sn√
2n log log n

= −1
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almost surely. In fact, one way to prove Kolmogorov’s LIL is to embed the Random

Walk into a Brownian motion, cf. e.g. Rogers and Williams, Vol. I, Ch. 7 or Section 3.3

Passage times

We now study the set of passage times to a given level a for a one-dimensional Brownian

motion (Bt)t≥0. This set has interesting properties – in particular it is a random fractal.

Fix a ∈ R, and let

Λa(ω) = {t ≥ 0 : Bt(ω) = a} ⊆ [0,∞).

Assuming that every path is continuous, the random set Λa(ω) is closed for every ω.

Moreover, scale invariance of Brownian motion implies a statistical self similarity prop-

erty for the sets of passage times: Since the rescaled process (c−1/2Bct)t≥0 has the same

distribution as (Bt)t≥0 for any c > 0, we can conclude that the set valued random vari-

able c · Λa/
√
c has the same distribution as Λa. In particular, Λ0 is a fractal in the sense

that

Λ0 ∼ c · Λ0 for any c > 0.

1

1
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Figure 1: Brownian motion with corresponding level set Λ0.

Figure 1.4: Brownian motion with corresponding level set Λ0.
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Moreover, by Fubini’s Theorem one easily verifies that Λa has almost surely Lebesgue

measure zero. In fact, continuity of t 7→ Bt(ω) for any ω implies that (t, ω) 7→ Bt(ω) is

product measurable (Exercise). Hence {(t, ω) : Bt(ω) = a} is contained in the product

σ-algebra, and

E[λ(Λa)] = E




∞̂

0

I{a}(Bt) dt


 =

∞̂

0

P [Bt = a] dt = 0.

Theorem 1.22 (Unbounded oscillations, recurrence).

P

[
sup
t≥0

Bt = +∞
]

= P

[
inf
t≥0

Bt = −∞
]

= 1.

In particular, for any a ∈ R, the random set Λa is almost surely unbounded, i.e. Brow-

nian motion is recurrent.

Proof. By scale invariance,

sup
t≥0

Bt ∼ c−1/2 sup
t≥0

Bct = c−1/2 sup
t≥0

Bt for any c > 0.

Hence,

P

[
sup
t≥0

Bt ≥ a

]
= P

[
sup
t≥0

Bt ≥ a ·
√
c

]

for any c > 0, and therefore supBt ∈ {0,∞} almost surely. The first part of the asser-

tion now follows since supBt is almost surely strictly positive. By reflection symmetry,

we also obtain inf Bt = −∞ with probability one.

The last Theorem makes a statement on the global structure of the set Λa. By invariance

w.r.t. time inversion this again translates into a local regularity result:

Theorem 1.23 (Fine structure of Λa). The set Λa is almost surely a perfect set, i.e., any

t ∈ Λa is an accumulation point of Λa.
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Proof. We prove the statement for a = 0, the general case being left as an exercise. We

proceed in three steps:

STEP 1: 0 is almost surely an accumulation point of Λ0: This holds by time-reversal.

Setting B̂t = t · B1/t, we see that 0 is an accumulation point of Λ0 if and only of

for any n ∈ N there exists t > n such that B̂t = 0, i.e., if and only if the zero set

of B̂t is unbounded. By Theorem 1.22, this holds almost surely.

STEP 2: For any s ≥ 0, Ts := min(Λa ∩ [s,∞)) = min{t ≥ s : Bt = a} is almost

surely an accumulation point of Λa: For the proof we need the strong Markov

property of Brownian motion which will be proved in the next section. By The-

orem 1.22, the random variable Ts is almost surely finite. Hence, by continuity,

BTs
= a almost surely. The strong Markov property says that the process

B̃t := BTs+t −BTs
, t ≥ 0,

is again a Brownian motion starting at 0. Therefore, almost surely, 0 is an accu-

mulation point of the zero set of B̃t by Step 1. The claim follows since almost

surely

{t ≥ 0 : B̃t = 0} = {t ≥ 0 : BTs+t = BTs
} = {t ≥ Ts : Bt = a} ⊆ Λa.

STEP 3: To complete the proof note that we have shown that the following properties

hold with probability one:

(1). Λa is closed.

(2). min(Λa ∩ [s,∞)) is an accumulation point of Λa for any s ∈ Q+.

Since Q+ is a dense subset of R+, (1) and (2) imply that any t ∈ Λa is an accu-

mulation point of Λa. In fact, for any s ∈ [0, t] ∩Q, there exists an accumulation

point of Λa in (s, t] by (2), and hence t is itself an accumulation point.

Remark. It can be shown that the set Λa has Hausdorff dimension 1/2.
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1.5 Strong Markov property and reflection principle

In this section we prove a strong Markov property for Brownian motion. Before, we give

another motivation for our interest in an extension of the Markov property to random

times.

Maximum of Brownian motion

Suppose that (Bt)t≥0 is a one-dimensional continuous Brownian motion starting at 0

defined on a probability space (Ω,A, P ). We would like to compute the distribution of

the maximal value

Ms = max
t∈[0,s]

Bt

attained before a given time s ∈ R+. The idea is to proceed similarly as for Random

Walks, and to reflect the Brownian path after the first passage time

Ta = min{t ≥ 0 : Bt = a}

to a given level a > 0:

a

Ta

Bt

B̂t
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It seems plausible (e.g. by the heuristic path integral representation of Wiener measure,

or by a Random Walk approximation) that the reflected process (B̂t)t≥0 defined by

B̂t :=




Bt for t ≤ Ta

a− (Bt − a) for t > Ta

is again a Brownian motion. At the end of this section, we will prove this reflection

principle rigorously by the strong Markov property. Assuming the reflection principle

is true, we can compute the distribution of Ms in the following way:

P [Ms ≥ a] = P [Ms ≥ a, Bs ≤ a] + P [Ms ≥ a, Bs > a]

= P [B̂s ≥ a] + P [Bs > a]

= 2 · P [Bs ≥ a]

= P [|Bs| ≥ a].

Thus Ms has the same distribution as |Bs|.
Furthermore, since Ms ≥ a if and only if M̂s = max{B̂t : t ∈ [0, s]} ≥ a, we obtain

the stronger statement

P [Ms ≥ a, Bs ≤ c] = P [M̂s ≥ a, B̂s ≥ 2a− c] = P [B̂s ≥ 2a− c]

=
1√
2πs

∞̂

2a−c

exp(−x2/2s) dx

for any a ≥ 0 and c ≤ a. As a consequence, we have:

Theorem 1.24 (Maxima of Brownian paths).

(1). For any s ≥ 0, the distribution of Ms is absolutely continuous with density

fMs
(x) =

2√
2πs

exp(−x2/2s) · I(0,∞)(x).

(2). The joint distribution of Ms and Bs is absolutely continuous with density

fMs,Bs
(x, y) = 2

2x− y√
2πs3

exp

(
−(2x− y)2

2s

)
I(0,∞)(x)I(−∞,x)(y).
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Proof. (1) holds since Ms ∼ |Bs|. For the proof of (2) we assume w.l.o.g. s = 1. The

general case can be reduced to this case by the scale invariance of Brownian motion

(Exercise). For a ≥ 0 and c ≤ a let

G(a, c) := P [M1 ≥ a, B1 ≤ c].

By the reflection principle,

G(a, c) = P [B1 ≥ 2a− c] = 1− Φ(2a− c),

where Φ denotes the standard normal distribution function. Since lim
a→∞

G(a, c) = 0 and

lim
c→−∞

G(a, c) = 0, we obtain

P [M1 ≥ a, B1 ≤ c] = G(a, c) = −
∞̂

x=a

c
ˆ

y=−∞

∂2G

∂x∂y
(x, y) dydx

=

∞̂

x=a

c
ˆ

y=−∞

2 · 2x− y√
2π

· exp
(
−(2x− y)2

2

)
dydx.

This implies the claim for s = 1, since M1 ≥ 0 and B1 ≤M1 by definition of M1.

The Theorem enables us to compute the distributions of the first passage times Ta. In

fact, for a > 0 and s ∈ [0,∞) we obtain

P [Ta ≤ s] = P [Ms ≥ a] = 2 · P [Bs ≥ a] = 2 · P [B1 ≥ a/
√
s]

=

√
2

π

∞̂

a/
√
s

e−x2/2 dx. (1.5.1)

Corollary 1.25 (Distribution of Ta). For any a ∈ R \ {0}, the distribution of Ta is

absolutely continuous with density

fTa
(s) =

|a|√
2πs3

· e−a2/2s.
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Proof. For a > 0, we obtain

fTa
(s) = F ′

Ta
(s) =

a√
2πs3

e−a2/2s

by (1.5.1). For a < 0 the assertion holds since Ta ∼ T−a by reflection symmetry of

Brownian motion.

Next, we prove a strong Markov property for Brownian motion. Below we will then

complete the proof of the reflection principle and the statements above by applying the

strong Markov property to the passage time Ta.

Strong Markov property for Brownian motion

Suppose again that (Bt)t≥0 is a d-dimensional continuous Brownian motion starting at

0 on a probability space (Ω,A, P ), and let

FB
t = σ(Bs : 0 ≤ s ≤ t), t ≥ 0,

denote the σ-algebras generated by the process up to time t.

Definition. A random variable T : Ω → [0,∞] is called an (FB
t )-stopping time if and

only if

{T ≤ t} ∈ FB
t for any t ≥ 0.

Example. Clearly, for any a ∈ R, the first passage time

Ta = min{t ≥ 0 : Bt = a}

to a level a is an (FB
t )-stopping time.

The σ-algebra FB
T describing the information about the process up to a stopping time T

is defined by

FB
T = {A ∈ A : A ∩ {T ≤ t} ∈ FB

t for any t ≥ 0}.
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Note that for (FB
t ) stopping times S and T with S ≤ T we have FB

S ⊆ FB
T , since for

t ≥ 0

A ∩ {S ≤ t} ∈ FB
t =⇒ A ∩ {T ≤ t} = A ∩ {S ≤ t} ∩ {T ≤ t} ∈ FB

t .

For any constant s ∈ R+, the process (Bs+t−Bs)t≥0 is a Brownian motion independent

of FB
s .

A corresponding statement holds for stopping times:

Theorem 1.26 (Strong Markov property). Suppose that T is an almost surely finite

(FB
t ) stopping time. Then the process (B̃t)t≥0 defined by

B̃t = BT+t − BT if T <∞, 0 otherwise,

is a Brownian motion independent of FB
T .

Proof. We first assume that T takes values only in C ∪ {∞} where C is a countable

subset of [0,∞). Then for A ∈ FB
T and s ∈ C, we have A ∩ {T = s} ∈ FB

s and

B̃t = Bt+s−Bs onA∩{T = s}. By the Markov property, (Bt+s−Bs)t≥0 is a Brownian

motion independent of FB
s . Hence for any measurable subset Γ of C([0,∞],Rd), we

have

P [{(B̃t)t≥0 ∈ Γ} ∩A] =
∑

s∈C
P [{(Bt+s −Bs)t≥0 ∈ Γ} ∩A ∩ {T = s}]

=
∑

s∈C
µ0[Γ] · P [A ∩ {T = s}] = µ0[Γ] · P [A]

where µ0 denotes the distribution of Brownian motion starting at 0. This proves the

assertion for discrete stopping times.

For an arbitrary (FB
t ) stopping time T that is almost surely finite and n ∈ N, we set

Tn = 1
n
⌈nT ⌉, i.e.,

Tn =
k

n
on

{
k − 1

n
< T ≤ k

n

}
for any k ∈ N.

Stochastic Analysis Andreas Eberle



1.5. STRONG MARKOV PROPERTY AND REFLECTION PRINCIPLE 65

Since the event {Tn = k/n} is FB
k/n-measurable for any k ∈ N, Tn is a discrete (FB

t )

stopping time. Therefore, (BTn+t − BTn
)t≥0 is a Brownian motion that is independent

of FB
Tn

, and hence of the smaller σ-algebra FB
T . As n → ∞, Tn → T , and thus, by

continuity,

B̃t = BT+t − BT = lim
n→∞

(BTn+t − BTn
).

Now it is easy to verify that (B̃t)t≥0 is again a Brownian motion that is independent of

FB
T .

A rigorous reflection principle

We now apply the strong Markov property to prove a reflection principle for Brownian

motion. Consider a one-dimensional continuous Brownian motion (Bt)t≥0 starting at 0.

For a ∈ R let

Ta = min{t ≥ 0 : Bt = a} (first passage time),

BTa
t = Bmin{t,Ta} (process stopped at Ta), and

B̃t = BTa+t − BTa
(process after Ta).

Theorem 1.27 (Reflection principle). The joint distributions of the following random

variables with values in R+ × C([0,∞))× C([0,∞)) agree:

(Ta, (B
Ta
t )t≥0, (B̃t)t≥0) ∼ (Ta, (B

Ta
t )t≥0, (−B̃t)t≥0)

Proof. By the strong Markov property, the process B̃ is a Brownian motion starting at

0 independent of FTa
, and hence of Ta and BTa = (BTa

t )t≥0. Therefore,

P ◦ (Ta, BTa , B̃)−1 = P ◦ (Ta, BTa)−1 ⊗ µ0 = P ◦ (Ta, BTa,−B̃)−1.

University of Bonn 2015/2016



66 CHAPTER 1. BROWNIAN MOTION

a

Ta

Bt

B̂t

As a consequence of the theorem, we can complete the argument given at the beginning

of this section: The "shadow path" B̂t of a Brownian path Bt with reflection when

reaching the level a is given by

B̂t =




BTa

t for t ≤ Ta

a− B̃t−Ta
for t > Ta

,

whereas

Bt =




BTa

t for t ≤ Ta

a+ B̃t−Ta
for t > Ta

.

By the Theorem 1.27, (B̂t)t≥0 has the same distribution as (Bt)t≥0. Therefore, and since

max
t∈[0,s]

Bt ≥ a if and only if max
t∈[0,s]

B̂t ≥ a, we obtain for a ≥ c:

P

[
max
t∈[0,s]

Bt ≥ a, Bs ≤ c

]
= P

[
max
t∈[0,s]

B̂t ≥ a, B̂s ≥ 2a− c

]

= P
[
B̂s ≥ 2a− c

]

=
1√
2πs

∞̂

2a−c

e−x2/2s dx.
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Chapter 2

Martingales in discrete time

Classical analysis starts with studying convergence of sequences of real numbers. Sim-

ilarly, stochastic analysis relies on basic statements about sequences of real-valued ran-

dom variables. Any such sequence can be decomposed uniquely into a martingale, i.e.,

a real.valued stochastic process that is “constant on average”, and a predictable part.

Therefore, estimates and convergence theorems for martingales are crucial in stochastic

analysis.

2.1 Definitions and examples

We fix a probability space (Ω,A, P ). Moreover, we assume that we are given an in-

creasing sequence Fn (n = 0, 1, 2, . . .) of sub-σ-algebras of A. Intuitively, we often

think of Fn as describing the information available to us at time n. Formally, we define:

Definition (Filtration, adapted process). (1). A filtration on (Ω,A) is an increasing

sequence

F0 ⊆ F1 ⊆ F2 ⊆ . . .

of σ-algebras Fn ⊆ A.

(2). A stochastic process (Xn)n≥0 is adapted to a filtration (Fn)n≥0 iff each Xn is

Fn-measurable.
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Example. (1). The canonical filtration (FX
n ) generated by a stochastic process (Xn)

is given by

FX
n = σ(X0, X1, . . . , Xn).

If the filtration is not specified explicitly, we will usually consider the canonical

filtration.

(2). Alternatively, filtrations containing additional information are of interest, for ex-

ample the filtration

Fn = σ(Z,X0, X1, . . . , Xn)

generated by the process (Xn) and an additional random variable Z, or the filtra-

tion

Fn = σ(X0, Y0, X1, Y1, . . . , Xn, Yn)

generated by the process (Xn) and a further process (Yn).

Clearly, the process (Xn) is adapted to any of these filtrations. In general, (Xn) is

adapted to a filtration (Fn) if and only if FX
n ⊆ Fn for any n ≥ 0.

Martingales and supermartingales

We can now formalize the notion of a real-valued stochastic process that is constant

(respectively decreasing or increasing) on average:

Definition (Martingale, supermartingale, submartingale). (1). A sequence of real-

valued random variables Mn : Ω → R (n = 0, 1, . . .) on the probability space

(Ω,A, P ) is called a martingale w.r.t. the filtration (Fn) if and only if

(a) (Mn) is adapted w.r.t. (Fn),

(b) Mn is integrable for any n ≥ 0, and

(c) E[Mn | Fn−1] = Mn−1 for any n ∈ N.

University of Bonn 2015/2016



70 CHAPTER 2. MARTINGALES IN DISCRETE TIME

(2). Similarly, (Mn) is called a supermartingale (resp. a submartingale) w.r.t. (Fn)

if and only if (a) holds, the positive part M+
n (resp. the negative part M−

n ) is inte-

grable for any n ≥ 0, and (c) holds with “=” replaced by “≤”, “≥” respectively.

Condition (c) in the martingale definition can equivalently be written as

(c’) E[Mn+1 −Mn | Fn] = 0 for any n ∈ Z+,

and correspondingly with “=” replaced by “≤” or “≥” for super- or submartingales.

Intuitively, a martingale is a ”fair game´´, i.e., Mn−1 is the best prediction (w.r.t. the

mean square error) for the next value Mn given the information up to time n− 1. A su-

permartingale is “decreasing on average”, a submartingale is “increasing on average”,

and a martingale is both “decreasing” and “increasing”, i.e., “constant on average”. In

particular, by induction on n, a martingale satisfies

E[Mn] = E[M0] for any n ≥ 0.

Similarly, for a supermartingale, the expectation values E[Mn] are decreasing. More

generally, we have:

Lemma 2.1. If (Mn) is a martingale (respectively a supermartingale) w.r.t. a filtration

(Fn) then

E[Mn+k | Fn]
(≤)
= Mn P -almost surely for any n, k ≥ 0.

Proof. By induction on k: The assertion holds for k = 0, since Mn is Fn-measurable.

Moreover, the assertion for k − 1 implies

E[Mn+k | Fn] = E
[
E[Mn+k | Fn+k−1]

∣∣ Fn

]

= E[Mn+k−1 | Fn] = Mn P -a.s.

by the tower property for conditional expectations.
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Remark (Supermartingale Convergence Theorem). A key fact in analysis is that

any lower bounded decreasing sequence of real numbers converges to its infimum. The

counterpart of this result in stochastic analysis is the Supermartingale Convergence The-

orem: Any lower bounded supermartingale converges almost surely, cf. Theorem 4.5

below.

Some fundamental examples

a) Sums of independent random variables

A Random Walk

Sn =
n∑

i=1

ηi, n = 0, 1, 2, . . . ,

with independent increments ηi ∈ L1(Ω,A, P ) is a martingale w.r.t. to the filtration

Fn = σ(η1, . . . , ηn) = σ(S0, S1, . . . , Sn)

if and only if the increments ηi are centered random variables. In fact, for any n ∈ N,

E[Sn − Sn−1 | Fn−1] = E[ηn | Fn−1] = E[ηn]

by independence of the increments. Correspondingly, (Sn) is an (Fn) supermartingale

if and only if E[ηi] ≤ 0 for any i ∈ N.

b) Products of independent non-negative random variables

A stochastic process

Mn =

n∏

i=1

Yi, n = 0, 1, 2, . . . ,

with independent non-negative factors Yi ∈ L1(Ω,A, P ) is a martingale respectively a

supermartingale w.r.t. the filtration

Fn = σ(Y1, . . . , Yn)

if and only if E[Yi] = 1 for any i ∈ N, or E[Yi] ≤ 1 for any i ∈ N respectively. In fact,

as Mn is Fn-measurable and Yn+1 is independent of Fn, we have

E[Mn+1 | Fn] = E[Mn · Yn+1 | Fn] = Mn · E[Yn+1] for any n ≥ 0.
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Martingales and supermartingales of this type occur naturally in stochastic growth mod-

els.

Example (Exponential martingales). Consider a Random Walk Sn =
∑n

i=1 ηi with

i.i.d. increments ηi, and let

Z(λ) = E[exp(ληi)], λ ∈ R,

denote the moment generating function of the increments. Then for any λ ∈ R with

Z(λ) <∞, the process

Mλ
n := eλSn/Z(λ)n =

n∏

i=1

(
eληi/Z(λ)

)

is a martingale. This martingale can be used to prove exponential bounds for Ran-

dom Walks, cf. e.g. Chernov’s theorem [“Einführung in die Wahrscheinlichkeitstheo-

rie”, Theorem 8.3].

Example (CRR model of stock market). In the Cox-Ross-Rubinstein binomial model

of mathematical finance, the price of an asset is changing during each period either by

a factor 1 + a or by a factor 1 + b with a, b ∈ (−1,∞) such that a < b. We can model

the price evolution in a fixed number N of periods by a stochastic process

Sn = S0 ·
n∏

i=1

Xi, n = 0, 1, 2, . . . , N,

defined on Ω = {1 + a, 1 + b}N , where the initial price S0 is a given constant, and

Xi(ω) = ωi. Taking into account a constant interest rate r > 0, the discounted stock

price after n periods is

S̃n = Sn/(1 + r)n = S0 ·
n∏

i=1

Xi

1 + r
.

A probability measure P on Ω is called a martingale measure if the discounted stock

price is a martingale w.r.t. P and the filtration Fn = σ(X1, . . . , Xn). Martingale mea-

sures are important for option pricing under no arbitrage assumptions, cf. Section 2.3

below. For 1 ≤ n ≤ N ,

E[S̃n | Fn−1] = E

[
S̃n−1 ·

Xn

1 + r

∣∣∣∣ Fn−1

]
= S̃n−1 ·

E[Xn | Fn−1]

1 + r
.
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Hence (S̃n) is an (Fn) martingale w.r.t. P if and only if

E[Xn | Fn−1] = 1 + r for any 1 ≤ n ≤ N. (2.1.1)

On the other hand, since in the CRR model Xn only takes the values 1 + a and 1 + b,

we have

E[Xn | Fn−1] = (1 + a) · P [Xn = 1 + a | Fn−1] + (1 + b) · P [Xn = 1 + b | Fn−1]

= 1 + a+ (b− a) · P [Xn = 1 + b | Fn−1].

Therefore, by (2.1.1), (S̃n) is a martingale if and only if

P [Xn = 1 + b | Fn−1] =
r − a

b− a
for any n = 1, . . . , N,

i.e., if and only if the growth factors X1, . . . , XN are independent with

P [Xn = 1 + b] =
r − a

b− a
and P [Xn = 1 + a] =

b− r

b− a
. (2.1.2)

Hence for r 6∈ [a, b], a martingale measure does not exist, and for r ∈ [a, b], the product

measure P on Ω satisfying (2.1.2) is the unique martingale measure. Intuitively this

is plausible: If r < a or r > b respectively, then the stock price is always growing

more or less than the discount factor (1 + r)n, so the discounted stock price can not be

a martingale. If, on the other hand, a < r < b, then (S̃n) is a martingale provided the

growth factors are independent with

P [Xn = 1 + b]

P [Xn = 1 + a]
=

(1 + r)− (1 + a)

(1 + b)− (1 + r)
.

We remark, however, that uniqueness of the martingale measure only follows from

(2.1.1) since we have assumed that each Xn takes only two possible values (binomial

model). In a corresponding trinomial model there are infinitely many martingale mea-

sures!

c) Successive prediction values

Let F be an integrable random variable, and let (Fn) be a filtration on a probability

space (Ω,A, P ). Then the process

Mn := E[F | Fn], n = 0, 1, 2, . . . ,
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of successive prediction values for F based on the information up to time n is a martin-

gale. Indeed, by the tower property for conditional expectations, we have

E[Mn | Fn−1] = E
[
E[F | Fn]

∣∣ Fn−1

]
= E

[
F
∣∣ Fn−1

]
= Mn−1

almost surely for any n ∈ N.

Remark (Representing martingales as successive prediction values). The class of

martingales that have a representation as successive prediction values almost contains

general martingales. In fact, for an arbitrary (Fn) martingale (Mn) and any finite integer

m ≥ 0, the representation

Mn = E[Mm | Fn]

holds for any n = 0, 1, . . . , m. Moreover, the L1 Martingale Convergence Theorem

implies that under a uniform integrability assumption, the limit M∞ = lim
m→∞

Mm exists

in L1, and the representation

Mn = E[M∞ | Fn]

holds for any n ≥ 0, see Section 4.3 below .

d) Functions of martingales

By Jensen’s inequality for conditional expectations, convex functions of martingales are

submartingales, and concave functions of martingales are supermartingales:

Theorem 2.2 (Convex functions of martingales). Suppose that (Mn)n≥0 is an (Fn)

martingale, and u : R → R is a convex function that is bounded from below. Then

(u(Mn)) is an (Fn) submartingale.

Proof. Since u is lower bounded, u(Mn)
− is integrable for any n. Jensen’s inequality

for conditional expectations now implies

E[u(Mn+1) | Fn] ≥ u
(
E[Mn+1 | Fn]

)
= u(Mn)

almost surely for any n ≥ 0.

Example. If (Mn) is a martingale then (|Mn|p) is a submartingale for any p ≥ 1.
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e) Functions of Markov chains

Let p(x, dy) be a transition kernel on a measurable space (S,B).

Definition (Markov chain, superharmonic function). (1). A discrete time stochas-

tic process (Xn)n≥0 with state space (S,B) defined on the probability space

(Ω,A, P ) is called a (time-homogeneous) Markov chain with transition kernel

p w.r.t. the filtration (Fn), if and only if

(a) (Xn) is (Fn) adapted, and

(b) P [Xn+1 ∈ B | Fn] = p(Xn, B) P -almost surely for any B ∈ B and n ≥ 0.

(2). A measurable function h : S → R is called superharmonic (resp. subharmonic)

w.r.t. p if and only if the integrals

(ph)(x) :=

ˆ

p(x, dy)h(y), x ∈ S,

exist, and

(ph)(x) ≤ h(x) (respectively (ph)(x) ≥ h(x))

holds for any x ∈ S.

The function h is called harmonic iff it is both super- and subharmonic, i.e., iff

(ph)(x) = h(x) for any x ∈ S.

By the tower property for conditional expectations, any (Fn) Markov chain is also a

Markov chain w.r.t. the canonical filtration generated by the process.

Example (Classical Random Walk on Zd). The standard Random Walk (Xn)n≥0 on

Zd is a Markov chain w.r.t. the filtration FX
n = σ(X0, . . . , Xn) with transition prob-

abilities p(x, x + e) = 1/2d for any unit vector e ∈ Zd. The coordinate processes

(X i
n)n≥0, i = 1, . . . , d, are Markov chains w.r.t. the same filtration with transition prob-

abilities

p(x, x+ 1) = p(x, x− 1) =
1

2d
, p(x, x) =

2d− 2

2d
.
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A function h : Zd → R is superharmonic w.r.t. p if and only if

∆Zdh(x) = =
d∑

i=1

(
h(x+ ei)− 2h(x) + h(x− ei)

)
= 2d ((ph)(x)− h(x)) ≤ 0

for any x ∈ Zd.

A function h : Z → R is harmonic w.r.t. p if and only if h(x) = ax + b with a, b ∈ R,

and h is superharmonic if and only if it is concave.

It is easy to verify that (super-)harmonic functions of Markov chains are (super-)mar-

tingales:

Theorem 2.3 (Superharmonic functions of Markov chains are supermartingales).

Suppose that (Xn) is an (Fn) Markov chain. Then the real-valued process

Mn := h(Xn), n = 0, 1, 2, . . . ,

is a martingale (resp. a supermartingale) w.r.t. (Fn) for every harmonic (resp. super-

harmonic) function h : S → R such that h(Xn) (resp. h(Xn)
+) is integrable for all

n.

Proof. Clearly, (Mn) is again (Fn) adapted. Moreover,

E[Mn+1 | Fn] = E[h(Xn+1) | Fn] = (ph)(Xn) P -a.s.

The assertion now follows immediately from the definitions.

Below, we will show how to construct more general martingales from Markov chains,

cf. Theorem 2.5. At first, however, we consider a simple example that demonstrates the

usefulness of martingale methods in analyzing Markov chains:

Example (Wright model for evolution). In the Wright model for a population of N

individuals (replicas) with a finite number of possible types, each individual in genera-

tion n + 1 inherits a type from a randomly chosen predecessor in the n th generation.

Stochastic Analysis Andreas Eberle



2.1. DEFINITIONS AND EXAMPLES 77

The number Xn of individuals of a given type in generation n is a Markov chain with

state space S = {0, 1, . . . , N} and transition kernel

p(k, •) = Bin(N, k/N).

k N

p(k, •)

Figure 2.1: Transition function of (Xn).

Moreover, as the average of this binomial distribution is k, the function h(x) = x is

harmonic, and the expected number of individuals in generation n+1 givenX0, . . . , Xn

is

E[Xn+1 |X0, . . . , Xn] = Xn.

Hence, the process (Xn) is a bounded martingale. The Martingale Convergence The-

orem now implies that the limit X∞ = limXn exists almost surely, cf. Section 4.2

below. Since Xn takes discrete values, we can conclude that Xn = X∞ eventually with

probability one. In particular, X∞ is almost surely an absorbing state. Hence

P
[
Xn = 0 or Xn = N eventually

]
= 1. (2.1.3)

In order to compute the probabilities of the events “Xn = 0 eventually” and “Xn = N

eventually” we can apply the Optional Stopping Theorem for martingales, cf. Section

2.3 below. Let

T := min{n ≥ 0 : Xn = 0 or Xn = N}, min ∅ := ∞,

denote the first hitting time of the absorbing states. If the initial number X0 of individ-

uals of the given type is k, then by the Optional Stopping Theorem,

E[XT ] = E[X0] = k.
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Hence by (2.1.3) we obtain

P
[
Xn = N eventually

]
= P [XT = N ] =

1

N
E[XT ] =

k

N
, and

P
[
Xn = 0 eventually

]
= 1− k

N
=

N − k

N
.

Hence eventually all individuals have the same type, and a given type occurs eventually

with probability determined by its initial relative frequency in the population.

2.2 Doob Decomposition and Martingale Problem

We will show now that any adapted sequence of real-valued random variables can be

decomposed into a martingale and a predictable process. In particular, the variance

process of a martingale (Mn) is the predictable part in the corresponding Doob decom-

position of the process (M2
n). The Doob decomposition for functions of Markov chains

implies the martingale problem characterization of Markov chains.

Doob Decomposition

Let (Ω,A, P ) be a probability space and (Fn)n≥0 a filtration on (Ω,A).

Definition (Predictable process). A stochastic process (An)n≥0 is called predictable

w.r.t. (Fn) if and only if A0 is constant andAn is measurable w.r.t. Fn−1 for any n ∈ N.

Intuitively, the valueAn(ω) of a predictable process can be predicted by the information

available at time n− 1.

Theorem 2.4 (Doob decomposition). Every (Fn) adapted sequence of integrable ran-

dom variables Yn (n ≥ 0) has a unique decomposition (up to modification on null sets)

Yn = Mn + An (2.2.1)
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into an (Fn) martingale (Mn) and a predictable process (An) such that A0 = 0. Ex-

plicitly, the decomposition is given by

An =
n∑

k=1

E[Yk − Yk−1 | Fk−1], and Mn = Yn −An. (2.2.2)

Remark. (1). The incrementsE[Yk−Yk−1|Fk−1] of the process (An) are the predicted

increments of (Yn) given the previous information.

(2). The process (Yn) is a supermartingale (resp. a submartingale) if and only if the

predictable part (An) is decreasing (resp. increasing).

Proof of Theorem 2.4. Uniqueness: For any decomposition as in (2.2.1) we have

Yk − Yk−1 = Mk −Mk−1 + Ak −Ak−1 for any k ∈ N.

If (Mn) is a martingale and (An) is predictable then

E[Yk − Yk−1 | Fk−1] = E[Ak − Ak−1 | Fk−1] = Ak − Ak−1 P -a.s.

This implies that (2.2.2) holds almost surely if A0 = 0.

Existence: Conversely, if (An) and (Mn) are defined by (2.2.2) then (An) is predictable

with A0 = 0 and (Mn) is a martingale, since

E[Mk −Mk−1 | Fk−1] = 0 P -a.s. for any k ∈ N.

Conditional Variance Process

Consider a martingale (Mn) such that Mn is square integrable for any n ≥ 0. Then,

by Jensen’s inequality, (M2
n) is a submartingale and can again be decomposed into a

martingale (M̃n) and a predictable process 〈M〉n such that 〈M〉0 = 0:

M2
n = M̃n + 〈M〉n for any n ≥ 0.
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The increments of the predictable process are given by

〈M〉k − 〈M〉k−1 = E[M2
k −M2

k−1 | Fk−1]

= E
[
(Mk −Mk−1)

2
∣∣ Fk−1

]
+ 2 · E

[
Mk−1 · (Mk −Mk−1)

∣∣ Fk−1

]

= Var
[
Mk −Mk−1

∣∣ Fk−1

]
for any k ∈ N.

Here we have used in the last step that E[Mk −Mk−1 | Fk−1] vanishes since (Mn) is a

martingale.

Definition (Conditional variance process). The predictable process

〈M〉n :=
n∑

k=1

Var [Mk −Mk−1 | Fk−1] , n ≥ 0,

is called the conditional variance process of the square integrable martingale (Mn).

Example (Random Walks). IfMn =
∑n

i=1 ηi is a sum of independent centered random

variables ηi and Fn = σ(η1, . . . , ηn) then the conditional variance process is given by

〈M〉n =
∑n

i=1Var[ηi].

The conditional variance process is crucial for generalizations of classical limit theo-

rems such as the Law of Large Numbers or the Central Limit Theorem from sums of

independent random variables to martingales. A direct consequence of the fact that

M2
n − 〈M〉n is a martingale is that

E[M2
n ] = E[M2

0 ] + E[〈M〉n] for any n ≥ 0.

This can often be used to derive L2-estimates for martingales.

Example (Discretizations of stochastic differential equations). Consider an ordinary

differential equation
dXt

dt
= b(Xt), t ≥ 0, (2.2.3)
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where b : Rd → Rd is a given vector field. In order to take into account unpredictable

effects on a system, one is frequently interested in studying random perturbations of the

dynamics (2.2.3) of type

dXt = b(Xt) dt+ “noise” (2.2.4)

with a random noise term. The solution (Xt)t≥0 of such a stochastic differential equa-

tion (SDE) is a stochastic process in continuous time defined on a probability space

(Ω,A, P ) where also the random variables describing the noise effects are defined. The

vector field b is called the (deterministic) “drift”. We will make sense of general SDE

later, but we can already consider time discretizations.

For simplicity let us assume d = 1. Let b, σ : R → R be continuous functions, and let

(ηi)i∈N be a sequence of i.i.d. random variables ηi ∈ L2(Ω,A, P ) describing the noise

effects. We assume

E[ηi] = 0 and Var[ηi] = 1 for any i ∈ N.

Here, the values 0 and 1 are just a convenient normalization, but it is an important

assumption that the random variables are independent with finite variances. Given an

initial value x0 ∈ R and a fine discretization step size h > 0, we now define a stochastic

process (X(h)
n ) in discrete time by X(h)

0 = x0, and

X
(h)
k+1 −X

(h)
k = b(X

(h)
k ) · h+ σ(X

(h)
k )

√
h ηk+1, for k = 0, 1, 2, . . . (2.2.5)

One should think of X(h)
k as an approximation for the value of the process (Xt) at time

t = k · h. The equation (2.2.5) can be rewritten as

X(h)
n = x0 +

n−1∑

k=0

b(X
(h)
k ) · h +

n−1∑

k=0

σ(X
(h)
k ) ·

√
h · ηk+1. (2.2.6)

To understand the scaling factors h and
√
h we note first that if σ ≡ 0 then (2.2.5) re-

spectively (2.2.6) is the Euler discretization of the ordinary differential equation (2.2.3).

Furthermore, if b ≡ 0 and σ ≡ 1, then the diffusive scaling by a factor
√
h in the second

term ensures that the continuous time process X(h)
⌊t/h⌋, t ∈ [0,∞), converges in distri-

bution as h ց 0. Indeed, the functional central limit theorem (Donsker’s invariance
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principle) states that the limit process in this case is a Brownian motion (Bt)t∈[0,∞). In

general, (2.2.6) is an Euler discretization of a stochastic differential equation of type

dXt = b(Xt) dt+ σ(Xt) dBt

where (Bt)t≥0 is a Brownian motion. Let Fn = σ(η1, . . . , ηn) denote the filtration gen-

erated by the random variables ηi. The following exercise summarizes basic properties

of the process X(h) in the case of normally distributed increments.

Exercise. Suppose that the random variables ηi are standard normally distributed.

(1). Prove that the process X(h) is a time-homogeneous (Fn) Markov chain with tran-

sition kernel

p(x, • ) = N(x+ b(x)h, σ(x)2h)[ • ].

(2). Show that the Doob decomposition X(h) =M (h) + A(h) is given by

A(h)
n =

n−1∑

k=0

b(X
(h)
k ) · h, M (h)

n = x0 +
n−1∑

k=0

σ(X
(h)
k )

√
h ηk+1, (2.2.7)

and the conditional variance process of the martingale part is

〈M (h)〉n =

n−1∑

k=0

σ(X
(h)
k )2 · h. (2.2.8)

(3). Conclude that

E[(M (h)
n − x0)

2] =

n−1∑

k=0

E[σ(X
(h)
k )2] · h. (2.2.9)

The last equation can be used in combination with the maximal inequality for mar-

tingales to derive bounds for the processes (X(h)) in an efficient way, cf. Section 2.4

below.

Remark (Quadratic variation). The quadratic variation of a square integrable martin-

gale (Mn) is the process [M ]n defined by

[M ]n =

n∑

k=1

(Mk −Mk−1)
2, n ≥ 0.
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It is easy to verify that M2
n − [M ]n is again a martingale. However, [M ]n is not pre-

dictable. For continuous martingales in continuous time, the quadratic variation and the

conditional variance process coincide. In discrete time or for discontinuous martingales

they are usually different.

Martingale problem

For a Markov chain (Xn) we obtain a Doob decomposition

f(Xn) = M [f ]
n + A[f ]

n (2.2.10)

for any function f on the state space such that f(Xn) is integrable for each n. Compu-

tation of the predictable part leads to the following general result:

Theorem 2.5 (Martingale problem for time-homogeneuous Markov chains). Let p

be a stochastic kernel on a measurable space (S,B). Then for an (Fn) adapted stochas-

tic process (Xn)n≥0 with state space (S,B) the following statements are equivalent:

(1). (Xn) is a time homogeneous (Fn) Markov chain with transition kernel p.

(2). (Xn) is a solution of the martingale problem for the operator L = p − I , i.e.,

there is a decomposition

f(Xn) = M [f ]
n +

n−1∑

k=0

(L f)(Xk), n ≥ 0,

with an (Fn) martingale (M [f ]
n ) for every function f : S → R such that f(Xn) is

integrable for each n, or, equivalently, for every bounded function f : S → R.

In particular, we see once more that if f(Xn) is integrable and f is harmonic (L f = 0)

then f(Xn) is a martingale, and if f is superharmonic (L f ≤ 0), then f(Xn) is a

supermartingale. The theorem hence extends Theorem 2.3 above.
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Proof. The implication “(i)⇒(ii)” is just the Doob decomposition for f(Xn). In fact,

by Theorem 2.4, the predictable part is given by

A[f ]
n =

n−1∑

k=0

E[f(Xk+1)− f(Xk) | Fk]

=
n−1∑

k=0

(pf(Xk)− f(Xk)) =
n−1∑

k=0

(L f)(Xk),

and M [f ]
n = f(Xn)− A

[f ]
n is a martingale.

To prove the converse implication “(ii)⇒(i)” suppose that M [f ]
n is a martingale for any

bounded f : S → R. Then

0 = E[M
[f ]
n+1 −M [f ]

n | Fn]

= E[f(Xn+1)− f(Xn) | Fn]− ((pf)(Xn)− f(Xn))

= E[f(Xn+1) | Fn]− (pf)(Xn)

almost surely for any bounded function f . Hence (Xn) is an (Fn) Markov chain with

transition kernel p.

Example (One dimensional Markov chains). Suppose that under Px, the process (Xn)

is a time homogeneous Markov chain with state space S = R or S = Z, initial state

X0 = x, and transition kernel p. AssumingXn ∈ L2(Ω,A, P ) for each n, we define the

“drift” and the “fluctuations” of the process by

b(x) := Ex[X1 −X0]

a(x) = Varx[X1 −X0].

We now compute the Doob decomposition of (Xn). Choosing f(x) = x we have

(p− I)f(x) =

ˆ

y p(x, dy)− x = Ex[X1 −X0] = b(x).

Hence by Theorem 2.5,

Xn = Mn +

n−1∑

k=0

b(Xk) (2.2.11)
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with an (Fn) martingale (Mn). To obtain detailed information on Mn, we compute the

variance process: By (2.2.11) and the Markov property, we obtain

〈M〉n =
n−1∑

k=0

Var[Mk+1 −Mk | Fk] =
n−1∑

k=0

Var[Xk+1 −Xk | Fk] =
n−1∑

k=0

a(Xk).

Therefore

M2
n = M̃n +

n−1∑

k=0

a(Xk) (2.2.12)

with another (Fn) martingale (M̃n). The functions a(x) and b(x) can now be used in

connection with fundamental results for martingales as e.g. the maximal inequality (cf.

2.4 below) to derive bounds for Markov chains in an efficient way.

2.3 Gambling strategies and stopping times

Throughout this section, we fix a filtration (Fn)n≥0 on a probability space (Ω,A, P ).

Martingale transforms

Suppose that (Mn)n≥0 is a martingale w.r.t. (Fn), and (Cn)n∈N is a predictable sequence

of real-valued random variables. For example, we may think of Cn as the stake in the

n-th round of a fair game, and of the martingale increment Mn −Mn−1 as the net gain

(resp. loss) per unit stake. In this case, the capital In of a player with gambling strategy

(Cn) after n rounds is given recursively by

In = In−1 + Cn · (Mn −Mn−1) for any n ∈ N,

i.e.,

In = I0 +
n∑

k=1

Ck · (Mk −Mk−1).
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Definition (Martingale transform). The stochastic process C•M defined by

(C•M)n :=

n∑

k=1

Ck · (Mk −Mk−1) for any n ≥ 0,

is called the martingale transform of the martingale (Mn)n≥0 w.r.t. the predictable

sequence (Cn)n≥1, or the discrete stochastic integral of C w.r.t. M .

We will see later that the process C•M is a time-discrete version of the stochastic inte-

gral
´

Cs dMs of a predictable continuous-time process C w.r.t. a continuous-time mar-

tingale M . To be precise, (C•M)n coincides with the Itô integral
´ n

0
C⌈t⌉ dM⌊t⌋ of the

left continuous jump process t 7→ C⌈t⌉ w.r.t. the right continuous martingale t 7→ M⌊t⌋.

Example (Martingale strategy). One origin of the word “martingale” is the name of

a well-known gambling strategy: In a standard coin-tossing game, the stake is doubled

each time a loss occurs, and the player stops the game after the first time he wins. If the

net gain in n rounds with unit stake is given by a standard Random Walk

Mn = η1 + . . .+ ηn, ηi i.i.d. with P [ηi = 1] = P [ηi = −1] = 1/2,

then the stake in the n-th round is

Cn = 2n−1 if η1 = . . . = ηn−1 = −1, and Cn = 0 otherwise.

Clearly, with probability one, the game terminates in finite time, and at that time the

player has always won one unit, i.e.,

P [(C•M)n = 1 eventually] = 1.
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1

2

−1

−2

−3

−4

−5

−6

−7

n

(C•M)n

At first glance this looks like a safe winning strategy, but of course this would only be

the case, if the player had unlimited capital and time available.

Theorem 2.6 (You can’t beat the system!). (1). If (Mn)n≥0 is an (Fn) martingale,

and (Cn)n≥1 is predictable with Cn · (Mn−Mn−1) ∈ L1(Ω,A, P ) for any n ≥ 1,

then C•M is again an (Fn) martingale.

(2). If (Mn) is an (Fn) supermartingale and (Cn)n≥1 is non-negative and predictable

with Cn · (Mn −Mn−1) ∈ L1 for any n, then C•M is again a supermartingale.

Proof. For n ≥ 1 we have

E[(C•M)n − (C•M)n−1 | Fn−1] = E[Cn · (Mn −Mn−1) | Fn−1]

= Cn ·E[Mn −Mn−1 | Fn−1] = 0 P -a.s.
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This proves the first part of the claim. The proof of the second part is similar.

The theorem shows that a fair game (a martingale) can not be transformed by choice of

a clever gambling strategy into an unfair (or “superfair”) game. In models of financial

markets this fact is crucial to exclude the existence of arbitrage possibilities (riskless

profit).

Example (Martingale strategy, cont.). For the classical martingale strategy, we obtain

E[(C•M)n] = E[(C•M)0] = 0 for any n ≥ 0

by the martingale property, although

lim
n→∞

(C•M)n = 1 P -almost surely.

This is a classical example showing that the assertion of the dominated convergence

theorem may not hold if the assumptions are violated.

Remark. The integrability assumption in Theorem 2.6 is always satisfied if the random

variables Cn are bounded, or if both Cn and Mn are square-integrable for any n.

Example (Financial market model with one risky asset). Suppose that during each

time interval (n − 1, n), an investor is holding Φn units of an asset with price Sn per

unit at time n. We assume that (Sn) is an adapted and (Φn) is a predictable stochastic

process w.r.t. a filtration (Fn). If the investor always puts his remaining capital onto

a bank account with guaranteed interest rate r (“riskless asset”) then the change of his

capital Vn during the time interval (n− 1, n) is given by

Vn = Vn−1 + Φn · (Sn − Sn−1) + (Vn−1 − Φn · Sn−1) · r. (2.3.1)

Considering the discounted quantity Ṽn = Vn/(1 + r)n, we obtain the equivalent

recursion

Ṽn = Ṽn−1 + Φn · (S̃n − S̃n−1) for any n ≥ 1. (2.3.2)

In fact, (2.3.1) holds if and only if

Vn − (1 + r)Vn−1 = Φn · (Sn − (1 + r)Sn−1),
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which is equivalent to (2.3.2). Therefore, the discounted capital at time n is given by

Ṽn = V0 + (Φ•S̃)n.

By Theorem 2.6, we can conclude that, if the discounted price process (S̃n) is an (Fn)

martingale w.r.t. a given probability measure, then (Ṽn) is a martingale as well. In this

case, assuming that V0 is constant, we obtain in particular

E[Ṽn] = V0,

or, equivalently,

E[Vn] = (1 + r)nV0 for any n ≥ 0. (2.3.3)

This fact, together with the existence of a martingale measure, can now be used for

option pricing under a no-arbitrage assumption. To this end we assume that the payoff

of an option at timeN is given by an (FN)-measurable random variableF . For example,

the payoff of a European call option with strike price K based on the asset with price

process (Sn) is SN −K if the price Sn at maturity exceeds K, and 0 otherwise, i.e.,

F = (SN −K)+.

Suppose further that the option can be replicated by a hedging strategy (Φn), i.e., there

exists an F0-measurable random variable V0 and a predictable sequence of random vari-

ables (Φn)1≤n≤N such that

F = VN

is the value at timeN of a portfolio with initial value V0 w.r.t. the trading strategy (Φn).

Then, assuming the non-existence of arbitrage possibilities, the option price at time

0 has to be V0, since otherwise one could construct an arbitrage strategy by selling

the option and investing money in the stock market with strategy (Φn), or conversely.

Therefore, if a martingale measure exists (i.e., an underlying probability measure such

that the discounted stock price (S̃n) is a martingale), then the no-arbitrage price of the

option at time 0 can be computed by (2.3.3) where the expectation is taken w.r.t. the

martingale measure.

The following exercise shows how this works out in the Cox-Ross-Rubinstein binomial

model:
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Exercise (No-Arbitrage Pricing in the CRR model). Consider the CRR binomial

model, i.e., Ω = {1 + a, 1 + b}N with −1 < a < r < b < ∞, Xi(ω1, . . . , ωN) = ωi,

Fn = σ(X1, . . . , Xn), and

Sn = S0 ·
n∏

i=1

Xi, n = 0, 1, . . . , N,

where S0 is a constant.

(1). Completeness of the CRR model: Prove that for any function F : Ω → R there

exists a constant V0 and a predictable sequence (Φn)1≤n≤N such that F = VN

where (Vn)1≤n≤N is defined by (2.3.1), or, equivalently,

F

(1 + r)N
= ṼN = V0 + (Φ•S̃)N .

Hence in the CRR model, any FN -measurable function F can be replicated by

a predictable trading strategy. Market models with this property are called com-

plete.

Hint: Prove inductively that for n = N,N − 1, . . . , 0, F̃ = F/(1 + r)N can be

represented as

F̃ = Ṽn +
N∑

i=n+1

Φi · (S̃i − S̃i−1)

with an Fn-measurable function Ṽn and a predictable sequence (Φi)n+1≤i≤N .

(2). Option pricing: Derive a general formula for the no-arbitrage price of an option

with payoff function F : Ω → R in the CRR model. Compute the no-arbitrage

price for a European call option with maturity N and strike K explicitly.

Stopped Martingales

One possible strategy for controlling a fair game is to terminate the game at a time

depending on the previous development. Recall that a random variable T : Ω →
{0, 1, 2, . . .} ∪ {∞} is called a stopping time w.r.t. the filtration (Fn) if and only if

the event {T = n} is contained in Fn for any n ≥ 0, or equivalently, iff {T ≤ n} ∈ Fn

for any n ≥ 0.
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Example (Hitting times). (1). The first hitting time

TB = min{n ≥ 0 : Xn ∈ B} (where min ∅ := ∞)

and the first passage or return time

SB = min{n ≥ 1 : Xn ∈ B}

to a measurable subset B of the state space by an (Fn) adapted stochastic process

are (Fn) stopping times. For example, for n ≥ 0,

{TB = n} = {X1 ∈ BC , . . . , Xn−1 ∈ BC , Xn ∈ B} ∈ Fn.

If one decides to sell an asset as soon as the price Sn exceeds a given level λ > 0

then the selling time equals T(λ,∞) and is hence a stopping time.

(2). On the other hand, the last visit time

LB := sup{n ≥ 0 : Xn ∈ B} (where sup ∅ := 0)

is not a stopping time in general. Intuitively, to decide whether LB = n, informa-

tion on the future development of the process is required.

We consider an (Fn)-adapted stochastic process (Mn)n≥0, and an (Fn)-stopping time

T on the probability space (Ω,A, P ). The process stopped at time T is defined as

(MT∧n)n≥0 where

MT∧n(ω) = MT (ω)∧n(ω) =




Mn(ω) for n ≤ T (ω),

MT (ω)(ω) for n ≥ T (ω).

For example, the process stopped at a hitting time TB gets stuck at the first time it enters

the set B.

Theorem 2.7 (Optional Stopping Theorem,Version 1). If (Mn)n≥0 is a martingale

(resp. a supermartingale) w.r.t. (Fn), and T is an (Fn)-stopping time, then the stopped

process (MT∧n)n≥0 is again an (Fn)-martingale (resp. supermartingale). In particular,

we have

E[MT∧n]
(≤)
= E[M0] for any n ≥ 0.
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Proof. Consider the following strategy:

Cn = I{T≥n} = 1− I{T≤n−1},

i.e., we put a unit stake in each round before time T and quit playing at time T . Since

T is a stopping time, the sequence (Cn) is predictable. Moreover,

MT∧n −M0 = (C•M)n for any n ≥ 0. (2.3.4)

In fact, for the increments of the stopped process we have

MT∧n −MT∧(n−1) =

{
Mn −Mn−1 if T ≥ n

0 if T ≤ n− 1

}
= Cn · (Mn −Mn−1),

and (2.3.4) follows by summing over n. Since the sequence (Cn) is predictable, bounded

and non-negative, the process C•M is a martingale, supermartingale respectively, pro-

vided the same holds for M .

Remark (IMPORTANT). (1). In general, it is NOT TRUE under the assumptions in

Theorem 2.7 that

E[MT ] = E[M0], E[MT ] ≤ E[M0] respectively. (2.3.5)

Suppose for example that (Mn) is the classical Random Walk starting at 0 and

T = T{1} is the first hitting time of the point 1. Then, by recurrence of the

Random Walk, T <∞ and MT = 1 hold almost surely although M0 = 0.

(2). If, on the other hand, T is a bounded stopping time, then there exists n ∈ N such

that T (ω) ≤ n for any ω. In this case, the optional stopping theorem implies

E[MT ] = E[MT∧n]
(≤)
= E[M0].

More general sufficient conditions for (2.3.5) are given in Theorems 2.8, 2.9 and 2.10

below.

Example (Classical ruin problem). Let a, b, x ∈ Z with a < x < b. We consider the

classical Random Walk

Xn = x+

n∑

i=1

ηi, ηi i.i.d. with P [ηi = ±1] =
1

2
,
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with initial value X0 = x. We now show how to apply the Optional Stopping Theorem

to compute the distributions of the exit time

T (ω) = min{n ≥ 0 : Xn(ω) 6∈ (a, b)},

and the exit point XT . These distributions can also be computed by more traditional

methods (first step analysis, reflection principle), but martingales yield an elegant and

general approach.

(1). Ruin probability r(x) = P [XT = a].

The process (Xn) is a martingale w.r.t. the filtration Fn = σ(η1, . . . , ηn), and

T < ∞ almost surely holds by elementary arguments. As the stopped process

XT∧n is bounded (a ≤ XT∧n ≤ b), we obtain

x = E[X0] = E[XT∧n]
n→∞→ E[XT ] = a · r(x) + b · (1− r(x))

by the Optional Stopping Theorem and the Dominated Convergence Theorem.

Hence

r(x) =
b− x

a− x
. (2.3.6)

(2). Mean exit time from (a, b).

To compute the expectation E[T ], we apply the Optional Stopping Theorem to

the (Fn) martingale

Mn := X2
n − n.

By monotone and dominated convergence, we obtain

x2 = E[M0] = E[MT∧n] = E[X2
T∧n]−E[T ∧ n]

n→∞−→ E[X2
T ]− E[T ].

Therefore, by (2.3.6),

E[T ] = E[X2
T ]− x2 = a2 · r(x) + b2 · (1− r(x))− x2

= (b− x) · (x− a). (2.3.7)
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(3). Mean passage time of b.

The first passage time Tb = min{n ≥ 0 : Xn = b} is greater or equal than the

exit time from the interval (a, b) for any a < x. Thus by (2.3.7), we have

E[Tb] ≥ lim
a→−∞

(b− x) · (x− a) = ∞,

i.e., Tb is not integrable! These and some other related passage times are im-

portant examples of random variables with a heavy-tailed distribution and infinite

first moment.

(4). Distribution of passage times.

We now compute the distribution of the first passage time Tb explicitly in the case

x = 0 and b = 1. Hence let T = T1. As shown above, the process

Mλ
n := eλXn/(coshλ)n, n ≥ 0,

is a martingale for each λ ∈ R. Now suppose λ > 0. By the Optional Stopping

Theorem,

1 = E[Mλ
0 ] = E[Mλ

T∧n] = E[eλXT∧n/(coshλ)T∧n] (2.3.8)

for any n ∈ N. As n → ∞, the integrands on the right hand side converge

to eλ(coshλ)−T · I{T<∞}. Moreover, they are uniformly bounded by eλ, since

XT∧n ≤ 1 for any n. Hence by the Dominated Convergence Theorem, the expec-

tation on the right hand side of (2.3.8) converges to E[eλ/(coshλ)T ; T < ∞],

and we obtain the identity

E[(cosh λ)−T ; T <∞] = e−λ for any λ > 0. (2.3.9)

Taking the limit as λ ց 0, we see that P [T < ∞] = 1. Taking this into account,

and substituting s = 1/ coshλ in (2.3.9), we can now compute the generating

function of T explicitly:

E[sT ] = e−λ = (1−
√
1− s2)/s for any s ∈ (0, 1). (2.3.10)

Developing both sides into a power series finally yields

∞∑

n=0

sn · P [T = n] =

∞∑

m=1

(−1)m+1

(
1/2

m

)
s2m−1.
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Therefore, the distribution of the first passage time of 1 is given by

P [T = 2m−1] = (−1)m+1

(
1/2

m

)
= (−1)m+1·1

2
·
(
−1

2

)
· · ·
(
1

2
−m+ 1

)
/m!

and P [T = 2m] = 0 for any mN.

Optional Stopping Theorems

Stopping times occurring in applications are typically not bounded. Therefore, we need

more general conditions guaranteeing that (2.3.5) holds nevertheless. A first general

criterion is obtained by applying the Dominated Convergence Theorem:

Theorem 2.8 (Optional Stopping Theorem, Version 2). Suppose that (Mn) is a mar-

tingale w.r.t. (Fn), T is an (Fn)-stopping time with P [T < ∞] = 1, and there exists a

random variable Y ∈ L1(Ω,A, P ) such that

|MT∧n| ≤ Y P -almost surely for any n ∈ N.

Then

E[MT ] = E[M0].

Proof. Since P [T <∞] = 1, we have

MT = lim
n→∞

MT∧n P -almost surely.

By Theorem 2.7, E[M0] = E[MT∧n], and by the Dominated Convergence Theorem,

E[MT∧n] −→ E[MT ] as n→ ∞.

Remark (Weakening the assumptions). Instead of the existence of an integrable ran-

dom variable Y dominating the random variables MT∧n, n ∈ N, it is enough to assume

that these random variables are uniformly integrable, i.e.,

sup
n∈N

E
[
|MT∧n| ; |MT∧n| ≥ c

]
→ 0 as c→ ∞.

A corresponding generalization of the Dominated Convergence Theorem is proven in

Section 4.3 below.
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For non-negative supermartingales, we can apply Fatou’s Lemma instead of the Domi-

nated Convergence Theorem to pass to the limit as n → ∞ in the Stopping Theorem.

The advantage is that no integrability assumption is required. Of course, the price to

pay is that we only obtain an inequality:

Theorem 2.9 (Optional Stopping Theorem, Version 3). If (Mn) is a non-negative

supermartingale w.r.t. (Fn), then

E[M0] ≥ E[MT ; T <∞]

holds for any (Fn) stopping time T .

Proof. Since MT = lim
n→∞

MT∧n on {T < ∞}, and MT ≥ 0, Theorem 2.7 combined

with Fatou’s Lemma implies

E[M0] ≥ lim inf
n→∞

E[MT∧n] ≥ E
[
lim inf
n→∞

MT∧n

]
≥ E[MT ; T <∞].

Example (Dirichlet problem for Markov chains). Suppose that w.r.t. the probability

measure Px, the process (Xn) is a time-homogeneous Markov chain with measurable

state space (S,B), transition kernel p, and start in x. Let D ∈ B be a measurable

subset of the state space, and f : DC → R a measurable function (the given “boundary

values”), and let

T = min{n ≥ 0 : Xn ∈ DC}

denote the first exit time of the Markov chain from D. By conditioning on the first

step of the Markov chain, one can show that if f is non-negative or bounded, then the

function

h(x) = Ex[f(XT ) ; T <∞], (x ∈ S),

is a solution of the Dirichlet problem

(ph)(x) = h(x) for x ∈ D,

h(x) = f(x) for x ∈ DC ,
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see [XXXStochastic Processes].

D

DC

By considering the martingale h(XT∧n) for a function h that is harmonic on D, we

obtain a converse statement:

Exercise (Uniqueness of the Dirichlet problem). Suppose that Px[T < ∞] = 1 for

any x ∈ S.

(1). Prove that h(XT∧n) is a martingale w.r.t. Px for any bounded solution h of the

Dirichlet problem and any x ∈ S.

(2). Conclude that if f is bounded, then

h(x) = Ex[f(XT )] (2.3.11)

is the unique bounded solution of the Dirichlet problem.

(3). Similarly, show that for any non-negative f , the function h defined by (2.3.11) is

the minimal non-negative solution of the Dirichlet problem.

We finally state a version of the Optional Stopping Theorem that applies in particular to

martingales with bounded increments:
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Corollary 2.10 (Optional Stopping for martingales with bounded increments). Sup-

pose that (Mn) is an (Fn) martingale, and there exists a finite constantK ∈ (0,∞) such

that

E[|Mn+1 −Mn| | Fn] ≤ K P -almost surely for any n ≥ 0. (2.3.12)

Then for any (Fn) stopping time T with E[T ] <∞, we have

E[MT ] = E[M0].

Proof. For any n ≥ 0,

|MT∧n| ≤ |M0|+
∞∑

i=0

|Mi+1 −Mi| · I{T>i}.

Let Y denote the expression on the right hand side. We will show that Y is an integrable

random variable – this implies the assertion by Theorem 2.8. To verify integrability of

Y note that the event {T > i} is contained in Fi for any i ≥ 0 since T is a stopping

time. Therefore and by (2.3.12),

E[|Mi+1 −Mi| ; T > i] = E[E[|Mi+1 −Mi| | Fi] ; T > i] ≤ k · P [T > i].

Summing over i, we obtain

E[Y ] ≤ E[|M0|] + k ·
∞∑

i=0

P [T > i] = E[|M0|] + k ·E[T ] < ∞

by the assumptions.

Exercise (Integrability of stopping times). Prove that the expectation E[T ] of a stop-

ping time T is finite if there exist constants ε > 0 and k ∈ N such that

P [T ≤ n + k | Fn] ≥ ε P -a.s. for any n ∈ N.
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Wald’s identity for random sums

We finally apply the Optional Stopping Theorem to sums of independent random vari-

ables with a random number T of summands. The point is that we do not assume that

T is independent of the summands but only that it is a stopping time w.r.t. the filtration

generated by the summands.

Let Sn = η1 + . . .+ ηn with i.i.d. random variables ηi ∈ L1(Ω,A, P ). Denoting by m

the expectations of the increments ηi, the process

Mn = Sn − n ·m

is a martingale w.r.t. Fn = σ(η1, . . . , ηn). By applying Corollary 2.10 to this martingale,

we obtain:

Theorem 2.11 (Wald’s identity). Suppose that T is an (Fn) stopping time withE[T ] <

∞. Then

E[ST ] = m ·E[T ].

Proof. For any n ≥ 0, we have

E[|Mn+1 −Mn| | Fn] = E[|ηn+1 −m| |Fn] = E[|ηn+1 −m|]

by the independence of the ηi. As the ηi are identically distributed and integrable, the

right hand side is a finite constant. Hence Corollary 2.10 applies, and we obtain

0 = E[M0] = E[MT ] = E[ST ]−m · E[T ].

2.4 Maximal inequalities

For a standard Random Walk Sn = η1 + . . .+ ηn, ηi i.i.d. with P [ηi = ±1] = 1/2, the

reflection principle implies the identity

P [max(S0, S1, . . . , Sn) ≥ c] = P [Sn ≥ c] + P [Sn < c; max(S0, S1, . . . , Sn) ≥ c]

= P [|Sn| > c] + P [Sn > c]
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for any c ∈ N. In combination with the Markov-Čebyšev inequality this can be used to

control the running maximum of the Random Walk in terms of the moments of the last

value Sn.

Maximal inequalities are corresponding estimates for max(M0,M1, . . . ,Mn) or sup
k≥0

Mk

when (Mn) is a sub- or supermartingale respectively. These estimates are an important

tool in stochastic analysis. They are a consequence of the Optional Stopping Theorem.

Doob’s inequality

We first prove the basic version of maximal inequalities for sub- and supermartingales:

Theorem 2.12 (Doob).

(1). Suppose that (Mn)n≥0 is a non-negative supermartingale. Then

P

[
sup
k≥0

Mk ≥ c

]
≤ 1

c
· E[M0] for any c > 0.

(2). Suppose that (Mn)n≥0 is a non-negative submartingale. Then

P

[
max
0≤k≤n

Mk ≥ c

]
≤ 1

c
·E
[
Mn ; max

0≤k≤n
Mk ≥ c

]
≤ 1

c
·E[Mn] for any c > 0.

Proof. (1). For c > 0 we consider the stopping time

Tc = min{k ≥ 0 : Mk ≥ c}, min ∅ = ∞.

Note that Tc < ∞ whenever supMk > c. Hence by the version of the Optional

Stopping Theorem for non-negative supermartingales, we obtain

P [supMk > c] ≤ P [Tc <∞] ≤ 1

c
E[MTc

; Tc <∞] ≤ 1

c
E[M0].

Here we have used in the second and third step that (Mn) is non-negative. Re-

placing c by c− ε and letting ε tend to zero we can conclude

P [supMk ≥ c] = lim
εց0

P [supMk > c− ε] ≤ lim inf
εց0

1

c− ε
E[M0] =

1

c
·E[M0].
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(2). For a non-negative supermartingale, we obtain

P

[
max
0≤k≤n

Mk ≥ c

]
= P [Tc ≤ n] ≤ 1

c
E[MTc

; Tc ≤ n]

=
1

c

n∑

k=0

E[Mk ; Tc = k] ≤ 1

c

n∑

k=0

E[Mn ; Tc = k]

=
1

c
· E[Mn ; Tc ≤ n].

Here we have used in the second last step that E[Mk ; Tc = k] ≤ E[Mn ; Tc = k]

since (Mn) is a supermartingale and {Tc = k} is in Fk.

First consequences of Doob’s maximal inequality for submartingales are extensions of

the classical Markov- Čebyšev inequalities:

Corollary 2.13. (1). Suppose that (Mn)n≥0 is an arbitrary submartingale (not neces-

sarily non-negative!). Then

P

[
max
k≤n

Mk ≥ c

]
≤ 1

c
E

[
M+

n ; max
k≤n

Mk ≥ c

]
for any c > 0, and

P

[
max
k≤n

Mk ≥ c

]
≤ e−λcE

[
eλMn ; max

k≤n
Mk ≥ c

]
for any λ, c > 0.

(2). If (Mn) is a martingale then, moreover, the estimates

P

[
max
k≤n

|Mk| ≥ c

]
≤ 1

cp
E

[
|Mn|p ; max

k≤n
|Mk| ≥ c

]

hold for any c > 0 and p ∈ [1,∞).

Proof. The corollary follows by applying the maximal inequality to the non-negative

submartingales M+
n , exp(λMn), |Mn|p respectively. These processes are indeed sub-

martingales, as the functions x 7→ x+ and x 7→ exp(λx) are convex and non-decreasing

for any λ > 0, and the functions x 7→ |x|p are convex for any p ≥ 1.
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L
p inequalities

The last estimate in Corollary 2.13 can be used to bound the Lp norm of the running

maximum of a martingale in terms of theLp-norm of the last value. The resulting bound,

known as Doob’s Lp-inequality, is crucial for stochastic analysis. We first remark:

Lemma 2.14. If Y : Ω → R+ is a non-negative random variable, andG(y) =
ý

0

g(x)dx

is the integral of a non-negative function g : R+ → R+, then

E[G(Y )] =

∞̂

0

g(c) · P [Y ≥ c] dc.

Proof. By Fubini’s theorem we have

E[G(Y )] = E




Ŷ

0

g(c) dc


 = E




∞̂

0

I[0,Y ](c)g(c) dc




=

∞̂

0

g(c) · P [Y ≥ c] dc.

Theorem 2.15 (Doob’s Lp inequality). Suppose that (Mn)n≥0 is a martingale, and let

M∗
n := max

k≤n
|Mk|, and M∗ := sup

k
|Mk|.

Then, for any p, q ∈ (1,∞) such that 1
p
+ 1

q
= 1, we have

‖M∗
n‖Lp ≤ q · ‖Mn‖Lp, and ‖M∗‖Lp ≤ q · sup

n
‖Mn‖Lp.

In particular, if (Mn) is bounded in Lp then M∗ is contained in Lp.
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Proof. By Lemma 2.14, Corollary 2.13 applied to the martingales Mn and (−Mn), and

Fubini’s theorem, we have

E[(M∗
n)

p]
2.14
=

∞̂

0

pcp−1 · P [M∗
n ≥ c] dc

2.13
≤

∞̂

0

pcp−2E[|Mn| ; M∗
n ≥ c] dc

Fub.
= E


|Mn| ·

M∗
n

ˆ

0

pcp−2 dp




=
p

p− 1
E[|Mn| · (M∗

n)
p−1]

for any n ≥ 0 and p ∈ (1,∞). Setting q = p
p−1

and applying Hölder’s inequality to the

right hand side, we obtain

E[(M∗
n)

p] ≤ q · ‖Mn‖Lp · ‖(M∗
n)

p−1‖Lq = q · ‖Mn‖Lp · E[(M∗
n)

p]1/q,

i.e.,

‖M∗
n‖Lp = E[(M∗

n)
p]1−1/q ≤ q · ‖Mn‖Lp. (2.4.1)

This proves the first inequality. The second inequality follows as n→ ∞, since

‖M∗‖Lp =
∥∥∥ lim
n→∞

M∗
n

∥∥∥
Lp

= lim inf
n→∞

‖M∗
n‖Lp ≤ q · sup

n∈N
‖Mn‖Lp

by Fatou’s Lemma.

Hoeffding’s inequality

For a standard Random Walk (Sn) starting at 0, the reflection principle combined with

Bernstein’s inequality implies the upper bound

P [max(S0, . . . , Sn) ≥ c] ≤ 2 · P [Sn ≥ c] ≤ 2 · exp(−2c2/n)

for any n ∈ N and c ∈ (0,∞). A similar inequality holds for arbitrary martingales with

bounded increments:
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Theorem 2.16 (Azuma, Hoeffding). Suppose that (Mn) is a martingale such that

|Mn −Mn−1| ≤ an P -almost surely

for a sequence (an) of non-negative constants. Then

P

[
max
k≤n

(Mk −M0) ≥ c

]
≤ exp

(
−1

2
c2

/
n∑

i=1

a2i

)
(2.4.2)

for any n ∈ N and c ∈ (0,∞).

Proof. W.l.o.g. we may assume M0 = 0. Let Yn = Mn −Mn−1 denote the martingale

increments. We will apply the exponential form of the maximal inequality. For λ > 0

and n ∈ N, we have,

E[eλMn ] = E

[
n∏

i=1

eλYi

]
= E

[
eλMn−1 ·E

[
eλYn | Fn−1

]]
. (2.4.3)

To bound the conditional expectation, note that

eλYn ≤ 1

2

an − Yn
an

e−λan +
1

2

an + Yn
an

eλan

holds almost surely, since x 7→ exp(λx) is a convex function, and −an ≤ Yn ≤
an. Indeed, the right hand side is the value at Yn of the secant connecting the points

(−an, exp(−λan)) and (an, exp(λan)). Since (Mn) is a martingale, we have

E[Yn|Fn−1] = 0,

and therefore

E[eλYn | Fn−1] ≤
(
e−λan + eλan

)
/2 = cosh(λan) ≤ e(λan)

2/2

almost surely. Now, by (2.4.3), we obtain

E[eλYn ] ≤ E[eλMn−1 ] · e(λan)2/2.
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Hence, by induction on n,

E[eλMn ] ≤ exp

(
1

2
λ2

n∑

i=1

a2i

)
for any n ∈ N, (2.4.4)

and, by the exponential maximal inequality (cf. Corollary 2.13),

P [max
k≤n

Mk ≥ c] ≤ exp

(
−λc+ 1

2
λ2

n∑

i=1

a2i

)
(2.4.5)

holds for any n ∈ N and c, λ > 0.

For a given c and n, the expression on the right hand side of (2.4.5) is minimal for λ =

c/
∑n

i=1 a
2
i . Choosing λ correspondingly, we finally obtain the upper bound (2.4.2).

Hoeffding’s concentration inequality has numerous applications, for example in the

analysis of algorithms, cf. [Mitzenmacher, Upful: Probability and Computing]. Here,

we just consider one simple example to illustrate the way it typically is applied:

Example (Pattern Matching). Suppose that X1, X2, . . . , Xn is a sequence of indepen-

dent, uniformly distributed random variables (“letters”) taking value sin a finite set S

(the underlying “alphabet”), and let

N =
n−l∑

i=0

I{Xi+1=a1,Xi+2=ax,...,Xi+l=al} (2.4.6)

denote the number of occurrences of a given “word” a1a2 · · ·al with l letters in the

random text. In applications, the “word” could for example be a DNA sequence. We

easily obtain

E[N ] =
n−l∑

i=0

P [Xi+k = ak for k = 1, . . . , l] = (n− l + 1)/|S|l. (2.4.7)

To estimate the fluctuations of the random variable N around its mean value, we con-

sider the martingale

Mi = E[N | σ(X1, . . . , Xi)], (i = 0, 1, . . . , n)
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with initial value M0 = E[N ] and terminal value Mn = N . Since at most l of the

summands in (2.4.6) are not independent of i, and each summand takes values 0 and 1

only, we have

|Mi −Mi−1| ≤ l for each i = 0, 1, . . . , n.

Therefore, by Hoeffding’s inequality, applied in both directions, we obtain

P [|N − E[N ]| ≥ c] = P [|Mn −M0| ≥ c] ≤ 2 exp(−c2/(2nl2))

for any c > 0, or equivalently,

P [|N − E[N ]| ≥ ε · l√n] ≤ 2 · exp(−ε2/2) for any ε > 0. (2.4.8)

The equation (2.4.7) and the bound (2.4.8) show that N is highly concentrated around

its mean if l is small compared to
√
n.
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Chapter 3

Martingales in continuous time

The notion of a martingale, sub- and supermartingale in continuous time can be defined

similarly as in the discrete parameter case. Fundamental results such as the optional

stopping theorem or the maximal inequality carry over from discrete parameter to con-

tinuous time martingales under additional regularity conditions as, for example, conti-

nuity of the sample paths. Similarly as for Markov chains in discrete time, martingale

methods can be applied to derive explicit expressions and bounds for probabilities and

expectations of Brownian motion in a clear and efficient way.

We start with the definition of martingales in continuous time. Let (Ω,A, P ) denote a

probability space.

Definition. (1). A continuous-time filtration on (Ω,A) is a family (Ft)t∈[0,∞) of σ-

algebras Ft ⊆ A such that Fs ⊆ Ft for any 0 ≤ s ≤ t.

(2). A real-valued stochastic process (Mt)t∈[0,∞) on (Ω,A, P ) is called a martingale

(or super-, submartingale) w.r.t. a filtration (Ft) if and only if

(a) (Mt) is adapted w.r.t. (Ft), i.e., Mt is Ft measurable for any t ≥ 0.

(b) For any t ≥ 0, the random variable Mt (resp. M+
t ,M

−
t ) is integrable.

(c) E[Mt | Fs]
(≤,≥)
= Ms P -almost surely for any 0 ≤ s ≤ t.
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3.1 Some fundamental martingales of Brownian Motion

In this section, we identify some important martingales that are functions of Brownian

motion. Let (Bt)t≥0 denote a d-dimensional Brownian motion defined on (Ω,A, P ).

Filtrations generated by Brownian motion

Any stochastic process (Xt)t≥0 in continuous time generates a filtration

FX
t = σ(Xs : 0 ≤ s ≤ t), t ≥ 0.

However, not every hitting time that we are interested in is a stopping time w.r.t. this

filtration. For example, for one-dimensional Brownian motion (Bt), the first hitting

time T = inf{t ≥ 0 : Bt > c} of the open interval (c,∞) is not an (FB
t ) stopping

time. An intuitive explanation for this fact is that for t ≥ 0, the event {T ≤ t} is not

contained in FB
t , since for a path with Bs ≤ c on [0, t] and Bt = c, we can not decide

at time t, if the path will enter the interval (c,∞) in the next instant. For this and other

reasons, we also consider the right-continuous filtration

Ft :=
⋂

ε>0

FB
t+ε, t ≥ 0,

that takes into account “infinitesimal information on the future development.”

Exercise (Hitting times as stopping times). Prove that the first hitting time TA =

inf{t ≥ 0 : Bt ∈ A} of a set A ⊆ Rd is an (FB
t ) stopping time if A is closed, whereas

TA is an (Ft) stopping time, but not necessarily an (FB
t ) stopping time if A is open.

It is easy to verify that a d-dimensional Brownian motion (Bt) is also a Brownian motion

w.r.t. the right-continuous filtration (Ft):

Lemma 3.1. For any 0 ≤ s < t, the increment Bt − Bs is independent of Fs with

distribution N(0, (t− s) · Id).

Proof. Since t 7→ Bt is almost surely continuous, we have

Bt −Bs = lim
εց0

ε∈Q

(Bt − Bs+ε) P -a.s. (3.1.1)
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For small ε > 0 the incrementBt−Bs+ε is independent of FB
s+ε, and hence independent

of Fs. Therefore, by (3.1.1), Bt −Bs is independent of Fs as well.

Another filtration of interest is the completed filtration (FP
t ). A σ-algebra F is called

complete w.r.t. a probability measure P iff it contains all subsets of P -measure zero

sets. The completion of a σ-algebra A w.r.t. a probability measure P on (Ω,A) is the

complete σ-algebra

AP = {A ⊆ Ω : ∃A1, A2 ∈ A : A1 ⊆ A ⊆ A2, P [A2 \ A1] = 0}

generated by all sets in A and all subsets of P -measure zero sets in A.

It can be shown that the completion (FP
t ) of the right-continuous filtration (Ft) is again

right-continuous. The assertion of Lemma 3.1 obviously carries over to the completed

filtration.

Remark (The “usual conditions”). Some textbooks on stochastic analysis consider

only complete right-continuous filtrations. A filtration with these properties is said to

satisfy the usual conditions. A disadvantage of completing the filtration, however, is

that (FP
t ) depends on the underlying probability measure P (or, more precisely, on its

null sets). This can cause problems when considering several non-equivalent probability

measures at the same time.

Brownian Martingales

We now identify some basic martingales of Brownian motion:

Theorem 3.2 (Elementary martingales of Brownian motion). For a d-dimensional

Brownian motion (Bt) the following processes are martingales w.r.t. each of the filtra-

tions (FB
t ), (Ft) and (FP

t ):

(1). The coordinate processes B(i)
t , 1 ≤ i ≤ d.

(2). B(i)
t B

(j)
t − t · δij for any 1 ≤ i, j ≤ d.

University of Bonn 2015/2016
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(3). exp(α ·Bt − 1
2
|α|2t) for any α ∈ Rd.

The processes Mα
t = exp(α · Bt − 1

2
|α|2t) are called exponential martingales.

Proof. We only prove the second assertion for d = 1 and the right-continuous filtration

(Ft). The verification of the remaining statements is left as an exercise.

For d = 1, since Bt is normally distributed, the Ft-measurable random variable B2
t − t

is integrable for any t. Moreover, by Lemma 3.1,

E[B2
t − B2

s | Fs] = E[(Bt − Bs)
2 | Fs] + 2Bs · E[Bt −Bs | Fs]

= E[(Bt − Bs)
2] + 2Bs · E[Bt − Bs] = t− s

almost surely. Hence

E[B2
t − t | Fs] = B2

s − s P -a.s. for any 0 ≤ s ≤ t,

i.e., B2
t − t is an (Ft) martingale.

Remark (Doob decomposition, variance process of Brownian motion). For a one-

dimensional Brownian motion (Bt), the theorem yields the Doob decomposition

B2
t = Mt + t

of the submartingale (B2
t ) into a martingale (Mt) and the continuous increasing adapted

process 〈B〉t = t.

A Doob decomposition of the process f(Bt) for general functions f ∈ C2(R) will be

obtained below as a consequence of Itô’s celebrated formula. It states that

f(Bt)− f(B0) =

t
ˆ

0

f ′(Bs) dBs +
1

2

t
ˆ

0

f ′′(Bs) ds (3.1.2)

where the first integral is an Itô stochastic integral, cf. Section 6.3. If, for example, f ′ is

bounded, then the Itô integral is a martingale as a function of t. If f is convex then f(Bt)

is a submartingale and the second integral is a continuous increasing adapted process in
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t. It is a consequence of (3.1.2) that Brownian motion solves the martingale problem for

the operator L f = f ′′/2 with domain Dom(L ) = {f ∈ C2(R) : f ′ bounded}.

Itô’s formula (3.1.2) can also be extended to the multi-dimensional case, see Section

6.4 below. The second derivative is then replaced by the Laplacian ∆f =
∑d

i=1
∂2f
∂x2

i

.

The multi-dimensional Itô formula implies that a sub- or superharmonic function of d-

dimensional Brownian motion is a sub- or supermartingale respectively, if appropriate

integrability conditions hold. We now give a direct proof of this fact by the mean value

property:

Lemma 3.3 (Mean value property for harmonic function in Rd). Suppose that h ∈
C2(Rd) is a (super-)harmonic function, i.e.,

∆h(x)
(≤)
= 0 for any x ∈ Rd.

Then for any x ∈ Rd and any rotationally invariant probability measure µ on Rd,

ˆ

h(x+ y) µ(dy)
(≤)
= h(x). (3.1.3)

Proof. By the classical mean value property, h(x) is equal to (resp. greater or equal

than) the average value
ffl

∂Br(x)

h of h on any sphere ∂Br(x) with center at x and radius

r > 0, cf. e.g. [XXXKönigsberger: Analysis II]. Moreover, if µ is a rotationally invari-

ant probability measure then the integral in (3.1.3) is an average of average values over

spheres:
ˆ

h(x+ y) µ(dy) =

ˆ  

∂Br(x)

h µR(dr)
(≤)
= h(x),

where µR is the distribution of R(x) = |x| under µ.

Theorem 3.4 (Superharmonic functions of Brownian motion are supermartin-

gales). If h ∈ C2(Rd) is a (super-) harmonic function then (h(Bt)) is a (super-) mar-

tingale w.r.t. (Ft) provided h(Bt) (resp. h(Bt)
+) is integrable for any t ≥ 0.
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Proof. By Lemma 3.1 and the mean value property, we obtain

E[h(Bt) | Fs](ω) = E[h(Bs +Bt − Bs) | Fs](ω)

= E[h(Bs(ω) +Bt −Bs)]

=

ˆ

h(Bs(ω) + y) N(0, (t− s) I)(dy)

(≤)
= h(Bs(ω))

for any 0 ≤ s ≤ t and P -almost every ω.

3.2 Optional Sampling and Optional Stopping

The Optional Sampling Theorem

The optional stopping theorem can be easily extended to continuous time martingales

with continuous sample paths. We directly prove a generalization:

Theorem 3.5 (Optional Sampling Theorem). Suppose that (Mt)t∈[0,∞] is a martingale

w.r.t. an arbitrary filtration (Ft) such that t 7→Mt(ω) is continuous for P -almost every

ω. Then

E[MT | FS] = MS P -almost surely (3.2.1)

for any bounded (Ft) stopping times S and T with S ≤ T .

We point out that an additional assumption on the filtration (e.g. right-continuity) is not

required in the theorem. Stopping times and the σ-algebra FS are defined for arbitrary

filtrations in complete analogy to the definitions for the filtration (FB
t ) in Section 1.5.

Remark (Optional Stopping). By taking expectations in the Optional Sampling The-

orem, we obtain

E[MT ] = E[E[MT | F0]] = E[M0]

for any bounded stopping time T . For unbounded stopping times,

E[MT ] = E[M0]
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holds by dominated convergence provided T < ∞ almost surely, and the random vari-

ables MT∧n, n ∈ N, are uniformly integrable.

Proof of Theorem 3.5. We verify the defining properties of the conditional expectation

in (3.4) by approximating the stopping times by discrete random variables:

(1). MS has an FS-measurable modification: For n ∈ N let S̃n = 2−n⌊2nS⌋, i.e.,

S̃n = k · 2−n on {k · 2−n ≤ S < (k + 1)2−n} for any k = 0, 1, 2, . . . .

We point out that in general, S̃n is not a stopping time w.r.t. (Ft). Clearly, the

sequence (S̃n)n∈N is increasing with S = limSn. By almost sure continuity

MS = lim
n→∞

MS̃n
P -almost surely. (3.2.2)

On the other hand, each of the random variables MS̃n
is FS-measurable. In fact,

MS̃n
· I{S≤t} =

∑

k:k·2−n≤t

Mk·2−n · I{k2−n≤S<(k+1)2−n and S≤t}

is Ft-measurable for any t ≥ 0 since S is an (Ft) stopping time. Therefore, by

(3.2.2), the random variable M̃S := lim sup
n→∞

MS̃n
is an FS-measurable modifica-

tion of MS .

(2). E[MT ; A] = E[MS ; A] for any A ∈ FS: For n ∈ N, the discrete random vari-

ables Tn = 2−n · ⌈2nT ⌉ and Sn = 2−n · ⌈2nS⌉ are (Ft) stopping times satisfying

Tn ≥ Sn ≥ S, cf. the proof of Theorem 1.26. In particular, FS ⊆ FSn
⊆ FTn

.

Furthermore, (Tn) and (Sn) are decreasing sequences with T = lim Tn and

S = limSn. As T and S are bounded random variables by assumption, the

sequences (Tn) and (Sn) are uniformly bounded by a finite constant c ∈ (0,∞).

Therefore, we obtain
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S(ω)

ω

Sn(ω)

S̃n(ω)

Figure 3.1: Two ways to approximate a continuous stopping time.

E[MTn
; A] =

∑

k:k·2−n≤c

E[Mk·2−n ; A ∩ {Tn = k · 2−n}]

=
∑

k:k·2−n≤c

E[Mc ; A ∩ {Tn = k · 2−n}] (3.2.3)

= E[Mc ; A] for any A ∈ FTn
,

and similarly

E[MSn
; A] = E[Mc ; A] for any A ∈ FSn

. (3.2.4)

In (3.2.3) we have used that (Mt) is an (Ft) martingale, and A∩{Tn = k ·2−n} ∈
Fk·2−n. A set A ∈ FS is contained both in FTn

and FSn
. Thus by (3.2.3) and

(3.2.4),

E[MTn
; A] = E[MSn

; A] for any n ∈ N and any A ∈ FS. (3.2.5)

As n→ ∞, MTn
→MT and MSn

→MS almost surely by continuity. It remains

to show that the expectations in (3.2.5) converge as well. To this end note that by

(3.2.3) and (3.2.4),

MTn
= E[Mc | FTn

] and MSn
= E[Mc | FSn

] P -almost surely.
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We will prove in Section 4.3 that any family of conditional expectations of a

given random variable w.r.t. different σ-algebras is uniformly integrable, and that

for uniformly integrable random variables a generalized Dominated Convergence

Theorem holds, cf. Theorem 4.13. Therefore, we finally obtain

E[MT ; A] = E[limMTn
; A] = limE[MTn

; A]

= limE[MSn
; A] = E[limMSn

; A] = E[MS ; A],

completing the proof of the theorem.

Remark (Measurability and completion). In general, the random variable MS is not

necessarily FS-measurable. However, we have shown in the proof that MS always has

an FS-measurable modification M̃S . If the filtration contains all measure zero sets, then

this implies that MS itself is FS-measurable and hence a version of E[MT | FS].

Ruin probabilities and passage times revisited

Similarly as for random walks, the Optional Sampling Theorem can be applied to com-

pute distributions of passage times and hitting probabilities for Brownian motion. For a

one-dimensional Brownian motion (Bt) starting at 0, and a, b > 0, let

T = inf{t ≥ 0 : Bt 6∈ (−b, a)} and Ta = inf{t ≥ 0 : Bt = a}

denote the first exit time from the interval (−b, a) and the first passage time to the point

a, respectively. In Section 1.5 we have computed the distribution of Ta by the reflection

principle. This and other results can be recovered by applying optional stopping to the

basic martingales of Brownian motion. The advantage of this approach is that it carries

over to other diffusion processes.

Exercise (Exit and passage times of Brownian motion). Prove by optional stopping:

(1). Law of the exit point: P [BT = a] = b/(a+ b), P [BT = −b] = a/(a + b),

(2). Mean exit time: E[T ] = a · b and E[Ta] = ∞,
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(3). Laplace transform of passage times: For any s > 0,

E[exp(−sTa)] = exp(−a
√
2s).

Conclude that the distribution of Ta on (0,∞) is absolutely continuous with density

fTa
(t) = a · (2πt3)−1/2 · exp(−a2/2t).

Exit laws and Dirichlet problem

Applying optional stopping to harmonic functions of a multidimensional Brownian mo-

tion yields a generalization of the mean value property and a stochastic representation

for solutions of the Dirichlet problem. This will be exploited in full generality in Chap-

ter 7. Here, we only sketch the basic idea.

Suppose that h ∈ C2(Rd) is a harmonic function and that (Bt)t≥0 is a d-dimensional

Brownian motion starting at x w.r.t. the probability measure Px. Assuming that

Ex[h(Bt)] < ∞ for any t ≥ 0,

the mean value property for harmonic functions implies that h(Bt) is a martingale under

Px, cf. Theorem 3.4. The first hitting time T = inf{t ≥ 0 : Bt ∈ Rd \D} of the com-

plement of an open set D ⊆ Rd is a stopping time w.r.t. the filtration (FB
t ). Therefore,

by Theorem 3.5 and the remark below, we obtain

Ex[h(BT∧n)] = Ex[h(B0)] = h(x) for any n ∈ N. (3.2.6)

Now let us assume in addition that the set D is bounded. Then T is almost surely

finite, and the sequence of random variables h(BT∧n) (n ∈ N) is uniformly bounded

because BT∧n takes values in the closure D for any n ∈ N. Applying the Dominated

Convergence Theorem to (3.2.6), we obtain the integral representation

h(x) = Ex[h(BT )] =

ˆ

∂D

h(y)µx(dy) (3.2.7)

where µx = Px ◦ B−1
T denotes the exit law from D for Brownian motion starting at x.

In Chapter 7, we show that the representation (3.2.7) still holds true if h is a continuous
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function defined on D that is C2 and harmonic on D. The proof requires localization

techniques that will be developed below in the context of stochastic calculus. For the

moment we note that the representation (3.2.7) has several important aspects and appli-

cations:

Generalized mean value property for harmonic functions. For any bounded do-

main D ⊆ Rd and any x ∈ D, h(x) is the average of the boundary values of h on ∂D

w.r.t. the measure µx.

Stochastic representation for solutions of the Dirichlet problem. A solution h ∈
C2(D) ∩ C(D) of the Dirichlet problem

∆h(x) = 0 for x ∈ D, (3.2.8)

h(x) = f(x) for x ∈ ∂D,

has a stochastic representation

h(x) = Ex[f(BT )] for any x ∈ D. (3.2.9)

Monte Carlo solution of the Dirichlet problem. The stochastic representation (3.2.9)

can be used as the basis of a Monte Carlo method for computing the harmonic function

h(x) approximately by simulating a large number n of sample paths of Brownian motion

starting at x, and estimating the expectation by the corresponding empirical average. Al-

though in many cases classical numerical methods are more efficient, the Monte Carlo

method is useful in high dimensional cases. Furthermore, it carries over to far more

general situations.

Computation of exit law. Conversely, if the Dirichlet problem (3.2.8) has a unique

solution h, then computation of h (for example by standard numerical methods) enables

us to obtain the expectations in (3.2.8). In particular, the probability h(x) = Px[BT ∈ A]

for Brownian motion exiting the domain on a subset A ⊆ ∂D is informally given as the

solution of the Dirichlet problem

∆h = 0 on D, h = IA on ∂D.
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This can be made rigorous under regularity assumptions. The full exit law is the har-

monic measure, i.e., the probability measure µx such that the representation (3.2.7) holds

for any function h ∈ C2(D) ∩ C(D) with ∆h = 0 on D. For simple domains such as

half-spaces, balls and cylinders, this harmonic measure can be computed explicitly.

Example (Exit laws from balls). For d ≥ 2, the exit law from the unit ball D = {y ∈
Rd : |y| < 1} for Brownian motion starting at a point x ∈ Rd with |x| < 1 is given by

µx(dy) =
1− |x|2
|y − x|d ν(dy)

where ν denotes the normalized surface measure on the unit sphere Sd−1 = {y ∈ Rd :

|y| = 1}. Indeed, the classical Poisson integral formula states that for any f ∈ C(Sd−1),

the function

h(x) =

ˆ

f(y) µx(dy)

solves the Dirichlet problem on D with boundary values lim
x→z

h(x) = f(z) for any z ∈
Sd−1, cf. e.g. [XXX Karatzas/Shreve, Ch. 4]. Hence by (3.2.9),

Ex[f(BT )] =

ˆ

f(y)
1− |x|2
|y − x|d ν(dy)

holds for any f ∈ C(Sd−1), and thus by a standard approximation argument, for any

indicator function of a measurable subset of Sd−1.

3.3 Maximal inequalities and the Law of the Iterated

Logarithm

The extension of Doob’s maximal inequality to the continuous time case is straight-

forward. As a first application, we give a proof for the upper bound in the law of the

iterated logarithm.

Maximal inequalities in continuous time
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Theorem 3.6 (Doob’s Lp inequality in continuous time). Suppose that (Mt)t∈[0,∞) is

a martingale with almost surely right continuous sample paths t 7→ Mt(ω). Then the

following estimates hold for any a ∈ [0,∞), p ∈ [1,∞), q ∈ (1,∞] with 1
p
+ 1

q
= 1,

and c > 0:

(1). P

[
sup
t∈[0,a]

|Mt| ≥ c

]
≤ c−p · E[|Ma|p],

(2).

∥∥∥∥∥ sup
t∈[0,a]

|Mt|
∥∥∥∥∥
Lp

≤ q · ‖Ma‖Lp.

Remark. The same estimates hold for non-negative submartingales.

Proof. Let (πn) denote an increasing sequence of partitions of the interval [0, a] such

that the mesh size of πn goes to 0 as n → ∞. By Corollary 2.13 applied to the discrete

time martingale (Mt)t∈πn
, we obtain

P

[
max
t∈πn

|Mt| ≥ c

]
≤ E[|Ma|p]/cp for any n ∈ N.

Moreover, as n→ ∞,

max
t∈πn

|Mt| ր sup
t∈[0,a]

|Mt| almost surely

by right continuity of the sample paths. Hence

P

[
sup
t∈[0,a]

|Mt| > c

]
= P

[⋃

n

{
max
t∈τn

|Mt| > c

}]

= lim
n→∞

P

[
max
t∈τn

|Mt| > c

]
≤ E[|Ma|p]/cp.

The first assertion now follows by replacing c by c − ε and letting ε tend to 0. The

second assertion follows similarly from Theorem 2.15.

As a first application of the maximal inequality to Brownian motion, we derive an upper

bound for the probability that the graph of one-dimensional Brownian motion passes a

line in R2:
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T

β

Lemma 3.7 (Passage probabilities for lines). For a one-dimensional Brownian motion

(Bt) starting at 0 we have

P [Bt ≥ β + αt/2 for some t ≥ 0] ≤ exp(−αβ) for any α, β > 0.

Proof. Applying the maximal inequality to the exponential martingale

Mα
t = exp(αBt − α2t/2)

yields

P [Bt ≥ β + αt/2 for some t ∈ [0, a]] = P

[
sup
t∈[0,a]

(Bt − αt/2) ≥ β

]

= P

[
sup
t∈[0,a]

Mα
t ≥ exp(αβ)

]
≤ exp(−αβ) · E[Mα

a ] = exp(−αβ)

for any a > 0. The assertion follows in the limit as a→ ∞.

With slightly more effort, it is possible to compute the passage probability and the dis-

tribution of the first passage time of a line explicitly, cf. ?? below.

Application to LIL

A remarkable consequence of Lemma 3.7 is a simplified proof for the upper bound half

of the Law of the Iterated Logarithm:
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Theorem 3.8 (LIL, upper bound). For a one-dimensional Brownian motion (Bt) start-

ing at 0,

lim sup
tց0

Bt√
2t log log t−1

≤ +1 P -almost surely. (3.3.1)

Proof. Let δ > 0. We would like to show that almost surely,

Bt ≤ (1 + δ)h(t) for sufficiently small t > 0,

where h(t) :=
√

2t log log t−1. Fix θ ∈ (0, 1). The idea is to approximate the function

h(t) by affine functions

ln(t) = βn + αnt/2

on each of the intervals [θn, θn−1], and to apply the upper bounds for the passage prob-

abilities from the lemma.
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1θθ2θ3θ4θ5

We choose αn and βn in a such way that ln(θn) = h(θn) and ln(0) = h(θn)/2, i.e.,

βn = h(θn)/2 and αn = h(θn)/θn.

For this choice we have ln(θn) ≥ θ · ln(θn−1), and hence

ln(t) ≤ ln(θ
n−1) ≤ ln(θ

n)

θ
(3.3.2)

=
h(θn)

θ
≤ h(t)

θ
for any t ∈ [θn, θn−1].
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h(t)

θn−1θn

h(θn)

h(θn)/2

ln(t)

We now want to apply the Borel-Cantelli lemma to show that with probability one,

Bt ≤ (1 + δ)ln(t) for large n. By Lemma 3.7,

P [Bt ≥ (1 + δ)ln(t) for some t ≥ 0] ≤ exp(−αnβn · (1 + δ)2)

= exp

(
−h(θ

n)2

2θn
· (1 + δ)2

)
.

Choosing h(t) =
√
2t log log t−1, the right hand side is equal to a constant multiple of

n−(1+δ)2 , which is a summable sequence. Note that we do not have to know the precise

form of h(t) in advance to carry out the proof – we just choose h(t) in such a way that

the probabilities become summable!

Now, by Borel-Cantelli, for P -almost every ω there exists N(ω) ∈ N such that

Bt(ω) ≤ (1 + δ)ln(t) for any t ∈ [0, 1] and n ≥ N(ω). (3.3.3)

By (3.3.2), the right hand side of (3.3.3) is dominated by (1+δ)h(t)/θ for t ∈ [θn, θn−1].

Hence

Bt ≤ 1 + δ

θ
h(t) for any t ∈

⋃

n≥N

[θn, θn−1],

i.e., for any t ∈ (0, θN−1), and therefore,

lim sup
tց0

Bt

h(t)
≤ 1 + δ

θ
P -almost surely.

The assertion then follows in the limit as θ ր 1 and δ ց 0.
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Since (−Bt) is again a Brownian motion starting at 0, the upper bound (3.3.1) also

implies

lim inf
tց0

Bt√
2t log log t−1

≥ −1 P -almost surely. (3.3.4)

The converse bounds are actually easier to prove since we can use the independence of

the increments and apply the second Borel-Cantelli Lemma. We only mention the key

steps and leave the details as an exercise:

Exercise (Complete proof of LIL). Prove the Law of the Iterated Logarithm:

lim sup
tց0

Bt

h(t)
= +1 and lim inf

tց0

Bt

h(t)
= −1

where h(t) =
√
2t log log t−1. Proceed in the following way:

(1). Let θ ∈ (0, 1) and consider the increments Zn = Bθn − Bθn+1, n ∈ N. Show that

if ε > 0, then

P [Zn > (1− ε)h(θn) infinitely often] = 1.

(Hint:
´∞
x

exp(−z2/2)dz ≤ x−1 exp(−x2/2))

(2). Conclude that by (3.3.4),

lim sup
tց0

Bt

h(t)
≥ 1− ε P -almost surely for any ε > 0,

and complete the proof of the LIL by deriving the lower bounds

lim sup
tց0

Bt

h(t)
≥ 1 and lim inf

tց0

Bt

h(t)
≤ −1 P -almost surely. (3.3.5)
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Chapter 4

Martingale Convergence Theorems

The strength of martingale theory is partially due to powerful general convergence the-

orems that hold for martingales, sub- and supermartingales. In this chapter, we study

convergence theorems with different types of convergence including almost sure, L2

and L1 convergence, and consider first applications.

At first, we will again focus on discrete-parameter martingales – the results can then be

easily extended to continuous martingales.

4.1 Convergence in L2

Already when proving the Law of Large Numbers, L2 convergence is much easier to

show than, for example, almost sure convergence. The situation is similar for mar-

tingales: A necessary and sufficient condition for convergence in the Hilbert space

L2(Ω,A, P ) can be obtained by elementary methods.

Martingales in L2

Consider a discrete-parameter martingale (Mn)n≥0 w.r.t. a filtration (Fn) on a probabil-

ity space (Ω,A, P ). Throughout this section we assume:

Assumption (Square integrability). E[M2
n] <∞ for any n ≥ 0.

We start with an important remark:
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Lemma 4.1. The increments Yn = Mn −Mn−1 of a square-integrable martingale are

centered and orthogonal in L2(Ω,A, P ) (i.e. uncorrelated).

Proof. By definition of a martingale, E[Yn |Fn−1] = 0 for any n ≥ 0. Hence E[Yn] = 0

and E[YmYn] = E[Ym · E[Yn | Fn−1]] = 0 for 0 ≤ m < n.

Since the increments are also orthogonal to M0 by an analogue argument, a square

integrable martingale sequence consists of partial sums of a sequence of uncorrelated

random variables:

Mn = M0 +
n∑

k=1

Yk for any n ≥ 0.

The Convergence Theorem

The central result of this section shows that an L2-bounded martingale (Mn) can always

be extended to n ∈ {0, 1, 2, . . .} ∪ {∞}:

Theorem 4.2 (L2 Martingale Convergence Theorem). The martingale sequence

(Mn) converges in L2(Ω,A, P ) as n → ∞ if and only if it is bounded in L2 in the

sense that

sup
n≥0

E[M2
n] <∞. (4.1.1)

In this case, the representation

Mn = E[M∞ | Fn]

holds almost surely for any n ≥ 0, where M∞ denotes the limit of Mn in L2(Ω,A, P ).

We will prove in the next section that (Mn) does also converge almost surely to M∞.

An analogue result to Theorem 4.2 holds with L2 replaced by Lp for any p ∈ (1,∞) but

not for p = 1, cf. Section 4.3 below.

Proof. (1). Let us first note that

E[(Mn −Mm)
2] = E[M2

n]−E[M2
m] for 0 ≤ m ≤ n. (4.1.2)
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Indeed,

E[M2
n ]− E[M2

m] = E[(Mn −Mm)(Mn +Mm)]

= E[(Mn −Mm)
2] + 2E[Mm · (Mn −Mm)],

and the last term vanishes since the increment Mn −Mm is orthogonal to Mm in

L2.

(2). To prove that (4.1.1) is sufficient for L2 convergence, note that the sequence

(E[M2
n])n≥0 is increasing by (4.1.2). If (4.1.1) holds then this sequence is bound-

ed, and hence a Cauchy sequence. Therefore, by (4.1.2), (Mn) is a Cauchy se-

quence in L2. Convergence now follows by completeness of L2(Ω,A, P ).

(3). Conversely, if (Mn) converges in L2 to a limit M∞, then the L2 norms are bound-

ed. Moreover, by Jensen’s inequality, for each fixed k ≥ 0,

E[Mn | Fk] −→ E[M∞ | Fk] in L2(Ω,A, P ) as n→ ∞.

As (Mn) is a martingale, we have E[Mn | Fk] =Mk for n ≥ k, and hence

Mk = E[M∞ | Fk] P -almost surely.

Remark (Functional analytic interpretation ofL2 convergence theorem). The asser-

tion of the L2 martingale convergence theorem can be rephrased as a purely functional

analytic statement:

An infinite sum
∞∑
k=1

Yk of orthogonal vectors Yk in the Hilbert space L2(Ω,A, P ) is

convergent if and only if the sequence of partial sums
n∑

k=1

Yk is bounded.

How can boundedness in L2 be verified for martingales? Writing the martingale (Mn)

as the sequence of partial sums of its increments Yn =Mn −Mn−1, we have

E[M2
n ] =

(
M0 +

n∑

k=1

Yk,M0 +

n∑

k=1

Yk

)

L2

= E[M2
0 ] +

n∑

k=1

E[Y 2
k ]
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by orthogonality of the increments and M0. Hence

sup
n≥0

E[M2
n] = E[M2

0 ] +

∞∑

k=1

E[Y 2
k ].

Alternatively, we have E[M2
n] = E[M2

0 ] + E[〈M〉n]. Hence by monotone convergence

sup
n≥0

E[M2
n] = E[M2

0 ] + E[〈M〉∞]

where 〈M〉∞ = sup〈M〉n.

Summability of sequences with random signs

As a first application we study the convergence of series with coefficients with random

signs. In an introductory analysis course it is shown as an application of the integral and

Leibniz criterion for convergence of series that

∞∑
n=1

n−α converges ⇐⇒ α > 1 , whereas
∞∑
n=1

(−1)nn−α converges ⇐⇒ α > 0.

Therefore, it seems interesting to see what happens if the signs are chosen randomly.

The L2 martingale convergence theorem yields:

Corollary 4.3. Let (an) be a real sequence. If (εn) is a sequence of independent random

variables on (Ω,A, P ) with P [εn = +1] = P [εn = −1] = 1/2, then

∞∑

n=1

εnan converges in L2(Ω,A, P ) ⇐⇒
∞∑

n=1

a2n <∞.

Proof. The sequence Mn =
n∑

k=1

εkak of partial sums is a martingale with

sup
n≥0

E[M2
n] =

∞∑

k=1

E[ε2ka
2
k] =

∞∑

k=1

a2k.
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Example. The series
∞∑
n=1

εn · n−α converges in L2 if and only if α > 1
2
.

Remark (Almost sure asymptotics). By the Supermartingale Convergence Theorem

(cf. Theorem 4.5 below), the series
∑
εnan also converges almost surely if

∑
a2n <∞.

On the other hand, if
∑
a2n = ∞ then the series of partial sums has almost surely

unbounded oscillations:

Exercise. Suppose that
∑
an = ∞, and let Mn =

n∑
k=1

εkak.

(1). Compute the conditional variance process 〈M〉n.

(2). For c > 0 let Tc = inf{n ≥ 0 : |Mn| ≥ c}. Apply the Optional Stopping

Theorem to the martingale in the Doob decomposition of (M2
n), and conclude

that P [Tc = ∞] = 0.

(3). Prove that (Mn) has almost surely unbounded oscillations.

L
2 convergence in continuous time

The L2 convergence theorem directly extends to the continuous-parameter case.

Theorem 4.4 (L2 Martingale Convergence Theorem in continuous time). Let a ∈
(0,∞]. If (Mt)t∈[0,a) is a martingale w.r.t. a filtration (Ft)t∈[0,a) such that

sup
t∈[0,u)

E[M2
t ] < ∞

then Mu = lim
tրu

Mt exists in L2(Ω,A, P ) and (Mt)t∈[0,u] is again a square-integrable

martingale.

Proof. Choose any increasing sequence tn ∈ [0, u) such that tn → u. Then (Mtn) is an

L2-bounded discrete-parameter martingale. Hence the limitMu = limMtn exists in L2,

and

Mtn = E[Mu | Ftn] for any n ∈ N. (4.1.3)
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For an arbitrary t ∈ [0, u), there exists n ∈ N with tn ∈ (t, u). Hence

Mt = E[Mtn | Ft] = E[Mu | Ft]

by (4.1.3) and the tower property. In particular, (Mt)t∈[0,u] is a square-integrable mar-

tingale. By orthogonality of the increments,

E[(Mu −Mtn)
2] = E[(Mu −Mt)

2] + E[(Mt −Mtn)
2] ≥ E[(Mu −Mt)

2]

whenever tn ≤ t ≤ u. Since Mtn →Mu in L2, we obtain

lim
tրu

E[(Mu −Mt)
2] = 0.

Remark. (1). Note that in the proof it is enough to consider a fixed sequence tn ր u.

(2). To obtain almost sure convergence, an additional regularity condition on the sam-

ple paths (e.g. right-continuity) is required, cf. below. This assumption is not

needed for L2 convergence.

4.2 Almost sure convergence of supermartingales

Let (Zn)n≥0 be a discrete-parameter supermartingale w.r.t. a filtration (Fn)n≥0 on a

probability space (Ω,A, P ). The following theorem yields a stochastic counterpart to

the fact that any lower bounded decreasing sequence of reals converges to a finite limit:

Theorem 4.5 (Supermartingale Convergence Theorem, Doob). If sup
n≥0

E[Z−
n ] < ∞

then (Zn) converges almost surely to a random variable Z∞ ∈ L1(Ω,A, P ).
In particular, supermartingales that are uniformly bounded from below converge almost

surely to an integrable random variable.
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Remark (L1 boundedness vs. L1 convergence). (1). The condition supE[Z−
n ] <∞

holds if and only if (Zn) is bounded in L1. Indeed, as E[Z+
n ] < ∞ by our defini-

tion of a supermartingale, we have

E[ |Zn| ] = E[Zn] + 2E[Z−
n ] ≤ E[Z0] + 2E[Z−

n ] for any n ≥ 0.

(2). Although (Zn) is bounded in L1 and the limit is integrable, L1 convergence does

not hold in general, cf. the examples below.

For proving the Supermartingale Convergence Theorem, we introduce the number

U (a,b)(ω) of upcrossings of an interval (a, b) by the sequence Zn(ω), cf. below for the

exact definition.

b

a

1st upcrossing 2nd upcrossing

Note that if U (a,b)(ω) is finite for every non-empty bounded interval [a, b] then

lim supZn(ω) and lim inf Zn(ω) coincide, i.e., the sequence (Zn(ω)) converges. There-

fore, to show almost sure convergence of (Zn), we derive an upper bound for U (a,b). We

first prove this key estimate and then complete the proof of the theorem.

Doob’s upcrossing inequality

For n ∈ N and a, b ∈ R with a < b, we define the number U (a,b)
n of upcrossings of the

interval [a, b] before time n by

U (a,b)
n = max

{
k ≥ 0 : ∃ 0 ≤ s1 < t1 < s2 < t2 . . . < sk < tk ≤ n :

Zsi(ω) ≤ a, Zti(ω) ≥ b
}
.
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Lemma 4.6 (Doob). If (Zn) is a supermartingale then

(b− a) · E[U (a,b)
n ] ≤ E[(Zn − a)−] for any a < b and n ≥ 0.

Proof. We may assume E[Z−
n ] <∞ since otherwise there is nothing to prove. The key

idea is to set up a predictable gambling strategy that increases our capital by (b − a)

for each completed upcrossing. Since the net gain with this strategy should again be a

supermartingale this yields an upper bound for the average number of upcrossings. Here

is the strategy:

• Wait until Zk ≤ a.

• Then play unit stakes until Zk ≥ b.

•

re
pe

at

The stake Ck in round k is

C1 =




1 if Z0 ≤ a,

0 otherwise,

and for k ≥ 2,

Ck =




1 if (Ck−1 = 1 and Zk−1 ≤ b) or (Ck−1 = 0 and Zk−1 ≤ a),

0 otherwise
.

Clearly, (Ck) is a predictable, bounded and non-negative sequence of random variables.

Moreover, Ck · (Zk − Zk−1) is integrable for any k ≤ n, because Ck is bounded and

E
[
|Zk|

]
= 2E[Z+

k ]− E[Zk] ≤ 2E[Z+
k ]−E[Zn] ≤ 2E[Z+

k ]− E[Z−
n ]

for k ≤ n. Therefore, by Theorem 2.6 and the remark below, the process

(C•Z)k =
k∑

i=1

Ci · (Zi − Zi−1), 0 ≤ k ≤ n,

is again a supermartingale.

Clearly, the value of the process C•Z increases by at least (b − a) units during each
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completed upcrossing. Between upcrossing periods, the value of (C•Z)k is constant.

Finally, if the final time n is contained in an upcrossing period, then the process can

decrease by at most (Zn − a)− units during that last period (since Zk might decrease

before the next upcrossing is completed). Therefore, we have

(C•Z)n ≥ (b− a) · U (a,b)
n − (Zn − a)−, i.e.,

(b− a) · U (a,b)
n ≤ (C•Z)n + (Zn − a)−.

Gain ≥ b− a Gain ≥ b− a Loss ≤ (Zn − a)−

Zn

Since C•Z is a supermartingale with initial value 0, we obtain the upper bound

(b− a)E[U (a,b)
n ] ≤ E[(C•Z)n] + E[(Zn − a)−] ≤ E[(Zn − a)−].

Proof of Doob’s Convergence Theorem

We can now complete the proof of Theorem 4.5.

Proof. Let

U (a,b) = sup
n∈N

U (a,b)
n

denote the total number of upcrossings of the supermartingale (Zn) over an interval

(a, b) with −∞ < a < b < ∞. By the upcrossing inequality and monotone conver-

gence,

E[U (a,b)] = lim
n→∞

E[U (a,b)
n ] ≤ 1

b− a
· sup
n∈N

E[(Zn − a)−]. (4.2.1)
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Assuming supE[Z−
n ] < ∞, the right hand side of (4.2.1) is finite since (Zn − a)− ≤

|a|+ Z−
n . Therefore,

U (a,b) < ∞ P -almost surely,

and hence the event

{lim inf Zn 6= lim supZn} =
⋃

a,b∈Q
a<b

{U (a,b) = ∞}

has probability zero. This proves almost sure convergence.

It remains to show that the almost sure limit Z∞ = limZn is an integrable random

variable (in particular, it is finite almost surely). This holds true as, by the remark below

Theorem 4.5, supE[Z−
n ] <∞ implies that (Zn) is bounded in L1, and therefore

E[ |Z∞| ] = E[lim inf |Zn| ] ≤ lim inf E[ |Zn| ] < ∞

by Fatou’s lemma.

Examples and first applications

We now consider a few prototypic applications of the almost sure convergence theorem:

Example (1. Sums of i.i.d. random variables). Consider a Random Walk

Sn =

n∑

i=1

ηi

on R with centered and bounded increments

ηi i.i.d. with |ηi| ≤ c and E[ηi] = 0, c ∈ R.

Suppose that P [ηi 6= 0] > 0. Then there exists ε > 0 such that P [|ηi| ≥ ε] > 0. As the

increments are i.i.d., the event {|ηi| ≥ ε} occurs infinitely often with probability one.

Therefore, almost surely, the martingale (Sn) does not converge as n→ ∞.

Now let a ∈ R. We consider the first hitting time

Ta = inf{t ≥ 0 : Sn ≥ a}
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of the interval [a,∞). By the Optional Stopping Theorem, the stopped Random Walk

(STa∧n)n≥0 is again a martingale. Moreover, as Sk < a for any k < Ta and the incre-

ments are bounded by c, we obtain the upper bound

STa∧n < a + c for any n ∈ N.

Therefore, the stopped Random Walk converges almost surely by the Supermartingale

Convergence Theorem. As (Sn) does not converge, we can conclude that

P [Ta <∞] = 1 for any a > 0, i.e., lim supSn = ∞ almost surely.

Since (Sn) is also a submartingale, we obtain

lim inf Sn = −∞ almost surely

by an analogue argument. A generalization of this result is given in Theorem 4.7 below.

Remark (Almost sure vs. Lp convergence). In the last example, the stopped process

does not converge in Lp for any p ∈ [1,∞). In fact,

lim
n→∞

E[STa∧n] = E[STa
] ≥ a whereas E[STa∧n] = E[S0] = 0 for all n.

Example (2. Products of non-negative i.i.d. random variables). Consider a growth

process

Zn =

n∏

i=1

Yi

with i.i.d. factors Yi ≥ 0 with finite expectation α ∈ (0,∞). Then

Mn = Zn/α
n

is a martingale. By the almost sure convergence theorem, a finite limit M∞ exists al-

most surely, because Mn ≥ 0 for all n. For the almost sure asymptotics of (Zn), we

distinguish three different cases:

(1). α < 1: In this case,

Zn = Mn · αn

converges to 0 exponentially fast with probability one.
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(2). α = 1: Here (Zn) is a martingale and converges almost surely to a finite limit. If

P [Yi 6= 1] > 0 then there exists ε > 0 such that Yi ≥ 1 + ε infinitely often with

probability one. This is consistent with convergence of (Zn) only if the limit is

zero. Hence, if (Zn) is not almost surely constant, then also in the critical case,

Zn → 0 almost surely.

(3). α > 1 (supercritical): In this case, on the set {M∞ > 0},

Zn = Mn · αn ∼ M∞ · αn,

i.e., (Zn) grows exponentially fast. The asymptotics on the set {M∞ = 0} is not

evident and requires separate considerations depending on the model.

Although most of the conclusions in the last example could have been obtained without

martingale methods (e.g. by taking logarithms), the martingale approach has the advan-

tage of carrying over to far more general model classes. These include for example

branching processes or exponentials of continuous time processes.

Example (3. Boundary behaviors of harmonic functions). Let D ⊆ Rd be a bounded

open domain, and let h : D → R be a harmonic function on D that is bounded from

below:

∆h(x) = 0 for any x ∈ D, inf
x∈D

h(x) > −∞. (4.2.2)

To study the asymptotic behavior of h(x) as x approaches the boundary ∂D, we con-

struct a Markov chain (Xn) such that h(Xn) is a martingale: Let r : D → (0,∞) be a

continuous function such that

0 < r(x) < dist(x, ∂D) for any x ∈ D, (4.2.3)

and let (Xn) w.r.t Px denote the canonical time-homogeneous Markov chain with state

space D, initial value x, and transition probabilities

p(x, dy) = Uniform distribution on {y ∈ Rd : |y − x| = r(x)}.
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x
r(x)

D

By (4.2.3), the function h is integrable w.r.t. p(x, dy), and, by the mean value property,

(ph)(x) = h(x) for any x ∈ D.

Therefore, the process h(Xn) is a martingale w.r.t. Px for each x ∈ D. As h(Xn) is

lower bounded by (4.2.2), the limit as n → ∞ exists Px-almost surely by the Super-

martingale Convergence Theorem. In particular, since the coordinate functions x 7→ xi

are also harmonic and lower bounded on D, the limit X∞ = lim
n→∞

Xn exists Px-almost

surely. Moreover, X∞ is in ∂D, because r is bounded from below by a strictly positive

constant on any compact subset of D.

Summarizing we have shown:

(1). Boundary regularity: If h is harmonic and bounded from below on D then the

limit lim
n→∞

h(Xn) exists along almost every trajectory Xn to the boundary ∂D.

(2). Representation of h in terms of boundary values: If h is continuous on D, then

h(Xn) → h(X∞) Px-almost surely and hence

h(x) = lim
n→∞

Ex[h(Xn)] = E[h(X∞)],

i.e., the law of X∞ w.r.t. Px is the harmonic measure on ∂D.

Note that, in contrast to classical results from analysis, the first statement holds without

any smoothness condition on the boundary ∂D. Thus, although boundary values of h

may not exist in the classical sense, they do exist along almost every trajectory of the

Markov chain!
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Generalized Borel-Cantelli Lemma

Another application of the almost sure convergence theorem is a generalization of the

Borel-Cantelli lemmas. We first prove a dichotomy for the asymptotic behavior of mar-

tingales with L1-bounded increments:

Theorem 4.7 (Asymptotics of martingales with L1 bounded increments). Suppose

that (Mn) is a martingale, and there exists an integrable random variable Y such that

|Mn −Mn−1| ≤ Y for any n ∈ N.

Then for P -almost every ω, the following dichotomy holds:

Either: The limit lim
n→∞

Mn(ω) exists in R,

or: lim sup
n→∞

Mn(ω) = +∞ and lim inf
n→∞

Mn(ω) = −∞.

The theorem and its proof are a generalization of Example 1 above.

Proof. For a ∈ (−∞, 0) let Ta = min{n ≥ 0 : Mn ≥ a}. By the Optional Stopping

Theorem, (MTa∧n) is a martingale. Moreover,

MTa∧n ≥ min(M0, a− Y ) for any n ≥ 0,

and the right hand side is an integrable random variable. Therefore, (Mn) converges

almost surely on {Ta = ∞}. Since this holds for every a < 0, we obtain almost sure

convergence on the set

{lim inf Mn > −∞} =
⋃

a<0
a∈Q

{Ta = ∞}.

Similarly, almost sure convergence follows on the set {lim supMn <∞}.

Now let (Fn)n≥0 be an arbitrary filtration. As a consequence of Theorem 4.7 we obtain:
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Corollary 4.8 (Generalized Borel-Cantelli Lemma). If (An) is a sequence of events

with An ∈ Fn for any n, then the equivalence

ω ∈ An infinitely often ⇐⇒
∞∑

n=1

P [An | Fn−1](ω) = ∞

holds for almost every ω ∈ Ω.

Proof. Let Sn =
n∑

k=1

IAk
and Tn =

n∑
k=1

E[IAk
| Fk−1]. Then Sn and Tn are almost surely

increasing sequences. Let S∞ = supSn and T∞ = sup Tn denote the limits on [0,∞].

The claim is that almost surely,

S∞ = ∞ ⇐⇒ T∞ = ∞. (4.2.4)

To prove (4.2.4) we note that Sn − Tn is a martingale with bounded increments. There-

fore, almost surely, Sn − Tn converges to a finite limit, or (lim sup(Sn − Tn) = ∞ and

lim inf(Sn − Tn) = −∞). In the first case, (4.2.4) holds. In the second case, S∞ = ∞
and T∞ = ∞, so (4.2.4) holds, too.

The assertion of Corollary 4.8 generalizes both classical Borel-Cantelli Lemmas: If

(An) is an arbitrary sequence of events in a probability space (Ω,A, P ) then we can

consider the filtration Fn = σ(A1, . . . , An). By Corollary 4.8 we obtain:

1st Borel-Cantelli Lemma: If
∑
P [An] <∞ then

∑
P [An |Fn−1] <∞ almost surely,

and therefore

P [An infinitely often] = 0.

2nd Borel-Cantelli Lemma: If
∑
P [An] = ∞ and the An are independent then

∑
P [An | Fn−1] =

∑
P [An] = ∞ almost surely, and therefore

P [An infinitely often] = 1.
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Upcrossing inequality and convergence theorem in continuous time

The upcrossing inequality and the supermartingale convergence theorem carry over im-

mediately to the continuous time case if we assume right continuity (or left continuity)

of the sample paths. Let u ∈ (0,∞], and let (Zs)s∈[0,u) be a supermartingale in contin-

uous time w.r.t. a filtration (Fs). We define the number of upcrossings of (Zs) over an

interval (a, b) before time t as the supremum of the number of upcrossings over all time

discretizations (Zs)s∈π where π is a partition of the interval [0, t]:

U
(a,b)
t [Z] := sup

π⊂[0,t]

finite

U (a,b)[(Zs)s∈π].

Note that if (Zs) has right-continuous sample paths and (πn) is a sequence of partitions

of [0, t] such that 0, t ∈ π0, πn ⊂ πn+1 and mesh(πn) → 0 then

U
(a,b)
t [Z] = lim

n→∞
U (a,b)[(Zs)s∈πn

].

Theorem 4.9 (Supermatingale Convergence Theorem in continuous time). Suppose

that (Zs)s∈[0,u) is a right continuous supermartingale.

(1). Upcrossing inequality: For any t ∈ [0, u) and a < b,

E[U
(a,b)
t ] ≤ 1

b− a
E[(Zt − a)−].

(2). Convergence Theorem: If sup
s∈[0,u)

E[Z−
s ] < ∞, then the limit Zu− = lim

sրu
Zs exists

almost surely, and Zu− is an integrable random variable.

Proof. (1). By the upcrossing inequality in discrete time,

E[U (a,b)[(Zs)s∈πn
]] ≤ E[(Zt − a)−] for any n ∈ N,

where (πn) is a sequence of partitions as above. The assertion now follows by the

Monotone Convergence Theorem.
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(2). The almost sure convergence can now be proven in the same way as in the discrete

time case.

More generally than stated above, the upcrossing inequality also implies that for a right-

continuous supermartingale (Zs)s∈[0,u) all the left limits lim
sրt

Zs, t ∈ [0, u), exist simul-

taneously with probability one. Thus almost every sample path is càdlàg (continue à

droite, limites a gauche, i.e., right continuous with left limits). By similar arguments,

the existence of a modification with right continuous (and hence càdlàg) sample paths

can be proven for any supermartingale (Zs) provided the filtration is right continuous

and complete, and s 7→ E[Zs] is right continuous, cf. e.g. [XXXRevuz/Yor, Ch.II,§2].

4.3 Uniform integrability and L
1 convergence

The Supermartingale Convergence Theorem shows that every supermartingale (Zn) that

is bounded in L1 converges almost surely to an integrable limit Z∞. However, L1 con-

vergence does not necessarily hold:

Example. (1). Suppose that Zn =
∏n

i=1 Yi where the Yi are i.i.d. with E[Yi] = 1,

P [Yi 6= 1] > 0. Then, Zn → 0 almost surely, cf. Example 2 in Section 4.2. On

the other hand, L1 convergence does not hold as E[Zn] = 1 for any n.

(2). Similarly, the exponential martingale Mt = exp(Bt − t/2) of a Brownian motion

converges to 0 almost surely, but E[Mt] = 1 for any t.

L1 convergence of martingales is of interest because it implies that a martingale se-

quence (Mn) can be extended to n = ∞, and the random variables Mn are given as

conditional expectations of the limit M∞. Therefore, we now prove a generalization of

the Dominated Convergence Theorem that leads to a necessary and sufficient condition

for L1 convergence.
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Uniform integrability

Let (Ω,A, P ) be a probability space. The key condition required to deduce L1 conver-

gence from convergence in probability is uniform integrability. To motivate the defini-

tion we first recall two characterizations of integrable random variables:

Lemma 4.10. If X : Ω → R is an integrable random variable on (Ω,A, P ), then

(1). lim
c→∞

E[|X| ; |X| ≥ c] = 0, and

(2). for any ε > 0 there exists δ > 0 such that

E[|X| ; A] < ε for any A ∈ A with P [A] < δ.

The second statement says that the positive measure

Q(A) = E[|X| ; A], A ∈ A,

with relative density |X| w.r.t. P is absolutely continuous w.r.t. P in the following

sense: For any ε > 0 there exists δ > 0 such that

P [A] < δ ⇒ Q(A) < ε.

Proof. (1). For an integrable random variableX the first assertion holds by the Mono-

tone Convergence Theorem, since |X| · I{|X|≥c} ց 0 as cր ∞.

(2). Let ε > 0. By (1),

E[|X| ; A] = E[|X| ; A ∩ {|X| ≥ c}] + E[|X| ; A ∩ {|X| < c}]
≤ E[|X| ; |X| ≥ c] + c · P [A]
<

ε

2
+
ε

2
= ε

provided c ∈ (0,∞) is chosen appropriately and P [A] < ε/2c.
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Uniform integrability means that properties (1) and (2) hold uniformly for a family of

random variables:

Definition (Uniform integrability). A family {Xi : i ∈ I} of random variables on

(Ω,A, P ) is called uniformly integrable if and only if

sup
i∈I

E[|Xi| ; |Xi| ≥ c] −→ 0 as c→ ∞.

Exercise (Equivalent characterization of uniform integrability). Prove that {Xi :

i ∈ I} is uniformly integrable if and only if sup E[|Xi| ; A] < ∞, and the measures

Qi(A) = E[|Xi| ; A] are uniformly absolutely continuous, i.e., for any ε > 0 there

exists δ > 0 such that

P [A] < δ ⇒ sup
i∈I

E[|Xi| ; A] < ε.

We will prove below that convergence in probability plus uniform integrability is equiv-

alent to L1 convergence. Before, we state two lemmas giving sufficient conditions for

uniform integrability (and hence for L1 convergence) that can often be verified in appli-

cations:

Lemma 4.11 (Sufficient conditions for uniform integrability). A family {Xi : i ∈ I}
of random variables is uniformly integrable if one of the following conditions holds:

(1). There exists an integrable random variable Y such that

|Xi| ≤ Y for any i ∈ I.

(2). There exists a measurable function g : R+ → R+ such that

lim
x→∞

g(x)

x
= ∞ and sup

i∈I
E[g(|Xi|)] < ∞.

Proof. (1). If |Xi| ≤ Y then

sup
i∈I

E[|Xi| ; |Xi| ≥ c] ≤ E[Y ; Y ≥ c].

The right hand side converges to 0 as c→ ∞ if Y is integrable.
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(2). The second condition implies uniform integrability, because

sup
i∈I

E[|Xi| ; |Xi| ≥ c] ≤ sup
y≥c

y

g(y)
· sup

i∈I
E[g(|Xi|)].

The first condition in Lemma 4.11 is the classical assumption in the Dominated Con-

vergence Theorem. The second condition holds in particular if

sup
i∈I

E[|Xi|p] < ∞ for some p > 1 (Lp boundedness),

or, if

sup
i∈I

E[|Xi|(log |Xi|)+] < ∞ (Entropy condition)

is satisfied. Boundedness in L1, however, does not imply uniform integrability, cf. the

examples at the beginning of this section.

The next observation is crucial for the application of uniform integrability to martin-

gales:

Lemma 4.12 (Conditional expectations are uniformly integrable). If X is an inte-

grable random variable on (Ω,A, P ) then the family

{E[X | F ] : F ⊆ A σ-algebra}

of all conditional expectations of X given sub-σ-algebras of A is uniformly integrable.

Proof. By Lemma 4.10, for any ε > 0 there exists δ > 0 such that

E[|E[X | F ]| ; |E[X | F ]| ≥ c] ≤ E[E[|X| | F ] ; |E[X | F ]| ≥ c] (4.3.1)

= E[|X| ; |E[X | F ]| ≥ c] < ε

holds for c > 0 with P [|E[X | F ]| ≥ c] < δ. Since

P [|E[X | F ]| ≥ c] ≤ 1

c
E[|E[X | F ]|] ≤ 1

c
E[ |X| ],

(4.3.1) holds simultaneously for all σ-algebras F ⊆ A if c is sufficiently large.
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Definitive version of Lebesgue’s Dominated Convergence Theorem

Theorem 4.13. Suppose that (Xn)n∈N is a sequence of integrable random variables.

Then (Xn) converges to a random variable X w.r.t. the L1 norm if and only if Xn

converges to X in probability and the family {Xn : n ∈ N} is uniformly integrable.

Proof. (1). We first prove the “if” part of the assertion under the additional assumption

that the random variables |Xn| are uniformly bounded by a finite constant c: For

ε > 0,

E[ |Xn −X| ] = E[ |Xn −X| ; |Xn −X| > ε] + E[ |Xn −X| ; |Xn −X| ≤ ε]

≤ 2c · P [ |Xn −X| > ε] + ε. (4.3.2)

Here we have used that |Xn| ≤ c and hence |X| ≤ cwith probability one, because

a subsequence of (Xn) converges almost surely to X . For sufficiently large n, the

right hand side of (4.3.2) is smaller than 2ε. Therefore, E[ |Xn − X| ] → 0 as

n→ ∞.

(2). To prove the “if” part under the uniform integrability condition, we consider the

cut-off-functions

φc(x) = (x ∧ c) ∨ (−c)

c

c−c

−c

φc
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For c ∈ (0,∞), the function φc : R → R is a contraction. Therefore,

|φc(Xn)− φc(X)| ≤ |Xn −X| for any n ∈ N.

If Xn → X in probability then φc(Xn) → φc(X) in probability. Hence by (1),

E[ |φc(Xn)− φc(X)| ] −→ 0 for any c > 0. (4.3.3)

We would like to conclude that E[ |Xn − X| ] → 0 as well. Since (Xn) is

uniformly integrable, and a subsequence converges to X almost surely, we have

E[ |X| ] ≤ lim inf E[ |Xn| ] <∞ by Fatou’s Lemma. We now estimate

E[ |Xn −X| ]
≤ E[ |Xn − φc(Xn)| ] + E[ |φc(Xn)− φc(X)| ] + E[ |φc(X)−X| ]
≤ E[ |Xn| ; |Xn| ≥ c] + E[ |φc(Xn)− φc(X)| ] + E[ |X| ; |X| ≥ c].

Let ε > 0 be given. Choosing c large enough, the first and the last summand on

the right hand side are smaller than ε/3 for all n by uniform integrability of {Xn :

n ∈ N} and integrability of X . Moreover, by (4.3.3), there exists n0(c) such that

the middle term is smaller than ε/3 for n ≥ n0(c). Hence E[ |Xn −X| ] < ε for

n ≥ n0, and thus Xn → X in L1.

(3). Now suppose conversely that Xn → X in L1. Then Xn → X in probability by

Markov’s inequality. To prove uniform integrability, we observe that

E[ |Xn| ; A] ≤ E[ |X| ; A] + E[ |X −Xn| ] for any n ∈ N and A ∈ A.

For ε > 0, there exist n0 ∈ N and δ > 0 such that

E[ |X −Xn| ] < ε/2 for any n > n0, and

E[ |X| ; A] < ε/2 whenever P [A] < δ,

cf. Lemma 4.10. Hence, if P [A] < δ then supn≥n0
E[ |Xn| ; A] < ε.

Moreover, again by Lemma 4.10, there exist δ1, . . . , δn0 > 0 such that for n ≤ n0,

E[ |Xn| ; A] < ε if P [A] < δn.
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Choosing δ̃ = min(δ, δ1, δ2, . . . , δn0), we obtain

sup
n∈N

E[ |Xn| ; A] < ε whenever P [A] < δ̃.

Therefore, {Xn : n ∈ N} is uniformly integrable by the exercise below the defi-

nition of uniform integrability on page 143.

L
1 convergence of martingales

If X is an integrable random variable and (Fn) is a filtration then Mn = E[X | Fn]

is a martingale w.r.t. (Fn). The next result shows that an arbitrary martingale can be

represented in this way if and only if it is uniformly integrable:

Theorem 4.14 (L1 Martingale Convergence Theorem). Suppose that (Mn)n≥0 is a

martingale w.r.t. a filtration (Fn). Then the following statements are equivalent:

(1). {Mn : n ≥ 0} is uniformly integrable.

(2). The sequence (Mn) converges w.r.t. the L1 norm.

(3). There exists an integrable random variable X such that

Mn = E[X | Fn] for any n ≥ 0.

Proof.

(3) ⇒ (1) holds by Lemma 4.12.

(1) ⇒ (2): If the sequence (Mn) is uniformly integrable then it is bounded in L1

because

sup
n
E[ |Mn| ] ≤ sup

n
E[ |Mn| ; |Mn| ≥ c] + c ≤ 1 + c
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for c ∈ (0,∞) sufficiently large. Therefore, the limit M∞ = limMn exists al-

most surely and in probability by the almost sure convergence theorem. Uniform

integrability then implies

Mn → M∞ in L1

by Theorem 4.13.

(2) ⇒ (3): If Mn converges to a limit M∞ in L1 then

Mn = E[M∞ | Fn] for any n ≥ 0.

Indeed, Mn is a version of the conditional expectation since it is Fn-measurable

and

E[M∞ ; A] = lim
k→∞

E[Mk ; A] = E[Mn ; A] for any A ∈ Fn (4.3.4)

by the martingale property.

A first consequence of the L1 convergence theorem is a limit theorem for conditional

expectations:

Corollary 4.15. If X is an integrable random variable and (Fn) is a filtration then

E[X | Fn] → E[X | F∞] almost surely and in L1,

where F∞ := σ(
⋃Fn).

Proof. Let Mn := E[X | Fn]. By the almost sure and the L1 martingale convergence

theorem, the limitM∞ = limMn exists almost surely and in L1. To obtain a measurable

function that is defined everywhere, we setM∞ := lim supMn. It remains to verify, that

M∞ is a version of the conditional expectation E[X | F∞]. Clearly, M∞ is measurable

w.r.t. F∞. Moreover, for n ≥ 0 and A ∈ Fn,

E[M∞ ; A] = E[Mn ; A] = E[X ; A]
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by (4.3.4). Since
⋃Fn is stable under finite intersections,

E[M∞ ; A] = E[X ; A]

holds for all A ∈ σ(
⋃Fn) as well.

Example (Existence of conditional expectations). The common existence proof for

conditional expectations relies either on the Radon-Nikodym Theorem or on the exis-

tence of orthogonal projections onto closed subspaces of the Hilbert space L2. Martin-

gale convergence can be used to give an alternative existence proof. Suppose that X is

an integrable random variable on a probability space (Ω,A, P ) and F is a separable

sub-σ-algebra of A, i.e., there exists a countable collection (Ai)i∈N of events Ai ∈ A
such that F = σ(Ai : i ∈ N). Let

Fn = σ(A1, . . . , An), n ≥ 0.

Note that for each n ≥ 0, there exist finitely many atoms B1, . . . , Bk ∈ A (i.e. disjoint

events with
⋃
Bi = Ω) such that Fn = σ(B1, . . . , Bk). Therefore, the conditional

expectation given Fn can be defined in an elementary way:

E[X | Fn] :=
∑

i : P [Bi] 6=0

E[X |Bi] · IBi
.

Moreover, by Corollary 4.15, the limit M∞ = limE[X | Fn] exists almost surely and in

L1, and M∞ is a version of the conditional expectation E[X | F ].

You might (and should) object that the proofs of the martingale convergence theorems

require the existence of conditional expectations. Although this is true, it is possible

to state the necessary results by using only elementary conditional expectations, and

thus to obtain a more constructive proof for existence of conditional expectations given

separable σ-algebras.

Another immediate consequence of Corollary 4.15 is an extension of Kolmogorov’s 0-1

law:
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Corollary 4.16 (0-1 Law of P.Lévy). If (Fn) is a filtration on (Ω,A, P ) then for any

event A ∈ σ(
⋃Fn),

P [A | Fn] −→ IA P -almost surely. (4.3.5)

Example (Kolmogorov’s 0-1 Law). Suppose that Fn = σ(A1, . . . ,An) with indepen-

dent σ-algebras Ai ⊆ A. If A is a tail event, i.e., A is in σ(An+1,An+2, . . .) for every

n ∈ N, then A is independent of Fn for any n. Therefore, the corollary implies that

P [A] = IA P -almost surely, i.e.,

P [A] ∈ {0, 1} for any tail event A.

The L1 Martingale Convergence Theorem also implies that any martingale that is Lp

bounded for some p ∈ (1,∞) converges in Lp:

Exercise (Lp Martingale Convergence Theorem). Let (Mn) be an (Fn) martingale

with sup E[ |Mn|p ] <∞ for some p ∈ (1,∞).

(1). Prove that (Mn) converges almost surely and in L1, and Mn = E[M∞ | Fn] for

any n ≥ 0.

(2). Conclude that |Mn −M∞|p is uniformly integrable, and Mn → M∞ in Lp.

Note that uniform integrability of |Mn|p holds automatically and has not to be assumed !

Backward Martingale Convergence

We finally remark that Doob’s upcrossing inequality can also be used to prove that the

conditional expectations E[X | Fn] of an integrable random variable given a decreasing

sequence (Fn) of σ-algebras converge almost surely to E[X | ⋂Fn]. For the proof one

considers the martingale M−n = E[X | Fn] indexed by the negative integers:

Exercise (Backward Martingale Convergence Theorem and LLN). Let (Fn)n≥0 be

a decreasing sequence of sub-σ-algebras on a probability space (Ω,A, P ).
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(1). Prove that for any random variable X ∈ L1(Ω,A, P ), the limit M−∞ of the

sequence M−n := E[X | Fn] as n→ −∞ exists almost surely and in L1, and

M−∞ = E[X |
⋂

Fn] almost surely.

(2). Now let (Xn) be a sequence of i.i.d. random variables in L1(Ω,A, P ), and let

Fn = σ(Sn, Sn+1, . . .) where Sn = X1 + . . .+Xn. Prove that

E[X1 | Fn] =
Sn

n
,

and conclude that the strong Law of Large Numbers holds:

Sn

n
−→ E[X1] almost surely.
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Chapter 5

Stochastic Integration w.r.t.

Continuous Martingales

Suppose that we are interested in a continuous-time scaling limit of a stochastic dynam-

ics of type X(h)
0 = x0,

X
(h)
k+1 −X

(h)
k = σ(X

(h)
k ) ·

√
h · ηk+1, k = 0, 1, 2, . . . , (5.0.1)

with i.i.d. random variables ηi ∈ L2 such that E[ηi] = 0 and Var[ηi] = 1, a continuous

function σ : R → R, and a scale factor h > 0. Equivalently,

X(h)
n = X

(h)
0 +

√
h ·

n−1∑

k=0

σ(X
(h)
k ) · ηk+1, n = 0, 1, 2, . . . . (5.0.2)

If σ is constant then as hց 0, the rescaled process (X(h)
⌊t/h⌋)t≥0 converges in distribution

to (σ · Bt) where (Bt) is a Brownian motion. We are interested in the scaling limit for

general σ. One can prove that the rescaled process again converges in distribution, and

the limit process is a solution of a stochastic integral equation

Xt = X0 +

t
ˆ

0

σ(Xs) dBs, t ≥ 0. (5.0.3)

Here the integral is an Itô stochastic integral w.r.t. a Brownian motion (Bt). Usually the

equation (5.0.3) is written briefly as

dXt = σ(Xt) dBt, (5.0.4)
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and interpreted as a stochastic differential equation. Stochastic differential equations

occur more generally when considering scaling limits of appropriately rescaled Markov

chains on Rd with finite second moments. The goal of this section is to give a meaning

to the stochastic integral, and hence to the equations (5.0.3), (5.0.4) respectively.

Example (Stock prices, geometric Brownian motion). A simple discrete time model

for stock prices is given by

Xk+1 −Xk = Xk · ηk+1, ηi i.i.d.

To set up a corresponding continuous time model we consider the rescaled equation

(5.0.1) as h ց 0. The limit in distribution is a solution of a stochastic differential

equation

dXt = Xt dBt (5.0.5)

w.r.t. a Brownian motion (Bt). Although with probability one, the sample paths of

Brownian motion are nowhere differentiable, we can give a meaning to this equation by

rewriting it in the form (5.0.3) with an Itô stochastic integral.

A naive guess would be that the solution of (5.0.5) with initial condition X0 = 1 is

Xt = expBt. However, more careful considerations show that this can not be true! In

fact, the discrete time approximations satisfy

X
(h)
k+1 = (1 +

√
hηk+1) ·X(h)

k for k ≥ 0.

Hence (X
(h)
k ) is a product martingale:

X(h)
n =

n∏

k=1

(1 +
√
hηk) for any n ≥ 0.

In particular, E[X(h)
n ] = 1. We would expect similar properties for the scaling limit

(Xt), but expBt is not a martingale and E[exp(Bt)] = exp(t/2).

It turns out that in fact, the unique solution of (5.0.5) with X0 = 1 is not exp(Bt) but

the exponential martingale

Xt = exp(Bt − t/2),

which is also called a geometric Brownian motion. The reason is that the irregularity of

Brownian paths enforces a correction term in the chain rule for stochastic differentials

leading to Itô’s famous formula, which is the fundament of stochastic calculus.
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5.1 Defining stochastic integrals: A first attempt

Let us first fix some notation that will be used constantly below: By a partition π of

R+ we mean an increasing sequence 0 = t0 < t1 < t2 < . . . such that sup tn = ∞. The

mesh size of the partition is

mesh(π) = sup{|ti − ti−1| : i ∈ N}.

We are interested in defining integrals of type

It =

t
ˆ

0

Hs dXs, t ≥ 0, (5.1.1)

for continuous functions and, respectively, continuous adapted processes (Hs) and (Xs).

For a given t ≥ 0 and a given partition π of R+, we define the increments of (Xs) up to

time t by

δXs := Xs′∧t −Xs∧t for any s ∈ π,

where s′ := min{u ∈ π : u > s} denotes the next partition point after s. Note that

the increments δXs vanish for s ≥ t. In particular, only finitely many of the increments

are not equal to zero. A nearby approach for defining the integral It in (5.1.1) would be

Riemann sum approximations:

Riemann sum approximations

There are various possibilities to define approximating Riemann sums w.r.t. a given

sequence (πn) of partitions with mesh(πn) → 0, for example:

Variant 1 (non-anticipative): Int =
∑
s∈πn

HsδXs,

Variant 2 (anticipative): Înt =
∑
s∈πn

Hs′δXs,

Variant 3 (anticipative):
◦
Int =

∑
s∈πn

1
2
(Hs +Hs′)δXs.
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Note that for finite t, in each of the sums, only finitely many summands do not vanish.

For example,

Int =
∑

s∈πn

s<t

HsδXs =
∑

s∈πn

s<t

Hs · (Xs′∧t −Xs).

Now let us consider at first the case where Hs = Xs and t = 1, i.e., we would like to

define the integral I =
1́

0

Xs dXs. Suppose first that X : [0, 1] → R is a continuous

function of finite variation, i.e.,

V (1)(X) = sup

{∑

s∈π
|δXs| : π partition of R+

}
<∞.

Then for H = X and t = 1 all the approximations above converge to the same limit as

n→ ∞. For example,

‖În1 − In1 ‖ =
∑

s∈πn

(δXs)
2 ≤ V (1)(X) · sup

s∈πn

|δXs|,

and the right-hand side converges to 0 by uniform continuity of X on [0, 1]. In this case

the limit of the Riemann sums is a Riemann-Stieltjes integral

lim
n→∞

In1 = lim
n→∞

În1 =

1
ˆ

0

Xs dXs,

which is well-defined whenever the integrand is continuous and the integrator is of finite

variation or conversely. The sample paths of Brownian motion, however, are almost

surely not of finite variation. Therefore, the reasoning above does not apply, and in fact

if Xt = Bt is a one-dimensional Brownian motion and Ht = Xt then

E[ |În1 − In1 | ] =
∑

s∈πn

E[(δBs)
2] =

∑

s∈πn

δs = 1,

i.e., theL1-limits of the random sequence (In1 ) and (În1 ) are different if they exist. Below

we will see that indeed the limits of the sequences (In1 ), (Î
n
1 ) and (

◦
In1 ) do exist in L2,

and all the limits are different. The limit of the non-anticipative Riemann sums In1
is the Itô stochastic integral

´ 1

0
Bs dBs, the limit of (În1 ) is the backward Itô integral

´ 1

0
Bs d̂Bs, and the limit of I◦n is the Stratonovich integral

´ 1

0
Bs ◦dBs. All three notions
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of stochastic integrals are relevant. The most important one is the Itô integral because

the non-anticipating Riemann sum approximations imply that the Itô integral
´ t

0
Hs dBs

is a continuous time martingale transform of Brownian motion if the process (Hs) is

adapted.

Itô integrals for continuous bounded integrands

We now give a first existence proof for Itô integrals w.r.t. Brownian motion. We start

with a provisional definition that will be made more precise later:

Preliminary Definition. For continuous functions or continuous stochastic processes

(Hs) and (Xs) and a given sequence (πn) of partitions with mesh(πn) → 0, the Itô

integral of H w.r.t. X is defined by

t
ˆ

0

Hs dXs = lim
n→∞

∑

s∈πn

HsδXs

whenever the limit exists in a sense to be specified.

Note that the definition is vague since the mode of convergence is not specified. More-

over, the Itô integral might depend on the sequence (πn). In the following sections we

will see which kind of convergence holds in different circumstances, and in which sense

the limit is independent of (πn).

To get started let us consider the convergence of Riemann sum approximations for the

Itô integrals
t́

0

Hs dBs of a bounded continuous (Fs) adapted process (Hs)s≥0 w.r.t. an

(Fs) Brownian motion (Bs). Let (πn) be a fixed sequence of partitions with πn ⊆ πn+1

and mesh(πn) → 0. Then for the Riemann-Itô sums

Int =
∑

s∈πn

Hs δBs =
∑

s∈πn

s<t

Hs(Bs′∧t − Bs)

we have

Int − Imt =
∑

s∈πn

s<t

(Hs −H⌊s⌋m) δBs for any m ≤ n,

Stochastic Analysis Andreas Eberle



5.1. DEFINING STOCHASTIC INTEGRALS: A FIRST ATTEMPT 157

where ⌊s⌋m = max{r ∈ πm : r ≤ s} denotes the next partition point in πm below

s. Since Brownian motion is a martingale, we have E[δBs | Fs] = 0 for any s ∈ πn.

Moreover, E[(δBs)
2 | Fs] = δs. Therefore, we obtain by conditioning on Fs,Fr

respectively:

E[(Int − Imt )2] =
∑

s∈πn

s<t

∑

r∈πn

r<t

E[(Hs −H⌊s⌋m)(Hr −H⌊r⌋m)δBsδBr]

=
∑

s∈πn

s<t

E[(Hs −H⌊s⌋m)
2δs] ≤ E[Vm] ·

∑

s∈πn

s<t

δs = E[Vm] · t,

where

Vm := sup
|s−r|≤mesh(πm)

(Hs −Hr)
2 −→ 0 as m→ ∞

by uniform continuity of (Hs) on [0, t]. Since H is bounded, E[Vm] → 0 as m → ∞,

and hence (Int ) is a Cauchy sequence in L2(Ω,A, P ) for any given t ≥ 0. Thus we

obtain:

Theorem 5.1 (Itô integrals for bounded continuous integrands, Variant 1). Suppose

that (Hs)s≥0 is a bounded continuous (Fs) adapted process, and (Bs)s≥0 is an (Fs)

Brownian motion. Then for any fixed t ≥ 0, the Itô integral

t
ˆ

0

Hs dBs = lim
n→∞

Int (5.1.2)

exists as a limit in L2(Ω,A, P ). Moreover, the limit does not depend on the choice of a

sequence of partitions (πn) with mesh (πn) → 0.

Proof. An analogue argument as above shows that for any partitions π and π̃ such that

π ⊇ π̃, the L2 distance of the corresponding Riemann sum approximations Iπt and I π̃t is

bounded by a constant C(mesh(π̃)) that only depends on the maximal mesh size of the

two partitions. Moreover, the constant goes to 0 as the mesh sizes go to 0. By choosing

a joint refinement and applying the triangle inequality, we see that

‖Iπt − I π̃t ‖L2(P ) ≤ 2C(∆)
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holds for arbitrary partitions π, π̃ such that max(mesh(π)),mesh(π̃)) ≤ ∆. The asser-

tion now follows by completeness of L2(P ).

The definition of the Itô integral suggested by Theorem 5.1 has two obvious drawbacks:

Drawback 1: The integral
´ t

0
HsdBs is only defined as an equivalence class inL2(Ω,A, P ),

i.e., uniquely up to modification on P -measure zero sets. In particular, we do not have a

pathwise definition of
´ t

0
Hs(ω) dBs(ω) for a given Brownian sample path s 7→ Bs(ω).

Drawback 2: Even worse, the construction above works only for a fixed integra-

tion interval [0, t]. The exceptional sets may depend on t and therefore, the process

t 7→
´ t

0
Hs dBs does not have a meaning yet. In particular, we do not know yet if there

exists a version of this process that is almost surely continuous.

The first drawback is essential: In certain cases it is indeed possible to define stochastic

integrals pathwise, cf. Chapter 6 below. In general, however, pathwise stochastic inte-

grals cannot be defined. The extra impact needed is the Lévy area process, cf. the rough

paths theory developed by T. Lyons and others [XXXLyons, Friz and Victoir, Friz and

Hairer].

Fortunately, the second drawback can be overcome easily. By extending the Itô isom-

etry to an isometry into the space M2
c of continuous L2 bounded martingales, we can

construct the complete process t 7→
´ t

0
Hs dBs simultaneously as a continuous martin-

gale. The key observation is that by the maximal inequality, continuous L2 bounded

martingales can be controlled uniformly in t by the L2 norm of their final value.

The Hilbert space M
2
c

Fix u ∈ (0,∞] and suppose that for t ∈ [0, u], (Int ) is a sequence of Riemann sum

approximations for
´ t

0
Hs dBs as considered above. It is not difficult to check that for

each fixed n ∈ N, the stochastic process t 7→ Int is a continuous martingale. Our aim is

to prove convergence of these continuous martingales to a further continuous martingale

It =
´ t

0
Hs dBs. Since the convergence holds only almost surely, the limit process
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will not necessarily be (Ft) adapted. To ensure adaptedness, we have to consider the

completed filtration

FP
t = {A ∈ A : P [A △ B] = 0 for some B ∈ Ft}, t ≥ 0,

where A △ B = (A \ B) ∪ (B \ A) is the symmetric difference of the sets A and B.

Note that the conditional expectations given Ft and FP
t agree P -almost surely. Hence,

if (Bt) is a Brownian motion resp. a martingale w.r.t. the filtration (Ft) then it is also a

Brownian motion or a martingale w.r.t. (FP
t ).

Let M2([0, u]) denote the space of all L2-bounded (FP
t ) martingales (Mt)0≤t≤u on

(Ω,A, P ). By M2
c([0, u]) and M2

d([0, u]) we denote the subspaces consisting of all

continuous (respectively right continuous) martingales M ∈ M2([0, u]). Recall that

by the L2 martingale convergence theorem, any (right) continuous L2-bounded martin-

gale (Mt) defined for t ∈ [0, u) can be extended to a (right) continuous martingale in

M2([0, u]).

Two martingales M, M̃ ∈ M2([0, u]) are called modifications of each other if

P [Mt = M̃t] = 1 for any t ∈ [0, u].

If the martingales are right-continuous then two modifications agree almost surely, i.e.,

P [Mt = M̃t ∀t ∈ [0, u]] = 1.

In order to obtain norms and not just semi-norms, we consider the spaces

M2([0, u]) := M2([0, u])/ ∼ and M2
c ([0, u]) := M2

c([0, u])/ ∼

of equivalence classes of martingales that are modifications of each other. We will

frequently identify equivalence classes and their representatives.

We endow the space M2([0, u]) with the inner product

(M,N)M2([0,u]) = (Mu, Nu)L2 = E[MuNu].

As the process (M2
t ) is a submartingale for any M ∈ M2([0, u]), the norm correspond-

ing to the inner product is given by

‖M‖2M2([0,u]) = E[M2
u ] = sup

0≤t≤u
E[M2

t ].
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Moreover, if (Mt) is right continuous then by Doob’s L2-maximal inequality,

∥∥∥∥ sup
0≤t≤u

|Mt|
∥∥∥∥
L2(Ω,A,P )

≤ 2 · sup
0≤t≤u

‖Mt‖L2(Ω,A,P ) = 2‖M‖M2([0,u]). (5.1.3)

This crucial estimate shows that on the subspaces M2
c and M2

d , the M2 norm is equiva-

lent to the L2 norm of the supremum of the martingale. Therefore, the M2 norm can be

used to control (right) continuous martingales uniformly in t!

Lemma 5.2 (Completeness). (1). The space M2([0, u]) is a Hilbert space, and the

linear map M 7→Mu from M2([0, u]) to L2(Ω,Fu, P ) is onto and isometric.

(2). The spaces M2
c ([0, u]) and M2

d ([0, u]) are closed subspaces of M2([0, u]), i.e.,

if (Mn) is a Cauchy sequence in M2
c ([0, u]), or in M2

d ([0, u]) respectively, then

there exists a (right) continuous martingale M ∈M2([0, u]) such that

sup
t∈[0,u]

|Mn
t −Mt| −→ 0 in L2(Ω,A, P ).

Proof. (1). By definition of the inner product on M2([0, u]), the map M 7→ Mu is

an isometry. Moreover, for X ∈ L2(Ω,Fu, P ), the process Mt = E[X | Fu]

is in M2([0, u]) with Mu = X . Hence, the range of the isometry is the whole

space L2(Ω,Fu, P ). Since L2(Ω,Fu, P ) is complete w.r.t. the L2 norm, the space

M2([0, u]) is complete w.r.t. the M2 norm.

(2). If (Mn) is a Cauchy sequence in M2
c ([0, u]) or in M2

d ([0, u]) respectively, then by

(5.1.3),

‖Mn −Mm‖sup := sup
0≤t≤u

|Mn
t −Mm

t | −→ 0 in L2(Ω,A, P ).

In particular, we can choose a subsequence (Mnk) such that

P [ ‖Mnk+1 −Mnk‖sup ≥ 2−k ] ≤ 2−k for all k ∈ N.

Hence, by the Borel-Cantelli Lemma,

P [ ‖Mnk+1 −Mnk‖sup < 2−k eventually ] = 1,
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and therefore Mnk
t converges almost surely uniformly in t as k → ∞. The limit

of the sequence (Mn) in M2([0, u]) exists by (1), and the process M defined by

Mt :=




limMnk

t if (Mnk) converges uniformly,

0 otherwise,
(5.1.4)

is a continuous (respectively right continuous) representative of the limit. Indeed,

by Fatou’s Lemma,

‖Mnk −M‖2M2([0,u]) ≤ E[ ‖Mnk −M‖2sup ] = E[ lim
l→∞

‖Mnk −Mnl‖2sup ]
≤ lim inf

l→∞
E[ ‖Mnk −Mnl‖2sup ],

and the right hand side converges to 0 as k → ∞. Finally, M is a martingale w.r.t.

(FP
t ), and hence an element in M2

c ([0, u]) or in M2
d ([0, u]) respectively.

Remark. We point out that the (right) continuous representative (Mt) defined by (5.1.4)

is a martingale w.r.t. the complete filtration (FP
t ), but it is not necessarily adapted w.r.t.

(Ft).

Definition of Itô integral in M
2
c

Let u ∈ R+. For any bounded continuous (Ft) adapted process (Ht) and any sequence

(πn) of partitions of R+, the processes

Int =
∑

s∈πn

Hs (Bs′∧t −Bs∧t), t ∈ [0, u],

are continuous L2 bounded martingales on [0, u]. We can therefore restate Theorem 5.1

in the following way:

Corollary 5.3 (Itô integrals for bounded continuous integrands, Variant 2). Suppose

that (Hs)s≥0 is a bounded continuous (Fs) adapted process. Then for any fixed u ≥ 0,

the Itô integral
•
ˆ

0

Hs dBs = lim
n→∞

(Int )t∈[0,u] (5.1.5)
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exists as a limit in M2
c ([0, u]). Moreover, the limit does not depend on the choice of a

sequence of partitions (πn) with mesh (πn) → 0.

Proof. The assertion is an immediate consequence of the definition of the M2 norm,

Theorem 5.1 and Lemma 5.2.

Similar arguments as above apply if Brownian motion is replaced by a bounded mar-

tingale with continuous sample paths. In the rest of this chapter we will work out the

construction of the Itô integral w.r.t. Brownian motion and more general continuous

martingales more systematically and for a broader class of integrands.

5.2 Itô’s isometry

Let (Mt)t≥0 be a continuous (or, more generally, right continuous) martingale w.r.t. a

filtration (Ft) on a probability space (Ω,A, P ). We now develop a more systematic

approach for defining stochastic integrals
´ t

0
Hs dMs of adapted processes (Ht) w.r.t.

(Mt).

Predictable step functions

In a first step, we define the integrals for predictable step functions (Ht) of type

Ht(ω) =

n−1∑

i=0

Ai(ω)I(ti,ti+1](t)

with n ∈ N, 0 ≤ t0 < t1 < t2 < . . . < tn, and bounded Fti-measurable random vari-

ables Ai, i = 0, 1, . . . , n− 1. Let E denote the vector space consisting of all stochastic

processes of this form.
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Definition (Itô integral for predictable step functions). For stochastic processesH ∈
E and t ≥ 0 we define

t
ˆ

0

Hs dMs :=

n−1∑

i=0

Ai · (Mti+1∧t −Mti∧t) =
∑

i : ti<t

Ai · (Mti+1∧t −Mti).

The stochastic process H•M given by

(H•M)t :=

t
ˆ

0

Hs dMs for t ∈ [0,∞]

is called the Itô integral of H w.r.t. M .

Note that the map (H,M) 7→ H•M is bilinear. The process H•M is a continuous time

martingale transform of M w.r.t. H . It models for example the net gain up to time t

if we hold Ai units of an asset with price process (Mt) during each of the time intervals

(ti, ti+1].

Lemma 5.4. For any H ∈ E , the process H•M is a continuous (Ft) martingale up to

time t = ∞.

Similarly to the discrete time case, the fact that Ai is predictable, i.e., Fti-measurable,

is essential for the martingale property:

Proof. By definition, H•M is continuous and (Ft) adapted. It remains to verify that

E[(H•M)t | Fs] = (H•M)s for any 0 ≤ s ≤ t. (5.2.1)

We do this in three steps:

(1). At first we note that (5.2.1) holds for s, t ∈ {t0, t1, . . . , tn}. Indeed, since Ai is

Fti-measurable, the process

(H•M)tj =

j−1∑

i=0

Ai · (Mti+1
−Mti), j = 0, 1, . . . , n,

University of Bonn 2015/2016



164
CHAPTER 5. STOCHASTIC INTEGRATION W.R.T. CONTINUOUS

MARTINGALES

is a martingale transform of the discrete time martingale (Mti), and hence again

a martingale.

(2). Secondly, suppose s, t ∈ [tj , tj+1] for some j ∈ {0, 1, 2, . . . , n− 1}. Then

E[(H•M)t−(H•M)s |Fs] = E[Aj ·(Mt−Ms) |Fs] = Aj ·E[Mt−Ms |Fs] = 0

becauseAj is Ftj -measurable and hence Fs-measurable, and (Mt) is a martingale.

(3). Finally, suppose that s ∈ [tj , tj+1] and t ∈ [tk, tk+1] with j < k.

tj s tj+1 tk t tk+1

Then by the tower property for conditional expectations and by (1) and (2),

E[(H•M)t | Fs] = E[E[E[(H•M)t | Ftk ] | Ftj+1
] | Fs]

(2)
= E[E[(H•M)tk | Ftj+1

] | Fs]
(1)
= E[(H•M)tj+1

| Fs]
(2)
= (H•M)s.

Remark (Riemann sum approximations). Non-anticipative Riemann sum approxi-

mations of stochastic integrals are Itô integrals of predictable step functions: If (Ht) is

an adapted stochastic process and π = {t0, t1, . . . , tn} is a partition then

n−1∑

i=0

Hti · (Mti+1∧t −Mti∧t) =

t
ˆ

0

Hπ
s dMs (5.2.2)

where Hπ :=
n−1∑
i=0

Hti · I(ti,ti+1] is a process in E .
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Itô’s isometry for Brownian motion

Recall that our goal is to prove that non-anticipative Riemann sum approximations

for a stochastic integral converge. Let (πn) be a sequence of partitions of [0, t] with

mesh(πn) → 0. By the remark above, the corresponding Riemann-Itô sums Iπn defined

by (5.2.2) are integrals of predictable step functions Hπn . Hence in order to prove that

the sequence (Iπn) converges in the Hilbert space M2
c it suffices to show that

(1). (Hπn) is a Cauchy sequence w.r.t. an appropriate norm on the vector space E ,

and

(2). the “Itô map” J : E →M2
c defined by

J (H) = H•M =

•
ˆ

0

Hs dMs

is continuous w.r.t. this norm.

It turns out that we can even identify explicitly a simple norm on E such that the Itô

map is an isometry. We first consider the case where (Mt) is a Brownian motion:

Theorem 5.5 (Itô’s isometry for Brownian motion). If (Bt) is an (Ft) Brownian mo-

tion on (Ω,A, P ) then for any u ∈ [0,∞], and for any process H ∈ E ,

‖H•B‖2M2([0,u]) = E






u
ˆ

0

Hs dBs




2
 = E




u
ˆ

0

H2
s ds


 = ‖H‖2L2(P⊗λ(0,u))

(5.2.3)

Proof. Suppose that H =
∑n−1

i=0 Ai · I(ti,ti+1] with n ∈ N, 0 ≤ t0 < t1 < . . . < tn and

Ai bounded and Fti-measurable. With the notation δiB := Bti+1∧u −Bti∧u, we obtain

E

[(
ˆ u

0

Hs dBs

)2
]

= E



(

n−1∑

i=0

AiδiB

)2

 =

n−1∑

i,k=0

E [AiAk · δiBδkB] . (5.2.4)
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By the martingale property, the summands on the right hand side vanish for i 6= k.

Indeed, if, for instance, i < k then

E[AiAkδiBδkB] = E[AiAkδiB · E[δkB | Ftk ]] = 0.

Here we have used in an essential way, that Ak is Ftk-measurable. Similarly,

E[A2
i · (δiB)2] = E[A2

iE[(δiB)2 | Fti ]] = E[A2
i · δit]

by the independence of the increments of Brownian motion. Therefore, by (5.2.4) we

obtain

E

[(
ˆ u

0

Hs dBs

)2
]

=

n−1∑

i=0

E[A2
i · (ti+1 ∧ u− ti ∧ u)] = E

[
ˆ u

0

H2
s ds

]
.

The assertion now follows by definition of the M2 norm.

Theorem 5.5 shows that the linear map

J : E → M2
c([0, u]), J (H) =

(
ˆ r

0

Hs dBs

)

r∈[0,u]
,

is an isometry if the space E of simple predictable processes (s, ω) 7→ Hs(ω) is en-

dowed with the L2 norm

‖H‖L2(P⊗λ(0,u)) = E

[
ˆ u

0

H2
s ds

]1/2

on the product space Ω× (0, u). In particular, J respects P ⊗λ classes, i.e., ifHs(ω) =

H̃s(ω) for P ⊗λ-almost every (ω, s) then
´ •
0
H dB =

´ •
0
H̃ dB P -almost surely. Hence

J also induces a linear map between the corresponding spaces of equivalence classes.

As usual, we do not always differentiate between equivalence classes and functions, and

so we denote the linear map on equivalence classes again by J :

J : E ⊂ L2(P ⊗ λ(0,u)) → M2
c ([0, u]),

‖J (H)‖M2([0,u]) = ‖H‖L2(P⊗λ(0,u)). (5.2.5)
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Itô’s isometry for martingales

An Itô isometry also holds if Brownian motion is replaced by a continuous square-

integrable martingale (Mt). More generally, suppose that (Mt)t≥0 is a right continuous

square integrable (Ft) martingale satisfying the following assumption:

Assumption A. There exists a non-decreasing adapted continuous process t 7→ 〈M〉t
such that 〈M〉0 = 0 and M2

t − 〈M〉t is a martingale.

For continuous square integrable martingales, the assumption is always satisfied. In-

deed, assuming continuity, the “angle bracket process” 〈M〉t coincides almost surely

with the quadratic variation process [M ]t of M , cf. Section 6.3 below. For Brownian

motion, Assumption A holds with

〈B〉t = t.

Note that for any 0 ≤ s ≤ t, Assumption A implies

E
[
(Mt −Ms)

2 | Fs

]
= E

[
M2

t −M2
s | Fs

]
= E [〈M〉t − 〈M〉s | Fs] . (5.2.6)

Since t 7→ 〈M〉t(ω) is continuous and non-decreasing for a given ω, it is the distribution

function of a unique positive measure 〈M〉(ω, dt) on R+.

Theorem 5.6 (Itô’s isometry for martingales). Suppose that (Mt)t≥0 is a right con-

tinuous (Ft) martingale with angle bracket process 〈M〉 satisfying Assumption A. Then

for any u ∈ [0,∞], and for any process H ∈ E ,

‖H•M‖2M2([0,u]) = E

[(
ˆ u

0

Hs dMs

)2
]

= E

[
ˆ u

0

H2
s d〈M〉s

]
(5.2.7)

where d〈M〉 denotes integration w.r.t. the positive measure with distribution function

F (t) = 〈M〉t.

For Brownian motion 〈B〉t = t, so (5.2.7) reduces to (5.2.3).
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Proof. The proof is similar to the proof of Theorem 5.5 above. Suppose again that

H =
∑n−1

i=0 Ai · I(ti,ti+1] with n ∈ N, 0 ≤ t0 < t1 < . . . < tn and Ai bounded and Fti-

measurable. With the same notation as in the proof above, we obtain by the martingale

properties of M and M2 − 〈M〉,

E[AiAk δiM δkM ] = 0 for i 6= k, and

E[A2
i · (δiM)2] = E[A2

iE[(δiM)2 | Fti]] = E[A2
iE[δi〈M〉 | Fti]] = E[A2

i · δi〈M〉].

cf. (5.2.6). Therefore,

E

[(
ˆ u

0

Hs dMs

)2
]

= E



(

n−1∑

i=0

AiδiM

)2

 =

n−1∑

i,k=0

E [AiAk δiM δkM ]

=
n−1∑

i=0

E[A2
i δi〈M〉] = E

[
ˆ u

0

H2
s d〈M〉s

]
.

For a continuous square integrable martingale, Theorem 5.6 implies that the linear map

J : E → M2
c([0, u]), J (H) =

(
ˆ r

0

Hs dMs

)

r∈[0,u]
,

is an isometry if the space E of simple predictable processes (s, ω) 7→ Hs(ω) is en-

dowed with the L2 norm

‖H‖L2(Ω×(0,u),P〈M〉) = E

[
ˆ u

0

H2
s d〈M〉s

]1/2

on the product space Ω× (0, u) endowed with the positive measure

P〈M〉(dω dt) = P (dω) 〈M〉(ω, dt). (5.2.8)

Again, we denote the corresponding linear map induced on equivalence classes by the

same letter J .
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Definition of Itô integrals for square-integrable integrands

From now on we assume that (Mt) is a continuous square integrable (Ft) martingale

with angle bracket process 〈M〉t. We fix u ∈ [0,∞] and consider the isometry

J : E ⊂ L2(Ω× (0, u), P〈M〉) → M2
c ([0, u]), . (5.2.9)

H 7→ H•M

mapping an elementary predictable process H to the continuous martingale

(H•M)t =

ˆ t

0

Hs dMs.

More precisely, we consider the induced map on equivalence classes.

Let Eu denote the closure of the space E in L2(Ω× (0, u), P〈M〉). Since J is linear with

‖J (H)‖M2([0,u]) = ‖H‖L2(Ω×(0,u),P〈M〉) for any H ∈ E ,

there is a unique extension to a continuous (and even isometric) linear map

J : Eu ⊆ L2(Ω× (0, u), P〈M〉) → M2
c ([0, u]).

This can be used to define the Itô integral for any process in Eu, i.e., for any process that

can be approximated by predictable step functions w.r.t. the L2(P〈M〉) norm:

H•B := J (H),

ˆ t

0

Hs dBs := (H•B)t.

Explicitly, we obtain the following definition of stochastic integrals for integrands in Eu:

Definition (Itô integral). For H ∈ Eu the process H•M = (
´ t

0
Hs dMs)t∈[0,u] is the up

to modifications unique continuous martingale on [0, u] satisfying

(H•M)t = lim
n→∞

(Hn
•M)t in L2(P ) for any t ∈ [0, u]

whenever (Hn) is a sequence of elementary predictable processes such that Hn → H

in L2(Ω× (0, u), P〈M〉).
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Remark. (1). By construction, the map H 7→ H•M is an isometry from Eu endowed

with theL2(P〈M〉) norm toM2
c ([0, u]). If t 7→ 〈M〉t is absolutely continuous, then

the closure Eu of the elementary processes actually contains any (FP
t ) adapted

process (ω, t) 7→ Ht(ω) that is square-integrable w.r.t. P〈M〉, see XXX below.

(2). The definition above is consistent in the following sense: If H•M is the stochastic

integral defined on the time interval [0, v] and u ≤ v, then the restriction of H•M

to [0, u] coincides with the stochastic integral on [0, u].

For 0 ≤ s ≤ t we define
ˆ t

s

Hr dMr := (H•M)t − (H•M)s.

Exercise. Verify that for any H ∈ Et,

ˆ t

s

Hr dMr =

ˆ t

0

Hr dBr −
ˆ t

0

I(0,s)(r)Hr dMr =

ˆ t

0

I(s,t)(r)Hr dMr.

Having defined the Itô integral, we now show that bounded adapted processes with

left-continuous sample paths are contained in the closure of the simple predictable pro-

cesses, and the corresponding stochastic integrals are limits of predictable Riemann sum

approximations. As above, we consider a sequence (πn) of partitions of R+ such that

mesh(πn) → 0.

Theorem 5.7 (Approximation by Riemann-Itô sums). Let u ∈ (0,∞), and suppose

that (Ht)t∈[0,u) is an (FP
t ) adapted stochastic process on (Ω,A, P ) such that (t, ω) 7→

Ht(ω) is product-measurable and bounded. If t 7→ Ht is P -almost surely left continuous

then H is in Eu, and

ˆ t

0

Hs dMs = lim
n→∞

∑

s∈πn

Hs(Ms′∧t −Ms∧t), t ∈ [0, u], (5.2.10)

w.r.t. convergence uniformly in t in the L2(P ) sense.
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Remark. (1). In particular, a subsequence of the predictable Riemann sum approxi-

mations converges uniformly in t with probability one.

(2). The assertion also holds if H is unbounded with sups≤u |Hs| ∈ L2(P ).

Proof. For any t ∈ [0, u], the Riemann sums on the right hand side of (5.2.10) are the

stochastic integrals
´ t

0
Hn

s dMs of the predictable step functions

Hn
t :=

∑

s∈πn,s<u

Hs · I(s,s′](t), n ∈ N.

By left-continuity, Hn
t → Ht as n → ∞ for any t ∈ [0, u], P -almost surely. Therefore,

Hn → H P〈M〉-almost surely, and, by dominated convergence,

Hn → H in L2(P〈M〉).

Here we have used that the sequence (Hn) is uniformly bounded since H is bounded by

assumption. Now, by Itô’s isometry,
ˆ •

0

Hs dMs = lim
n→∞

ˆ •

0

Hn
s dMs in M2

c ([0, u]).

Identification of admissible integrands

Let u ∈ (0,∞]. We have already shown that if u < ∞ then any product-measurable

adapted bounded process with left-continuous sample paths is in Eu. More generally,

we will prove now that if Mt = Bt is a Brownian motion then any adapted process

in L2(P ⊗ λ[0,u)) is contained in Eu, and hence “integrable” w.r.t. (Bt). Let L2
a(0, u)

denote the linear space of all product-measurable, (FP
t ) adapted stochastic processes

(ω, t) 7→ Ht(ω) defined on Ω× (0, u) such that

E

[
ˆ u

0

H2
t dt

]
< ∞.

The corresponding space of equivalence classes of P⊗λ versions is denoted byL2
a(0, u).

Lemma 5.8. L2
a(0, u) is a closed linear subspace of L2(P ⊗ λ(0,u)).
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Proof. It only remains to show that an L2(P ⊗λ) limit of (FP
t ) adapted processes again

has an (FP
t ) adapted P ⊗ λ-version. Hence consider a sequence Hn ∈ L2

a(0, u) with

Hn → H in L2(P ⊗ λ). Then there exists a subsequence (Hnk) such that Hnk
t (ω) →

Ht(ω) for P ⊗ λ-almost every (ω, t) ∈ Ω× (0, u). The process H̃ defined by H̃t(ω) :=

limHnk
t (ω) if the limit exists, H̃t(ω) := 0 otherwise, is an (FP

t ) adapted version of

H .

We can now identify the class of integrands H for which the stochastic integral H•B is

well-defined as a limit of integrals of predictable step functions in M2
c ([0, u]):

Theorem 5.9 (Admissible integrands for Brownian motion). For any u ∈ (0,∞],

Eu = L2
a(0, u).

Proof. Since E ⊆ L2
a(0, u) it only remains to show the inclusion “⊇”. Hence fix a

process H ∈ L2
a(0, u). We will prove in several steps that H can be approximated by

simple predictable processes w.r.t. the L2(P ⊗ λ(0,u)) norm:

(1). Suppose first that H is bounded and has almost surely continuous trajectories.

Then for u < ∞, H is in Eu by Theorem 5.7. For u = ∞, H is still in Eu

provided there exists t0 ∈ (0,∞) such that Ht vanishes for t ≥ t0.

(2). Now suppose that (Ht) is bounded and, if u = ∞, vanishes for t ≥ t0. To

prove H ∈ Eu we approximate H by continuous adapted processes. To this end

let ψn : R → [0,∞), n ∈ N, be continuous functions such that ψ(s) = 0 for

s /∈ (0, 1/n) and
´∞
−∞ ψn(s) ds = 1. Let Hn := H ∗ ψn, i.e.,

Hn
t (ω) =

ˆ 1/n

0

Ht−ε(ω)ψn(ε) dε, (5.2.11)

where we set Ht := 0 for t ≤ 0. We prove that

(a) Hn → H in L2(P ⊗ λ(0,u)), and

(b) Hn ∈ Eu for any n ∈ N.
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Combining (a) and (b), we see that H is in Eu as well.

(a) Since H is in L2(P ⊗ λ(0,u)), we have
ˆ u

0

Ht(ω)
2 dt < ∞ (5.2.12)

for P -almost every ω. It is a standard fact from analysis that (5.2.12) implies
ˆ u

0

|Hn
t (ω)−Ht(ω)|2 dt −→ 0 as n→ ∞.

By dominated convergence, we obtain

E

[
ˆ u

0

|Hn
t −Ht|2 dt

]
−→ 0 as n→ ∞ (5.2.13)

because H is bounded, the sequence (Hn) is uniformly bounded, and H and

Hn vanish for t ≥ t0 + 1.

(b) This is essentially a consequence of part (1) of the proof. We sketch how to

verify that Hn satisfies the assumptions made there:

• The sample paths t 7→ Hn
t (ω) are continuous for all ω.

• |Hn
t | is bounded by sup |H|.

• The map (ω, t) 7→ Hn
t (ω) is product measurable by (5.2.11) and Fu-

bini’s Theorem, because the map (ω, t, ε) 7→ Ht−ε(ω)ψε(ω) is product

measurable.

• If the process (Ht) is progressively measurable, i.e., if the map (s, ω) 7→
Hs(ω) (s ∈ (0, t), ω ∈ Ω) is measurable w.r.t. the product σ-algebra

B(0, t) ⊗ FP
t for any t ≥ 0, then (Hn

t ) is (FP
t ) adapted by (5.2.11)

and Fubini’s Theorem. This is for example the case if (Ht) is right

continuous or left continuous.

• In general, one can prove that (Ht) has a progressively measurable mod-

ification, whence (Hn
t ) has an (FP

t ) adapted modification. We omit the

details.

(3). We finally prove that general H ∈ L2
a(0, u) are contained in Eu. This is a conse-

quence of (2), because we can approximate H by the processes

Hn
t := ((Ht ∧ n) ∨ (−n)) · I(0,n)(t), n ∈ N.
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These processes are bounded, they vanish for t ≥ n, and Hn → H in L2(P ⊗
λ(0,u)). By (2), Hn is contained in Eu for any n, so H is in Eu as well.

Remark (Riemann sum approximations). For discontinuous integrands, the predict-

able Riemann sum approximations considered above do not converge to the stochastic

integral in general. However, one can prove that for u < ∞ any process H ∈ L2
a(0, u)

is the limit of the simple predictable processes

Hn
t =

2n−1∑

i=1

2n
ˆ i2−nu

(i−1)2−nu

Hs ds · I(i2−nu,(i+1)2−nu](t)

w.r.t. the L2(P ⊗ λ[0,u)) norm, cf. [XXXSteele: “Stochastic calculus and financial ap-

plications”, Sect 6.6]. Therefore, the stochastic integral
´ t

0
H dB can be approximated

for t ≤ u by the correspondingly modified Riemann sums.

For continuous martingales, a similar statement as in Theorem 5.9 holds provided the

angle bracket process is absolutely continuous. Let L2
a(0, u;M) denote the linear space

of all product-measurable, (FP
t ) adapted stochastic processes (ω, t) 7→ Ht(ω) such that

E

[
ˆ u

0

H2
t d〈M〉t

]
< ∞.

The corresponding space of equivalence classes w.r.t. P〈M〉 is denoted by L2
a(0, u;M).

Exercise (Admissible integrands w.r.t. martingales). Suppose that (Mt) is a contin-

uous square integrable (Ft) martingale. Show that if almost surely, t 7→ 〈M〉t is abso-

lutely continuous, then the closure Eu of the elementary processes w.r.t. the L2(P〈M〉)

norm is given by

Eu = L2
a(0, u;M).

5.3 Localization

Square-integrability of the integrand is still an assumption that we would like to avoid,

since it is not always easy to verify or may even fail to hold. The key to extending
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the class of admissible integrands further is localization, which enables us to define a

stochastic integral w.r.t. a continuous martingale for any continuous adapted process.

The price we have to pay is that for integrands that are not square integrable, the Itô

integral is in general not a martingale, but only a local martingale.

Throughout this section we assume thatMt is a continuous square integrable martingale

with absolutely continuous angle bracket process 〈M〉t.

Local dependence on integrand and integrator

The approximations considered in the last section imply that the stochastic integral de-

pends locally both on the integrand and on the integrator in the following sense:

Corollary 5.10. Suppose that T : Ω → [0,∞] is a random variable, M, M̃ are square

integrable martingales with absolutely continuous angle bracket processes 〈M〉, 〈M̃〉,
and H, H̃ are processes in L2

a(0,∞;M), L2
a(0,∞; M̃) respectively, such that almost

surely, Ht = H̃t for any t ∈ [0, T ) and Mt = M̃t for any t ∈ [0, T ]. Then almost surely,

ˆ t

0

Hs dMs =

ˆ t

0

H̃s dM̃s for any t ∈ [0, T ]. (5.3.1)

Proof. We go through the same approximations as in the proof of Theorem 5.9 above:

(1). Suppose first that Ht and H̃t are almost surely continuous and bounded, and there

exists t0 ∈ R+ such that Ht = H̃t = 0 for t ≥ t0. Let (πn) be a sequence of

partitions with mesh(πn) → 0. Then by Theorem 5.7,
ˆ t

0

H dM = lim
n→∞

∑

s∈πn

s<t

Hs · (Ms′∧t −Ms), and

ˆ t

0

H̃ dM̃ = lim
n→∞

∑

s∈πn

s<t

H̃s · (M̃s′∧t − M̃s)

with P -almost sure uniform convergence on finite time-intervals along a common

subsequence. For t ≤ T the right-hand sides coincide, and thus (5.3.1) holds true.
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(2). Now suppose that H and H̃ are bounded and Ht = H̃t = 0 for t ≥ t0. Then the

approximations

Hn
t =

ˆ 1/n

0

Ht−εψn(ε) dε, H̃n
t =

ˆ 1/n

0

H̃t−εψn(ε)

(with ψn defined as in the proof of Theorem 5.9 and Ht := H̃t := 0 for t < 0)

coincide for t ≤ T . Hence by (1), on {t ≤ T},

ˆ t

0

H dM = lim

ˆ t

0

Hn dM = = lim

ˆ t

0

H̃n dM̃ =

ˆ t

0

H̃ dM̃,

where the convergence holds again almost surely uniformly in t along a subse-

quence.

(3). Finally, in the general case the assertion follows by approximating H and H̃ by

the bounded processes

Hn
t = ((Ht ∧ n) ∨ (−n)) · I[0,n](t), H̃n

t = ((H̃t ∧ n) ∨ (−n)) · I[0,n](t).

Itô integrals for locally square-integrable integrands

Let M be a continuous square integrable martingale with absolutely continuous angle

bracket process 〈M〉, and let T : Ω → [0,∞] be an (FP
t ) stopping time. We will also

be interested in the case where T = ∞. Let L2
a,loc(0, T ;M) denote the linear space

consisting of all stochastic processes (t, ω) 7→ Ht(ω) defined for t ∈ [0, T (ω)) such that

the trivially extended process

H̃t :=




Ht for t < T,

0 for t ≥ T,

is product measurable in (t, ω), adapted w.r.t. the filtration (FP
t ), and

t 7→ Ht(ω) is in L2
loc([0, T (ω)), d〈M〉(ω)) for P -a.e. ω. (5.3.2)
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Here for u ∈ (0,∞], the space L2
loc([0, u), d〈M〉(ω)) consists of all measurable func-

tions f : [0, u) → [−∞,∞] such that
´ s

0
f(t)2 d〈M〉t(ω) < ∞ for any s ∈ (0, u). In

particular, it contains all continuous functions.

From now on, we use the notation Ht · I{t<T} for the trivial extension (H̃t)0≤t<∞ of

a process (Ht)0≤t<T beyond the stopping time T . Locally square integrable adapted

processes allow for a localization by stopping times:

Lemma 5.11 (Localization by stopping). If (Ht)0≤t<T is a process in L2
a,loc(0, T ;M)

then there exists an increasing sequence (Tn)n∈N of (FP
t ) stopping times such that T =

sup Tn almost surely, and

Ht · I{t<Tn} ∈ L2
a(0,∞;M) for any n ∈ N.

Proof. One easily verifies that the random variables Tn defined by

Tn := inf

{
0 ≤ t < T :

ˆ t

0

H2
s d〈M〉s ≥ n

}
∧ T, n ∈ N, (5.3.3)

are (FP
t ) stopping times. Moreover, for almost every ω, the function t 7→ Ht(ω) is

in L2
loc([0, T ), d〈M〉(ω)). Hence the function t 7→

´ t

0
Hs(ω)

2 d〈M〉s is increasing and

finite on [0, T (ω)), and therefore Tn(ω) ր T (ω) as n → ∞. Since Tn is an (FP
t )

stopping time, the process Ht · I{t<Tn} is (FP
t )-adapted, and by (5.3.3),

E

[
ˆ ∞

0

(Hs · I{s<Tn})
2 d〈M〉s

]
= E

[
ˆ Tn

0

H2
s d〈M〉s

]
≤ n for any n.

A sequence of stopping times as in the lemma will also be called a localizing sequence.

We can now extend the definition of the Itô integral to locally square-integrable adapted

integrands:

Definition (Itô integral with locally square integrable integrand). For a processH ∈
L2

a,loc(0, T ;M), the Itô stochastic integral w.r.t. the martingale M is defined for t ∈
[0, T ) by

ˆ t

0

Hs dMs :=

ˆ t

0

Hs · I{s<T̂} dMs for any t ∈ [0, T̂ ] (5.3.4)
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whenever T̂ is an (FP
t ) stopping time such that Ht · I{t<T̂} ∈ L2

a(0,∞;M).

Theorem 5.12. ForH ∈ L2
a,loc(0, T ;M) the Itô integral t 7→

´ t

0
HsdMs is almost surely

well defined by (5.3.4) as a continuous process on [0, T ).

Proof. We have to verify that the definition does not depend on the choice of the local-

izing stopping times. This is a direct consequence of Corollary 5.10: Suppose that T̂

and T̃ are stopping times such that Ht · I{t<T̂ } and Ht · I{t<T̃} are both in L2
a(0,∞;M).

Since the two trivially extended processes agree on [0, T̂ ∧ T̃ ), Corollary 5.10 implies

that almost surely,
ˆ t

0

Hs · I{s<T̂} dMs =

ˆ t

0

Hs · I{s<T̃} dMs for any t ∈ [0, T̂ ∧ T̃ ).

Hence, by Lemma 5.11, the stochastic integral is well defined on [0, T ).

Stochastic integrals as local martingales

Itô integrals w.r.t. square integrable martingales are not necessarily martingales if the

integrands are not square integrable. However, they are still local martingales in the

sense of the definition stated below.

Definition (Predictable stopping time). An (FP
t ) stopping time T is called predictable

iff there exists an increasing sequence (Tk)k∈N consisting of (FP
t ) stopping times such

that Tk < T on {T 6= 0} for any k, and T = sup Tk.

Example (Hitting time of a closed set). The hitting time TA of a closed set A by a

continuous adapted process is predictable, as it can be approximated from below by the

hitting times TAk
of the neighbourhoods Ak = {x : dist(x,A) < 1/k}. On the other

hand, the hitting time of an open set is not predictable in general.
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Definition (Local martingale). Suppose that T : Ω → [0,∞] is a predictable stopping

time. A stochastic process Mt(ω) defined for 0 ≤ t < T (ω) is called a local martingale

up to time T , if and only if there exists an increasing sequence (Tk) of stopping times

with T = supTk such that for any k ∈ N, Tk < T on {T > 0}, and the stopped process

(Mt∧Tk
) is a martingale for t ∈ [0,∞).

Recall that by the Optional Stopping Theorem, a continuous martingale stopped at a

stopping time is again a martingale. Therefore, any continuous martingale (Mt)t≥0 is a

local martingale up to T = ∞. Even if (Mt) is assumed to be uniformly integrable, the

converse implication fails to hold:

Exercise (A uniformly integrable local martingale that is not a martingale). Let

x ∈ R3 with x 6= 0, and suppose that (Bt) is a three-dimensional Brownian motion with

initial value B0 = x. Prove that the process Mt = 1/|Bt| is a uniformly integrable local

martingale up to T = ∞, but (Mt) is not a martingale.

On the other hand, note that if (Mt) is a continuous local martingale up to T = ∞, and

the family {Mt∧Tk
: k ∈ N} is uniformly integrable for each fixed t ≥ 0, then (Mt) is a

martingale, because for 0 ≤ s ≤ t

E[Mt | Fs] = lim
k→∞

E[Mt∧Tk
| Fs] = lim

k→∞
Ms∧Tk

= Ms

with convergence in L1.

As a consequence of the definition of the Itô integral by localization, we immediately

obtain:

Theorem 5.13 (Itô integrals as local martingales). Suppose that T is a predictable

stopping time w.r.t. (FP
t ). Then for any H ∈ L2

a,loc(0, T ;M), the Itô integral process

t 7→
´ t

0
Hs dMs is a continuous local martingale up to time T .
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Proof. We can choose an increasing sequence (Tk) of stopping times such that Tk < T

on {T > 0} and Ht · I{t<Tk} ∈ L2
a(0,∞;M) for any k. Then, by definition of the Itô

integral,

ˆ t∧Tk

0

Hs dMs =

ˆ t∧Tk

0

Hs · I{s<Tk} dMs almost surely for any k ∈ N,

and the right-hand side is a continuous martingale in M2
c ([0,∞)).

The theorem shows that for a predictable (FP
t ) stopping time T , the Itô map H 7→

´ •
0
H dM extends to a linear map

J : L2
loc(0, T ;M) −→ Mc,loc([0, T )),

where L2
loc(0, T ;M) is the space of equivalence classes of processes in L2

loc(0, T ;M)

that coincide for P〈M〉-a.e. (ω, t), and Mc,loc([0, T )) denotes the space of equivalence

classes of continuous local (FP
t ) martingales up to time T w.r.t. P -almost sure coin-

cidence. Note that different notions of equivalence are used for the integrands and the

integrals.

We finally observe that continuous local martingales (and hence stochastic integrals

w.r.t. continuous martingales) can always be localized by a sequence of bounded mar-

tingales in M2
c ([0,∞):

Exercise (Localization by bounded martingales). Suppose that (Mt) is a continuous

local martingale up to time T , and (Tk) is a localizing sequence of stopping times.

(1). Show that

T̃k = Tk ∧ inf{t ≥ 0 : |Mt| ≥ k} ∧ k

is another localizing sequence, and for all k, the stopped processes
(
Mt∧T̃k

)
t∈[0,∞)

are bounded martingales in M2
c ([0,∞)).

(2). Show that if T = ∞ then T̂k := inf{t ≥ 0 : |Mt| ≥ k} is also a localizing

sequence for M .

Stochastic Analysis Andreas Eberle



5.3. LOCALIZATION 181

Approximation by Riemann-Itô sums

If the integrand (Ht) of a stochastic integral
´

H dB has continuous sample paths then

local square integrability always holds, and the stochastic integral is a limit of Riemann-

Itô sums: Let (πn) be a sequence of partition of R+ with mesh(πn) → 0.

Theorem 5.14. Suppose that T is a predictable stopping time, and (Ht)0≤t<T is a

stochastic process defined for t < T . If the sample paths t 7→ Ht(ω) are continuous on

[0, T (ω)) for any ω, and the trivially extended process Ht · I{t<T} is (FP
t ) adapted, then

H is in L2
a,loc(0, T ;M), and for any t ≥ 0,

ˆ t

0

Hs dMs = lim
n→∞

∑

s∈πn

s<t

Hs · (Ms′∧t −Ms) on {t < T} (5.3.5)

with convergence in probability.

Proof. Let ⌊t⌋n = max{s ∈ πn : s ≤ t} denote the next partition point below t. By

continuity,

Ht · I{t<T} = lim
n→∞

H⌊t⌋n · I{t<T}.

Hence (Ht · I{t<T}) is (FP
t ) adapted. It is also product-measurable, because

H⌊t⌋n · I{t<T} =
∑

s∈πn

Hs · I{s<T} · I[s,s′)(t) · I(0,∞)(T − t).

By continuity, t 7→ Ht(ω) is locally bounded for everyω, and thusH is inL2
a,loc(0, T ;M).

Moreover, suppose that (Tk) is a sequence of stopping times approaching T from below

in the sense of the definition of a predictable stopping time given above. Then

T̃k := Tk ∧ inf{t ≥ 0 : |Ht| ≥ k}, k ∈ N,
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is a localizing sequence of stopping times with Ht · I{t<Tk} in L2
a(0, T ;M) for any k,

and T̃k ր T . Therefore, by definition of the Itô integral and by Theorem 5.7,

ˆ t

0

Hs dMs =

ˆ t

0

Hs · I{s<T̃k} dMs =

ˆ t

0

Hs · I{s≤T̃k} dMs

= lim
n→∞

∑

s∈πn

s<t

Hs · (Ms′∧t −Ms) on {t ≤ T̃k}

w.r.t. convergence in probability. Since

P

[
{t < T} \

⋃

k

{t ≤ T̃k}
]

= 0,

we obtain (5.3.5).
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Chapter 6

Itô’s formula and pathwise integrals

Our approach to Itô’s formula in this chapter follows that of [Föllmer: Stochastic Anal-

ysis, Vorlesungsskript Uni Bonn WS91/92]. We start with a heuristic derivation of the

formula that will be the central topic of this chapter.

Suppose that s 7→ Xs is a function from [0, t] to R, and F is a smooth function on R. If

(πn) is a sequence of partitions of the interval [0, t] with mesh(πn) → 0 then by Taylor’s

theorem

F (Xs′)−F (Xs) = F ′(Xs) · (Xs′ −Xs)+
1

2
F ′′(Xs) · (Xs′ −Xs)

2+higher order terms.

Summing over s ∈ πn we obtain

F (Xt)− F (X0) =
∑

s∈πn

F ′(Xs) · (Xs′ −Xs) +
1

2
F ′′(Xs) · (Xs′ −Xs)

2 + . . . (6.0.1)

We are interested in the limit of this formula as n→ ∞.

(a) Classical case, e.g. X continuously differentiable For X ∈ C1 we have

Xs′ −Xs =
dXs

ds
(s′ − s) +O(|s− s′|2), and

(Xs′ −Xs)
2 = O(|s− s′|2).

Therefore, the second order terms can be neglected in the limit of (6.0.1) as mesh(πn) →
0. Similarly, the higher order terms can be neglected, and we obtain the limit equation

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) dXs, (6.0.2)

183
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or, in differential notation,

dF (Xt) = F ′(Xt) dXt, (6.0.3)

Of course, (6.0.3) is just the chain rule of classical analysis, and (6.0.2) is the equivalent

chain rule for Stieltjes integrals, cf. Section 6.1 below.

(b) Xt Brownian motion If (Xt) is a Brownian motion then

E[(Xs′ −Xs)
2] = s′ − s.

Summing these expectations over s ∈ πn, we obtain the value t independently of n. This

shows that the sum of the second order terms in (6.0.1) can not be neglected anymore.

Indeed, as n→ ∞, a law of large numbers type result implies that we can almost surely

replace the squared increments (Xs′−Xs)
2 in (6.0.1) asymptotically by their expectation

values. The higher order terms are on average O(|s′ − s|3/2) whence their sum can be

neglected. Therefore, in the limit of (6.0.1) as n → ∞ we obtain the modified chain

rule

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) dXs +
1

2

t
ˆ

0

F ′′(Xs) ds (6.0.4)

with probability one. The equation (6.0.4) is the basic version of Itô’s celebrated for-

mula.

In Section 6.1, we will first introduce Stieltjes integrals and the chain rule from Stieltjes

calculus systematically. In Section 6.2 we prove a general version of Itô’s formula for

continuous functions with finite quadratic variation in dimension one. Here the setup

and the proof are still purely deterministic. As an aside we obtain a pathwise definition

for stochastic integrals involving only a single one-dimensional process due to Föllmer.

After computing the quadratic variation of Brownian motion in Section 6.3, we consider

first consequences of Itô’s formula for Brownian motions and continuous martingales.

Section 6.4 contains extensions to the multivariate and time-dependent case, as well as

further applications.
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6.1 Stieltjes integrals and chain rule

In this section, we define Lebesgue-Stieltjes integrals w.r.t. deterministic functions of

finite variation, and prove a corresponding chain rule. The resulting calculus can then

be applied path by path to stochastic processes with sample paths of finite variation.

Lebesgue-Stieltjes integrals

Fix u ∈ (0,∞], and suppose that t 7→ At is a right-continuous and non-decreasing

function on [0, u). Then At − A0 is the distribution function of the positive measure µ

on (0, u) determined uniquely by

µA[(s, t]] = At − As for any 0 ≤ s ≤ t < u.

Therefore, we can define integrals of type
t́

s

Hs dAs as Lebesgue integrals w.r.t. the

measure µA. We extend µ trivially to the interval [0, u), so L1
loc([0, u), µA) is the space

of all functions H : [0, u) → R that are integrable w.r.t. µA on any interval (0, t) with

t < u. Then for any u ∈ [0,∞] and any function H ∈ L1
loc([0, u), µA), the Lebesgue-

Stieltjes integral of H w.r.t. A is defined by

t
ˆ

s

Hr dAr :=

ˆ

Hr · I(s,t](r)µA(dr) for 0 ≤ s ≤ t < u.

It is easy to verify that the definition is consistent, i.e., varying u does not change the

definition of the integrals, and that t 7→
t́

0

Hr dAr is again a right-continuous function.

For an arbitrary right-continuous function A : [0, u) → R, the (first order) variation of

A on an interval [0, t) is defined by

V
(1)
t (A) := sup

π

∑

s∈π
|As′∧t − As∧t| for 0 ≤ t < u,

where the supremum is over all partitions π of R+. The function t 7→ At is said to be

(locally) of finite variation on the interval [0, u) iff V (1)
t (A) < ∞ for any t ∈ [0, u).
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Any right-continuous function of finite variation can be written as the difference of two

non-decreasing right-continuous functions. In fact, we have

At = Aր
t −Aց

t (6.1.1)

with

Aր
t = sup

π

∑

s∈π
(As′∧t − As∧t)

+ =
1

2
(V

(1)
t (A) + At), (6.1.2)

Aց
t = sup

π

∑

s∈π
(As′∧t − As∧t)

− =
1

2
(V

(1)
t (A)−At). (6.1.3)

Exercise. Prove that if At is right-continuous and is locally of finite variation on [0, u)

then the functions V (1)
t (A), Aր

t and Aց
t are all right-continuous and non-decreasing for

t < u.

Remark (Hahn-Jordan decomposition). The functions Aր
t − Aր

0 and Aց
t − Aց

0 are

again distribution functions of positive measures µ+
A and µ−

A on (0, u). Correspondingly,

At −A0 is the distribution function of the signed measure

µA[B] := µ+
A[B]− µ−

A[B], B ∈ B(0, u), (6.1.4)

and V (1)
t is the distribution of the measure |µA| = µ+

A−µ−
A. It is a consequence of (6.1.5)

and (6.1.6) that the measures µ+
A and µ−

A are singular, i.e., the mass is concentrated on

disjoint sets S+ and S−. The decomposition (6.1.7) is hence a particular case of the

Hahn-Jordan decomposition of a signed measure µ of finite variation into a positive and

a negative part, and the measure |µ| is the total variation measure of µ, cf. e.g. [Alt:

Lineare Funktionalanalysis].

We can now apply (6.1.1) to define Lebesgue-Stieltjes integrals w.r.t. functions of finite

variation. A function is integrable w.r.t. a signed measure µ if and only if it is integrable

w.r.t. both the positive part µ+ and the negative part µ−. The Lebesgue integral w.r.t. µ

is then defined as the difference of the Lebesgue integrals w.r.t. µ+ and µ−. Correspond-

ingly, we define the Lebesgue-Stieltjes integral w.r.t. a function At of finite variation as

the Lebesgue integral w.r.t. the associated signed measure µA:
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Definition. Suppose that t 7→ At is right-continuous and locally of finite variation on

[0, u). Then the Lebesgue-Stieltjes integral w.r.t. A is defined by

t
ˆ

s

Hr dAr :=

ˆ

Hr · I(s,t](r) dAր
r −

ˆ

Hr · I(s,t](r) dAց
r , 0 ≤ s ≤ t < u,

for any function H ∈ L1
loc((0, u), |dA|) where

L1
loc((0, u), |dA|) := L1

loc((0, u), dA
ր) ∩ L1

loc((0, u), dA
ց)

is the intersection of the local L1 spaces w.r.t. the positive measures dAր = µ+
A and

dAց = µ−
A on [0, u), or, equivalently, the local L1 space w.r.t. the total variation mea-

sure |dA| = |µA|.

Remark. (1). Simple integrands: If Ht =
n−1∑
i=0

ci · I(ti,ti+1] is a step function with

0 ≤ t0 < t1 < . . . < tn < u and c0, c1, . . . , cn−1 ∈ R then

t
ˆ

0

Hs dAs =
n−1∑

i=0

ci · (Ati+1∧t − Ati∧t).

(2). Continuous integrands; Riemann-Stieltjes integral: If H : [0, u) → R is a contin-

uous function then the Stieltjes integral can be approximated by Riemann sums:

t
ˆ

0

Hs dAs = lim
n→∞

∑

s∈πn

s<t

Hs · (As′∧t −As), t ∈ [0, u),

for any sequence (πn) of partitions of R+ such that mesh(πn) → 0. For the proof

note that the step functions

Hn
r =

∑

s∈πn

s<t

Hs · I(s,s′](r), r ∈ [0, u),
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converge to Hr pointwise on (0, u) by continuity. Moreover, again by continuity,

Hr is locally bounded on [0, u),and hence the sequence Hn
r is locally uniformly

bounded. Therefore,
ˆ

Hn
r I(0,t](r) dAr −→

ˆ

HrI(0,t](r) dAr

for any t < n by the dominated convergence theorem.

(3). Absolutely continuous integrators: If At is an absolutely continuous function on

[0, u) then At has locally finite variation

V
(1)
t (A) =

t
ˆ

0

|A′
s| ds < ∞ for t ∈ [0, u).

The signed measure µA with distribution function At − A0 is then absolutely

continuous w.r.t. Lebesgue measure with Radon-Nikodym density

dµA

dt
(t) = A′

t for almost every t ∈ [0, u).

Therefore,

L1
loc([0, u), |dA|) = L1

loc([0, u), |A′|dt),

and the Lebesgue-Stieltjes integral of a locally integrable function H is given by

t
ˆ

0

Hs dAs =

t
ˆ

0

HsA
′
s ds for t ∈ [0, u).

In the applications that we are interested in, the integrand will mostly be continuous,

and the integrator absolutely continuous. Hence Remarks (2) and (3) above apply.

The chain rule in Stieltjes calculus

We are now able to prove Itô’s formula in the special situation where the integrator has

finite variation. In this case, the second order correction disappears, and Itô’s formula

reduces to the classical chain rule from Stieltjes calculus:
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Theorem 6.1 (Fundamental Theorem of Stieltjes Calculus). Suppose that A :

[0, u) → R is a continuous function of locally finite variation. Then for any F ∈ C2(R),

F (At)− F (A0) =

t
ˆ

0

F ′(As) dAs ∀t ∈ [0, u). (6.1.5)

Proof. Let t ∈ [0, u) be given. Choose a sequence of partitions (πn) of R+ with

mesh(πn) → 0, and let

δAs := As′∧t − As∧t for s ∈ πn,

where, as usual, s′ denotes the next partition point. By Taylor’s formula, for s ∈ πn

with s < t we have

F (As′∧t)− F (As) = F ′(As)δAs +
1

2
F ′′(Zs) · (δAs)

2,

where Zs is an intermediate value between As and As′∧t. Summing over s ∈ πn, we

obtain

F (At)− F (A0) =
∑

s∈πn

s<t

F ′(As)δAs +
1

2

∑

s∈πn

s<t

F ′′(Zs)(δAs)
2. (6.1.6)

As n→ ∞, the first (Riemann) sum converges to the Stieltjes integral
t́

0

F ′(As) dAs by

continuity of F ′(As), cf. Remark (2) above.

To see that the second sum converges to zero, note that the range of the continuous

function A restricted to [0, t] is a bounded interval. Since F ′′ is continuous by assump-

tion, F ′′ is bounded on this range by a finite constant c. As Zs is an intermediate value

between As and As′∧t, we obtain

∣∣∣∣∣∣∣∣

∑

s∈πn

s<t

F ′′(Zs)(δAs)
2

∣∣∣∣∣∣∣∣
≤ c ·

∑

s∈πn

s<t

(δAs)
2 ≤ c · V (1)

t (A) · sup
s∈πn

s<t

|δAs|.
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Since V (1)
t (A) < ∞, and A is a uniformly continuous function on [0, t], the right hand

side converges to 0 as n → ∞. Hence we obtain (6.1.5) in the limit of (6.1.6) as

n→ ∞.

To see that (6.1.5) can be interpreted as a chain rule, we write the equation in differential

form:

dF (A) = F ′(A)dA. (6.1.7)

In general, the equation (6.1.7) is to be understood mathematically only as an abbrevia-

tion for the integral equation (6.1.5). For intuitive arguments, the differential notation is

obviously much more attractive than the integral form of the equation. However, for the

differential form to be useful at all, we should be able to multiply the equation (6.1.7)

by another function, and still obtain a valid equation. This is indeed possible due to the

next result, which states briefly that if dI = H dA then also G dI = GH dA:

Theorem 6.2 (Stieltjes integrals w.r.t. Stieltjes integrals). Suppose that Is =
ś

0

HrdAr

whereA : [0, u) → R is a function of locally finite variation, andH ∈ L1
loc([0, u), |dA|).

Then the function s 7→ Is is again right continuous with locally finite variation

V
(1)
t (I) ≤

t́

0

|H| |dA| <∞, and, for any function G ∈ L1
loc([0, u), |dI|),

t
ˆ

0

Gs dIs =

t
ˆ

0

GsHs dAs for t ∈ [0, u). (6.1.8)

Proof. Right continuity of It and the upper bound for the variation are left as an exercise.

We now use Riemann sum approximations to prove (6.1.8) if G is continuous. For a

partition 0 = t0 < t1 < . . . < tk = t, we have

n−1∑

i=0

Gti(Iti+1
− Iti) =

n−1∑

i=0

Gti ·
ti+1
ˆ

ti

Hs dAs =

t
ˆ

0

G⌊s⌋Hs dAs
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where ⌊s⌋ denotes the largest partition point ≤ s. Choosing a sequence (πn) of parti-

tions with mesh(πn) → 0, the integral on the right hand side converges to the Lebesgue-

Stieltjes integral
t́

0

GsHs dAs by continuity of G and the dominated convergence the-

orem, whereas the Riemann sum on the left hand side converges to
t́

0

Gs dIs. Hence

(6.1.8) holds for continuous G. The equation for general G ∈ L1
loc([0, u), |dI|) follows

then by standard arguments.

6.2 Quadratic variation and Itô’s formula

Our next goal is to derive a generalization of the chain rule from Stieltjes calculus to

continuous functions that are not of finite variation. Examples of such functions are

typical sample paths of Brownian motion. As pointed out above, an additional term will

appear in the chain rule in this case.

Quadratic variation

Consider once more the approximation (6.1.6) that we have used to prove the funda-

mental theorem of Stieltjes calculus. We would like to identify the limit of the last sum
∑
s∈πn

F ′′(Zs)(δAs)
2 when A has unfinite variation on finite intervals. For F ′′ = 1 this

limit is called the quadratic variation of A if it exists:

Definition. Let u ∈ (0,∞] and let (πn) be a sequence of partitions of R+ with

mesh(πn) → 0. The quadratic variation [X ]t of a continuous function X : [0, u) → R

w.r.t. the sequence (πn) is defined by

[X ]t = lim
n→∞

∑

s∈πn

(Xs′∧t −Xs∧t)
2 for t ∈ [0, u)

whenever the limit exists.

WARNINGS (Dependence on partition, classical 2-variation)
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(1). The quadratic variation should not be confused with the classical 2-variation de-

fined by

V
(2)
t (X) := sup

π

∑

s∈π
|Xs′∧t −Xs∧t|2

where the supremum is over all partitions π. The classical 2-variation V (2)
t (X)

is strictly positive for any function X that is not constant on [0, t] whereas [X ]t

vanishes in many cases, cf. Example (1) below.

(2). In general, the quadratic variation may depend on the sequence of partitions con-

sidered. See however Examples (1) and (3) below.

Example. (1). Functions of finite variation: For any continuous functionA : [0, u) →
R of locally finite variation, the quadratic variation along (πn) vanishes:

[A]t = 0 for any t ∈ [0, u).

In fact, for δAs = As′∧t − As∧t we have

∑

s∈πn

|δAs|2 ≤ V
(1)
t (A) · sup

s∈πn

s<t

|δAs| → 0 as n→ ∞

by uniform continuity and since V (1)
t (A) <∞.

(2). Perturbations by functions of finite variation: If the quadratic variation [X ]t of X

w.r.t. (πn) exists, then [X + A]t also exists, and

[X + A]t = [X ]t.

This holds since

∑
|δ(X + A)|2 =

∑
(δX)2 + 2

∑
δXδA+

∑
(δA)2,

and the last two sums converge to 0 as mesh(πn) → 0 by Example (1) and the

Cauchy-Schwarz inequality.

(3). Brownian motion: If (Bt)t≥0 is a one-dimensional Brownian motion then P -

almost surely,

[B]t = t for all t ≥ 0
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w.r.t. any fixed sequence (πn) of partitions such that mesh(πn) → 0, cf. Theorem

6.6 below.

(4). Itô processes: If It =
t́

0

Hs dBs is the stochastic integral of a process H ∈
L2

a,loc(0,∞) w.r.t. Brownian motion then almost surely, the quadratic variation

w.r.t. a fixed sequence of partitions is

[I]t =

t
ˆ

0

H2
s ds for all t ≥ 0.

(5). Continuous martingales: [M ] exists and is almost surely finite, see below.

Note that in Examples (3), (4) and (5), the exceptional sets may depend on the sequence

(πn). If it exists, the quadratic variation [X ]t is a non-decreasing function in t. In

particular, Stieltjes integrals w.r.t. [X ] are well-defined provided [X ] is right continuous.

Lemma 6.3. Suppose that X : [0, u) → R is a continuous function. If the quadratic

variation [X ]t along (πn) exists for t ∈ [0, u), and t 7→ [X ]t is continuous then

∑

s∈πn

s<t

Hs · (Xs′∧t −Xs)
2 −→

t
ˆ

0

Hs d[X ]s as n→ ∞ (6.2.1)

for any continuous function H : [0, u) → R and any t ≥ 0.

Remark. Heuristically, the assertion of the lemma says that

“
ˆ

H d[X ] =

ˆ

H (dX)2”,

i.e., the infinitesimal increments of the quadratic variation are something like squared

infinitesimal increments of X . This observation is crucial for controlling the second

order terms in the Taylor expansion used for proving the Itô-Doeblin formula.

Proof. The sum on the left-hand side of (6.2.1) is the integral of H w.r.t. the finite

positive measure

µn :=
∑

s∈πn

s<t

(Xs′∧t −Xs)
2 · δs
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on the interval [0, t). The distribution function of µn is

Fn(u) = :
∑

s∈πn

s≤t

(Xs′∧t −Xs)
2, u ∈ [0, t].

As n→ ∞, Fn(u) → [X ]u for any u ∈ [0, t] by continuity of X . Since [X ]u is a contin-

uous function of u, convergence of the distribution functions implies weak convergence

of the measures µn to the measure d[X ] on [0, t) with distribution function [X ]. Hence,
ˆ

Hsµn(ds) −→
ˆ

Hs d[X ]s as n→ ∞

for any continuous function H : [0, t] → R.

Itô’s formula and pathwise integrals in R1

We are now able to complete the proof of the following purely deterministic (pathwise)

version of the one-dimensional Itô formula going back to [Föllmer: Calcul d’Itô sans

probabilités, Sém. Prob XV, LNM850XXX]:

Theorem 6.4 (Itô’s formula without probability). Suppose that X : [0, u) → R is a

continuous function with continuous quadratic variation [X ] w.r.t. (πn). Then for any

function F that is C2 in a neighbourhood of X([0, u)), and for any t ∈ [0, u), the Itô

integral
t

ˆ

0

F ′(Xs) dXs = lim
n→∞

∑

s∈πn

s<t

F ′(Xs) · (Xs′∧t −Xs) (6.2.2)

exists, and Itô’s formula

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) dXs +
1

2

t
ˆ

0

F ′′(Xs) d[X ]s (6.2.3)

holds. In particular, if the quadratic variation [X ] does not depend on (πn) then the Itô

integral (6.2.2) does not depend on (πn) either.
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Note that the theorem implies the existence of
t́

0

f(Xs) dXs for any function f ∈
C1(R)! Hence this type of Itô integrals can be defined in a purely deterministic way

without relying on the Itô isometry. Unfortunately, the situation is more complicated in

higher dimensions, cf. ?? below.

Proof. Fix t ∈ [0, u) and n ∈ N. As before, for s ∈ πn we set δXs = Xs′∧t − Xs∧t

where s′ denotes the next partition point. Then as above we have

F (Xt)− F (X0) =
∑

s∈πn

s<t

F ′(Xs)δXs +
1

2

∑

s∈πn

s<t

F ′′(Z(n)
s )(δXs)

2

(6.2.4)

=
∑

s∈πn

s<t

F ′(Xs)δXs +
1

2

∑

s∈πn

s<t

F ′′(Xs)(δXs)
2 +

∑

s∈πn

s<t

R(n)
s ,

(6.2.5)

where Z(n)
s is an intermediate point between Xs and Xs′∧t, and R(n)

s := 1
2
(F ′′(Z

(n)
s ) −

F ′′(Xs)) · (δXs)
2. As n → ∞, the second sum on the right hand side of (6.2.4) con-

verges to
t́

0

F ′′(Xs)d[X ]s by Lemma 6.3. We claim that the sum of the remainders R(n)
s

converges to 0. To see this note that Z(n)
s = Xr for some r ∈ [s, s′ ∧ t], whence

|R(n)
s | = |F ′′(Z(n)

s )− F ′′(Xs)| · (δXs)
2 ≤ 1

2
εn(δXs)

2,

where

εn := sup
a,b∈[0,t]

|a−b|≤mesh(πn)

|F ′′(Xa)− F ′′(Xb)|.

As n → ∞, εn converges to 0 by uniform continuity of F ′′ ◦ X on the interval [0, t].

Thus ∑
|R(n)

s | ≤ 1

2
εn
∑

s∈πn

s<t

(δXs)
2 → 0 as well,

because the sum of the squared increments converges to the finite quadratic variation

[X ]t.

We have shown that all the terms on the right hand side of (6.2.4) except the first
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Riemann-Itô sum converge as n → ∞. Hence, by (6.2.4), the limit
t́

0

F ′(Xs) dXs

of the Riemann Itô sums also exists, and the limit equation (6.2.2) holds.

Remark. (1). In differential notation, we obtain the Itô chain rule

dF (X) = F ′(X) dX +
1

2
F ′′(X) d[X ]

which includes a second order correction term due to the quadratic variation. A

justification for the differential notation is given in Section ??.

(2). For functions X with [X ] = 0 we recover the classical chain rule dF (X) =

F ′(X) dX from Stieltjes calculus as a particular case of Itô’s formula.

Example. (1). Exponentials: Choosing F (x) = ex in Itô’s formula, we obtain

eXt − eX0 =

t
ˆ

0

eXs dXs +
1

2

t
ˆ

0

eXs d[X ]s,

or, in differential notation,

deX = eX dX +
1

2
eX d[X ].

Thus eX does not solve the Itô differential equation

dZ = Z dX (6.2.6)

if [X ] 6= 0. An appropriate renormalization is required instead. We will see below

that the correct solution of (6.2.6) is given by

Zt = exp (Xt − [X ]/2) ,

cf. the first example below Theorem 6.18.

(2). Polynomials: Similarly, choosing F (x) = xn for some n ∈ N, we obtain

dXn = nXn−1 dX +
n(n− 1)

2
Xn−2 [X ].

Again, Xn does not solve the equation dXn = nXn−1 dX . Here, the appropriate

renormalization leads to the Hermite polynomials : X :n, cf. the second example

below Theorem 6.18.
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The chain rule for anticipative integrals

The form of the second order correction term appearing in Itô’s formula depends cru-

cially on choosing non-anticipative Riemann sum approximations. For limits of antic-

ipative Riemann sums, we obtain different correction terms, and hence also different

notions of integrals.

Theorem 6.5. Suppose that X : [0, u) → R is continuous with continuous quadratic

variation [X ] along (πn). Then for any function F that is C2 in a neighbourhood of

X([0, u)) and for any t ≥ 0, the backward Itô integral

t
ˆ

0

F ′(Xs) d̂Xs := lim
n→∞

∑

s∈πn

s<t

F ′(Xs′∧t) · (Xs′∧t −Xs),

and the Stratonovich integral

t
ˆ

0

F ′(Xs) ◦ dXs := lim
n→∞

∑

s∈πn

s<t

1

2
(F ′(Xs) + F ′(Xs′∧t)) · (Xs′∧t −Xs)

exist, and

F (Xt)− F (X0) =

t
ˆ

0

F ′(Xs) d̂Xs −
1

2

t
ˆ

0

F ′′(Xs) d[X ]s (6.2.7)

=

t
ˆ

0

F ′(Xs) ◦ dXs. (6.2.8)

Proof. The proof of the backward Itô formula (6.2.7) is completely analogous to that of

Itô’s formula. The Stratonovich formula (6.2.8) follows by averaging the Riemann sum

approximations to the forward and backward Itô rule.

Note that Stratonovich integrals satisfy the classical chain rule

◦dF (X) = F ′(X) ◦ dX.
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This makes them very attractive for various applications. For example, in stochastic dif-

ferential geometry, the chain rule is of fundamental importance to construct stochastic

processes that stay on a given manifold. Therefore, it is common to use Stratonovich

instead of Itô calculus in this context, cf. the corresponding example in the next sec-

tion. On the other hand, Stratonovich calculus has a significant disadvantage against Itô

calculus: The Stratonovich integrals

t
ˆ

0

Hs ◦ dBs = lim
n→∞

∑ 1

2
(Hs +Hs′∧t)(Bs′∧t − Bs)

w.r.t. Brownian motion typically are not martingales, because the coefficients 1
2
(Hs +

Hs′∧t) are not predictable.

6.3 Itô’s formula for Brownian motion and martingales

Our next aim is to compute the quadratic variation and to state Itô’s formula for typical

sample paths of Brownian motion. More generally, we will show that the quadratic

variation exists almost surely for continuous local martingales.

Let (πn) be a sequence of partitions of R+ with mesh(πn) → 0. We note first that for

any function t 7→ Xt the identity

X2
t −X2

0 =
∑

s∈πn

s<t

(X2
s′∧t −X2

s ) = V n
t + 2Int (6.3.1)

with

V n
t =

∑

s∈πn

s<t

(Xs′∧t −Xs)
2 and Int =

∑

s∈πn

s<t

Xs · (Xs′∧t −Xs)

holds. The equation (6.3.1) is a discrete approximation of Itô’s formula for the function

F (x) = x2. The remainder terms in the approximation vanish in this particular case.

Note that by (6.3.1), the quadratic variation [X ]t = limn→∞ V n
t exists if and only if the

Riemann sum approximations Int to the Itô integral
´ t

0
Xs dXs converge:

∃ [X ]t = lim
n→∞

V n
t ⇐⇒ ∃

ˆ t

0

Xs dXs = lim
n→∞

Int .
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Now suppose that (Xt) is a continuous martingale with E[X2
t ] < ∞ for any t ≥ 0.

Then the Riemann sum approximations (Int ) are continuous martingales for any n ∈ N.

Therefore, by the maximal inequality, for a given u > 0, the processes (Int ) and (V n
t )

converge uniformly for t ∈ [0, u] in L2(P ) if and only if the random variables Inu or V n
u

respectively converge in L2(P ).

Quadratic variation of Brownian motion

For the sample paths of a Brownian motion B, the quadratic variation [B] exists almost

surely along any fixed sequence of partitions (πn) with mesh(πn) → 0, and [B]t = t

a.s. In particular, [B] is a deterministic function that does not depend on (πn). The

reason is a law of large numbers type effect when taking the limit of the sum of squared

increments as n→ ∞.

Theorem 6.6 (P. Lévy). If (Bt) is a one-dimensional Brownian motion on (Ω,A, P )
then as n→ ∞

sup
t∈[0,u]

∣∣∣∣∣∣∣∣

∑

s∈πn

s<t

(Bs′∧t −Bs)
2 − t

∣∣∣∣∣∣∣∣
−→ 0 P -a.s. and in L2(Ω,A, P ) (6.3.2)

for any u ∈ (0,∞), and for each sequence (πn) of partitions of R+ with mesh(πn) → 0.

Warning. (1). Although the almost sure limit in (6.3.2) does not depend on the se-

quence (πn), the exceptional set may depend on the chosen sequence!

(2). The classical quadratic variation V (2)
t (B) = supπ

∑
s∈π(δBs)

2 is almost surely

infinite for any t ≥ 0. The classical p-variation is almost surely finite if and only

if p > 2.
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Proof. (1). L2-convergence for fixed t: As usual, the proof of L2 convergence is com-

paratively simple. For V n
t =

∑
s∈πn

(δBs)
2 with δBs = Bs′∧t − Bs∧t, we have

E[V n
t ] =

∑

s∈πn

E[(δBs)
2] =

∑

s∈πn

δs = t, and

Var[V n
t ] =

∑

s∈πn

Var[(δBs)
2] =

∑

s∈πn

E[((δBs)
2 − δs)2]

= E[(Z2 − 1)2] ·
∑

s∈πn

(δs)2 ≤ const. · t ·mesh(πn)

where Z is a standard normal random variable. Hence, as n→ ∞,

V n
t − t = V n

t −E[V n
t ] → 0 in L2(Ω,A, P ).

Moreover, by (6.3.1), V n
t − V m

t = Int − Imt is a continuous martingale for any

n,m ∈ N. Therefore, the maximal inequality yields uniform convergence of V n
t

to t for t in a finite interval in the L2(P ) sense.

(2). Almost sure convergence if
∑

mesh(πn) < ∞: Similarly, by applying the max-

imal inequality to the process V n
t − V m

t and taking the limit as m → ∞, we

obtain

P

[
sup
t∈[0,u]

|V n
t − t| > ε

]
≤ 2

ε2
E[(V n

t − t)2] ≤ const. · t ·mesh(πn)

for any given ε > 0 and u ∈ (0,∞). If
∑

mesh(πn) < ∞ then the sum of

the probabilities is finite, and hence sup
t∈[0,u]

|V n
t − t| → 0 almost surely by the

Borel-Cantelli Lemma.

(3). Almost sure convergence if
∑

mesh(πn) = ∞: In this case, almost sure conver-

gence can be shown by the backward martingale convergence theorem. We refer

to Proposition 2.12 in [Revuz, YorXXX], because for our purposes almost sure

convergence w.r.t arbitrary sequences of partitions is not essential.
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Itô’s formula for Brownian motion

By Theorem 6.6, we can apply Theorem 6.7 to almost every sample path of a one-

dimensional Brownian motion (Bt):

Theorem 6.7 (Itô’s formula for Brownian motion). Suppose that F ∈ C2(I) where

I ⊆ R be an open interval. Then almost surely,

F (Bt)− F (B0) =

t
ˆ

0

F ′(Bs) dBs +
1

2

t
ˆ

0

F ′′(Bs) ds for all t < T, (6.3.3)

where T = inf{t ≥ 0 : Bt 6∈ I} is the first exit time from I .

Proof. For almost every ω, the quadratic variation of t 7→ Bt(ω) along a fixed sequence

of partitions is t. Moreover, for any r < T (ω), the function F is C2 on a neighbourhood

of {Bt(ω) : t ∈ [0, r]}. The assertion now follows from Theorem 6.7 by noting that

the pathwise integral and the Itô integral as defined in Section 5 coincide almost surely

since both are limits of Riemann-Itô sums w.r.t. uniform convergence for t in a finite

interval, almost surely along a common (sub)sequence of partitions.

Consequences

(1). Doob decomposition in continuous time: The Itô integral MF
t =

t́

0

F ′(Bs) dBs

is a local martingale up to T , and MF
t is a square integrable martingale if I = R

and F ′ is bounded. Therefore, (6.3.3) can be interpreted as a continuous time

Doob decomposition of the process (F (Bt)) into the (local) martingale part MF

and an adapted process of finite variation. This process takes over the role of the

predictable part in discrete time.

In particular, we obtain:
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Corollary 6.8 (Martingale problem for Brownian motion). Brownian motion is a so-

lution of the martingale problem for the operator L =
1

2

d2

dx2
with domain Dom(L ) =

{F ∈ C2(R) : dF
dx

is bounded}, i.e., the process

MF
t = F (Bt)− F (B0)−

t
ˆ

0

(L f)(Bs) ds

is a martingale for any F ∈ Dom(L ).

The corollary demonstrates how Itô’s formula can be applied to obtain solutions of

martingale problems, cf./ below for generalizations.

(2). Kolmogorov’s forward equation: Taking expectation values in (6.3.3), we recover

Kolmogorov’s equation

E[F (Bt)] = E[F (B0)] +

ˆ t

0

E[(L F )(Bs)] ds ∀ t ≥ 0

for any F ∈ C2
b (R). In differential form,

d

dt
E[F (Bt)] =

1

2
E[(F ′′)(Bt)].

(3). Computation of expected values: The Itô formula can be applied in many ways to

compute expectation values:

Example. (a) For any n ∈ N, the process

Bn
t − n(n− 1)

2

t
ˆ

0

Bn−2
s ds = n ·

t
ˆ

0

Bn−1
s dBs

is a martingale. By taking expectation values for t = 1 we obtain the recur-

sion

E[Bn
1 ] =

n(n− 1)

2

1
ˆ

0

E[Bn−2
s ] ds =

n(n− 1)

2

1
ˆ

0

sn−2/2 ds ·E[Bn−2
1 ]

= (n− 1) · E[Bn−2
1 ]
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for the moments of the standard normally distributed random variable B1.

Of course this identity can be obtained directly by integration by parts in the

Gaussian integral
´

xn · e−x2/2 dx.

(b) For α ∈ R, the process

exp(αBt)−
α2

2

ˆ t

0

exp(αBs) ds = α

ˆ t

0

exp(αBs) dBs

is a martingale because E[
´ t

0
exp(2αBs) ds] < ∞. Denoting by Tb =

min{t ≥ 0 : Bt = b} the first passage time to a level b > 0, we obtain the

identity

E

[
ˆ Tb

0

exp(αBs) ds

]
=

2

α2
(eαb − 1) for any α > 0

by optional stopping and dominated convergence.

Itô’s formula is also the key tool to derive or solve stochastic differential equations

for various stochastic processes of interest:

Example (Brownian motion on S
1). Brownian motion on the unit circle S1 =

{z ∈ C : |z| = 1} is the process given by

Zt = exp(iBt) = cosBt + i · sinBt

where (Bt) is a standard Brownian motion on R1. Itô’s formula yields the stochas-

tic differential equation

dZt = t(Zt) dBt −
1

2
n(Zt) dt, (6.3.4)

iz

z

z
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where t(z) = iz is the unit tangent vector to S1 at the point z, and n(z) = z is the

outer normal vector. If we would omit the correction term −1
2
n(Zt) dt in (6.3.4),

the solution to the s.d.e. would not stay on the circle. This is contrary to classical

o.d.e. where the correction term is not required. For Stratonovich integrals, we

obtain the modified equation

◦dZt = t(Zt) ◦ dBt,

which does not involve a correction term!

Quadratic variation of continuous martingales

Next, we will show that the sample paths of continuous local martingales almost surely

have finite quadratic variation. Let (Mt) be a continuous local martingale, and fix a

sequence (πn) of partitions of R+ with mesh(πn) → 0. Let

V n
t =

∑

s∈πn

(Ms′∧t −Ms∧t)
2

denote the quadratic variation of M along πn. Recall the crucial identity

M2
t −M2

0 =
∑

s∈πn

(
M2

s′∧t −M2
s∧t
)
= V n

t + 2Int (6.3.5)

where Int =
∑

s∈πn
Ms(Ms′∧t −Ms∧t) are the Riemann sum approximations to the Itô

integral
´ t

0
M dM . The identity shows that V n

t converges (uniformly) as n→ ∞ if and

only if the same holds for Int . Moreover, in this case, we obtain the limit equation

M2
t −M2

0 = [M ]t + 2

ˆ t

0

Ms dMs (6.3.6)

which is exactly Itô’s equation for F (x) = x2.

Theorem 6.9 (Existence of quadratic variation). Suppose that (Mt) is a continuous

local martingale on (Ω,A, P ). Then there exist a continuous non-decreasing process

t 7→ [M ]t and a continuous local martingale t 7→
´ t

0
M dM such that as n→ ∞,

sup
s∈[0,t]

|V n
s − [M ]s| → 0 and sup

s∈[0,t]

∣∣∣∣Ins −
ˆ s

0

M dM

∣∣∣∣ → 0
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in probability for any t ≥ 0, and in L2(P ) respectively if M is bounded. Moreover, the

identity (6.3.6) holds.

Notice that in the theorem, we do not assume the existence of an angle bracket process

〈M〉. Indeed, the theorem proves that for continuous local martingales, the angle bracket

process always exists and it coincides almost surely with the quadratic variation process

[M ] ! We point out that for discontinuous martingales, 〈M〉 and [M ] do not coincide.

Proof. We first assume that M is a bounded martingale: |Mt| ≤ C for some finite

constant C. We then show that (In) is a Cauchy sequence in the Hilbert spaceM2
c ([0, t])

for any given t ∈ R+. To this end let n,m ∈ N. We assume without loss of generality

that πm ⊆ πn, otherwise we compare to a common refinement of both partitions. For

s ∈ πn, we denote the next partition point in πn by s′, and the previous partition point

in πm by ⌊s⌋m. Fix t ≥ 0. Then

Int − Imt =
∑

s∈πn

s<t

(Ms −M⌊s⌋m) (Ms′∧t −Ms), and hence

‖In − Im‖2M2([0,t]) = E
[
(Int − Imt )2

]

=
∑

s∈πn

s<t

E
[
(Ms −M⌊s⌋m)

2 (Ms′∧t −Ms)
2
]

≤ E
[
δ2m
]1/2

E

[(∑
(δMs)

2
)2]1/2

, (6.3.7)

where δm := sup{|Ms −Mr|2 : |s − r| ≤ mesh(πm)}. Here we have used that the

non-diagonal summands cancel because M is a martingale.

Since M is bounded and continuous, dominated convergence shows that E[δ2m] → 0 as

m→ ∞. Furthermore,

E



(∑

s

(δMs)
2

)2

 = E

[∑

s

(δMs)
4

]
+ E

[ ∑

r,s:r<s

(δMr)
2(δMs)

2

]

≤ 4C2E

[∑

s

(δMs)
2

]
+ 2E

[∑

r

(δMr)
2E

[∑

s>r

(δMs)
2|Fr

]]

≤ 6C2E[M2
t −M2

0 ] ≤ 6C4 < ∞.
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Here we have used that by the martingale property,

E

[∑

s

(δMs)
2

]
= E[M2

t −M2
0 ] ≤ C2, and

E

[∑

s>r

(δMs)
2|Fr

]
= E

[
M2

t −M2
r |Fr

]
≤ C2.

By (6.3.7), ‖In − Im‖2M2([0,t]) → 0 as n,m → ∞. Hence (Ins )s∈[0,t] converges uni-

formly as n → ∞ in the L2(P ) sense. By (6.3.5), (V n
s )s∈[0,t] converges uniformly as

n → ∞ in the L2(P ) sense as well. Hence the limits
´ •
0
M dM and [M ] exist, the

stochastic integral is in M2
c ([0, t]), and the identity (6.3.6) holds.

It remains to extend the result from bounded martingales to local martingales. If M is a

continuous local martingale then there exists a sequence of stopping times Tk ↑ ∞ such

that the stopped processes (MTk∧t)t≥0 are continuous bounded martingales. Hence the

corresponding quadratic variations [MTk∧•] converge uniformly in the L2(P ) sense for

any finite t and k. Therefore, the approximations V n
t for the quadratic variation of M

converge uniformly in the L2(P ) sense on each of the random intervals [0, Tk ∧ t], and

thus for any ε, δ > 0,

P

[
sup
s≤t

|V n
s − [M ]s| > ε

]
≤ P [t > Tk] + P

[
sup
s≤Tk

|V n
s − [M ]s| > ε

]
≤ δ

for k, n sufficiently large.

Having shown the existence of the quadratic variation [M ] for continuous local martin-

gales, we observe next that [M ] is always non-trivial if M is not constant:

Theorem 6.10 (Non-constant continuous martingales have non-trivial quadratic

variation). Suppose that (Mt) is a continuous local martingale. If [M ]t = 0 almost

surely for some t ≥ 0, then M is almost surely constant on the interval [0, t].

Proof. Again, we assume at first that M is a bounded martingale. Then the Itô integral
´ •
0
M dM is a martingale as well. Therefore, by (6.3.6),

‖M −M0‖2M2([0,t]) = E[(Mt −M0)
2] = E[M2

t −M2
0 ] = E[ [M ]t ] = 0,
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i.e., Ms =M0 for any s ∈ [0, t]. In the general case, the assertion follows once more by

localization.

The theorem shows in particular that every local martingale with continuous finite vari-

ation paths is almost surely constant, i.e., the Doob type decomposition of a continu-

ous stochastic process into a local martingale and a continuous finite variation pro-

cess starting at 0 is unique up to equivalence. As a consequence we observe that the

quadratic variation is the unique angle bracket process of M . In particular, up to mod-

ification on measure zero sets, [M ] does not depend on the chosen partition sequence

(πn):

Corollary 6.11 (Quadratic variation as unique angle bracket process). Suppose that

(Mt) is a continuous local martingale. Then [M ] is the up to equivalence unique contin-

uous process of finite variation such that [M ]0 = 0 andM2
t −[M ]t is a local martingale.

Proof. By (6.3.6), M2
t − [M ]t is a continuous local martingale. To prove uniqueness,

suppose that (At) and (Ãt) are continuous finite variation processes with A0 = Ã0 = 0

such that bothM2
t −At andM2

t −Ãt are local martingales. ThenAt−Ãt is a continuous

local martingale as well. Since the paths have finite variation, the quadratic variation of

A− Ã vanishes. Hence almost surely, At − Ãt = A0 − Ã0 = 0 for all t.

From continuous martingales to Brownian motion

A remarkable consequence of Itô’s formula for martingales is that any continuous local

martingale (Mt) (up to T = ∞) with quadratic variation given by [M ]t = t for any

t ≥ 0 is a Brownian motion ! In fact, for 0 ≤ s ≤ t and p ∈ R, Itô’s formula yields

eipMt − eipMs = ip

t
ˆ

s

eipMr dMr −
p2

2

t
ˆ

s

eipMr dr
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where the stochastic integral can be identified as a local martingale. From this identity

it is not difficult to conclude that the increment Mt −Ms is conditionally independent

of FM
s with characteristic function

E[eip(Mt−Ms)] = e−p2(t−s)/2 for any p ∈ R,

i.e., (Mt) has independent increments with distribution Mt −Ms ∼ N(0, t− s).

Theorem 6.12 (P. Lévy 1948). A continuous local martingale (Mt)t∈[0,∞) is a Brownian

motion if and only if almost surely,

[M ]t = t for any t ≥ 0.

Exercise (Lévy’s characterization of Brownian motion). Extend the sketch above to

a proof of Theorem 6.12.

Lévy’s Theorem is the basis for many important developments in stochastic analysis

including transformations and weak solutions for stochastic differential equations. An

extension to the multi-dimensional case with a detailled proof, as well as several appli-

cations, are contained in Section 11.1 below.

One remarkable consequence of Lévy’s characterization of Brownian motion is that ev-

ery continuous local martingale can be represented as a time-changed Brownian motion

(in general possibly on an extended probability space):

Exercise (Continuous local martingales as time-changed Brownian motions). Let

(Mt)t∈[0,∞) be a continuous local martingale, and assume for simplicity that t 7→ [M ]t

is almost surely strictly increasing with limt→∞[M ]t = ∞. Prove that there exists a

Brownian motion (Bt)t∈[0,∞) such that

Mt = B[M ]t for t ∈ [0,∞). (6.3.8)

Hint: Set Ba = MTa
where Ta = [M ]−1(a) = inf{t ≥ 0 : [M ]t = a}, and verify by

Lévy’s characterization that B is a Brownian motion.
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In a more general form, the representation of continuous local martingales as time-

changed Brownian motions is due to Dambis and Dubins-Schwarz (1965), cf. [37] or

Section 11.2 below for details. Remarkably, even before Itô, Wolfgang Doeblin, the

son of Alfred Doeblin, had developed an alternative approach to stochastic calculus

where stochastic integrals are defined as time changes of Brownian motion. Doeblin

died when fighting as a French soldier at the German front in World War II, and his

results that were hidden in a closed envelope at the Académie de Sciences have become

known and been published only recently, more than fifty years after their discovery, cf.

[Doeblin, Sur l’équation de Kolmogoroff, 1940/2000], [Yor: Présentation du pli cacheté,

C.R.Acad.Sci. Paris 2000].

6.4 Multivariate and time-dependent Itô formula

We now extend Itô’s formula to Rd-valued functions and stochastic processes. Let

u ∈ (0,∞] and suppose that X : [0, u) → D,Xt = (X
(1)
t , . . . , X

(d)
t ), is a continu-

ous function taking values in an open set D ⊆ Rd. As before, we fix a sequence (πn) of

partitions of R+ with mesh(πn) → 0. For a function F ∈ C2(D), we have similarly as

in the one-dimensional case:

F (Xs′∧t)− F (Xs) = ∇F (Xs) · (Xs′∧t −Xs) + (6.4.1)

1

2

d∑

i,j=1

∂2F

∂xi∂xj
(Xs)(X

(i)
s′∧t −X(i)

s )(X
(j)
s′∧t −X(j)

s ) +R(n)
s

for any s ∈ πn with s < t where the dot denotes the Euclidean inner product R(n)
s is the

remainder term in Taylor’s formula. We would like to obtain a multivariate Itô formula

by summing over s ∈ πn with s < t and taking the limit as n → ∞. A first problem

that arises in this context is the identification of the limit of the sums

∑

s∈πn

s<t

g(Xs)δX
(i)
s δX(j)

s

for a continuous function g : D → R as n→ ∞.
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Covariation

Suppose that X, Y : [0, u) → R are continuous functions with continuous quadratic

variations [X ]t and [Y ]t w.r.t. (πn).

Definition. The function

[X, Y ]t = lim
n→∞

∑

s∈πn

(Xs′∧t −Xs∧t)(Ys′∧t − Ys∧t), t ∈ [0, u),

is called the covariation of X and Y w.r.t. (πn) if the limit exists.

The covariation [X, Y ]t is the bilinear form corresponding to the quadratic form [X ]t.

In particular, [X,X ] = [X ]. Furthermore:

Lemma 6.13 (Polarization identity). The covariation [X, Y ]t exists and is a continu-

ous function in t if and only if the quadratic variation [X + Y ]t exists and is continuous

respectively. In this case,

[X, Y ]t =
1

2
([X + Y ]t − [X ]t − [Y ]t).

Proof. For n ∈ N we have

2
∑

s∈πn

δXsδYs =
∑

s∈πn

(δXs + δYs)
2 −

∑

s∈πn

(δXs)
2 −

∑

s∈πn

(δYs)
2.

The assertion follows as n → ∞ because the limits [X ]t and [Y ]t of the last two terms

are continuous functions by assumption.

Remark. Note that by the polarization identity, the covariation [X, Y ]t is the difference

of two increasing functions, i.e., t 7→ [X, Y ]t has finite variation.

Example. (1). Functions and processes of finite variation: If Y has finite variation

then [X, Y ]t = 0 for any t ≥ 0. Indeed,
∣∣∣∣∣
∑

s∈πn

δXsδYs

∣∣∣∣∣ ≤ sup
s∈πn

|δXs| ·
∑

s∈πn

|δYs|
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and the right hand side converges to 0 by uniform continuity of X on [0, t]. In

particular, we obtain again

[X + Y ] = [X ] + [Y ] + 2[X, Y ] = [X ].

(2). Independent Brownian motions: If (Bt) and (B̃t) are independent Brownian mo-

tions on a probability space (Ω,A, P ) then for any given sequence (πn),

[B, B̃]t = lim
n→∞

∑

s∈πn

δBsδB̃s = 0 for any t ≥ 0

P -almost surely. For the proof note that (Bt + B̃t)/
√
2 is again a Brownian

motion, whence

[B, B̃]t = [(B + B̃)/
√
2]t −

1

2
[B]t −

1

2
[B̃]t = t− t

2
− t

2
= 0 almost surely.

(3). Itô processes: If It =
´ t

0
Gs dBs and Ft =

t́

0

Hs dBs with continuous adapted

processes (Gt) and (Ht) and Brownian motions (Bt) and (B̃t) then

[I, J ]t = 0 if B and B̃ are independent, and (6.4.2)

[I, J ]t =

t
ˆ

0

GsHs ds if B = B̃, (6.4.3)

cf. Theorem ?? below.

More generally, under appropriate assumptions on G,H,X and Y , the identity

[I, J ]t =

t
ˆ

0

GsHs d[X, Y ]s

holds for Itô integrals It =
t́

0

Gs dXs and Jt =
t́

0

Hs dYs, cf. e.g. Corollary ??.

Itô to Stratonovich conversion

The covariation also occurs as the correction term in Itô compared to Stratonovich inte-

grals:
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Theorem 6.14. If the Itô integral

t
ˆ

0

Xs Ys = lim
n→∞

∑

s∈πn

s<t

XsδYs

and the covariation [X, Y ]t exists along a sequence (πn) of partitions with mesh(πn) →
0 then the corresponding backward Itô integral

t́

0

Xs d̂Ys and the Stratonovich integral

t́

0

Xs ◦ dYs also exist, and

t
ˆ

0

Xs d̂Ys =

t
ˆ

0

Xs Ys + [X, Y ]t, and

t
ˆ

0

Xs ◦ dYs =

t
ˆ

0

Xs Ys +
1

2
[X, Y ]t.

Proof. This follows from the identities
∑

XS′∧tδYs =
∑

XsδYs +
∑

δXsδYs, and
∑ 1

2
(Xs +Xs′∧t)δYs =

∑
XsδYs +

1

2

∑
δXsδYs.

Itô’s formula in Rd

By the polarization identity, if [X ]t, [Y ]t and [X + Y ]t exist and are continuous then

[X, Y ]t is a continuous function of finite variation.

Lemma 6.15. Suppose that X, Y and X + Y are continuous function on [0, u) with

continuous quadratic variations w.r.t. (πn). Then

∑

s∈πn

s<t

Hs(Xs′∧t −Xs)(Ys′∧t − Ys) −→
t

ˆ

0

Hs d[X, Y ]s as n→ ∞
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for any continuous function H : [0, u) → R and any t ≥ 0.

Proof. The assertion follows from Lemma 6.3 by polarization.

By Lemma 6.15, we can take the limit as mesh(πn) → 0 in the equation derived by

summing (6.4.2) over all s ∈ πn with s < t. In analogy to the one-dimensional case,

this yields the following multivariate version of the pathwise Itô formula:

Theorem 6.16 (Multivariate Itô formula without probability). Suppose that

X : [0, u) → D ⊆ Rd is a continuous function with continuous covariations

[X(i), X(j)]t, 1 ≤ i, j ≤ d, w.r.t. (πn). Then for any F ∈ C2(D) and t ∈ [0, u),

F (Xt) = F (X0) +

t
ˆ

0

∇F (Xs) · dXs +
1

2

d∑

i,j=1

t
ˆ

0

∂2F

∂xi∂xj
(Xs) d[X

(i), X(j)]s,

where the Itô integral is the limit of Riemann sums along (πn):

t
ˆ

0

∇F (Xs) · dXs = lim
n→∞

∑

s∈πn

s<t

∇F (Xs) · (Xs′∧t −Xs). (6.4.4)

The details of the proof are similar to the one-dimensional case and left as an exercise

to the reader. Note that the theorem shows in particular that the Itô integral in (6.4.4) is

independent of the sequence (πn) if the same holds for the covariations [X(i), X(j)].

Remark (Existence of pathwise Itô integrals). The theorem implies the existence of

the Itô integral
t́

0

b(Xs) · dXs if b = ∇F is the gradient of a C2 function F : D ⊆
Rd → R. In contrast to the one-dimensional case, not every C1 vector field b : D → Rd

is a gradient. Therefore, for d ≥ 2 we do not obtain existence of
´ t

0
b(Xs) · dXs for

any b ∈ C1(D,Rd) from Itô’s formula. In particular, we do not know in general if the

integrals
´ t

0
∂F
∂xi

(Xs) dX
(i)
s , 1 ≤ i ≤ d, exists and if

t
ˆ

0

∇F (Xs) · dXs =

d∑

i=1

t
ˆ

0

∂F

∂xi
(Xs) dX

(i)
s .
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If (Xt) is a Brownian motion this is almost surely the case by the existence proof for Itô

integrals w.r.t. Brownian motion from Section 5.

Example (Itô’s formula for Brownian motion inRd). Suppose thatBt = (B
(1)
t , . . . , B

(d)
t )

is a d-dimensional Brownian motion defined on a probability space (Ω,A, P ). Then the

component processes B(1)
t , . . . , B

(d)
t are independent one-dimensional Brownian mo-

tions. Hence for a given sequence of partitions (πn) with mesh(πn) → 0, the covari-

ations [B(i), B(j)], 1 ≤ i, j ≤ d, exists almost surely by Theorem 6.6 and the example

above, and

[B(i), B(j)] = t · δij ∀t ≥ 0

P -almost surely. Therefore, we can apply Itô’s formula to almost every trajectory. For

an open subset D ⊆ Rd and a function F ∈ C2(D) we obtain:

F (Bt) = F (B0)+

t
ˆ

0

∇F (Bs)·dBs+
1

2

t
ˆ

0

∆F (Bs)ds ∀t < TDC P -a.s. (6.4.5)

where TDC := inf{t ≥ 0 : Bt 6∈ D} denotes the first exit time from D. As in

the one-dimensional case, (6.4.5) yields a decomposition of the process F (Bt) into a

continuous local martingale and a continuous process of finite variation, cf. Section ??

for applications.

Product rule, integration by parts

As a special case of the multivariate Itô formula, we obtain the following integration by

parts identity for Itô integrals:

Corollary 6.17. Suppose that X, Y : [0, u) → R are continuous functions with contin-

uous quadratic variations [X ] and [Y ], and continuous covariation [X, Y ]. Then

XtYt −X0Y0 =

t
ˆ

0

(
Ys

Xs

)
· d
(
XsYs

)
+ [X, Y ]t for any t ∈ [0, u). (6.4.6)
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If one, or, equivalently, both of the Itô integrals
t́

0

Ys dXs and
t́

0

Xs dYs exist then (6.4.6)

yields

XtYt −X0Y0 =

t
ˆ

0

Ys dXs +

t
ˆ

0

Xs dYs + [X, Y ]t. (6.4.7)

Proof. The identity (6.4.6) follows by applying Itô’s formula in R2 to the process (Xt, Yt)

and the function F (x, y) = xy. If one of the integrals
´ t

0
Y dX or

´ t

0
X dY exists, then

the other exists as well, and

t
ˆ

0

(
Ys

Xs

)
· d
(
Xs

Ys

)
=

t
ˆ

0

Ys dXs +

t
ˆ

0

Xs dYs.

As it stands, (6.4.7) is an integration by parts formula for Itô integrals which involves the

correction term [X, Y ]t. In differential notation, it is a product rule for Itô differentials:

d(XY ) = X dY + Y dX + [X, Y ].

Again, in Stratonovich calculus a corresponding product rule holds without the correc-

tion term [X, Y ]:

◦d(XY ) = X ◦ dY + Y ◦ dX.

Remark / Warning (Existence of
´

X dY, Lévy area). Under the conditions of the

theorem, the Itô integrals
t́

0

X dY and
t́

0

Y dX do not necessarily exist! The following

statements are equivalent:

(1). The Itô integral
t́

0

Ys dXs exists (along (πn)).

(2). The Itô integral
t́

0

Xs dYs exists.
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(3). The Lévy area At(X, Y ) defined by

At(X, Y ) =

t
ˆ

0

(Y dX −X dY ) = lim
n→∞

∑

s∈πn

s<t

(Ys∆Xs −Xs∆Ys)

exists.

Hence, if the Lévy area At(X, Y ) is given, the stochastic integrals
´

X dY and
´

Y dX

can be constructed pathwise. Pushing these ideas further leads to the rough paths theory

developed by T. Lyons and others, cf. [Lyons, St. Flour], [Friz: Rough paths theory].

Example (Integrating finite variation processes w.r.t. Brownian motion). If (Ht) is

an adapted process with continuous sample paths of finite variation and (Bt) is a one-

dimensional Brownian motion then [H,B] = 0, and hence

HtBt −H0B0 =

t
ˆ

0

Hs dBs +

t
ˆ

0

Bs dHs.

This integration by parts identity can be used as an alternative definition of the stochastic

integral
t́

0

H dB for integrands of finite variation, which can then again be extended to

general integrands in L2
a(0, t) by the Itô isometry.

Time-dependent Itô formula

The multi-dimensional Itô formula can be applied to functions that depend explicitly

on the time variable t or on the quadratic variation [X ]t. For this purpose we simply

add t or [X ]t respectively as an additional component to the function, i.e., we apply the

multi-dimensional Itô formula to Yt = (t, Xt) or Yt = (t, [X ]t) respectively.

Theorem 6.18. Suppose that X : [0, u) → Rd is a continuous function with continuous

covariations [X(i), X(j)]t, along (πn), and let F ∈ C2(A([0, u))×Rd). IfA : [0, u) → R

is a continuous function of finite variation then the integral
t

ˆ

0

∇xF (As, Xs) · dXs = lim
n→∞

∑

s∈πn

s<t

∇xF (As, Xs) · (Xs′∧t −Xs)
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exists, and the Itô formula

F (At, Xt) = F (0, X0) +

t
ˆ

0

∇xF (As, Xs) · dXs +

t
ˆ

0

∂F

∂a
(As, Xs) dAs +(6.4.8)

1

2

d∑

i,j=1

t
ˆ

0

∂2F

∂xi∂xj
(As, Xs) d[X

(i), X(j)]s (6.4.9)

holds for any t ≥ 0. Here ∂F/∂a denotes the derivative of F (a, x) w.r.t. the first com-

ponent, and ∇xF and ∂2F/∂xi∂xj are the gradient and the second partial derivatives

w.r.t. the other components. The most important application of the theorem is forAt = t.

Here we obtain the time-dependent Itô formula

dF (t, Xt) = ∇xF (t, Xt) · dXt +
∂F

∂t
(t, Xt) dt+

1

2

d∑

i,j=1

∂2F

∂xi∂xj
(t, Xt) d[X

(i), X(j)]t.

(6.4.10)

Similarly, if d = 1 and At = [X ]t then we obtain

dF ([X ]t, Xt) =
∂F

∂t
([X ]t, Xt) dt+

(
∂F

∂a
+

1

2

∂2F

∂x2

)
([X ]t, Xt) d[X ]t. (6.4.11)

If (X)t is a Brownian motion and d = 1 then both formulas coincide.

Proof. Let Yt = (Y
(0)
t , Y

(1)
t , . . . , Y

(d)
t ) := (At, Xt). Then [Y (0), Y (i)]t = 0 for any t ≥ 0

and 0 ≤ i ≤ d because Y (0)
t = At has finite variation. Therefore, by Itô’s formula in

Rd+1,

F (At, Xt) = F (A0, X0) + It +
1

2

d∑

i,j=1

∂2F

∂xi∂xj
(As, Xs) d[X

(i), X(j)]s

where

It = lim
n→∞

∑

s∈πn

s<t

∇Rd+1

F (As, Xs) ·
(
As′∧t − As

Xs′∧t −Xs

)

= lim
n→∞

(∑ ∂F

∂a
(As, Xs)(As′∧t −As) +

∑
∇xF (As, Xs) · (Xs′∧t −Xs)

)
.
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The first sum on the right hand side converges to the Stieltjes integral
´ t

0
∂F
∂a
(As, Xs)dAs

as n→ ∞. Hence, the second sum also converges, and we obtain (6.4.7) in the limit as

n→ ∞.

Note that if h(t, x) is a solution of the dual heat equation

∂h

∂t
+

1

2

∂2h

∂x2
= 0 for t ≥ 0, x ∈ R, (6.4.12)

then by (6.4.11),

h([X ]t, Xt) = h(0, X0) +

t
ˆ

0

∂h

∂x
([X ]s, Xs) dXs.

In particular, if (Xt) is a Brownian motion, or more generally a local martingale, then

h([X ]t, Xt) is also a local martingale. The next example considers two situations where

this is particular interesting:

Example. (1). Itô exponentials: For any α ∈ R, the function

h(t, x) = exp(αx− α2t/2)

satisfies (6.4.12) and ∂h/∂x = αh. Hence the function

Z
(α)
t := exp

(
αXt −

1

2
α2[X ]t

)

is a solution of the Itô differential equation

dZ
(α)
t = αZ

(α)
t dXt

with initial condition Z(α)
0 = 1. This shows that in Itô calculus, the functions Z(α)

t

are the correct replacements for the exponential functions. The additional factor

exp(−α2[X ]t/2) should be thought of as an appropriate renormalization in the

continuous time limit.

For a Brownian motion (Xt), we obtain the exponential martingales as general-

ized exponentials.
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(2). Hermite polynomials: For n = 0, 1, 2, . . ., the Hermite polynomials

hn(t, x) =
∂n

∂αn
exp(αx− 1

2
α2t)|α=0

also satisfy (6.4.12). The first Hermite polynomials are 1, x, x2 − t, x3 − 3tx, . . ..

Note also that

exp(αx− α2t/2) =

∞∑

n=0

αn

n!
hn(t, x)

by Taylor’s theorem. Moreover, the following properties can be easily verified:

hn(1, x) = ex
2/2(−1)n

dn

dxn
e−x2/2 for any x ∈ R, (6.4.13)

hn(t, x) = tn/2hn(1, x/
√
t) for any t ≥ 0, x ∈ R, (6.4.14)

∂hn
∂x

= nhn−1,
∂hn
∂t

+
1

2

∂2hn
∂x2

= 0. (6.4.15)

For example, (6.4.13) holds since

exp(αx− α2/2) = exp(−(x− a)2/2) exp(x2/2)

yields

hN(1, x) = exp(x2/2)(−1)n
dn

dβn
exp(−β2/2)

∣∣∣∣
β=x

,

and (6.4.14) follows from

exp(αx− α2t/2) = exp(α
√
t · (x/

√
t)− (α

√
t)2/2)

=
∞∑

n=0

αn

n!
tn/2hn(1, x/

√
t).

By (6.4.13) and (6.4.14), hn is a polynomial of degree n. For any n ≥ 0, the

function

H
(n)
t := hn([X ]t, Xt)

is a solution of the Itô equation

dH
(n)
t = nH

(n−1)
t dXt. (6.4.16)
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Therefore, the Hermite polynomials are appropriate replacements for the ordinary

monomials xn in Itô calculus. If X0 = 0 then H(n)
0 = 0 for n ≥ 1, and we obtain

inductively

H
(0)
t = 1, H

(1)
t =

t
ˆ

0

dXs, H
(2)
t =

ˆ

H(1)
s dXs =

t
ˆ

0

s
ˆ

0

dXr dXs,

and so on.

Corollary 6.19 (Itô 1951). IfX : [0, u) → R is continuous withX0 = 0 and continuous

quadratic variation then for t ∈ [0, u),

t
ˆ

0

sn
ˆ

0

· · ·
s2
ˆ

0

dXs1 · · · dXsn−1 dXsn =
1

n!
hn([X ]t, Xt).

Proof. The equation follows from (6.4.16) by induction on n.

Iterated Itô integrals occur naturally in Taylor expansions of Itô calculus. Therefore, the

explicit expression from the corollary is valuable for numerical methods for stochastic

differential equations, cf. Section ?? below.
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Chapter 7

Brownian Motion and Partial

Differential Equations

The stationary and time-dependent Itô formula enable us to work out the connection of

Brownian motion to several partial differential equations involving the Laplace operator

in detail. One of the many consequences is the evaluation of probabilities and expec-

tation values for Brownian motion by p.d.e. methods. More generally, Itô’s formula

establishes a link between stochastic processes and analysis that is extremely fruitful in

both directions.

Suppose that (Bt) is a d-dimensional Brownian motion defined on a probability space

(Ω,A, P ) such that every sample path t 7→ Bt(ω) is continuous. We first note that Itô’s

formula shows that Brownian motion solves the martingale problem for the operator

L =
1

2
∆ in the following sense:

Corollary 7.1 (Time-dependent martingale problem). The process

MF
t = F (t, Bt)− F (0, B0)−

t
ˆ

0

(
∂F

∂s
+

1

2
∆F

)
(s, Bs) ds

is a continuous (FB
t ) martingale for any C2 function F : [0,∞) × Rd → R with

bounded first derivatives. Moreover, MF is a continuous local martingale up to TDC =

inf{t ≥ 0 : Bt 6∈ D} for any F ∈ C2([0,∞)×D), D ⊆ Rd open.
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Proof. By the continuity assumptions one easily verifies that MF is (FB
t ) adapted.

Moreover, by the time-dependent Itô formula (6.4.10),

MF
t =

t
ˆ

0

∇xF (s, Bs) · dBs for t < TDC ,

which implies the claim.

Choosing a function F that does not explicitly depend on t, we obtain in particular that

MF
t = F (Bt)− F (B0)−

t
ˆ

0

1

2
∆F (Bs) ds

is a martingale for any f ∈ C2
b (R

d), and a local martingale up to TDC for any F ∈
C2(D).

7.1 Dirichlet problem, recurrence and transience

As a first consequence of Corollary 7.1 we can now complete the proof of the stochastic

representation for solutions of the Dirichlet problem that has been already mentioned in

Section 3.2 above. By solving the Dirichlet problem for balls explicitly, we will then

study recurrence, transience and polar sets for multi-dimensional Brownian motion.

The Dirichlet problem revisited

Suppose that h ∈ C2(D) ∩ C(D) is a solution of the Dirichlet problem

∆h = 0 on D, h = f on ∂D, (7.1.1)

for a bounded open setD ⊂ Rd and a continuous function f : ∂D → R. If (Bt) is under

Px a continuous Brownian motion withB0 = x Px-almost surely, then by Corollary 7.1,

the process h(Bt) is a local (FB
t ) martingale up to TDC . By applying the optional
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stopping theorem with a localizing sequence of bounded stopping times Sn ր TDC , we

obtain

h(x) = Ex[h(B0)] = Ex[h(BSn
)] for any n ∈ N.

Since Px[TDC < ∞] = 1 and h is bounded on D, dominated convergence then yields

the stochastic representation

h(x) = Ex[h(BT
DC

)] = Ex[f(BT
DC

)] for any x ∈ Rd.

We thus have shown:

Theorem 7.2 (Stochastic representation for solutions of the Dirichlet problem).

Suppose that D is a bounded open subset of Rd, f is a continuous function on the

boundary ∂D, and h ∈ C2(D) ∩ C(D) is a solution of the Dirichlet problem (7.1.1).

Then

h(x) = Ex[f(BT )] for any x ∈ D.

We will generalize this result substantially in Theorem 7.5 below. Before, we apply the

Dirichlet problem to study recurrence and transience of Brownian motions:

Recurrence and transience of Brownian motion in Rd

Let (Bt) be a d-dimensional Brownian motion on (Ω,A, P ) with initial value B0 =

x0, x0 6= 0. For r ≥ 0 let

Tr = inf{t > 0 : |Bt| = r}.

We now compute the probabilities P [Ta < Tb] for a < |x0| < b. Note that this is a

multi-dimensional analogue of the classical ruin problem. To compute the probability

for given a, b we consider the domain

D = {x ∈ Rd : a < |x| < b}.

For b <∞, the first exit time TDC is almost surely finite,

TDC = min(Ta, Tb), and P [Ta < Tb] = P [|BT
DC

| = a].
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a

b

D

x0

Suppose that h ∈ C(U) ∩ C2(U) is a solution of the Dirichlet problem

∆h(x) = 0 for all x ∈ D, h(x) =




1 if |x| = a,

0 if |x| = b.
(7.1.2)

Then h(Bt) is a bounded local martingale up to TDC and optional stopping yields

P [Ta < Tb] = E[h(BT
DC

)] = h(x0). (7.1.3)

By rotational symmetry, the solution of the Dirichlet problem (7.1.2) can be computed

explicitly. The Ansatz h(x) = f(|x|) leads us to the boundary value problem

d2f

dr2
(|x|) + d− 1

|x|
df

dr
(|x|) = 0, f(a) = 1, f(b) = 0,

for a second order ordinary differential equation. Solutions of the o.d.e. are linear

combinations of the constant function 1 and the function

φ(s) :=





s for d = 1,

log s for d = 2,

s2−d for d ≥ 3.
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s

φ(s)

Figure 7.1: The function φ(s) for different values of d: red (d = 1), blue (d = 2) and

purple (d = 3)

Hence, the unique solution f with boundary conditions f(a) = 1 and f(b) = 0 is

f(r) =
φ(b)− φ(r)

φ(b)− φ(a)
.

Summarizing, we have shown:

Theorem 7.3 (Ruin problem in Rd). For a, b > 0 with a < |x0| < b,

P [Ta < Tb] =
φ(b)− φ(|x0|)
φ(b)− φ(a)

, and

P [Tb <∞] =




1 for d ≤ 2

(a/|x0|)d−2 for d > 2.

Proof. The first equation follows by 6.4.12. Moreover,

P [Ta <∞] = lim
b→∞

P [Ta < Tb] =




1 for d ≤ 2

φ(|x0|)/φ(a) for d ≥ 3.
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Corollary 7.4. For a Brownian motion in Rd the following statements hold for any

initial value x0 ∈ Rd:

(1). If d ≤ 2 then every non-empty ball D ⊆ Rd is recurrent, i.e., the last visit time of

D is almost surely infinite:

Ld = sup{t ≥ 0 : Bt ∈ D} = ∞ P -a.s.

(2). If d ≥ 3 then every ball D is transient, i.e.,

Ld < ∞ P -a.s.

(3). If d ≥ 2 then every point x ∈ Rd is polar, i.e.,

P [ ∃ t > 0 : Bt = x] = 0.

We point out that the last statement holds even if the starting point x0 coincides with x.

The first statement implies that a typical Brownian sample path is dense in R2, whereas

by the second statement, lim
t→∞

|Bt| = ∞ almost surely for d ≥ 3.

Proof.

(1),(2) The first two statements follow from Theorem 7.3 and the Markov property.
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(3). For the third statement we assume w.l.o.g. x = 0. If x0 6= 0 then

P [T0 <∞] = lim
b→∞

P [T0 < Tb]

for any a > 0. By Theorem 7.3,

P [T0 < Tb] ≤ inf
a>0

P [Ta < Tb] = 0 for d ≥ 2,

whence T0 = ∞ almost surely. If x0 = 0 then by the Markov property,

P [ ∃ t > ε : Bt = 0] = E[PBε
[T0 <∞]] = 0

for any ε > 0. thus we again obtain

P [T0 <∞] = lim
εց0

P [ ∃ t > ε : Bt = 0] = 0.

Remark (Polarity of linear subspaces). For d ≥ 2, any (d− 2) dimensional subspace

V ⊆ Rd is polar for Brownian motion. For the proof note that the orthogonal projection

of a one-dimensional Brownian motion onto the orthogonal complement V ⊥ is a 2-

dimensional Brownian motion.

7.2 Boundary value problems, exit and occupation times

The connection of Brownian motion to boundary value problems for partial differential

equations involving the Laplace operator can be extended substantially:

The stationary Feynman-Kac-Poisson formula

Suppose that f : ∂D → R, V : D → R and g : D → [0,∞) are continuous functions

defined on an open bounded domain D ⊂ Rd, or on its boundary respectively. We

assume that under Px, (Bt) is Brownian motion with Px[B0 = x] = 1, and that

Ex


exp

T̂

0

V −(Bs) ds


 < ∞ for any x ∈ D, (7.2.1)
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where T = TDC is the first exit time from D.

Note that (7.2.1) always holds if V is non-negative.

Theorem 7.5. If u ∈ C2(D) ∩ C(D) is a solution of the boundary problem

1

2
∆u(x) = V (x)u(x)− g(x) for x ∈ D

(7.2.2)

u(x) = f(x) for x ∈ ∂D, (7.2.3)

and (7.2.1) holds then

u(x) = Ex


exp


−

T̂

0

V (Bs) ds


 · f(BT )


+ (7.2.4)

Ex




T̂

0

exp


−

t
ˆ

0

V (Bs) ds


 · g(Bt) dt




for any x ∈ D.

Remark. Note that we assume the existence of a smooth solution of the boundary value

problem (7.2.2). Proving that the function u defined by (7.2.4) is a solution of the b.v.p.

without assuming existence is much more demanding.

Proof. By continuity of V and (Bs), the sample paths of the process

At =

t
ˆ

0

V (Bs) ds

are C1 and hence of finite variation for t < T . Let

Xt = e−Atu(Bt), t < T.
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Applying Itô’s formula with F (a, b) = e−au(b) yields the decomposition

dXt = e−At∇u(Bt) · dBt − e−Atu(Bt) dAt +
1

2
e−At∆u(Bt) dt

= e−At∇u(Bt) · dBt + e−At

(
1

2
∆u− V · u

)
(Bt) dt

of Xt into a local martingale up to time T and an absolutely continuous part. Since u

is a solution of (7.2.2), we have
1

2
∆u − V u = −g on D. By applying the optional

stopping theorem with a localizing sequence Tn ր T of stopping times, we obtain the

representation

u(x) = Ex[X0] = Ex[XTn
] + Ex




Tn
ˆ

0

e−Atg(Bt) dt




= Ex[e
−ATnu(BTn

)] + Ex




Tn
ˆ

0

e−Atg(Bt) dt




for x ∈ D. The assertion (7.2.4) now follows provided we can interchange the limit

as n → ∞ and the expectation values. For the second expectation on the right hand

side this is possible by the monotone convergence theorem, because g ≥ 0. For the first

expectation value, we can apply the dominated convergence theorem, because

∣∣e−ATnu(BTn
)
∣∣ ≤ exp




T̂

0

V −(Bs) ds


 · sup

y∈D
|u(y)| ∀n ∈ N,

and the majorant is integrable w.r.t. each Px by Assumption 7.2.1.

Remark (Extension to diffusion processes). A corresponding result holds under ap-

propriate assumptions if the Brownian motion (Bt) is replaced by a diffusion process

(Xt) solving a stochastic differential equation of the type dXt = σ(Xt) dBt + b(Xt) dt,

and the operator 1
2
∆ in (7.2.2) is replaced by the generator

L =
1

2

d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+ b(x) · ∇, a(x) = σ(x)σ(x)⊤,

of the diffusion process, cf. ??. The theorem hence establishes a general connection

between Itô diffusions and boundary value problems for linear second order elliptic

partial differential equations.
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By Theorem 7.5 we can compute many interesting expectation values for Brownian mo-

tion by solving appropriate p.d.e. We now consider various corresponding applications.

Let us first recall the Dirichlet problem where V ≡ 0 and g ≡ 0. In this case,

u(x) = Ex[f(Bt)]. We have already pointed out in the last section that this can be

used to compute exit distributions and to study recurrence, transience and polarity of

linear subspaces for Brownian motion in Rd. A second interesting case of Theorem 7.5

is the stochastic representation for solutions of the Poisson equation:

Poisson problem and mean exit time

If V and f vanish in Theorem 7.3, the boundary value problem (7.2.2) reduces to the

boundary value problem

1

2
∆u = −g on D, u = 0 on D,

for the Poisson equation. The solution has the stochastic representation

u(x) = Ex




T̂

0

g(Bt) dt


 , x ∈ D, (7.2.5)

which can be interpreted as an average cost accumulated by the Brownian path before

exit from the domain D. In particular, choosing g ≡ 1, we can compute the mean exit

time

u(x) = Ex[T ]

from D for Brownian motion starting at x by solving the corresponding Poisson prob-

lem.

Example. If D = {x ∈ Rd : |x| < r} is a ball around 0 of radius r > 0, then the

solution u(x) of the Poisson problem

1

2
∆u(x) =




−1 for |x| < r

0 for |x| = r

can be computed explicitly. We obtain

Ex[T ] = u(x) =
r2 − |x|2

d
for any x ∈ D.
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Occupation time density and Green function

If (Bt) is a Brownian motion in Rd then the corresponding Brownian motion with ab-

sorption at the first exit time from the domain D is the Markov process (Xt) with state

space D ∪ {∆} defined by

Xt =




Bt for t < T

∆ for t ≥ T
,

where ∆ is an extra state added to the state space. By setting g(∆) = 0, the stochastic

representation (7.2.5) for a solution of the Poisson problem can be written in the form

u(x) = Ex




∞̂

0

g(Xt) dt


 =

∞̂

0

(pDt g)(x) dt, (7.2.6)

where

pDt (x,A) = Px[Xt ∈ A], A ⊆ Rdmeasurable,

is the transition function for the absorbed process (Xt). Note that for A ⊂ Rd,

pDt (x,A) = Px[Bt ∈ A and t < T ] ≤ pt(x,A) (7.2.7)

where pt is the transition function of Brownian motion on Rd. For t > 0 and x ∈ Rd,

the transition function pt(x, •) of Brownian motion is absolutely continuous. There-

fore, by (7.2.7), the sub-probability measure pDt (x, •) restricted to Rd is also absolutely

continuous with non-negative density

pDt (x, y) ≤ pt(x, y) = (2πt)−d/2 exp

(
−|x− y|2

2t

)
.

The function pDt is called the heat kernel on the domain D w.r.t. absorption on the

boundary. Note that

GD(x, y) =

∞̂

0

pDt (x, y) dt

is an occupation time density, i.e., it measures the average time time a Brownian mo-

tion started in x spends in a small neighbourhood of y before it exits from the Domain
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D. By (7.2.6), a solution u of the Poisson problem 1
2
∆u = −g on D, u = 0 on ∂D, can

be represented as

u(x) =

ˆ

D

GD(x, y)g(y) dy for x ∈ D.

This shows that the occupation time density GD(x, y) is the Green function (i.e.,

the fundamental solution of the Poisson equation) for the operator 1
2

with Dirichlet

boundary conditions on the domain D.

Note that although for domains with irregular boundary, the Green’s function might not

exist in the classical sense, the function GD(x, y) is always well-defined!

Stationary Feynman-Kac formula and exit time distributions

Next, we consider the case where g vanishes and f ≡ 1 in Theorem 7.5. Then the

boundary value problem (7.2.4) takes the form

1

2
∆u = V u on D, u = 1 on ∂D. (7.2.8)

The p.d.e. 1
2
∆u = V u is a stationary Schrödinger equation. We will comment on the

relation between the Feynman-Kac formula and Feynman’s path integral formulation of

quantum mechanics below. For the moment, we only note that for the solution of (??),

the stochastic representation

u(x) = Ex


exp


−

T̂

0

V (Bt) dt






holds for x ∈ D.

As an application, we can, at least in principle, compute the full distribution of the exit

time T . In fact, choosing V ≡ α for some constant α > 0, the corresponding solution

uα of (7.2.8) yields the Laplace transform

uα(x) = Ex[e
−αT ] =

∞̂

0

e−αtµx(dt) (7.2.9)

of µx = Px ◦ T−1.
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Example (Exit times in R1). Suppose d = 1 and D = (−1, 1). Then (7.2.8) with

V = α reads

1

2
u′′α(x) = αuα(x) for x ∈ (−1, 1), uα(1) = uα(−1) = 1.

This boundary value problem has the unique solution

uα(x) =
cosh(x ·

√
2α)

cosh(
√
2α)

for x ∈ [−1, 1].

By inverting the Laplace transform (7.2.9), one can now compute the distribution µx

of the first exit time T from (−1, 1). It turns out that µx is absolutely continuous with

density

fT (t) =
1√
2πt3

∞∑

n=−∞

(
(4n+ 1 + x)e−

(4n+1+x)2

2t + (4n+ 1− x)e−
(4n+1−x)2

2t

)
, t ≥ 0.

x

t

fT (t)

Figure 7.2: The density of the first exit time T depending on the starting point x ∈
[−1, 1] and the time t ∈ (0, 2].
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Boundary value problems in Rd and total occupation time

Suppose we would like to compute the distribution of the total occupation time

∞̂

0

IA(Bs) ds

of a bounded domain A ⊂ Rd for Brownian motion. This only makes sense for d ≥ 3,

since for d ≤ 2, the total occupation time of any non-empty open set is almost surely

infinite by recurrence of Brownian motion in R1 and R2. The total occupation time is of

the form
∞́

0

V (Bs) ds with V = IA. Therefore, we should in principle be able to apply

Theorem 7.3, but we have to replace the exit time T by +∞ and hence the underlying

bounded domain D by Rd.

Corollary 7.6. Suppose d ≥ 3 and let V : Rd → [0,∞) be continuous. If u ∈ C2(Rd)

is a solution of the boundary value problem

1

2
∆u = V u on Rd, lim

|x|→∞
u(x) = 1 (7.2.10)

then

u(x) = Ex


exp


−

∞̂

0

V (Bt) dt




 for any x ∈ Rd.

Proof. Applying the stationary Feynman-Kac formula on an open bounded subset D ⊂
Rd, we obtain the representation

u(x) = Ex


u(BT

DC
) exp


−

T
DC
ˆ

0

V (Bt) dt





 (7.2.11)

by Theorem 7.3. Now letDn = {x ∈ Rd : |x| < n}. Then TDC
n
ր ∞ as n→ ∞. Since

d ≥ 3, Brownian motion is transient, i.e., lim
t→∞

|Bt| = ∞, and therefore by (7.2.10)

lim
n→∞

u(BT
DC

n

) = 1 Px-almost surely for any x.
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Since u is bounded and V is non-negative, we can apply dominated convergence in

(7.2.11) to conclude

u(x) = Ex


exp


−

∞̂

0

V (Bt) dt




 .

Let us now return to the computation of occupation time distributions. consider a

bounded subset A ⊂ Rd, d ≥ 3, and let

vα(x) = Ex


exp


−α

∞̂

0

IA(Bs) ds




 , α > 0,

denote the Laplace transform of the total occupation time of A. Although V = αIA is

not a continuous function, a representation of vα as a solution of a boundary problem

holds:

Exercise. Prove that if A ⊂ Rd is a bounded domain with smooth boundary ∂A and

uα ∈ C1(Rd) ∩ C2(Rd \ ∂A) satisfies

1

2
∆uα = αIAuα on Rd \ ∂A, lim

|x|→∞
uα(x) = 1, (7.2.12)

then vα = uα.

Remark. The condition uα ∈ C1(Rd) guarantees that uα is a weak solution of the p.d.e.

(7.2.10) on all of Rd including the boundary ∂U .

Example (Total occupation time of the unit ball in R3). Suppose A = {x ∈ R3 :

|x| < 1}. In this case the boundary value problem (7.2.10) is rotationally symmetric.

The ansatz uα(x) = fα(|x|), yields a Bessel equation for fα on each of the intervals

(0, 1) and (1,∞):

1

2
f ′′
α(r) + r−1f ′

α(r) = αfα(r) for r < 1,
1

2
f ′′
α(r) + r−1fα(r) = 0 for r > 1.
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Taking into account the boundary condition and the condition uα ∈ C1(Rd), one obtains

the rotationally symmetric solution

uα(x) =





1 +

(
tanh(

√
2α)√

2α
− 1

)
· r−1 for r ∈ [1,∞),

sinh(
√
2αr)√

2α cosh
√
2α

· r−1 for r ∈ (0, 1)

1

cosh(
√
2α)

for r = 0

.

of (7.2.10), and hence an explicit formula for vα. In particular, for x = 0 we obtain the

simple formula

E0


exp


−α

∞̂

0

IA(Bt) dt




 = uα(0) =

1

cosh(
√
2α)

.

The right hand side has already appeared in the example above as the Laplace transform

of the exit time distribution of a one-dimensional Brownian motion starting at 0 from the

interval (−1, 1). Since the distribution is uniquely determined by its Laplace transform,

we have proven the remarkable fact that the total occupation time of the unit ball for a

standard Brownian motion in R3 has the same distribution as the first exit time from the

unit ball for a standard one-dimensional Brownian motion:
∞̂

0

I{|BR3
t |<1} dt ∼ inf{t > 0 : |BR3

t | > 1}.

This is a particular case of a theorem of Ciesielski and Taylor who proved a correspond-

ing relation between Brownian motion in Rd+2 and Rd for arbitrary d.

7.3 Heat Equation and Time-Dependent Feynman-Kac

Formula

Itô’s formula also yields a connection between Brownian motion (or, more generally, so-

lutions of stochastic differential equations) and parabolic partial differential equations.

The parabolic p.d.e. are Kolmogorov forward or backward equations for the correspond-

ing Markov processes. In particular, the time-dependent Feynman-Kac formula shows
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that the backward equation for Brownian motion with absorption is a heat equation with

dissipation.

Brownian Motion with Absorption

Suppose we would like to describe the evolution of a Brownian motion that is absorbed

during the evolution of a Brownian motion that is absorbed during an infinitesimal time

interval [t, t + dt] with probability V (t, x)dt where x is the current position of the pro-

cess. We assume that the absorption rate V (t, x) is given by a measurable locally-

bounded function

V : [0,∞)× Rd → [0,∞).

Then the accumulated absorption rate up to time t is given by the increasing process

At =

t
ˆ

0

V (s, Bs) ds, t ≥ 0.

We can think of the processAt as an internal clock for the Brownian motion determining

the absorption time. More precisely, we define:

Definition. Suppose that (Bt)t≥0 is a d-dimensional Brownian motion and T is a with

parameter 1 exponentially distributed random variable independent of (Bt). Let ∆ be

a separate state added to the state space Rd. Then the process (Xt) defined by

Xt :=




Bt for At < T,

∆ for At ≥ T,

is called a Brownian motion with absorption rate V (t, x), and the random variable

ζ := inf{t ≥ 0 : At ≥ T}

is called the absorption time.
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A justification for the construction is given by the following informal computation: For

an infinitesimal time interval [t, t+ dt] and almost every ω,

P [ζ ≤ t+ dt | (Bs)s≥0, ζ > t](ω) = P [At+dt(ω) ≥ T | At(ω) < T ]

= P [At+dt(ω)−At(ω) ≥ T ]

= P [V (t, Bt(ω))dt ≥ T ]

= V (t, Bt(ω))dt

by the memoryless property of the exponential distribution, i.e., V (t, x) is indeed the

infinitesimal absorption rate.

Rigorously, it is not difficult to verify that (Xt) is a Markov process with state space

Rd ∪ {∆} where ∆ is an absorbing state. The Markov process is time-homogeneous if

V (t, x) is independent of t.

For a measurable subset D ⊆ Rd and t ≥ 0 the distribution µt of Xt is given by

µt[D] = P [Xt ∈ D] = P [Bt ∈ D and At < T ]

= E[P [At < T | (Bt)] ; Bt ∈ D] (7.3.1)

= E


exp


−

t
ˆ

0

V (s, Bs) ds


 ; Bt ∈ D


 .

Itô’s formula can be used to prove a Kolmogorov type forward equation:

Theorem 7.7 (Forward equation for Brownian motion with absorption). The sub-

probability measures µt on Rd solve the heat equation

∂µt

∂t
=

1

2
∆µt − V (t, •)µt (7.3.2)

in the following distributional sense:

ˆ

f(x)µt(dx)−
ˆ

f(x)µ0(dx) =

t
ˆ

0

ˆ

(
1

2
∆f(x)− V (s, x)f(x))µs(dx) ds

for any function f ∈ C2
0(R

d).
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Here C2
0(R

d) denotes the space ofC2-functions with compact support. Under additional

regularity assumptions it can be shown that µt has a smooth density that solves (7.3.1)

in the classical sense. The equation (7.3.1) describes heat flow with cooling when the

heat at x at time t dissipates with rate V (t, x).

Proof. By (7.3.1),
ˆ

f dµt = E[exp(−At) ; f(Bt)] (7.3.3)

for any bounded measurable function f : Rd → R. For f ∈ C2
0(R

d), an application of

Itô’s formula yields

e−Atf(Bt) = f(B0) +Mt +

t
ˆ

0

e−Asf(Bs)V (s, Bs) ds+
1

2

t
ˆ

0

e−As∆f(Bs) ds,

for t ≥ 0, where (Mt) is a local martingale. Taking expectation values for a localizing

sequence of stopping times and applying the dominated convergence theorem subse-

quently, we obtain

E[e−Atf(Bt)] = E[f(B0)] +

t
ˆ

0

E[e−As(
1

2
∆f − V (s, •)f)(Bs)] ds.

Here we have used that 1
2
∆f(x)−V (s, x)f(x) is uniformly bounded for (s, x) ∈ [0, t]×

Rd, because f has compact support and V is locally bounded. The assertion now follows

by (7.3.3).

Exercise (Heat kernel and Green’s function). The transition kernel for Brownian mo-

tion with time-homogeneous absorption rate V (x) restricted to Rd is given by

pVt (x,D) = Ex


exp


−

t
ˆ

0

V (Bs) ds


 ; Bt ∈ D


 .

(1). Prove that for any t > 0 and x ∈ Rd, the sub-probability measure pVt (x, •) is

absolutely continuous on Rd with density satisfying

0 ≤ pVt (x, y) ≤ (2πt)−d/2 exp(−|x− y|2/(2t)).
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(2). Identify the occupation time density

GV (x, y) =

∞̂

0

pVt (x, y) dt

as a fundamental solution of an appropriate boundary value problem. Adequate

regularity may be assumed.

Time-dependent Feynman-Kac formula

In Theorem 7.7 we have applied Itô’s formula to prove a Kolmogorov type forward

equation for Brownian motion with absorption. To obtain a corresponding backward

equation, we have to reverse time:

Theorem 7.8 (Feynman-Kac). Fix t > 0, and let f : Rd → R and V, g : [0, t]× Rd →
R be continuous functions. Suppose that f is bounded, g is non-negative, and V satisfies

Ex


exp

t
ˆ

0

V (t− s, Bs)
− ds


 < ∞ for all x ∈ Rd. (7.3.4)

If u ∈ C1,2((0, t]× Rd) ∩ C([0, t]× Rd) is a bounded solution of the heat equation

∂u

∂s
(s, x) =

1

2
∆u(s, x)− V (s, x)u(s, x) + g(s, x) for s ∈ (0, t], x ∈ Rd,

(7.3.5)

u(0, x) = f(x),

then u has the stochastic representation

u(t, x) = Ex


f(Bt) exp


−

t
ˆ

0

V (t− s, Bs) ds




+

Ex




t
ˆ

0

g(t− r, Br) exp


−

r
ˆ

0

V (t− s, Bs) ds


 dr


 .
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Remark. The equation (7.3.5) describes heat flow with sinks and dissipation.

Proof. We first reverse time on the interval [0, t]. The function

û(s, x) = u(t− s, x)

solves the p.d.e.

∂û

∂s
(s, x) = −∂u

∂t
(t− s, x) = −

(
1

2
∆u− V u+ g

)
(t− s, x)

= −
(
1

2
∆û− V̂ û+ ĝ

)
(s, x)

on [0, t] with terminal condition û(t, x) = f(x). Now let Xr = exp(−Ar)û(r, Br) for

r ∈ [0, t], where

Ar :=

r
ˆ

0

V̂ (s, Bs) ds =

r
ˆ

0

V (t− s, Bs) ds.

By Itô’s formula, we obtain for τ ∈ [0, t],

Xτ −X0 = Mτ −
τ
ˆ

0

e−Ar û(r, Br) dAr +

τ
ˆ

0

e−Ar

(
∂û

∂s
+

1

2
∆û

)
(r, Br) dr

= Mτ +

τ
ˆ

0

e−Ar

(
∂û

∂s
+

1

2
∆û− V̂ û

)
(r, Br) dr

= Mτ −
τ
ˆ

0

e−Ar ĝ(r, Br) dr

with a local martingale (Mτ )τ∈[0,t] vanishing at 0. Choosing a corresponding localizing

sequence of stopping times Tn with Tn ր t, we obtain by the optional stopping theorem

and by dominated convergence,

u(t, x) = û(0, x) = Ex[X0]

= Ex[Xt] + Ex




t
ˆ

0

e−Ar ĝ(r, Br) dr




= Ex[e
−Atu(0, Bt)] + Ex




t
ˆ

0

e−Arg(t− r, Br) dr


 .
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Remark (Extension to diffusion processes). Again a similar result holds under a ap-

propriate regularity assumptions for Brownian motion replaced by a solution of a s.d.e.

dXt = σ(Xt)dBt + b(Xt)dt and 1
2
∆ replaced by the corresponding generator, cf. ??.

Occupation times and arc-sine law

The Feynman-Kac formula can be used to study the distribution of occupation times

of Brownian motion. We consider an example where the distribution can be computed

explicitly: The proportion of time during the interval [0, t] spent by a one-dimensional

standard Brownian motion (Bt) in the interval (0,∞). Let

At = λ({s ∈ [0, t] : Bs > 0}) =

t
ˆ

0

I(0,∞)(Bs) ds.

Theorem 7.9 (Arc-sine law of P.Lévy). For any t > 0 and θ ∈ [0, 1],

P0[At/t ≤ θ] =
2

π
arcsin

√
θ =

1

π

θ
ˆ

0

ds√
s(1− s)

.

0.5 1.0

2
π

Figure 7.3: Density of At/t.
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Note that the theorem shows in particular that a law of large numbers does not hold!

Indeed, for each ε > 0,

P0



∣∣∣∣∣∣
1

t

t
ˆ

0

I(0,∞)(Bs) ds−
1

2

∣∣∣∣∣∣
> ε


 6→ 0 as t→ ∞.

Even for large times, values of At/t close to 0 or 1 are the most probable. By the func-

tional central limit theorem, the proportion of time that one player is ahead in a long

coin tossing game or a counting of election results is also close to the arcsine law. In

particular, it is more then 20 times more likely that one player is ahead for more than

98% of the time than it is that each player is ahead between 49% and 51% of the time

[Steele].

Before proving the arc-sine law, we give an informal derivation based on the time-

dependent Feynman-Kac formula.

The idea for determining the distribution of At is again to consider the Laplace trans-

forms

u(t, x) = Ex[exp(−βAt)], β > 0.

By the Feynman-Kac formula, we could expect that u solves the equation

∂u

∂t
=

1

2

∂2u

∂x2
(7.3.6)

with initial condition u(0, x) = 1. To solve the parabolic p.d.e. (7.3.6), we consider

another Laplace transform: The Laplace transform

vα(x) =

∞̂

0

e−αtu(t, x) dt = Ex




∞̂

0

e−αt−βAt dt


 , α > 0,

of a solution u(t, x) of (7.3.6) w.r.t. t. An informal computation shows that vα should

satisfy the o.d.e.

1

2
v′′α − βI(0,∞)vα =

∞̂

0

e−αt

(
1

2

∂2u

∂x2
− βI(0,∞)u

)
(t, •) dt

=

∞̂

0

e−αt∂u

∂t
(t, •) dt = e−αtu(t, •)|∞0 − α

∞̂

0

e−αtu(t, •) dt

= 1− αvα,
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i.e., vα should be a bounded solution of

αvα − 1

2
v′′α + βI0,∞vα = g (7.3.7)

where g(x) = 1 for all x. The solution of (7.3.7) can then be computed explicitly, and

yield the arc-sine law by Laplace inversion.

Remark. The method of transforming a parabolic p.d.e. by the Laplace transform into

an elliptic equation is standard and used frequently. In particular, the Laplace trans-

form of a transition semigroup (pt)t≥0 is the corresponding resolvent (gα)α≥0, gα =
´∞
0
e−αtpt dt, which is crucial for potential theory.

Instead of trying to make the informal argument above rigorous, one can directly prove

the arc-sine law by applying the stationary Feynman-Kac formula:

Exercise. Prove Lévy’s arc-sine law by proceeding in the following way:

(1). Let g ∈ Cb(R). Show that if vα is a bounded solution of (7.3.7) on R \ {0} with

vα ∈ C1(R) ∩ C2(R \ {0}) then

vα(x) = Ex




∞̂

0

g(Bt)e
−αt−βAt dt


 for any x ∈ R.

(2). Compute a corresponding solution vα for g ≡ 1, and conclude that

∞̂

0

e−αtE0[e
−βAt ] dt =

1√
α(α+ β)

.

(3). Now use the uniqueness of the Laplace inversion to show that the distribution µt

of At/t under P• is absolutely continuous with density

fAt/t(s) =
1

π
√
s · (1− s)

.
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Chapter 8

Stochastic Differential Equations:

Explicit Computations

Suppose that (Bt)t≥0 is a given Brownian motion defined on a probability space (Ω,A, P ).
We will now study solutions of stochastic differential equations (SDE) of type

dXt = b(t, Xt) dt+ σ(t, Xt) dBt (8.0.1)

where b and σ are continuous functions defined on R+ × Rd or an appropriate subset.

Recall that FB,P
t denotes the completion of the filtration FB

t = σ(Bs | 0 ≤ s ≤ t)

generated by the Brownian motion. Let T be an (FB,P
t ) stopping time. We call a

process (t, ω) 7→ Xt(ω) defined for t < T (ω) adapted w.r.t.
(
FB,P

t

)
, if the trivially

extended process X̃t = Xt · I{t<T} defined by

X̃t :=




Xt for t < T

0 for t ≥ T
,

is (FB,P
t )-adapted.
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Definition. An almost surely continuous stochastic process (t, ω) 7→ Xt(ω) defined for

t ∈ [0, T (ω)) is called a strong solution of the stochastic differential equation (8.0.1) if

it is (FB,P
t )-adapted, and the equation

Xt = X0 +

t
ˆ

0

b(s,Xs) ds+

t
ˆ

0

σ(s,Xs) dBs for t ∈ [0, T ) (8.0.2)

holds P -almost surely.

The terminology “strong” solution will be explained later when we introduce “weak”

solutions. The point is that a strong solution is adapted w.r.t. the filtration (FB,P
t ) gener-

ated by the Brownian motion. Therefore, a strong solution is essentially (up to modifi-

cation on measure zero sets) a measurable function of the given Brownian motion! The

concept of strong and weak solutions of SDE is not related to the analytic definition of

strong and weak solutions for partial differential equations.

In this section we study properties of solutions and we compute explicit solutions for

one-dimensional SDE. We start with an example:

Example (Asset price model in continuous time). A nearby model for an asset price

process (Sn)n=0,1,2,... in discrete time is to define Sn recursively by

Sn+1 − Sn = αn(S0, . . . , Sn)Sn + σn(S0, . . . , Sn)Snηn+1

with i.i.d. random variables ηi, i ∈ N, and measurable functions αn, σn : Rn → R.

Trying to set up a corresponding model in continuous time, we arrive at the stochastic

differential equation

dSt = αtSt dt+ σtSt dBt (8.0.3)

with an (Ft)-Brownian motion (Bt) and (FP
t ) adapted continuous stochastic processes

(αt)t≥0 and (σt)t≥0, where (Ft) is a given filtration on a probability space (Ω,A, P ).
The processes αt and σt describe the instantaneous mean rate of return and the volatility.

Both are allowed to be time dependent and random.
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In order to compute a solution of (8.0.3), we assume St > 0 for any t ≥ 0, and divide

the equation by St:
1

St
dSt = αt dt+ σt dBt. (8.0.4)

We will prove in Section 8.1 that if an SDE holds then the SDE multiplied by a contin-

uous adapted process also holds, cf. Theorem 8.1. Hence (8.0.4) is equivalent to (8.0.3)

if St > 0. If (8.0.4) would be a classical ordinary differential equation then we could

use the identity d logSt =
1
St
dSt to solve the equation. In Itô calculus, however, the

classical chain rule is violated. Nevertheless, it is still useful to compute d logSt by

Itô’s formula. The process (St) has quadratic variation

[S]t =




•
ˆ

0

σrSr dBr



t

=

t
ˆ

0

σ2
rS

2
r dr for any t ≥ 0,

almost surely along an appropriate sequence (πn) of partitions with mesh(πn) → 0. The

first equation holds by (8.0.3), since t 7→
t́

0

αrSr dr has finite variation, and the second

identity is proved in Theorem 8.1 below. Therefore, Itô’s formula implies:

d logSt =
1

St
dSt −

1

2S2
t

d[S]t

= αt dt+ σt dBt −
1

2
σ2
t dt

= µt dt + σt dBt,

where µt := αt − σ2
t /2, i.e.,

logSt − logS0 =

t
ˆ

0

µs ds+

t
ˆ

0

σs dBs,

or, equivalently,

St = S0 · exp




t
ˆ

0

µs ds+

t
ˆ

0

σs dBs


 . (8.0.5)

Conversely, one can verify by Itô’s formula that (St) defined by (8.0.5) is indeed a

solution of (8.0.3). Thus we have proven existence, uniqueness and an explicit repre-

sentation for a strong solution of (8.0.3). In the special case when αt ≡ α and σt ≡ σ

are constants in t and ω, the solution process

St = S0 exp
(
σBt + (α− σ2/2)t

)
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is called a geometric Brownian motion with parameters α and σ.

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Figure 1: Three one dimensional geometric Brownian motions with α2 = 1 and
σ = 0.1 (blue), σ = 1.0 (red) and σ = 2.0 (magenta).

Figure 8.1: Three one dimensional geometric Brownian motions with α2 = 1 and σ =

0.1 (blue), σ = 1.0 (red) and σ = 2.0 (magenta).

8.1 Stochastic Calculus for Itô processes

By definition, any solution of an SDE of the form (8.0.1) is the sum of an absolutely

continuous adapted process and an Itô stochastic integral w.r.t. the underlying Brownian

motion, i.e.,

Xt = At + It for t < T, (8.1.1)

where

At =

t
ˆ

0

Ks ds and It =

t
ˆ

0

Hs dBs (8.1.2)

with (Ht)t<T and (Kt)t<T almost surely continuous and (FB,P
t )-adapted. A stochas-

tic process of type (8.1.1) is called an Itô process. In order to compute and analyze
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solutions of SDE we will apply Itô’s formula to Itô processes. Since the absolutely con-

tinuous process (At) has finite variation, classical Stieltjes calculus applies to this part

of an Itô process. It remains to consider the stochastic integral part (It):

Stochastic integrals w.r.t. Itô processes

Let (πn) be a sequence of partitions of R+ with mesh(πn) → 0. Recall that for t ≥ 0,

It =

t
ˆ

0

Hs dBs = lim
n→∞

∑

s∈πn

s<t

Hs · (Bs′∧t − Bs)

w.r.t. convergence in probability on {t < T}, cf. Theorem 5.14.

Theorem 8.1 (Composition rule and quadratic variation). Suppose that T is a pre-

dictable stopping time and (Ht)t<T is almost surely continuous and adapted.

(1). For any almost surely continuous, adapted process (Gt)0≤t<T , and for any t ≥ 0,

lim
n→∞

∑

s∈πn

s<t

Gs(Is′∧t − Is) =

t
ˆ

0

GsHs dBs (8.1.3)

with convergence in probability on {t < T}. Moreover, ifH is in L2
a([0, a]) andG

is bounded on [0, a]×Ω for some a > 0, then the convergence holds in M2
c ([0, a])

and thus uniformly for t ∈ [0, a] in the L2(P ) sense.

(2). For any t ≥ 0, the quadratic variation [I]t along (πn) is given by

[I]t = lim
n→∞

∑

s∈πn

s<t

(Is′∧t − Is)
2 =

t
ˆ

0

H2
s ds (8.1.4)

w.r.t. convergence in probability on {t < T}.

XXX gleich [I, J ] berechnen, Beweis analog
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Remark (Uniform convergence). Similarly to the proof of Theorem 5.14 one can show

that there is a sequence of bounded stopping times Tk ր T such that almost surely along

a subsequence, the convergence in (8.1.3) and (8.1.4) holds uniformly on [0, Tk] for any

k ∈ N.

Proof. (1). We first fix a > 0 and assume that H is in L2
a([0, a)) and G is bounded,

left-continuous and adapted on [0,∞) × Ω. Since Is′∧t − Is =
s′∧t
´

s

Hr dBr, we

obtain
∑

s∈πn

s<t

Gs(Is′∧t − Is) =

t
ˆ

0

G⌊r⌋nHr dBr

where ⌊r⌋n = max{s ∈ πn : s ≤ r} is the next partition point below r.

As n → ∞, the right-hand side converges to
t́

0

GrHr dBr in M2
c ([0, a]) because

G⌊r⌋nHr → GrHr in L2(P ⊗ λ[0,a)) by continuity of G and dominated conver-

gence.

The assertion in the general case now follows by localization: Suppose (Sk) and

(Tk) are increasing sequences of stopping times with Tk ր T and HtI{t≤Sk} ∈
L2

a([0,∞)), and let

T̃k = Sk ∧ Tk ∧ inf{t ≥ 0 : |Gt| > k} ∧ k.

Then T̃k ր T , the processH(k)
t := HtI{t≤Tk} is in L2

a([0,∞)) the processG(k)
t :=

GtI{t≤Tk} is bounded, left-continuous and adapted, and

Is =

s
ˆ

0

H(k)
r dBr, Gs = G(k)

s for any s ∈ [0, t]

holds almost surely on {t ≤ T̃k}. Therefore as n→ ∞,

∑

s∈πn

s<t

Gs(Is′∧t − Is) =
∑

s∈πn

s<t

G(k)
s (Is′∧t − Is)

→
t

ˆ

0

G(k)
r H(k)

r dBr =

t
ˆ

0

GrHr dBr
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uniformly for t ≤ T̃k in L2(P ). The claim follows, since

P

[
{t < T} \

⋃

k

{t ≤ T̃k}
]

= 0.

(2). We first assume that H is in L2
a([0,∞)), continuous and bounded. Then for s ∈

πn,

δIs = Is′∧t − Is =

s′∧t
ˆ

s

Hr dBr = HsδBs +R(n)
s

where R(n)
s :=

s′∧t
´

s

(Hr −H⌊r⌋n) dBr. Therefore,

∑

s∈πn

s<t

(δIs)
2 =

∑

s∈πn

s<t

H2
s (δBs)

2 + 2
∑

s∈πn

s<t

R(n)
s HsδBs +

∑

s∈πn

s<t

(R(n)
s )2.

Since [B]t = t almost surely, the first term on the right-hand side converges

to
t́

0

H2
s ds with probability one. It remains to show that the remainder terms

converge to 0 in probability as n→ ∞. This is the case, since

E
[∑

(R(n)
s )2

]
=

∑
E[(R(n)

s )2] =
∑ s′∧t

ˆ

s

E[(Hr −H⌊r⌋n)
2] dr

=

t
ˆ

0

E[(Hr −H⌊r⌋n)
2] dr −→ 0

by the Itô isometry and continuity and boundedness ofH , whence
∑

(R
(n)
s )2 → 0

in L1 and in probability, and
∑
R

(n)
s HsδBs → 0 in the same sense by the Schwarz

inequality.

ForH defined up to a stopping time T , the assertion now follows by a localization

procedure similar to the one applied above.

The theorem and the corresponding composition rule for Stieltjes integrals suggest that

we may define stochastic integrals w.r.t. an Itô process

Xt = X0 +

t
ˆ

0

Hs dBs +

t
ˆ

0

Ks ds, t < T,
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in the following way:

Definition. Suppose that (Bt) is a Brownian motion on (Ω,A, P ) w.r.t. a filtration (Ft),

X0 is an (FP
0 )-measurable random variable, T is a predictable (FP

t )-stopping time,

and (Gt), (Ht) and (Kt) are almost surely continuous, (FP
t ) adapted processes defined

for t < T . Then the stochastic integral of (Gt) w.r.t. (Xt) is the Itô process defined by

t
ˆ

0

Gs dXs =

t
ˆ

0

GsHs dBs +

t
ˆ

0

GsKs ds, t < T.

By Theorem 8.1, this definition is consistent with a definition by Riemann sum approx-

imations. Moreover, the definition shows that the class of Itô processes w.r.t. a given

Brownian motion is closed under taking stochastic integrals! In particular, strong solu-

tions of SDE w.r.t. Itô processes are again Itô processes.

Calculus for Itô processes

We summarize calculus rules for Itô processes that are immediate consequences of the

definition above and Theorem 8.1: Suppose that (Xt) and (Yt) are Itô processes, and

(Gt), (G̃t) and (Ht) are adapted continuous process that are all defined up to a stopping

time T . Then the following calculus rules hold for Itô stochastic differentials:

Linearity:

d(X + cY ) = dX + c dY for any c ∈ R,

(G + cH) dX = G dX + cH dX for any c ∈ R.

Composition rule:

dY = G dX ⇒ G̃ dY = G̃G dX,

Quadratic variation:

dY = G dX ⇒ d[Y ] = G2 d[X ],

Stochastic Analysis Andreas Eberle



8.1. STOCHASTIC CALCULUS FOR ITÔ PROCESSES 253

Itô rule: For any function F ∈ C1,2(R+ × R),

dF (t, X) =
∂F

∂x
(t, X) dX +

∂F

∂t
(t, X) dt+

1

2

∂2F

∂x2
(t, X) d[X ]

All equations are to be understood in the sense that the corresponding stochastic inte-

grals over any interval [0, t], t < T , coincide almost surely.

The proofs are straightforward. For example, if

Yt = Y0 +

t
ˆ

0

Gs dXs

and

Xt = X0 +

t
ˆ

0

Ks ds+

t
ˆ

0

Hs dBs

then, by the definition above, for t < T ,

Yt = Y0 +

t
ˆ

0

GsKs ds+

t
ˆ

0

GsHs dBs,

and hence

t
ˆ

0

G̃s dYs =

t
ˆ

0

G̃sGsKs ds+

t
ˆ

0

G̃sGsHs dBs =

t
ˆ

0

G̃sGs dXs

and

[Y ]t =




•
ˆ

0

GsHs dBs



t

=

t
ˆ

0

G2
sH

2
s ds =

t
ˆ

0

G2
s d[X ]s.

Moreover, Theorem 8.1 guarantees that the stochastic integrals in Itô’s formula (which

are limits of Riemann-Itô sums) coincide with the stochastic integrals w.r.t. Itô processes

defined above.

Example (Option Pricing in continuous time I). We again consider the continuous

time asset price model introduced in the beginning of Chapter 8. Suppose an agent is

holding φt units of a single asset with price process (St) at time t, and he invests the

remainder Vt − φtSt of his wealth Vt in the money market with interest rate Rt. We
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assume that (φt) and (Rt) are continuous adapted processes. Then the change of wealth

in a small time unit should be described by the Itô equation

dVt = φt dSt +Rt(Vt − φtSt) dt.

Similarly to the discrete time case, we consider the discounted wealth process

Ṽt := exp


−

t
ˆ

0

Rs ds


Vt.

Since t 7→
t́

0

Rs ds has finite variation, the Itô rule and the composition rule for stochas-

tic integrals imply:

dṼt = exp


−

t
ˆ

0

Rs ds


 dVt − exp


−

t
ˆ

0

Rs ds


RtVt dt

= exp


−

t
ˆ

0

Rs ds


φt dSt − exp


−

t
ˆ

0

Rs ds


RtφtSt dt

= φt ·


exp


−

t
ˆ

0

Rs ds


 dSt − exp


−

t
ˆ

0

Rs ds


RtSt dt




= φt dS̃t,

where S̃t is the discounted asset price process. Therefore,

Ṽt − Ṽ0 =

t
ˆ

0

φs dS̃s ∀t ≥ 0 P -almost surely.

As a consequence, we observe that if (S̃t) is a (local) martingale under a probability

measure P∗ that is equivalent to P then the discounted wealth process (Ṽt) is also a

local martingale under P∗. A corresponding probability measure P∗ is called an equiv-

alent martingale measure or risk neutral measure, and can be identified by Girsanov’s

theorem, cf. Section 9.3 below. Once we have found P∗, option prices can be computed

similarly as in discrete time under the additional assumption that the true measure P for

the asset price process is equivalent to P∗, see Section 9.4.
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The Itô-Doeblin formula in R1

We will now apply Itô’s formula to solutions of stochastic differential equations. Let

b, σ ∈ C(R+ × I) where I ⊆ R is an open interval. Suppose that (Bt) is an (Ft)-

Brownian motion on (Ω,A, P ), and (Xt)0≤t<T is an (FP
t )-adapted process with values

in I and defined up to an (FP
t ) stopping time T such that the SDE

Xt −X0 =

t
ˆ

0

b(s,Xs) ds+

t
ˆ

0

σ(s,Xs) dBs for any t < T (8.1.5)

holds almost surely.

Corollary 8.2 (Doeblin 1941, Itô 1944). Let F ∈ C1,2(R+ × I). Then almost surely,

F (t, Xt)− F (0, X0) =

t
ˆ

0

(σF ′)(s,Xs) dBs (8.1.6)

+

t
ˆ

0

(
∂F

∂t
+

1

2
σ2F ′′ + bF ′

)
(s,Xs) ds for any t < T ,

where F ′ = ∂F/∂x denotes the partial derivative w.r.t. x.

Proof. Let (πn) be a sequence of partitions with mesh(πn) → 0. Since the process t 7→
X0 +

t́

0

b(s,Xs) ds has sample paths of locally finite variation, the quadratic variation

of (Xt) is given by

[X ]t =




•
ˆ

0

σ(s,Xs) dBs



t

=

t
ˆ

0

σ(s,Xs)
2 ds ∀t < T
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w.r.t. almost sure convergence along a subsequence of (πn). Hence Itô’s formula can be

applied to almost every sample path of (Xt), and we obtain

F (t, Xt)− F (0, X0) =

t
ˆ

0

F ′(s,Xs) dXs +

t
ˆ

0

∂F

∂t
(s,Xs) ds+

1

2

t
ˆ

0

F ′′(s,Xs) d[X ]s

=

t
ˆ

0

(σF ′)(s,Xs) dBs +

t
ˆ

0

(bF ′)(s,Xs) ds+

t
ˆ

0

∂F

∂t
(s,Xs) ds+

1

2

t
ˆ

0

(σ2F ′′)(s,Xs) ds

for all t < T , P -almost surely. Here we have used (8.1.5) and the fact that the Itô

integral w.r.t. X is an almost sure limit of Riemann-Itô sums after passing once more to

an appropriate subsequence of (πn).

Exercise (Black Scholes partial differential equation). A stock price is modeled by a

geometric Brownian Motion (St) with parameters α, σ > 0. We assume that the interest

rate is equal to a real constant r for all times. Let c(t, x) be the value of an option at

time t if the stock price at that time is St = x. Suppose that c(t, St) is replicated by a

hedging portfolio, i.e., there is a trading strategy holding φt shares of stock at time t and

putting the remaining portfolio value Vt − φtSt in the money market account with fixed

interest rate r so that the total portfolio value Vt at each time t agrees with c(t, St).

“Derive” the Black-Scholes partial differential equation

∂c

∂t
(t, x) + rx

∂c

∂x
(t, x) +

1

2
σ2x2

∂2c

∂x2
(t, x) = rc(t, x) (8.1.7)

and the delta-hedging rule

φt =
∂c

∂x
(t, St) (=: Delta ). (8.1.8)

Hint: Consider the discounted portfolio value Ṽt = e−rtVt and, correspondingly, the

discounted option value e−rtc(t, St). Compute the Ito differentials, and conclude that

both processes coincide if c is a solution to (8.1.7) and φt is given by (8.1.8).
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Martingale problem for solutions of SDE

The Itô-Doeblin formula shows that if (Xt) is a solution of (8.1.5) then

MF
t = F (t, Xt)− F (0, X0)−

t
ˆ

0

(L F )(s,Xs) ds

is a local martingale up to T for any F ∈ C1,2(R+ × I) and

(L F )(t, x) =
1

2
σ(t, x)2F ′′(t, x) + b(t, x)F ′(t, x).

In particular, in the time-homogeneous case and for T = ∞, any solution of (8.1.5)

solves the martingale problem for the operator L F = 1
2
σ2F ′′+bF ′ with domainC2

0(I).

Similarly as for Brownian motion, the martingales identified by the Itô-Doeblin formula

can be used to compute various expectation values for the Itô diffusion (Xt). In the next

section we will look at first examples.

Remark (Uniqueness and Markov property of strong solutions). If the coefficients

are, for example, Lipschitz continuous, then the strong solution of the SDE (8.1.5) is

unique, and it has the strong Markov property, i.e., it is a diffusion process in the

classical sense (a strong Markov process with continuous sample paths). By the Itô-

Doeblin formula, the generator of this Markov process is an extension of the operator

(L , C2
0(I)).

Although in general, uniqueness and the Markov property may not hold for solutions of

the SDE (8.1.5), we call any solution of this equation an Itô diffusion.

8.2 Stochastic growth

In this section we consider time-homogeneous Itô diffusions taking values in the inter-

val I = (0,∞). They provide natural models for stochastic growth processes, e.g. in

mathematical biology, financial mathematics and many other application fields. Ana-

logue results also hold if I is replaced by an arbitrary non-empty open interval.

Suppose that (Xt)0≤t<T is a strong solution of the SDE

dXt = b(Xt) dt + σ(Xt) dBt for t ∈ [0, T ),

X0 = x0,
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with a given Brownian motion (Bt), x0 ∈ (0,∞), and continuous time-homogeneous

coefficients b, σ : (0,∞) → R. We assume that the solution is defined up to the explo-

sion time

T = sup
ε,r>0

Tε,r, Tε,r = inf{t ≥ 0 |Xt 6∈ (ε, r)}.

The corresponding generator is

L F = bF ′ +
1

2
σ2F ′′.

Before studying some concrete models, we show in the general case how harmonic func-

tions can be used to compute exit distributions (e.g. ruin probabilities) and to analyze

the asymptotic behaviour of Xt as tր T .

Scale functions and exit distributions

To determine the exit distribution from a finite subinterval (ε, r) ⊂ (0,∞) we compute

the harmonic functions of L . For h ∈ C2(0,∞) with h′ > 0 we obtain:

L h = 0 ⇐⇒ h′′ = −2b

σ2
h′ ⇐⇒ (log h′)′ = −2b

σ2
.

Therefore, the two-dimensional vector space of harmonic functions is spanned by the

constant function 1 and by the function

s(x) =

x
ˆ

x0

exp


−

z
ˆ

x0

2b(y)

σ(y)2
dy


 dz.

s(x) is called a scale function of the process (Xt). It is strictly increasing and harmonic

on (0,∞). Hence we can think of s : (0,∞) → (s(0), s(∞)) as a coordinate transfor-

mation, and the transformed process s(Xt) is a local martingale up to the explosion time

T . Applying the martingale convergence theorem and the optional stopping theorem to

s(Xt) one obtains:

Theorem 8.3. For any ε, r ∈ (0,∞) with ε < x0 < r we have:
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(1). The exit time Tε,r = inf{t ∈ [0, T ) : Xt 6∈ (ε, r)} is almost surely less than T .

(2). P [Tε < Tr] = P [XTε,r
= ε] =

s(r)− s(x)

s(r)− s(ε)
.

The proof of Theorem 8.3 is left as an exercise.

Remark. (1). Note that any affine transformation s̃(x) = cs(x) + d with constants

c > 0 and d ∈ R is also harmonic and strictly increasing, and hence a scale

function. The ratio (s(r)− s(x))/(s(r)− s(ε)) is invariant under non-degenerate

affine transformations of s.

(2). The scale function and the ruin probabilities depend only on the ratio b(x)/σ(x)2.

Recurrence and asymptotics

We now apply the formula for the exit distributions in order to study the asymptotics of

one-dimensional non-degenerate Itô diffusions as tր T . For ε ∈ (0, x0) we obtain

P [Tε < T ] = P [Tε < Tr for some r ∈ (x0,∞)]

= lim
r→∞

P [Tε < Tr] = lim
r→∞

s(r)− s(x0)

s(r)− s(ε)
.

In particular, we have

P [Xt = ε for some t ∈ [0, T )] = P [Tε < T ] = 1

if and only if s(∞) = lim
rր∞

s(r) = ∞.

Similarly, one obtains for r ∈ (x0,∞):

P [Xt = r for some t ∈ [0, T )] = P [Tr < T ] = 1

if and only if s(0) = lim
εց0

s(ε) = −∞.

Moreover,

P [Xt → ∞ as tր T ] = P

[⋃

ε>0

⋂

r<∞
{Tr < Tε}

]
= lim

εց0
lim
rր∞

s(x0)− s(ε)

s(r)− s(ε)
,
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and

P [Xt → 0 as tր T ] = P

[⋃

r<∞

⋂

ε>0

{Tε < Tr}
]

= lim
rր∞

lim
εց0

s(x0)− s(ε)

s(r)− s(ε)
.

Summarizing, we have shown:

Corollary 8.4 (Asymptotics of one-dimensional Itô diffusions).

(1). If s(0) = −∞ and s(∞) = ∞, then the process (Xt) is recurrent, i.e.,

P [Xt = y for some t ∈ [0, T )] = 1 for any x0, y ∈ (0,∞).

(2). If s(0) > −∞ and s(∞) = ∞ then lim
tրT

Xt = 0 almost surely.

(3). If s(0) = −∞ and s(∞) <∞ then lim
tրT

Xt = ∞ almost surely.

(4). If s(0) > −∞ and s(∞) <∞ then

P

[
lim
tրT

Xt = 0

]
=

s(∞)− s(x0)

s(∞)− s(0)

and

P

[
lim
tրT

Xt = ∞
]

=
s(x0)− s(0)

s(∞)− s(0)

Intuitively, if s(0) = −∞, in the natural scale the boundary is transformed to −∞,

which is not a possible limit for the local martingale s(Xt), whereas otherwise s(0) is

finite and approached by s(Xt) with strictly positive probability.

Example. Suppose that b(x)/σ(x)2 ≈ γx−1 as x ր ∞ and b(x)/σ(x)2 ≈ δx−1 as

x ց 0 holds for γ, δ ∈ R in the sense that b(x)/σ(x)2 − γx−1 is integrable at ∞ and

b(x)/σ(x)2 − δx−1 is integrable at 0. Then s′(x) is of order x−2γ as x ր ∞ and of

order x−2δ as xց 0. Hence

s(∞) = ∞ ⇐⇒ γ ≤ 1

2
, s(0) = −∞ ⇐⇒ δ ≥ 1

2
.

In particular, recurrence holds if and only if γ ≤ 1
2

and δ ≥ 1
2
.
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More concrete examples will be studied below.

Remark (Explosion in finite time, Feller’s test). Corollary 8.4 does not tell us whether

the explosion time T is infinite with probability one. It can be shown that this is always

the case if (Xt) is recurrent. In general, Feller’s test for explosions provides a necessary

and sufficient condition for the absence of explosion in finite time. The idea is to com-

pute a function g ∈ C(0,∞) such that e−tg(Xt) is a local martingale and to apply the

optional stopping theorem. The details are more involved than in the proof of corollary

above, cf. e.g. Section 6.2 in [Durrett: Stochastic calculus].

Geometric Brownian motion

A geometric Brownian motion with parameters α ∈ R and σ > 0 is a solution of the

s.d.e.

dSt = αSt dt+ σSt dBt. (8.2.1)

We have already shown in the beginning of Section ?? that for B0 = 0, the unique

strong solution of (8.2.1) with initial condition S0 = x0 is

St = x0 · exp
(
σBt + (α− σ2/2)t

)
.

The distribution of St at time t is a lognormal distribution, i.e., the distribution of c ·eY
where c is a constant and Y is normally distributed. Moreover, one easily verifies that

(St) is a time-homogeneous Markov process with log-normal transition densities

pt(x, y) =
1√

2πtσ2
exp

(
−(log(y/x)− µt)2

2tσ2

)
, t, x, y > 0,

where µ = α− σ2/2. By the Law of Large Numbers for Brownian motion,

lim
t→∞

St =




+∞ if µ > 0

0 if µ < 0
.

If µ = 0 then (St) is recurrent since the same holds for (Bt).

We now convince ourselves that we obtain the same results via the scale function:

The ratio of the drift and diffusion coefficient is

b(x)

σ(x)2
=

αx

(σx)2
=

α

σ2x
,
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and hence

s′(x) = const. · exp


−

x
ˆ

x0

2α

σ2y
dy


 = const. · x−2α/σ2

.

Therefore,

s(∞) = ∞ ⇐⇒ 2α/σ2 ≤ 1, s(0) = ∞ ⇐⇒ 2α/σ2 ≥ 1,

which again shows that St → ∞ for α > σ2/2, St → 0 for α < σ2/2, and St is

recurrent for α = σ2/2.

Feller’s branching diffusion

Our second growth model is described by the stochastic differential equation

dXt = βXt dt+ σ
√
Xt dBt, X0 = x0, (8.2.2)

with given constants β ∈ R, σ > 0, and values in R+. Note that in contrast to the

equation of geometric Brownian motion, the multiplicative factor
√
Xt in the noise term

is not a linear function of Xt. As a consequence, there is no explicit formula for a

solution of (8.2.2). Nevertheless, a general existence result guarantees the existence of

a strong solution defined up to the explosion time

T = sup
ε,r>0

TR\(ε,r),

cf. ??. SDEs similar to (8.2.2) appear in various applications.

Example (Diffusion limits of branching processes). We consider a Galton-Watson

branching process Zh
t with time steps t = 0, h, 2h, 3h, . . . of size h > 0, i.e., Zh

0 is a

given initial population size, and

Zh
t+h =

Zh
t∑

i=1

Ni, t/h for t = k · h, k = 0, 1, 2, . . . ,

with independent identically distributed random variables Ni,k, i ≥ 1, k ≥ 0. The

random variable Zh
kh describes the size of a population in the k-th generation when Ni,l
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is the number of offspring of the i-th individual in the l-th generation. We assume that

the mean and the variance of the offspring distribution are given by

E[Ni,l] = 1 + βh and Var[Ni,l] = σ2

for finite constants β, σ ∈ R.

We are interested in a scaling limit of the model as the size h of time steps goes to 0. To

establish convergence to a limit process as h ց 0 we rescale the population size by h,

i.e., we consider the process

Xh
t := h · Zh

⌊t⌋, t ∈ [0,∞).

The mean growth (“drift”) of this process in one time step is

E[Xh
t+h −Xh

t | Fh
t ] = h · E[Zh

t+h − Zh
t | Fh

t ] = hηhZh
t = hβXh

t ,

and the corresponding condition variance is

Var[Xh
t+h −Xh

t | Fh
t ] = h2 · Var[Zh

t+h − Zh
t | Fh

t ] = h2σ2Zh
t = hσ2Xh

t ,

where Fh
t = σ(Ni,l | i ≥ 1, 0 ≤ l ≤ k) for t = k · h. Since both quantities are of order

O(h), we can expect a limit process (Xt) as h ց 0 with drift coefficient β · Xt and

diffusion coefficient
√
σ2Xt, i.e., the scaling limit should be a diffusion process solving

a s.d.e. of type (8.2.2). A rigorous derivation of this diffusion limit can be found e.g. in

Section 8 of [Durrett: Stochastic Calculus].

We now analyze the asymptotics of solutions of (8.2.2). The ratio of drift and diffusion

coefficient is βx/(σ
√
x)2 = β/σ, and hence the derivative of a scale function is

s′(x) = const. · exp(−2βx/σ).

Thus s(0) is always finite, and s(∞) = ∞ if and only if β ≤ 1. Therefore, by Corollary

8.4, in the subcritical and critical case β ≤ 1, we obtain

lim
tրT

Xt = 0 almost surely,
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whereas in the supercritical case β > 1,

P

[
lim
tրT

Xt = 0

]
> 0 and P

[
lim
tրT

Xt = ∞
]
> 0.

This corresponds to the behaviour of Galton-Watson processes in discrete time. It can

be shown by Feller’s boundary classification for one-dimensional diffusion processes

that if Xt → 0 then the process actually dies out almost surely in finite time, cf. e.g.

Section 6.5 in [Durrett: Stochastic Calculus]. On the other hand, for trajectories with

Xt → ∞, the explosion time T is almost surely infinite and Xt grows exponentially as

t→ ∞.

Cox-Ingersoll-Ross model

The CIR model is a model for the stochastic evolution of interest rates or volatilities.

The equation is

dRt = (α− βRt) dt+ σ
√
Rt dBt R0 = x0, (8.2.3)

with a one-dimensional Brownian motion (Bt) and positive constants α, β, σ > 0. Al-

though the s.d.e. looks similar to the equation for Feller’s branching diffusion, the

behaviour of the drift coefficient near 0 is completely different. In fact, the idea is that

the positive drift α pushes the process away from 0 so that a recurrent process on (0,∞)

is obtained. We will see that this intuition is true for α ≥ σ2/2 but not for α < σ2/2.

Again, there is no explicit solution for the s.d.e. (8.13), but existence of a strong solution

holds. The ratio of the drift and diffusion coefficient is (α− βx)/σ2x, which yields

s′(x) = const. · x−2α/σ2

e2βx/σ
2

.

Hence s(∞) = ∞ for any β > 0, and s(0) = ∞ if and only if 2α ≥ σ2. Therefore, the

CIR process is recurrent if and only if α ≥ σ2/2, whereas Xt → 0 as t ր T almost

surely otherwise.

By applying Itô’s formula one can now prove that Xt has finite moments, and compute

the expectation and variance explicitly. Indeed, taking expectation values in the s.d.e.

Rt = x0 +

t
ˆ

0

(α− βRs) ds+

t
ˆ

0

σ
√
Rs dBs,
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we obtain informally

d

dt
E[Rt] = α− βE[Rt],

and hence by variation of constants,

E[Rt] = x0 · e−βt +
α

β
(1− e−βt).

To make this argument rigorous requires proving that the local martingale t 7→
t́

0

σ
√
RsdBs

is indeed a martingale:

Exercise. Consider a strong solution (Rt)t≥0 of (8.13) for α ≥ σ2/2.

(1). Show by applying Itô’s formula to x 7→ |x|p that E[|Rt|p] <∞ for any t ≥ 0 and

p ≥ 1.

(2). Compute the expectation of Rt, e.g. by applying Itô’s formula to eβtx.

(3). Proceed in a similar way to compute the variance of Rt. Find its asymptotic value

lim
t→∞

Var[Rt].

8.3 Linear SDE with additive noise

We now consider stochastic differential equations of the form

dXt = βtCt dt+ σt dBt, X0 = x, (8.3.1)

where (Bt) is a Brownian motion, and the coefficients are deterministic continuous

functions β, σ : [0,∞) → R. Hence the drift term βtXt is linear inXt, and the diffusion

coefficient does not depend on Xt, i.e., the noise increment σt dBt is proportional to

white noise dBt with a proportionality factor that does not depend on Xt.
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Variation of constants

An explicit strong solution of the SDE (8.3.1) can be computed by a “variation of con-

stants” Ansatz. We first note that the general solution in the deterministic case σt ≡ 0 is

given by

Xt = const. · exp




t
ˆ

0

βs ds


 .

To solve the SDE in general we try the ansatz

Xt = Ct · exp




t
ˆ

0

βs ds




with a continuous Itô process (Ct) driven by the Brownian motion (Bt). By the Itô

product rule,

dXt = βtXt dt+ exp




t
ˆ

0

βs ds


 dCt.

Hence (Xt) solves (8.3.1) if and only if

dCt = exp


−

t
ˆ

0

βs ds


σt dBt,

i.e.,

Ct = C0 +

t
ˆ

0

exp


−

r
ˆ

0

βs ds


σr dBr.

We thus obtain:

Theorem 8.5. The almost surely unique strong solution of the SDE (8.3.1)with initial

value x is given by

Xx
t = x · exp


−

t
ˆ

0

βs ds


+

t
ˆ

0

exp




t
ˆ

r

βs ds


 σr dBr.
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Note that the theorem not only yields an explicit solution but it also shows that the

solution depends smoothly on the initial value x. The effect of the noise on the solution

is additive and given by a Wiener-Itô integral, i.e., an Itô integral with deterministic

integrand. The average value

E[Xx
t ] = x · exp




t
ˆ

0

Bs ds


 , (8.3.2)

coincides with the solution in the absence of noise, and the mean-square deviation from

this solution due to random perturbation of the equation is

Var[Xx
t ] = Var




t
ˆ

0

exp




t
ˆ

r

βs ds


σr dBr


 =

t
ˆ

0

exp


2

t
ˆ

r

βs ds


σ2

r dr

by the Itô isometry.

Solutions as Gaussian processes

We now prove that the solution (Xt) of a linear s.d.e. with additive noise is a Gaussian

process. We first observe that Xt is normally distributed for any t ≥ 0.

Lemma 8.6. For any deterministic function h ∈ L2(0, t), the Wiener-Itô integral It =
t́

0

hs dBs is normally distributed with mean 0 and variance
t́

0

h2s ds.

Proof. Suppose first that h =
n−1∑
i=0

ci · I(ti,ti+1] is a step function with n ∈ N, c1, . . . , cn ∈

R, and 0 ≤ t0 < t1 < . . . < tn. Then It =
n−1∑
i=0

ci · (Bti+1
− Bti) is normally distributed

with mean zero and variance

Var[It] =

n−1∑

i=0

c2i (ti+1 − ti) =

t
ˆ

0

h2s ds.

In general, there exists a sequence (h(n))n∈N of step functions such that h(n) → h in

L2(0, t), and

It =

t
ˆ

0

h dB = lim
n→∞

t
ˆ

0

h(n) dB in L2(Ω,A, P ).
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Hence It is again normally distributed with mean zero and

Var[It] = lim
n→∞

Var




t
ˆ

0

h(n) dB


 =

t
ˆ

0

h2 ds.

Theorem 8.7 (Wiener-Itô integrals are Gaussian processes). Suppose that h ∈
L2

loc([0,∞),R). Then It =
t́

0

hs dBs is a continuous Gaussian process with

E[It] = 0 and Cov[It, Is] =

t∧s
ˆ

0

h2r ds for any t, s ≥ 0.

Proof. Let 0 ≤ t1 < . . . < tn. To show that (It1 , . . . , Itn) has a normal distribution it

suffices to prove that any linear combination of the random variables It1 , . . . , Itn is nor-

mally distributed. This holds true since any linear combination is again an Itô integral

with deterministic integrand:

n∑

i=1

λiIti =

tn
ˆ

0

n∑

i=1

λi · I(0,ti)(s)hs dBs

for any n ∈ N and λ1, . . . , λn ∈ R. Hence (It) is a Gaussian process with E[It] = 0

and

Cov[It, Is] = E[ItIs]

= E




∞̂

0

hr · I(0,t)(r) dBr

∞̂

0

hr · I(0,s)(r) dBr




= (h · I(0,t), h · I(0,s))L2(0,∞)

=

s∧t
ˆ

0

h2r dr.
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Example (Brownian motion). If h ≡ 1 then It = Bt. The Brownian motion (Bt) is a

centered Gaussian process with Cov[Bt, Bs] = t ∧ s.

More generally, by Theorem 8.7 and Theorem 8.5, any solution (Xt) of a linear SDE

with additive noise and deterministic (or Gaussian) initial value is a continuous Gaussian

process. In fact by (8.3.1), the marginals of (Xt) are affine functions of the correspond-

ing marginals of a Wiener-Itô integral:

Xx
t =

1

ht
·


x+

t
ˆ

0

hrσr dBr


 with hr = exp


−

r
ˆ

0

βu du


 .

Hence all finite dimensional marginals of (Xx
t ) are normally distributed with

E[Xx
t ] = x/Ht and Cov[Xx

t , X
x
s ] =

1

hths
·

t∧s
ˆ

0

h2rσ
2
r dr.

The Ornstein-Uhlenbeck process

In 1905, Einstein introduced a model for the movement of a “big” particle in a fluid.

Suppose that V abs
t is the absolute velocity of the particle, V t is the mean velocity of the

fluid molecules and Vt = V abs
t − V t is the velocity of the particle relative to the fluid.

Then the velocity approximatively can be described as a solution to an s.d.e.

dVt = −γVt dt+ σdBt. (8.3.3)

Here (Bt) is a Brownian motion in Rd, d = 3, and γ, σ are strictly positive constants

that describe the damping by the viscosity of the fluid and the magnitude of the random

collisions. A solution to the s.d.e. (8.3.3) is called an Ornstein-Uhlenbeck process.

Although it has first been introduced as a model for the velocity of physical Brown-

ian motion, the Ornstein-Uhlenbeck process is a fundamental stochastic process that is

almost as important as Brownian motion for mathematical theory and stochastic model-

ing. In particular, it is a continuous-time analogue of an AR(1) autoregressive process.

Note that (8.3.3) is a system of d decoupled one-dimensional stochastic differential

equations dV (i)
t = −γV (i)

t + σdB
(i)
t . Therefore, we will assume w.l.o.g. d = 1. By the

considerations above, the one-dimensional Ornstein-Uhlenbeck process is a continuous
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Gaussian process. The unique strong solution of the s.d.e. (8.3.3) with initial condition

x is given explicitly by

V x
t = e−γt


x+ σ

t
ˆ

0

eγs dBs


 . (8.3.4)

In particular,

E[V x
t ] = e−γtx,

and

Cov[V x
t , V

x
s ] = e−γ(t+s)σ2

t∧s
ˆ

0

e2γr dr

=
σ2

2γ
(e−γ|t−s| − e−γ(t+s)) for any t, s ≥ 0.

Note that as t→ ∞, the effect of the initial condition decays exponentially fast with rate

γ. Similarly, the correlations between V x
t and V x

s decay exponentially as |t− s| → ∞.

The distribution at time t is

V x
t ∼ N

(
e−γtx,

σ2

2γ
(1− e−2γt)

)
. (8.3.5)

In particular, as t→ ∞
V x
t

D−→ N

(
0,
σ2

2γ

)
.

One easily verifies thatN(0, σ2/2γ) is an equilibrium for the process: If V0 ∼ N(0, σ2/2γ)

and (Bt) is independent of V0 then

Vt = e−γtV0 + σ

t
ˆ

0

eγ(s−t) dBs

∼ N


0,

σ2

2γ
e−2γt + σ2

t
ˆ

0

e2γ(s−t) ds


 = N(0, σ2/2γ)

for any t ≥ 0.
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Theorem 8.8. The Ornstein-Uhlenbeck process (V x
t ) is a time-homogeneous Markov

process w.r.t. the filtration (FB,P
t ) with stationary distribution N(0, σ2/2γ) and transi-

tion probabilities

pt(x,A) = P

[
e−γtx+

σ√
2γ

√
1− e−2γtZ ∈ A

]
, Z ∼ N(0, 1).

Proof. We first note that by (8.3.5),

V x
t ∼ e−γtx+

σ√
2γ

√
1− e−2γtZ for any t ≥ 0

with Z ∼ N(0, 1). Hence,

E[f(V x
t )] = (ptf)(x)

for any non-negative measurable function f : R → R. We now prove a pathwise coun-

terpart to the Markov property: For t, r ≥ 0, by (8.3.4)

V x
t+r = e−γ(t+r)


x+ σ

t
ˆ

0

eγs dBs


+ σ

t+r
ˆ

0

eγ(s−t−r) dBs

= e−γrV x
t + σ

r
ˆ

0

eγ(u−r) dBu, (8.3.6)

where Bu := Bt+u − Bt is a Brownian motion that is independent of FB,P
t . Hence, the

random variable σ ·
´ r

0
eγ(u−r) dBu is also independent of FB,P

t and, by (8.3.4), it has

the same distribution as the Ornstein-Uhlenbeck process with initial condition 0:

σ ·
r
ˆ

0

eγ(u−r) dBu ∼ V 0
r .

Therefore, by (8.3.6), the conditional distribution of V x
t+r given FB,P

t coincides with the

distribution of the process with initial V x
t at time r:

E[f(V x
t+r) | FB,P

t ] = E[f(e−γrV x
t (ω) + V 0

r )]

= E[f(V V x
t (ω)

r )] = (prf)(V
x
t (ω)) for P -a.e. ω.

This proves that (V x
t ) is a Markov process with transition kernels pr, r ≥ 0.
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Remark. The pathwise counterpart of the Markov property used in the proof above is

called cocycle property of the stochastic flow x 7→ V x
t .

The Itô-Doeblin formula can now be used to identify the generator of the Ornstein-

Uhlenbeck process: Taking expectation values, we obtain the forward equation

E[F (V x
t )] = F (x) +

t
ˆ

0

E[(L F )(V x
s )] ds

for any function F ∈ C2
0(R) and t ≥ 0, where

(L F )(x) =
1

2
σ2f ′′(x)− γxf ′(x).

For the transition function this yields

(ptF )(x) = F (x) +

t
ˆ

0

(psL F )(x) for any x ∈ R,

whence

lim
tց0

(ptf)(x)− f(x)

t
= lim

tց0

1

t

t
ˆ

0

E[(L f)(V x
s )] ds = (L f)(x)

by continuity and dominated convergence. This shows that the infinitesimal generator

of the Ornstein-Uhlenbeck process is an extension of the operator (L , C2
0(R)).

Change of time-scale

We will now prove that Wiener-Itô integrals can also be represented as Brownian motion

with a coordinate transformation on the time axis. Hence solutions of one-dimensional

linear SDE with additive noise are affine functions of time changed Brownian motions.

We first note that a Wiener-Itô integral It =
´ t

0
hr dBr with h ∈ L2

loc(0,∞) is a contin-

uous centered Gaussian process with covariance

Cov[It, Is] =

t∧s
ˆ

0

h2r dr = τ(t) ∧ τ(s)
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where

τ(t) :=

t
ˆ

0

h2r dr = Var[It]

is the corresponding variance process. The variance process should be thought of as an

“internal clock” for the process (It). Indeed, suppose h > 0 almost everywhere. Then

τ is strictly increasing and continuous, and

τ : [0,∞) → [0, τ(∞)) is a homeomorphism.

Transforming the time-coordinate by τ , we have

Cov[Iτ−1(t), Iτ−1(s)] = t ∧ s for any t, s ∈ [0, τ(∞)].

These are exactly the covariance of a Brownian motion. Since a continuous Gaussian

process is uniquely determined by its expectations and covariances, we can conclude:

Theorem 8.9 (Wiener-Itô integrals as time changed Brownian motions). The pro-

cess B̃s := Iτ−1(s), 0 ≤ s < τ(∞), is a Brownian motion, and

It = B̃τ(t) for any t ≥ 0, P -almost surely.

Proof. Since (B̃s)0≤s<τ(∞) has the same marginal distributions as the Wiener-Itô in-

tegral (It)t≥0 (but at different times), (B̃s) is again a continuous centered Gaussian

process. Moreover, Cov[Bt, Bs] = t∧s, so that (Bs) is indeed a Brownian motion.

Note that the argument above is different from previous considerations in the sense that

the Brownian motion (B̃s) is constructed from the process (It) and not vice versa.

This means that we can not represent (It) as a time-change of a given Brownian motion

(e.g. (Bt)) but we can only show that there exists a Brownian motion (B̃s) such that I

is a time-change of B̃. This way of representing stochastic processes w.r.t. Brownian

motions that are constructed from the process corresponds to the concept of weak solu-

tions of stochastic differential equations, where driving Brownian motion is not given a
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priori. We return to these ideas in Section 9, where we will also prove that continuous

local martingales can be represented as time-changed Brownian motions.

Theorem 8.9 enables us to represent solution of linear SDE with additive noise by time-

changed Brownian motions. We demonstrate this with an example: By the explicit

formula (8.3.4) for the solution of the Ornstein-Uhlenbeck SDE, we obtain:

Corollary 8.10 (Mehler formula). A one-dimensional Ornstein-Uhlenbeck process V x
t

with initial condition x can be represented as

V x
t = e−γt(x+ σB̃ 1

2γ
(e2γt−1))

with a Brownian motion (B̃t)t≥0 such that B̃0 = 0.

Proof. The corresponding time change for the Wiener-Itô integral is given by

τ(t) =

t
ˆ

0

exp(2γs) ds = (exp(2γt)− 1)/2γ.

8.4 Brownian bridge

In many circumstances one is interested in conditioning diffusion process on taking a

given value at specified times. A basic example is the Brownian bridge which is Brow-

nian motion conditioned to end at a given point x after time t0. We now present several

ways to describe and characterize Brownian bridges. The first is based on the Wiener-

Lévy construction and specific to Brownian motion, the second extends to Gaussian

processes, whereas the final characterization of the bridge process as the solution of a

time-homogeneous SDE can be generalized to other diffusion processes. From now on,

we consider a one-dimensional Brownian motion (Bt)0≤t≤1 with B0 = 0 that we would

like to condition on taking a given value y at time 1
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Wiener-Lévy construction

Recall that the Brownian motion (Bt) has the Wiener-Lévy representation

Bt(ω) = Y (ω)t+

∞∑

n=0

∑

k=0

2n − 1Yn,k(ω)en,k(t) for t ∈ [0, 1] (8.4.1)

where en,k are the Schauder functions, and Y and Yn,k (n ≥ 0, k = 0, 1, 2, . . . , 2n −
1) are independent and standard normally distributed. The series in (8.4.1) converges

almost surely uniformly on [0, 1], and the approximating partial sums are piecewise

linear approximations of Bt. The random variables Y = B1 and

Xt :=
∞∑

n=0

2n−1∑

k=0

Yn,ken,k(t) = Bt − tB1

are independent. This suggests that we can construct the bridge by replacing Y (ω) by

the constant value y. Let

Xy
t := yt+Xt = Bt + (y − B1) · t,

and let µy denote the distribution of the process (Xy
t )0≤t≤1 on C([0, 1]). The next theo-

rem shows that Xy
t is indeed a Brownian motion conditioned to end at y at time 1:

Theorem 8.11. The map y 7→ µy is a regular version of the conditional distribution of

(Bt)0≤t≤1 given B1, i.e.,

(1). µy is a probability measure on C([0, 1]) for any y ∈ R,

(2). P [(Bt)0≤t≤1 ∈ A | B1] = µB1 [A] holds P -almost surely for any given Borel

subset A ⊆ C([0, 1]).

(3). If F : C([0, 1]) → R is a bounded and continuous function (w.r.t. the supremum

norm on C([0, 1])) then the map y 7→
´

F dµy is continuous.

The last statement says that < 7→ µy is a continuous function w.r.t. the topology of weak

convergence.
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Proof. By definition, µy is a probability measure for any y ∈ R. Moreover, for any

Borel set A ⊆ C([0, 1]),

P [(Bt)0≤t≤1 ∈ A | B1](ω) = P [(Xt + tB1) ∈ A |B1](ω)

= P [(Xt + tB1(ω)) ∈ A] = P [(X
Bt(ω)
t ) ∈ A] = µB1(ω)[A]

for P -almost every ω by independence of (XT ) and B1. Finally, if F : C([0, 1]) → R is

continuous and bounded then
ˆ

F dµy = E[F ((yt +Xt)0≤t≤1)]

is continuous in y by dominated convergence.

Finite-dimensional distributions

We now compute the marginals of the Brownian bridge Xy
t :

Corollary 8.12. For any n ∈ N and 0 < t1 < . . . < tn < 1, the distribution of

(Xy
t1 , . . . , X

y
tn) on Rn is absolutely continuous with density

fy(x1, . . . , xn) =
pt1(0, x1)pt2−t1(x1, x2) · · ·ptn−tn−1(xn−1, xn)p1−tn(xn, y)

p1(0, y)
. (8.4.2)

Proof. The distribution of (Bt1 , . . . , Btn , B1) is absolutely continuous with density

fBt1 ,...,Btn ,B1(x1, . . . , xn, y) = pt1(0, x0)pt2−t1(x1, x2) · · ·ptn−tn−1(xn−1, xn)p1−tn(xn, y).

Since the distribution of (Xy
t1 , . . . , X

y
tn) is a regular version of the conditional distribu-

tion of (Bt1 , . . . , Btn) given B1, it is absolutely continuous with the conditional density

fBt1 ,...,Btn |B1(x1, . . . , xn|y) =
fBt1 ,...,Btn ,B1(x1, . . . , xn, y)

´

· · ·
´

fBt1 ,...,Btn ,B1(x1, . . . , xn, y) dx1 · · · dxn
= fy(x1, . . . , xn).
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In general, any almost surely continuous process on [0, 1] with marginals given by

(8.4.2) is called a Brownian bridge from 0 to y in time 1. A Brownian bridge from x

to y in time t is defined correspondingly for any x, y ∈ R and any t > 0. In fact, this

definition of the bridge process in terms of the marginal distributions carries over from

Brownian motion to arbitrary Markov processes with strictly positive transition densi-

ties. In the case of the Brownian bridge, the marginals are again normally distributed:

Theorem 8.13 (Brownian bridge as a Gaussian process). The Brownian bridge from

0 to y in time 1 is the (in distribution unique) continuous Gaussian process (Xy
t )t∈[0,1]

with

E[Xy
t ] = ty and Cov[Xy

t , X
y
s ] = t ∧ s− ts for any s, t ∈ [0, 1]. (8.4.3)

Proof. A continuous Gaussian process is determined uniquely in distribution by its

means and covariances. Therefore, it suffices to show that the bridge Xy
t = Bt + (y −

B1)t defined above is a continuous Gaussian process such that (8.4.3) holds. This holds

true: By (8.4.2), the marginals are normally distributed, and by definition, t 7→ Xy
t is

almost surely continuous. Moreover,

E[Xy
t ] = E[Bt] + E[y −B1] · t = yt, and

Cov[Xy
t , X

y
s ] = Cov[Bt, Bs]− t · Cov[B1, Bs]− s · Cov[Bt, B1] + tsVar[B1]

= t ∧ s− ts− st+ ts = t ∧ s− ts.

Remark (Covariance as Green function, Cameron-Martin space). The covariances

of the Brownian bridge are given by

c(t, s) = Cov[Xy
t , X

y
s ] =




t · (1− s) for t ≤ s,

(1− t) · s for t ≥ s.

The function c(t, s) is the Green function of the operator d2/dt2 with Dirichlet boundary

conditions on the interval [0, 1]. This is related to the fact that the distribution of the
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Brownian bridge from 0 to 0 can be viewed as a standard normal distribution on the

space of continuous paths ω : [0, 1] → R with ω(0) = ω(1) = 0 w.r.t. the Cameron-

Martin inner product

(g, h)H =

1
ˆ

0

g′(s)h′(s) ds.

The second derivative d2/dt2 is the linear operator associated with this quadratic from.

SDE for the Brownian bridge

Our construction of the Brownian bridge by an affine transformation of Brownian mo-

tion has two disadvantages:

• It can not be carried over to more general diffusion processes with possibly non-

linear drift and diffusion coefficients.

• The bridge Xy
t = Bt + t(y − B1) does not depend on (Bt) in an adapted way,

because the terminal value B1 is required to define Xy
t for any t > 0.

We will now show how to construct a Brownian bridge from a Brownian motion in an

adapted way. The idea is to consider an SDE w.r.t. the given Brownian motion with a

drift term that forces the solution to end at a given point at time 1. The size of the drift

term will be large if the process is still far away from the given terminal point at a time

close to 1. For simplicity we consider a bridge (Xt) from 0 to 0 in time 1. Brownian

bridges with other end points can be constructed similarly. Since the Brownian bridge

is a Gaussian process, we may hope that there is a linear stochastic differential equation

with additive noise that has a Brownian bridge as a solution. We therefore try the Ansatz

dXt = −βtXt dt+ dBt, X0 = 0 (8.4.4)

with a given continuous deterministic function βt, 0 ≤ t < 1. By variation of constants,

the solution of (8.4.4) is the Gaussian process Xt, 0 ≤ t < 1, given by

Xt =
1

ht

t
ˆ

0

hr dBr where ht = exp




t
ˆ

0

βs ds


 .
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The process (Xt) is centered and has covariances

Cov[Xt, Xs] =
1

hths

t∧s
ˆ

0

h2r dr.

Therefore, (Xt) is a Brownian bridge if and only if

Cov[Xt, Xs] = t · (1− s) for any t ≤ s,

i.e., if and only if

1

tht

t
ˆ

0

h2r dr = hs · (1− s) for any 0 < t ≤ s. (8.4.5)

The equation (8.4.5) holds if and only if ht is a constant multiple of 1/1− t, and in this

case

βt =
d

dt
log ht =

h′t
ht

=
1

1− t
for t ∈ [0, 1].

Summarizing, we have shown:

Theorem 8.14. If (Bt) is a Brownian motion then the process (Xt) defined by

Xt =

t
ˆ

0

1− t

1− r
dBr for t ∈ [0, 1], X1 = 0,

is a Brownian bridge from 0 to 0 in time 1. It is the unique continuous process solving

the SDE

dXt = − Xt

1− t
dt+ dBt for t ∈ [0, 1). (8.4.6)

Proof. As shown above, (Xt)t∈[0,1) is a continuous centered Gaussian process with the

covariances of the Brownian bridge. Hence its distribution on C([0, 1)) coincides with

that of the Brownian bridge from 0 to 0. In particular, this implies lim
tր1

Xt = 0 almost

surely, so the trivial extension from [0, 1) to [0, 1] defined by X1 = 0 is a Brownian

bridge.

University of Bonn 2015/2016



280 CHAPTER 8. SDE: EXPLICIT COMPUTATIONS

If the Brownian bridge is replaced by a more general conditioned diffusion process,

the Gaussian characterization does not apply. Nevertheless, it can still be shown by

different means (the keyword is “h-transform”) that the bridge process solves an SDE

generalizing (8.4.6), cf. ?? below.

8.5 Stochastic differential equations in Rn

We now explain how to generalize our considerations to systems of stochastic differen-

tial equations, or, equivalently, SDE in several dimensions. For the moment, we will not

initiate a systematic study but rather consider some examples. The setup is the follow-

ing: We are given a d-dimensional Brownian motion Bt = (B1
t , . . . , B

d
t ). The compo-

nent processes Bk
t , 1 ≤ k ≤ d, are independent one-dimensional Brownian motions that

drive the stochastic dynamics. We are looking for a stochastic process Xt : Ω → Rn

solving an SDE of the form

dXt = b(t, Xt) dt+

d∑

k=1

σk(t, Xt) dB
k
t . (8.5.1)

Here n and d may be different, and b, σ1, . . . , σd : R+ × Rn → Rn are time-dependent

continuous vector fields on Rn. In matrix notation,

dXt = b(t, Xt) dt+ σ(t, Xt) dBt (8.5.2)

where σ(t, x) = (σ1(t, x)σ2(t, x) · · ·σd(t, x)) is an n× d-matrix.

Existence, uniqueness and stability

Assuming Lipschitz continuity of the coefficients, existence, uniqueness and stability of

strong solutions of the SDE (8.5.2) can be shown by similar arguments as for ordinary

differential equations.
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Theorem 8.15 (Existence, uniqueness and stability under global Lipschitz condi-

tions). Suppose that b and σ satisfy a global Lipschitz condition of the following form:

For any t0 ∈ R, there exists a constant L ∈ R+ such that

|b(t, x)−b(t, x̃)|+||σ(t, x)−σ(t, x̃)|| ≤ L· |x−x̃| ∀ t ∈ [0, t0], x, x̃ ∈ Rn. (8.5.3)

Then for any initial value x ∈ Rn, the SDE (8.5.2) has a unique (up to equivalence)

strong solution (Xt)t∈[0,∞) such that X0 = x P -almost surely.

Furthermore, if (Xt) and (X̃t) are two strong solutions with arbitrary initial conditions,

then for any t ∈ R+, there exists a finite constant C(t) such that

E

[
sup
s∈[0,t]

|Xs − X̃s|
]

≤ C(t) · E
[
|X0 − X̃0|2

]
.

The proof of Theorem 8.15 is outlined in the exercises below. In Section 12.1, we will

prove more general results that contain the assertion of the theorem as a special case. In

particular, we will see that existence up to an explosion time and uniqueness of strong

solutions still hold true if one assumes only a local Lipschitz condition.

The key step for proving stability and uniqueness is to control the deviation

εt := E

[
sup
s≤t

|Xs − X̃s|2
]

between two solutions up to time t. Existence of strong solutions can then be shown by

a Picard-Lindelöf approximation based on a corresponding norm:

Exercise (Proof of stability and uniqueness). Suppose that (Xt) and (X̃t) are strong

solutions of (8.5.2), and let t0 ∈ R+. Apply Itô’s isometry and Gronwall’s inequality to

show that if (8.5.3) holds, then there exists a finite constant C ∈ R+ such that for any

t ≤ t0,

εt ≤ C ·
(
ε0 +

ˆ t

0

εs ds
)
, and (8.5.4)

εt ≤ C · eCt ε0. (8.5.5)
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Hence conclude that two strong solutions with the same initial value coincide almost

surely.

Exercise (Existence of strong solutions). Define approximate solutions of (8.5.2) with

initial value x ∈ Rn inductively by setting X0
t := x for all t, and

Xn+1
t := x +

ˆ t

0

b(s,Xn
s ) ds +

ˆ t

0

σ(s,Xn
s ) dBs.

Let ∆n
t := E[sups≤t |Xn+1

s −Xn
s |2]. Show that if (8.5.3) holds, then for any t0 ∈ R+,

there exists a finite constant C(t0) such that

∆n+1
t ≤ C(t0)

ˆ t

0

∆n
s ds for any n ≥ 0 and t ≤ t0, and

∆n
t ≤ C(t0)

n t
n

n!
∆0

t for any n ∈ N and t ≤ t0.

Hence conclude that the limit Xs = limn→∞Xn
s exists uniformly for s ∈ [0, t0] with

probability one, and X is a strong solution of (8.5.2) with X0 = x.

Itô processes driven by several Brownian motions

Any solution to the SDE (8.5.1) is an Itô process pf type

Xt =

t
ˆ

0

Gs ds+
d∑

k=1

t
ˆ

0

Hk
s dB

k
s (8.5.6)

with continuous (FB,P
t ) adapted stochastic processes Gs, H

1
s , H

2
s , . . . , H

d
s . We now

extend the stochastic calculus rules to such Itô processes that are driven by several in-

dependent Brownian motions. Let Hs and H̃s be continuous (FB,P
t ) adapted processes.

Lemma 8.16. If (πn) is a sequence of partitions of R+ with mesh(πn) → 0 then for

any 1 ≤ k, l ≤ d and a ∈ R+, the covariation of the Itô integrals t 7→
t́

0

Hs dB
k
s and

t 7→
t́

0

H̃s dB
l
s exists almost surely uniformly for t ∈ [0, a] along a subsequence of (πn),

and 


•
ˆ

0

H dBk,

•
ˆ

0

H̃ dBl




t

=

t
ˆ

0

HH̃ d[Bk, Bl] = δkl

t
ˆ

0

HsH̃s ds.
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The proof is an extension of the proof of Theorem 8.1(ii), where the assertion has been

derived for k = l and H = H̃ . The details are left as an exercise.

Similarly to the one-dimensional case, the lemma can be used to compute the covariation

of Itô integrals w.r.t. arbitrary Itô processes. If Xs and Ys are Itô processes as in (8.5.1),

and Ks and Ls are adapted and continuous then we obtain

[
ˆ •

0

K dX,

ˆ •

0

L dY

]

t

=

ˆ t

0

KsLs d[X, Y ]s

almost surely uniformly for t ∈ [0, u], along an appropriate subsequence of (πn).

Multivariate Itô-Doeblin formula

We now assume again that (Xt)t≥0 is a solution of a stochastic differential equation of

the form (8.5.1). By Lemma 8.16, we can apply Itô’s formula to almost every sample

path t 7→ Xt(ω):

Theorem 8.17 (Itô-Doeblin). Let F ∈ C1,2(R+ × Rn). Then almost surely,

F (t, Xt) = F (0, X0) +

t
ˆ

0

(σ⊤∇xF )(s,Xs) · dBs

+

t
ˆ

0

(
∂F

∂t
+ L F

)
(s,Xs) ds for all t ≥ 0,

where ∇x denotes the gradient in the space variable, and

(L F )(t, x) :=
1

2

n∑

i,j=1

ai,j(t, x)
∂2F

∂xi∂xj
(t, x) +

n∑

i=1

bi(t, x)
∂F

∂xi
(t, x)

with a(t, x) := σ(t, x)σ(t, x)⊤ ∈ Rn×n.
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Proof. If X is a solution to the SDE then

[X i, Xj]t =
∑

k,l

[ ˆ
σi
k(s,X) dBk,

ˆ

σj
l (s,X) dBl

]
t

=
∑

k,l

ˆ t

0

(σi
k σ

j
l )(s,X) d[Bk, Bl] =

ˆ t

0

aij(s,Xs) ds

where aij =
∑

k σ
i
kσ

j
k, i.e.,

a(s, x) = σ(s, x)σ(s, x)T ∈ Rn×n.

Therefore, Itô’s formula applied to the process (t, Xt) yields

dF (t, X) =
∂F

∂t
(t, X) dt+∇xF (t, X) · dX +

1

2

d∑

i,j=1

∂2F

∂xi∂xj
(t, X) d[X i, Xj]

= (σT∇xF )(t, X) · dB +
(∂F
∂t

+ L F
)
(t, X) dt,

for any F ∈ C1,2(R+ × Rn).

The Itô-Doeblin formula shows that for any F ∈ C2(R+ × Rn), the process

MF
s = F (s,Xs)− F (0, X0)−

s
ˆ

0

(
∂F

∂t
+ L F

)
(t, Xt) dt

is a local martingale. If σ⊤∇xF is bounded then MF is a global martingale.

Exercise (Drift and diffusion coefficients). Show that the processes

M i
s = X i

s −X i
0 −

s
ˆ

0

bi(s,Xs) ds, 1 ≤ i ≤ n,

are local martingales with covariations

[M i,M j ]s = ai,j(s,Xs) for any s ≥ 0, P -almost surely.

The vector field b(s, x) is called the drift vector field of the SDE, and the coefficients

ai,j(s, x) are called diffusion coefficients.
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General Ornstein-Uhlenbeck processes

XXX to be included

Example (Stochastic oscillator).

Examples

Example (Physical Brownian motion with external force).

Example (Kalman-Bucy filter).

Example (Heston model for stochastic volatility).
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Chapter 9

Change of measure

9.1 Local and global densities of probability measures

A thorough understanding of absolute continuity and relative densities of probability

measures is crucial at many places in stochastic analysis. Martingale convergence yields

an elegant approach to these issues including a proof of the Radon-Nikodym and the

Lebesgue Decomposition Theorem. We first recall the definition of absolute continuity.

Absolute Continuity

Suppose that P and Q are probability measures on a measurable space (Ω,A), and F is

a sub-σ-algebra of A.

Definition. (1). The measure Q is called absolutely continuous w.r.t. P on the σ-

algebra F if and only if Q[A] = 0 for any A ∈ F with P [A] = 0.

(2). The measures Q and P are called singular on F if and only if there exists A ∈ F
such that P [A] = 0 and Q[AC ] = 0.

286
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We use the notations Q ≪ P for absolute continuity of Q w.r.t. P , Q ≈ P for mutual

absolute continuity, and Q �P for singularity of Q and P . The definitions above extend

to signed measures.

Example. The Dirac measure δ1/2 is obviously singular w.r.t. Lebesgue measure λ(0,1]

on the Borel σ-algebra B((0, 1]). However, δ1/2 is absolutely continuous w.r.t. λ(0,1]

on each of the σ-algebras Fn = σ(Dn) generated by the dyadic partitions Dn = {(k ·
2−n, (k + 1)2−n] : 0 ≤ k < 2n}, and B([0, 1)) = σ(

⋃Dn).

The next lemma clarifies the term “absolute continuity.”

Lemma 9.1. The probability measure Q is absolutely continuous w.r.t. P on the σ-

algebra F if and only if for any ε > 0 there exists δ > 0 such that for A ∈ F ,

P [A] < δ ⇒ Q[A] < ε. (9.1.1)

Proof. The “if” part is obvious. If P [A] = 0 and (9.1.1) holds for each ε > 0 with δ

depending on ε then Q[A] < ε for any ε > 0, and hence Q[A] = 0.

To prove the “only if” part, we suppose that there exists ε > 0 such that (9.1.1) does not

hold for any δ > 0. Then there exists a sequence (An) of events in F such that

Q[An] ≥ ε and P [An] ≤ 2−n.

Hence, by the Borel-Cantelli-Lemma,

P [An infinitely often] = 0,

whereas

Q[An infinitely often] = Q

[⋂

n

⋃

m≥n

Am

]
= lim

n→∞
Q

[⋃

m≥n

Am

]
≥ ε.

Therefore Q is not absolutely continuous w.r.t. P .

Example (Absolute continuity on R). A probability measure µ on a real interval is

absolutely continuous w.r.t. Lebesgue measure if and only if the distribution function

F (t) = µ[(−∞, t]] satisfies:
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For any ε > 0 there exists δ > 0 such that for any n ∈ N and a1, . . . , an, b1, . . . , bn ∈ R,

n∑

i=1

|bi − ai| < ε ⇒
n∑

i=1

|F (bi)− F (ai)| < δ, (9.1.2)

cf. e.g. [Billingsley: Probability and Measures].

Definition (Absolutely continuous functions). A function F : (a, b) ⊂ R → R is

called absolutely continuous iff (9.1.2) holds.

The Radon-Nikodym Theorem states that absolute continuity is equivalent to the exis-

tence of a relative density.

Theorem 9.2 (Radon-Nikodym). The probability measure Q is absolutely continuous

w.r.t. P on the σ-algebra F if and only if there exists a non-negative random variable

Z ∈ L1(Ω,F , P ) such that

Q[A] =

ˆ

A

Z dP for any A ∈ F . (9.1.3)

The relative density Z of Q w.r.t. P on F is determined by (9.1.3) uniquely up to modi-

fication on P -measure zero sets. It is also called the Radon-Nikodym derivative or the

likelihood ratio of Q w.r.t. P on F . We use the notation

Z =
dQ

dP

∣∣∣∣
F
,

and omit the F when the choice of the σ-algebra is clear.

Example (Finitely generated σ-algebra). Suppose that the σ-algebra F is generated

by finitely many disjoint atoms B1, . . . , Bk with Ω =
⋃
Bi. Then Q is absolutely

continuous w.r.t. P if and only if for any i,

P [Bi] = 0 =⇒ Q[Bi] = 0.
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In this case, the relative density is given by

dQ

dP

∣∣∣∣
F

=
∑

i : P [Bi]>0

Q[Bi]

P [Bi]
· IBi

.

From local to global densities

Let (Fn) be a given filtration on (Ω,A).

Definition (Local absolutely continuity). The measure Q is called locally absolutely

continuous w.r.t. P and the filtration (Fn) if and only ifQ is absolutely continuous w.r.t.

P on the σ-algebra Fn for each n.

Example (Dyadic partitions). Any probability measure on the unit interval [0, 1] is

locally absolutely continuous w.r.t. Lebesgue measure on the filtration Fn = σ(Dn)

generated by the dyadic partitions of the unit interval. The Radon-Nikodym derivative

on Fn is the dyadic difference quotient defined by

dµ

dλ

∣∣∣∣
Fn

(x) =
µ[((k − 1) · 2−n, k · 2−n)]

λ[((k − 1) · 2−n, k · 2−n)]
=

F (k · 2−n)− F ((k − 1) · 2−n)

2−n
(9.1.4)

for x ∈ ((k − 1)2−n, k2−n].

Example (Product measures). If Q =
∞⊗
i=1

ν and P =
∞⊗
i=1

µ are infinite products of

probability measures ν and µ, and ν is absolutely continuous w.r.t. µ with density ̺,

then Q is locally absolutely continuous w.r.t. P on the filtration

Fn = σ(X1, . . . , Xn)

generated by the coordinate maps Xi(ω) = ωi. The local relative density is

dQ

dP

∣∣∣∣
Fn

=
n∏

i=1

̺(Xi)

However, if ν 6= µ, thenQ is not absolutely continuous w.r.t.P on F∞ = σ(X1, X2, . . .),

since by the LLN, n−1
n∑

i=1

IA(Xi) converges Q almost surely to ν[A] and P -almost

surely to µ[A].
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Now suppose that Q is locally absolutely continuous w.r.t. P on a filtration (Fn) with

relative densities

Zn =
dQ

dP

∣∣∣∣
Fn

.

TheL1 martingale convergence theorem can be applied to study the existence of a global

density on the σ-algebra

F∞ = σ(
⋃

Fn).

Let Z∞ := lim supZn.

Theorem 9.3 (Convergence of local densities, Lebesgue decomposition).

(1). The sequence (Zn) of successive relative densities is an (Fn)-martingale w.r.t. P .

In particular, (Zn) converges P -almost surely to Z∞, and Z∞ is integrable w.r.t.

P .

(2). The following statements are equivalent:

(a) (Zn) is uniformly integrable w.r.t. P .

(b) Q is absolutely continuous w.r.t. P on F∞.

(c) Q[A] =
´

A

Z∞ dP for any P on F∞.

(3). In general, the decomposition Q = Qa +Qs holds with

Qa[A] =

ˆ

A

Z∞ dP, Qs[A] = Q[A ∩ {Z∞ = ∞}]. (9.1.5)

Qa and Qs are positive measure with Qa ≪ P and Qs �P .

The decomposition Q = Qa + Qs into an absolutely continuous and a singular part is

called the Lebesgue decomposition of the measure Q w.r.t. P on the σ-algebra F∞.

Proof. (1). For n ≥ 0, the density Zn is in L1(Ω,Fn, P ), and

EP [Zn ; A] = Q[A] = EP [Zn+1 ; A] for any A ∈ Fn.
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Hence Zn = EP [Zn+1 | Fn], i.e., (Zn) is a martingale w.r.t. P . Since Zn ≥ 0, the

martingale converges P -almost surely, and the limit is integrable.

(2). (a) ⇒ (c): If (Zn) is uniformly integrable w.r.t. P , then

Zn = EP [Z∞ | Fn] P -almost surely for any n,

by the L1 convergence theorem. Hence for A ∈ Fn,

Q[A] = EP [Zn ; A] = EP [Z∞ ; A].

This shows that Q[A] = EP [Z∞ ; A] holds for any A ∈ ⋃Fn, and thus for any

A ∈ F∞ = σ(
⋃Fn).

(c) ⇒ (b) is evident.

(b) ⇒ (a): If Q ≪ P on F∞ then Zn converges also Q-almost surely to a finite

limit Z∞. Hence for n0 ∈ N and c > 1,

sup
n
EP [ |Zn| ; |Zn| ≥ c] = sup

n
EP [Zn ; Zn ≥ c] = sup

n
Q[Zn ≥ c]

≤ max
n<n0

Q[Zn ≥ c] + sup
n≥n0

Q[Zn ≥ c]

≤ max
n<n0

Q[Zn ≥ c] +Q[Z∞ ≥ c− 1] + sup
n≥n0

Q[|Zn − Z∞| ≥ 1].

Given ε > 0, the last summand is smaller than ε/3 for n0 sufficiently large, and

the other two summands on the right hand side are smaller than ε/3 if c is chosen

sufficiently large depending on n0. Hence (Zn) is uniformly integrable w.r.t. P .

(3). In general, Qa[A] = EP [Z∞ ; A] is a positive measure on F∞ with Qa ≤ Q,

since for n ≥ 0 and A ∈ Fn,

Qa[A] = EP [lim inf
k→∞

Zk ; A] ≤ lim inf
k→∞

EP [Zk ; A] = EP [Zn ; A] = Q[A]

by Fatou’s Lemma and the martingale property. It remains to show that

Qa[A] = Q[A ∩ {Z∞ <∞}] for any A ∈ F∞. (9.1.6)

If (9.1.6) holds, then Q = Qa + Qs with Qs defined by (9.1.5). In particular, Qs

is then singular w.r.t. P , since P [Z∞ = ∞] = 0 and Qs[Z∞ = ∞] = 0, whereas
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Qa is absolutely continuous w.r.t. P by definition.

Since Qa ≤ Q, it suffices to verify (9.1.6) for A = Ω. Then

(Q−Qa)[A ∩ {Z∞ <∞}] = (Q−Qa)[Z∞ <∞] = 0,

and therefore

Q[A ∩ {Z∞ <∞}] = Qa[A ∩ {Z∞ <∞}] = Qa[A]

for any A ∈ F∞.

To prove (9.1.6) for A = Ω we observe that for c ∈ (0,∞),

Q

[
lim sup
n→∞

Zn < c

]
≤ lim sup

n→∞
Q[Zn < c] = lim sup

n→∞
EP [Zn ; Zn < c]

≤ EP

[
lim sup
n→∞

Zn · I{Zn<c}

]
≤ EP [Z∞] = Qa[Ω]

by Fatou’s Lemma. As c→ ∞, we obtain

Q[Z∞ <∞] ≤ Qa[Ω] = Qa[Z∞ <∞] ≤ Q[Z∞ <∞]

and hence (9.1.6) with A = Ω. This completes the proof

As a first consequence of Theorem 9.3, we prove the Radon-Nikodym Theorem on a

separable σ-algebra A. Let P and Q be probability measures on (Ω,A) with Q≪ P .

Proof of the Radon-Nikodym Theorem for separable σ-algebras. We fix a filtration

(Fn) consisting of finitely generated σ-algebras Fn ⊆ A with A = σ(
⋃Fn). Since

Q is absolutely continuous w.r.t. P , the local densities Zn = dQ/dP |Fn
on the finitely

generated σ-algebras Fn exist, cf. the example above. Hence by Theorem 9.3,

Q[A] =

ˆ

A

Z∞ dP for any A ∈ A.

The approach above can be generalized to probability measures that are not absolutely

continuous:
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Exercise (Lebesgue decomposition, Lebesgue densities). Let P and Q be arbitrary

(not necessarily absolutely continuous) probability measures on (Ω,A). A Lebesgue

density of Q w.r.t. P is a random variable Z : Ω → [0,∞] such that Q = Qa +Qs with

Qa[A] =

ˆ

A

Z dP, Qs[A] = Q[A ∩ {Z = ∞}] for any A ∈ A.

The goal of the exercise is to prove that a Lebesgue density exists if the σ-algebra A is

separable.

(1). Show that if Z is a Lebesgue density of Q w.r.t. P then 1/Z is a Lebesgue density

of P w.r.t. Q. Here 1/∞ := 0 and 1/0 := ∞.

From now on suppose that the σ-algebra is separable with A = σ(
⋃Fn) where (Fn) is

a filtration consisting of σ-algebras generated by finitely many atoms.

(1). Write down Lebesgue densities Zn of Q w.r.t. P on each Fn. Show that

Q[Zn = ∞ and Zn+1 <∞] = 0 for any n,

and conclude that (Zn) is a non-negative supermartingale under P , and (1/Zn) is

a non-negative supermartingale under Q.

(2). Prove that the limit Z∞ = limZn exists both P -almost surely and Q-almost

surely, and P [Z∞ <∞] = 1 and Q[Z∞ > 0] = 1.

(3). Conclude that Z∞ is a Lebesgue density of P w.r.t. Q on A, and 1/Z∞ is a

Lebesgue density of Q w.r.t. P on A.

Derivatives of monotone functions

Suppose that F : [0, 1] → R is a monotone and right-continuous function. After an

appropriate linear transformation we may assume that F is non decreasing with F (0) =

0 and F (1) = 1. Let µ denote the probability measure with distribution function F .

By the example above, the Radon-Nikodym derivative of µ w.r.t. Lebesgue measure on

the σ-algebra Fn = σ(Dn) generated by the n-th dyadic partition of the unit interval

is given by the dyadic difference quotients (9.1.4) of F . By Theorem 9.3, we obtain a

version of Lebesgue’s Theorem on derivatives of monotone functions:
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Corollary 9.4 (Lebesgue’s Theorem). Suppose that F : [0, 1] → R is monotone (and

right continuous). Then the dyadic derivative

F ′(t) = lim
n→∞

dµ

dλ

∣∣∣∣
Fn

(t)

exists for almost every t and F ′ is an integrable function on (0, 1). Furthermore, if F is

absolutely continuous then

F (s) =

s
ˆ

0

F ′(t) dt for all s ∈ [0, 1]. (9.1.7)

Remark. Right continuity is only a normalization and can be dropped from the assump-

tions. Moreover, the assertion extends to function of finite variation since these can be

represented as the difference of two monotone functions, cf. ?? below. Similarly, (9.1.7)

also holds for absolutely continuous functions that are not monotone. See e.g. [Elstrodt:

Maß- und Integrationstheorie] for details.

Absolute continuity of infinite product measures

Suppose that Ω =
∞×
i=1

Si, and

Q =

∞⊗

i=1

νi and P =

∞⊗

i=1

µi

are products of probability measures νi and µi defined on measurable spaces (Si,Si).

We assume that νi and µi are mutually absolutely continuous for every i ∈ N. Denot-

ing by Xk : Ω → Sk the evaluation of the k-th coordinate, the product measures are

mutually absolutely continuous on each of the σ-algebras

Fn = σ(X1, . . . , Xn), n ∈ N,

with relative densities

dQ

dP

∣∣∣∣
Fn

= Zn and
dP

dQ

∣∣∣∣
Fn

= 1/Zn,
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where

Zn =
n∏

i=1

dνi
dµi

(Xi) ∈ (0,∞) P -almost surely.

In particular, (Zn) is a martingale under P , and (1/Zn) is a martingale under Q. Let

F∞ = σ(X1, X2, . . .) denote the product σ-algebra.

Theorem 9.5 (Kakutani’s dichotomy). The infinite product measures Q and P are

either singular or mutually absolutely continuous with relative density Z∞. More pre-

cisely, the following statements are equivalent:

(1). Q≪ P on F∞.

(2). Q ≈ P on F∞.

(3).
∞∏
i=1

´

√
dνi
dµi

dµi > 0.

(4).
∞∑
i=1

d2H(νi, µi) < ∞.

Here the squared Hellinger distance d2H(νi, µi) of mutually absolutely continuous prob-

ability measures ν and µ is defined by

d2H =
1

2

ˆ

(√
dν

dµ
− 1

)2

dµ =
1

2

ˆ

(√
dµ

dν
− 1

)2

dν

= 1−
ˆ

√
dν

dµ
dµ = 1−

ˆ

√
dµ

dν
dν.

Remark. (1). If mutual absolutely continuity holds then the relative densities on F∞

are

dQ

dP
= lim

n→∞
Zn P -almost surely, and

dP

dQ
= lim

n→∞

1

Zn

Q-almost surely.

(2). If ν and µ are absolutely continuous w.r.t. a measure dx then

d2H(ν, µ) =
1

2

ˆ (√
f(x)−

√
g(x)

)2
dx = 1−

ˆ √
f(x)g(x) dx.
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Proof. (1) ⇐⇒ (3): For i ∈ N let Yi :=
dνi
dµi

(Xi). Then the random variables Yi are

independent under both P and Q with EP [Yi] = 1, and

Zn = Y1 · Y2 · · ·Yn.

By Theorem 9.3, the measure Q is absolutely continuous w.r.t. P if and only if the mar-

tingale (Zn) is uniformly integrable. To obtain a sharp criterion for uniform integrability

we switch from L1 to L2, and consider the non-negative martingale

Mn =

√
Y1
β1

·
√
Y2
β2

· · ·
√
Yn
βn

with βi = EP [
√
Yi] =

ˆ

√
dνi
dµi

dµi

under the probability measure P . Note that for n ∈ N,

E[M2
n ] =

n∏

i=1

E[Yi]/β
2
i = 1

/(
n∏

i=1

βi

)2

.

If (3) holds then (Mn) is bounded in L2(Ω,A, P ). Therefore, by Doob’s L2 inequality,

the supremum of Mn is in L2(Ω,A, P ), i.e.,

E[sup |Zn| ] = E[supM2
n] < ∞.

Thus (Zn) is uniformly integrable and Q≪ P on F∞.

Conversely, if (3) does not hold then

Zn = M2
N ·

n∏

i=1

βi −→ 0 P -almost surely,

since Mn converges to a finite limit by the martingale convergence theorem. Therefore,

the absolute continuous part Qa vanishes by Theorem 9.3 (3), i.e., Q is singular w.r.t.

P .

(3) ⇐⇒ (4): For reals βi ∈ (0, 1), the condition
∞∏
i=1

βi > 0 is equivalent to
∞∑
i=1

(1−βi) <
∞. For βi as above, we have

1− βi = 1−
ˆ

√
dνi
dµi

dµi = d2H(νi, µi).

(2) ⇒ (1) is obvious.

(4) ⇒ (2): Condition (4) is symmetric in νi and µi. Hence, if (4) holds then bothQ≪ P

and P ≪ Q.
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Example (Gaussian products). Let P =
∞⊗
i=1

N(0, 1) and Q =
∞⊗
i=1

N(ai, 1) where

(ai)i∈N is a sequence of reals. The relative density of the normal distributions νi :=

N(ai, 1) and µ := N(0, 1) is

dνi
dµ

(x) =
exp(−(x− ai)

2)/2

exp(−x2/2) = exp(aix− a2i /2),

and
ˆ

√
dνi
dµ

dµ =
1√
2π

∞̂

−∞

exp

(
−1

2
(x2 − aix+ a2i /2)

)
dx = exp(−a2i /8).

Therefore, by condition (3) in Theorem 9.5,

Q≪ P ⇐⇒ Q ≈ P ⇐⇒
∞∑

i=1

a2i <∞.

Hence mutual absolute continuity holds for the infinite products if and only if the se-

quence (ai) is contained in ℓ2, and otherwise Q and P are singular.

Remark (Relative entropy). (1). In the singular case, the exponential rate of degen-

eration of the relative densities on the σ-algebras Fn is related to the relative

entropies

H(νi | µi) =

ˆ

dνi
dµi

log
dνi
dµi

dµi =

ˆ

log
dνi
dµi

dνi.

For example in the i.i.d. case µi ≡ µ and νi ≡ ν, we have

1

n
logZn =

1

n

n∑

i=1

log
dν

dµ
(Xi) −→ H(ν | µ) Q-a.s., and

−1

n
logZn =

1

n
logZ−1 −→ H(µ | ν) P -a.s.

as n→ ∞ by the Law of Large Numbers.

In general, logZn−
n∑

i=1

H(νi|µi) is a martingale w.r.t.Q, and logZn+
n∑

i=1

H(νi|µi)

is a martingale w.r.t. P .

(2). The relative entropy is related to the squared Hellinger distance by the inequality
1

2
H(ν | µ) ≥ d2H(ν | µ),

which follows from the elementary inequality
1

2
log x−1 = − log

√
x ≥ 1−

√
x for x > 0.
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9.2 Translations of Wiener measure

We now return to stochastic processes in continuous time. We endow the continuous

path space C([0,∞),Rd) with the σ-algebra generated by the evolution maps Xt(ω) =

ω(t), and with the filtration

FX
t = σ(Xs | s ∈ [0, t]), t ≥ 0.

Note that FX
t consists of all sets of type

{
ω ∈ C([0,∞),Rd) : ω|[0,t] ∈ Γ

}
with Γ ∈ B(C([0, t],Rd)).

In many situations one is interested in the distribution on path space of a process

Bh
t = Bt + h(t)

t

h(t)

Bt

Bt + h(t)

obtained by translating a Brownian motion (Bt) by a deterministic function h : [0,∞) →
Rd. In particular, it is important to know if the distribution of (Bh

t ) has a density w.r.t.

the Wiener measure on the σ-algebras FX
t , and how to compute the densities if they

exist.

Example. (1). Suppose we would like to evaluate the probability that sup
s∈[0,t]

|Bs −

g(s)| < ε for a given t > 0 and a given function g ∈ C([0,∞),Rd) asymptotically

as ε ց 0. One approach is to study the distribution of the translated process

Bt − g(t) near 0.
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(2). Similarly, computing the passage probabilityP [Bs ≥ a+bs for some s ∈ [0, t]]

to a line s 7→ a + bs for a one-dimensional Brownian motion is equivalent to

computing the passage probability to the point a for the translated processBt−bt.

(3). A solution to a stochastic differential equation

dYt = dBt + b(t, Yt)dt

is a translation of the Brownian motion Bt − B0 by the stochastic process Ht =

Y0 +
t́

0

b(s, Ys) ds. Again, in the simplest case (when b(t, y) only depends on t),

Ht is a deterministic function.

The Cameron-Martin Theorem

Let (Bt) denote a continuous Brownian motion withB0 = 0, and let h ∈ C([0,∞),Rd).

The distribution

µh := P ◦ (B + h)−1

of the translated process Bh
t = Bt + h(t) is the image of Wiener measure µ0 under the

translation map

τh : C([0,∞),Rd) −→ C([0,∞),Rd), τh(x) = x+ h.

Recall that Wiener measure is a Gaussian measure on the infinite dimensional space

C([0,∞),Rd). The next exercise discusses translations of Gaussian measures in Rn:

Exercise (Translations of normal distributions). Let C ∈ Rn×n be a symmetric non-

negative definite matrix, and let h ∈ Rn. the image of the normal distribution N(0, C)

under the translation map x 7→ x+ h on Rn is the normal distribution N(h, C).

(1). Show that if C is non-degenerate then N(h, C) ≈ N(0, C) with relative density

dN(h, C)

dN(0, C)
(x) = e(h,x)−

1
2
(h,h) for x ∈ Rn, (9.2.1)

where (g, h) = (g, C−1, h) for g, h ∈ Rn.

University of Bonn 2015/2016



300 CHAPTER 9. CHANGE OF MEASURE

(2). Prove that in general, N(h, C) is absolutely continuous w.r.t. N(0, C) if and only

if h is orthogonal to the kernel of C w.r.t. the Euclidean inner product.

On C([0,∞),Rd), we can usually not expect the existence of a global density of the

translated measures µh w.r.t. µ0. The Cameron-Martin Theorem states that for t ≥ 0, a

relative density on FX
t exists if and only if h is contained in the corresponding Cameron-

Martin space:

Theorem 9.6 (Cameron, Martin). For h ∈ C([0,∞),Rd) and t ∈ R+ the translated

measure µh = µ ◦ τ−1
h is absolutely continuous w.r.t. Wiener measure µ0 on FX

t if and

only if h is an absolutely continuous function on [0, t] with h(0) = 0 and
´ t

0
|h′(s)|2ds <

∞. In this case, the relative density is given by

dµh

dµ0

∣∣∣∣
FX

t

= exp

(
ˆ t

0

h′(s) dXs −
1

2

ˆ t

0

|h′(s)|2 ds
)
. (9.2.2)

where
´ t

0
h′(s) dXs is the Itô integral w.r.t. the canonical Brownian motion (X, µ0).

Before giving a rigorous proof let us explain heuristically why the result should be true.

Clearly, absolute continuity does not hold if h(0) 6= 0, since then the translated paths do

not start at 0. Now suppose h(0) = 0, and fix t ∈ (0,∞). Absolute continuity on FX
t

means that the distribution µt
h of (Bh

s )0≤s≤t on C([0, t],Rd) is absolutely continuous

w.r.t. Wiener measure µt
0 on this space. The measure µt

0, however, is a kind of infinite

dimensional standard normal distribution w.r.t. the inner product

(x, y)H =

ˆ t

0

x′(s) · y′(s) ds

on functions x, y : [0, t] → Rd vanishing at 0, and the translated measure µt
h is a Gaus-

sian measure with mean h and the same covariances.

Choosing an orthonormal basis (ei)i∈N w.r.t. the H-inner product (e.g. Schauder func-

tions), we can identify µt
0 and µt

h with the product measures
∞⊗
i=1

N(0, 1) and
∞⊗
i=1

N(αi, 1)
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respectively where αi = (h, ei)H is the i-th coefficient of h in the basis expansion.

Therefore, µt
h should be absolutely continuous w.r.t. µt

0 if and only if

(h, h)H =
∞∑

i=1

α2
i < ∞,

i.e., if and only if h is absolutely continuous with h′ ∈ L2(0, t).

Moreover, in analogy to the finite-dimensional case (9.2.1), we would expect informally

a relative density of the form

“
dµt

h

dµt
0

(x) = e(h,x)H− 1
2
(h,h)H = exp

(
ˆ t

0

h′(s) · x′(s) ds− 1

2

ˆ t

0

|h′(s)|2 ds
)

”

Since µt
0-almost every path x ∈ C([0,∞),Rd) is not absolutely continuous, this ex-

pression does not make sense. Nevertheless, using finite dimensional approximations,

we can derive the rigorous expression (9.2.2) for the relative density where the integral
´ t

0
h′x′ ds is replaced by the almost surely well-defined stochastic integral

´ t

0
h′ dx :

Proof of Theorem 9.6. We assume t = 1. The proof for other values of t is similar.

Moreover, as explained above, it is enough to consider the case h(0) = 0.

(1). Local densities: We first compute the relative densities when the paths are only

evaluated at dyadic time points. Fix n ∈ N, let ti = i · 2−n, and let

δix = xti+1
− xti

denote the i-th dyadic increment. Then the increments δiBh (i = 0, 1, . . . , 2n−1)

of the translated Brownian motion are independent random variables with distri-

butions

δiB
h = δiB + δih ∼ N(δih, (δt) · Id), δt = 2−n.

Consequently, the marginal distribution of (Bh
t1 , B

h
t2 , . . . , B

h
t2n

) is a normal distri-

bution with density w.r.t. Lebesgue measure proportional to

exp

(
−

2n−1∑

i=0

|δix− δih|2
2δt

)
, x = (xt1 , xt2 , . . . , xt2n ) ∈ R2nd.
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Since the normalization constant does not depend on h, the joint distribution

of (Bh
t1
, Bh

t2
, . . . , Bh

t2n
) is absolutely continuous w.r.t. that of (Bt1 , Bt2 , . . . , Bt2n )

with relative density

exp

(∑ δih

δt
· δix−

1

2

∑∣∣∣∣
δih

δt

∣∣∣∣
2

δt

)
. (9.2.3)

Consequently, µh is always absolutely continuous w.r.t. µ0 on each of the σ-

algebras

Fn = σ(Xi·2−n : i = 0, 1, . . . , 2n − 1), n ∈ N,

with relative densities

Zn = exp

(
2n−1∑

i=0

δih

δt
· δiX − 1

2

2n−1∑

i=0

∣∣∣∣
δih

δt

∣∣∣∣
2

δt

)
. (9.2.4)

(2). Limit of local densities: Suppose that h is absolutely continuous with
ˆ 1

0

|h′(t)|2 dt < ∞.

We now identify the limit of the relative densities Zn as n→ ∞.

First, we note that

2n−1∑

i=0

∣∣∣∣
δih

δt

∣∣∣∣
2

δt −→
ˆ 1

0

|h′(t)|2 dt as n→ ∞.

In fact, the sum on the right hand side coincides with the squared L2 norm
ˆ 1

0

∣∣∣dh/dt|σ(Dn)

∣∣∣
2

dt

of the dyadic derivative

dh

dt

∣∣∣∣
σ(Dn)

=

2n−1∑

i=0

δih

δt
· I((i−1)·2−n,i·2−n]

on the σ-algebra generated by the intervals ((i − 1) · 2−n, i · 2−n]. If h is abso-

lutely continuous with h′ ∈ L2(0, 1) then
dh

dt

∣∣∣∣
σ(Dn)

→ h′(t) in L2(0, 1) by the L2

martingale convergence theorem.
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Furthermore, by Itô’s isometry,

2n−1∑

i=0

δih

δt
· δiX →

ˆ 1

0

h′(s) dXs in L2(µ0) as n→ ∞. (9.2.5)

Indeed, the sum on the right-hand side is the Itô integral of the step function
dh

dt

∣∣∣∣
σ(Dn)

w.r.t. X , and as remarked above, these step functions converge to h′ in

L2(0, 1). Along a subsequence, the convergence in (9.2.5) holds µ0-almost surely,

and hence by (9.2.4),

lim
n→∞

Zn = exp




1
ˆ

0

h′(s) dXs −
1

2

1
ˆ

0

|h′(s)|2 ds


 µ0-a.s. (9.2.6)

(3). Absolute continuity on FX
1 : We still assume h′ ∈ L2(0, 1). Note that FX

1 =

σ(
⋃Fn). Hence for proving that µh is absolutely continuous w.r.t. µ0 on FX

1 with

density given by (9.2.6), it suffices to show that lim supZn <∞ µh-almost surely

(i.e., the singular part in the Lebesgue decomposition of µh w.r.t. µ0 vanishes).

Since µh = µ0 ◦ τ−1
h , the process

Wt = Xt − h(t) is a Brownian motion w.r.t. µh,

and by (9.2.3) and (9.2.4),

Zn = exp

(
2n−1∑

i=0

δih

δt
· δiW +

1

2

2n−1∑

i=0

∣∣∣∣
δih

δt

∣∣∣∣
2

δt

)
.

Note that the minus sign in front of the second sum has turned into a plus by the

translation! Arguing similarly as above, we see that along a subsequence, (Zn)

converges µh-almost surely to a finite limit:

limZn = exp




1
ˆ

0

h′(s) dWs +
1

2

1
ˆ

0

|h′(s)|2 ds


 µh-a.s.

Hence µh ≪ µ0 with density limZn.
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(4). Singularity on FX
1 : Conversely, let us suppose now that h is not absolutely con-

tinuous or h′ is not in L2(0, 1). Then

2n−1∑

i=0

∣∣∣∣
δih

δit

∣∣∣∣
2

δt =

1
ˆ

0

∣∣∣∣
dh

dt

∣∣∣∣
2

σ(Dn)

dt −→ ∞ as n→ ∞.

Since ∥∥∥∥∥
2n−1∑

i=0

δih

δt
· δiX

∥∥∥∥∥
L2(µ0)

=

(
2n−1∑

i=0

(
δih

δt

)2

δt

)1/2

,

we can conclude by (9.2.4) that

limZn = 0 µ0-almost surely,

i.e., µh is singular w.r.t. µ0.

In Section 11.5, we will give an alternative proof of the Cameron-Martin Theorem.

Passage times for Brownian motion with constant drift

We now consider a one-dimensional Brownian motion with constant drift β, i.e., a pro-

cess

Yt = Bt + βt, t ≥ 0,

where Bt is a Brownian motion starting at 0 and β ∈ R. We will apply the Cameron-

Martin Theorem to compute the distributions of the first passage times

T Y
a = min{t ≥ 0 : Yt = a}, a > 0.

Note that T Y
a is also the first passage time to the line t 7→ a − βt for the Brownian

motion (Bt).
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Theorem 9.7. For a > 0 and β ∈ R, the restriction of the distribution of T Y
a to (0,∞)

is absolutely continuous with density

fa,β(t) =
a√
2πt3

exp

(
−(a− βt)2

2t

)
.

In particular,

P [T Y
a <∞] =

∞̂

0

fa,β(s) ds.

Proof. Let h(t) = βt. By the Cameron-Martin Theorem, the distribution µh of (Yt) is

absolutely continuous w.r.t. Wiener measure on FX
t with density

Zt = exp(β ·Xt − β2t/2).

Therefore, denoting by Ta = inf{t ≥ 0 : Xt = a} the passage time of the canonical

process, we obtain

P [T Y
a ≤ t] = µh[Ta ≤ t] = Eµ0 [Zt ; Ta ≤ t]

= Eµ0 [ZTa
; Ta ≤ t] = Eµ0 [exp(βa−

1

2
β2Ta) ; Ta ≤ t]

=

ˆ t

0

exp(βa− β2s/2) fTa
(s) ds

by the optional sampling theorem. The claim follows by inserting the explicit expression

for fTa
derived in Corollary 1.25.

9.3 Girsanov transform

We will now extend the results in the previous section 9.2 considerably. To this end, we

will consider locally absolutely continuous changes of measure with local densities of

type

Zt = exp

(
ˆ t

0

Gs · dXs − 1

2

ˆ t

0

|Gs|2 ds
)
,

University of Bonn 2015/2016



306 CHAPTER 9. CHANGE OF MEASURE

where (Gs) is an adapted process. Recall that the densities in the Cameron-Martin-

Theorem took this form with the deterministic function Gs = h′(s). We start with a

general discussion about changing measure on filtered probability spaces that will be

useful in other contexts as well.

Change of measure on filtered probability spaces

Let (Ft) be a filtration on a measurable space (Ω,A), and fix t0 ∈ (0,∞). We consider

two probability measures P and Q on (Ω,A) that are mutually absolutely continuous

on the σ-algebra Ft0 with relative density

Zt0 =
dP

dQ

∣∣∣
Ft0

> 0 Q-almost surely.

Then P and Q are also mutually absolutely continuous on each of the σ-algebras Ft,

t ≤ t0, with Q- and P -almost surely strictly positive relative densities

Zt =
dP

dQ

∣∣∣
Ft

= EQ

[
Zt0

∣∣Ft

]
and

dQ

dP

∣∣∣
Ft

=
1

Zt
.

The process (Zt)t≤t0 is a martingale w.r.t. Q, and, correspondingly, (1/Zt)t≤t0 is a mar-

tingale w.r.t. P . From now on, we always choose a right continuous version of these

martingales.

Lemma 9.8. 1) For any 0 ≤ s ≤ t ≤ t0, and for any Ft-measurable random vari-

able X : Ω → [0,∞],

EP [X|Fs] =
EQ[XZt|Fs]

EQ[Zt|Fs]
=

EQ[XZt|Fs]

Zs
P -a.s. and Q-a.s. (9.3.1)

2) Suppose that (Mt)t≤t0 is an (Ft) adapted right continuous stochastic process.

Then

(i) M is a martingale w.r.t. P ⇔ M · Z is a martingale w.r.t. Q,

(ii) M is a local martingale w.r.t. P ⇔ M ·Z is a local martingale w.r.t. Q.
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Proof. 1) The right hand side of (9.3.1) is Fs-measurable. Moreover, for any A ∈ Fs,

EP [EQ[XZt|Fs]/Zs ; A] = EQ[EQ[XZt|Fs] ; A]

= EQ[XZt ; A] = EQ[X ; A].

2) (i) is a direct consequence of 1). Moreover, by symmetry, it is enough to prove

the implication "⇐" in (ii). Hence suppose that M · Z is a local Q-martingale with

localizing sequence (Tn). We show that MTn is a P -martingale, i.e.,

EP [Mt∧Tn
; A] = EP [Ms∧Tn

; A] for any A ∈ Fs, 0 ≤ s ≤ t ≤ t0. (9.3.2)

To verify (9.3.2), we first note that

EP [Mt∧Tn
; A ∩ {Tn ≤ s}] = EP [Ms∧Tn

; A ∩ {Tn ≤ s}] (9.3.3)

since t ∧ Tn = Tn = s ∧ Tn on {Tn ≤ s}. Moreover, one verifies from the definition of

the σ-algebra Fs∧Tn
that for any A ∈ Fs, the event A∩{Tn > s} is contained in Fs∧Tn

,

and hence in Ft∧Tn
. Therefore,

EP [Mt∧Tn
; A ∩ {Tn > s}] = EQ[Mt∧Tn

Zt∧Tn
; A ∩ {Tn > s}] (9.3.4)

= EQ[Ms∧Tn
Zs∧Tn

; A ∩ {Tn > s}]] = EP [Ms∧Tn
; A ∩ {Tn > s}]

by the martingale property for (MZ)Tn , the optional sampling theorem, and the fact

that P ≪ Q on Ft∧Tn
with relative density Zt∧Tn

. (9.3.2) follows from (9.3.3) and

(9.3.4).

Girsanov’s Theorem

We now return to our original problem of identifying the change of measure induced

by a random translation of the paths of a Brownian motion. Suppose that (Xt) is a

Brownian motion in Rd with X0 = 0 w.r.t. the probability measure Q and the filtration

(Ft), and fix t0 ∈ [0,∞). Let

Lt =

ˆ t

0

Gs · dXs, t ≥ 0,
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with G ∈ L2
a,loc

(
R+,R

d
)
. Then [L]t =

´ t

0
|Gs|2 ds, and hence

Zt = exp
(ˆ t

0

Gs · dXs −
1

2

ˆ t

0

|Gs|2 ds
)

(9.3.5)

is the exponential of L. In particular, since L is a local martingale w.r.t. Q, Z is a non-

negative local martingale, and hence a supermartingale w.r.t. Q. It is a Q-martingale for

t ≤ t0 if and only if EQ[Zt0 ] = 1:

Exercise (Martingale property for exponentials). Let (Zt)t∈[0,t0] on (Ω,A, Q) be a

non-negative local martingale satisfying Z0 = 1.

a) Show that Z is a supermartingale.

b) Prove that Z is a martingale if and only if EQ[Zt0 ] = 1.

In order to use Zt0 for changing the underlying probability measure on Ft0 we have to

assume the martingale property:

Assumption. (Zt)t≤t0 is a martingale w.r.t. Q.

Theorem 9.10 below implies that the assumption is satisfied if

E

[
exp

(
1

2

ˆ t

0

|Gs|2 ds
)]

< ∞.

If the assumption holds then we can consider a probability measure P on A with

dP

dQ

∣∣∣
Ft0

= Zt0 Q-a.s. (9.3.6)

Note that P and Q are mutually absolutely continuous on Ft for any t ≤ t0 with

dP

dQ

∣∣∣
Ft

= Zt and
dQ

dP

∣∣∣
Ft

=
1

Zt

both P - and Q-almost surely. We are now ready to prove one of the most important

results of stochastic analysis:
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Theorem 9.9 (Maruyama 1954, Girsanov 1960). Suppose that X is a d-dimensional

Brownian motion w.r.t. Q and (Zt)t≤t0 is defined by (9.3.5) with G ∈ L2
a,loc(R+,R

d). If

EQ[Zt0 ] = 1 then the process

Bt := Xt −
ˆ t

0

Gs ds, t ≤ t0,

is a Brownian motion w.r.t. any probability measure P on A satisfying (9.3.6).

Proof. By the extension of Lévy’s characterization of Brownian motion to the multi-

dimensional case, it suffices to show that (Bt)t≤t0 is an Rd-valued P -martingale with

[Bi, Bj]t = δijt P -almost surely for any i, j ∈ {1, . . . , d}, cf. Theorem 11.2 below.

Furthermore, by Lemma 9.8, and since P and Q are mutually absolutely continuous

on Ft0 , this holds true provided (BtZt)t≤t0 is an Rd valued local martingale under Q,

and [Bi, Bj] = δijt Q-almost surely. The identity for the covariations holds since (Bt)

differs from the Q-Brownian motion (Xt) only by a continuous finite variation process.

To show that B · Z is a local Q-martingale, we apply Itô’s formula: For 1 ≤ i ≤ d,

d(Bi Z) = Bi dZ + Z dBi + d[Bi, Z] (9.3.7)

= BiZG · dX + Z dX i − Z Gidt+ ZGi dt,

where we have used that

d[Bi, Z] = ZG · d[Bi, X ] = ZGi dt Q-almost surely.

The right-hand side of (9.3.7) is a stochastic integral w.r.t. the Q-Brownian motion X ,

and hence a local Q-martingale.

The theorem shows that if X is a Brownian motion w.r.t. Q, and Z defined by (9.3.5) is

a Q-martingale, then X satisfies

dXt = Gt dt + dBt.

with a P -Brownian motionB. This can be used to construct weak solutions of stochastic

differential equations by changing the underlying probability measure, see Section 11.3
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below. For instance, if we choose Gt = b(Xt) then the Q-Brownian motion (Xt) is a

solution to the SDE

dXt = b(Xt) dt + dBt,

where B is a Brownian motion under the modified probability measure P .

Furthermore, Girsanov’s Theorem generalizes the Cameron-Martin Theorem to non-

deterministic adapted translations

Xt(ω) −→ Xt(ω)−Ht(ω), Ht =

ˆ t

0

Gs ds,

of a Brownian motion X .

Remark (Assumptions in Girsanov’s Theorem).

1) Absolute continuity and adaptedness of the “translation process” Ht =
´ t

0
Gs ds are

essential for the assertion of Theorem 9.9.

2) The assumption EQ[Zt0 ] = 1 ensuring that (Zt)t≤t0 is a Q-martingale is not always

satisfied − a sufficient condition is given in Theorem 9.10 below. If (Zt) is not a martin-

gale w.r.t. Q it can still be used to define a positive measure Pt with density Zt w.r.t. Q

on each σ-algebra Ft. However, in this case, Pt[Ω] < 1. The sub-probability measures

Pt correspond to a transformed process with finite life-time.

Novikov’s condition

To verify the assumption in Girsanov’s theorem, we now derive a sufficient condition

for ensuring that the exponential

Zt = exp
(
Lt − 1/2 [L]t

)

of a continuous local (Ft) martingale (Lt) is a martingale. Recall that Z is always a

non-negative local martingale, and hence a supermartingale w.r.t. (Ft).

Theorem 9.10 (Novikov 1971). Let t0 ∈ R+. If E[exp
(
[L]t0/2

)
] <∞ then (Zt)t≤t0 is

an (Ft) martingale.
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We only prove the theorem under the slightly more restrictive condition

E [exp(p[L]t/2)] < ∞ for some p > 1. (9.3.8)

This simplifies the proof considerably, and the condition is sufficient for many applica-

tions. For a proof in the general case and under even weaker assumptions see e.g. [37].

Proof. Let (Tn)n∈N be a localizing sequence for the martingale Z. Then (Zt∧Tn
)t≥0 is a

martingale for any n. To carry over the martingale property to the process (Zt)t∈[0,t0], it

is enough to show that the random variables Zt∧Tn
, n ∈ N, are uniformly integrable for

each fixed t ≤ t0. However, for c > 0 and p, q ∈ (1,∞) with p−1 + q−1 = 1, we have

E[Zt∧Tn
; Zt∧Tn

≥ c]

= E
[
exp

(
Lt∧Tn

− p

2
[L]t∧Tn

)
exp

(p− 1

2
[L]t∧Tn

)
; Zt∧Tn

≥ c
]

(9.3.9)

≤ E
[
exp

(
pLt∧Tn

− p2

2
[L]t∧Tn

)]1/p · E
[
exp

(
q · p− 1

2
[L]t∧Tn

)
; Zt∧Tn

≥ c
]1/q

≤ E
[
exp

(p
2
[L]t
)
; Zt∧Tn

≥ c
]1/q

for any n ∈ N. Here we have used Hölder’s inequality and the fact that exp
(
pLt∧Tn

−
p2

2
[L]t∧Tn

)
is an exponential supermartingale. If exp

(
p
2
[L]t
)

is integrable then the right

hand side of (9.3.9) converges to 0 uniformly in n as c→ ∞, because

P [Zt∧Tn
≥ 0] ≤ c−1 E[Zt∧Tn

] ≤ c−1 −→ 0

uniformly in n as c → ∞. Hence {Zt∧Tn
: n ∈ N} is indeed uniformly integrable, and

thus (Zt)t∈[0,t0] is a martingale.

Example (Bounded drifts). If Lt =
´ t

0
Gs · dXs with a Brownian motion (Xt) and

an adapted process (Gt) that is uniformly bounded on [0, t] for any finite t then the

quadratic variation [L]t =
´ t

0
|Gs|2 ds is also bounded for finite t. Hence exp(L− 1

2
[L])

is an (Ft) martingale for t ∈ [0,∞).

Example (Option pricing in continuous time II: Risk-neutral measure). We con-

sider the asset price model in continuous time introduced in the beginning of Chapter 8.

The stock price is modelled by an SDE

dSt = αtSt dt + σtSt dXt, (9.3.10)
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and the interest rate is given by (Rt). We assume that (Xt) is a Brownian motion and

(αt), (Rt), (σt) and (1/σt) are adapted bounded continuous processes, all defined on a

filtered probability space (Ω,A, Q, (Ft)). Then the discounted asset price

S̃t := exp

(
−
ˆ t

0

Rs ds

)
St

satisfies

dS̃t = (αt − Rt)S̃t dt + σtS̃t dXt = σtS̃t dBt, (9.3.11)

where

Bt := Xt +

ˆ t

0

αs − Rs

σs
ds.

We can apply Girsanov’s Theorem and the Novikov condition to conclude that the pro-

cess (Bt) is a Brownian motion under a probability measure P on (Ω,A) with local

densities w.r.t. Q on Ft given by

Zt = exp
(ˆ t

0

Gs · dXs −
1

2

ˆ t

0

|Gs|2 ds
)

where Gt = (Rt − αt)/σt.

Therefore, by (9.3.11) and by the assumptions on the coefficients, the process (S̃t) is a

martingale under Q. The measure Q can now be used to compute option prices under

a no-arbitrage assumption similarly to the discrete time case considered in Section 2.3

above, see Section 9.4.

9.4 Itô’s Representation Theorem and Option Pricing

We now prove two basic representation theorems for functionals and martingales that

are adapted w.r.t. the filtration generated by a Brownian motion. Besides their intrin-

sic interest, such representation theorems are relevant e.g. for the theory of financial

markets, and for stochastic filtering. Throughout this section, (Bt) denotes a Brownian

motion starting at 0 on a probability space (Ω,A, P ), and

Ft = σ(Bs : s ∈ [0, t])P , t ≥ 0,

is the completed filtration generated by (Bt). It is crucial that the filtration does not con-

tain additional information. By the factorization lemma, this implies that Ft measurable
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random variables F : Ω → R are almost surely functions of the Brownian path (Bs)s≤t.

Indeed, we will show that such functions can be represented as stochastic integrals.

Representation theorems for functions and martingales

The first version of Itô’s Representation Theorem states that random variables that are

measurable w.r.t. the σ-algebra F1 = FB,P
1 can be represented as stochastic integrals:

Theorem 9.11 (Itô). For any function F ∈ L2(Ω,F1, P ) there exists a unique process

G ∈ L2
a(0, 1) such that

F = E[F ] +

ˆ 1

0

Gs · dBs P -almost surely. (9.4.1)

An immediate consequence of Theorem 9.11 is a corresponding representation for mar-

tingales w.r.t. the Brownian filtration Ft = FB,P
t :

Corollary 9.12 (Itô representation for martingales). For any right-continuous L2-

bounded (Ft) martingale (Mt)t∈[0,1] there exists a unique process G ∈ L2
a(0, 1) such

that

Mt = M0 +

ˆ t

0

Gs · dBs for any t ∈ [0, 1], P -a.s.

The corollary is of fundamental importance in financial mathematics where it is related

to completeness of financial markets. It also proves the remarkable fact that every

martingale w.r.t. the Brownian filtration has a continuous modification! Of course,

this result can not be true w.r.t. a general filtration.

We first show that the corollary follows from Theorem 9.11, and then we prove the

theorem:
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Proof of Corollary 9.12. If (Mt)t∈[0,1] is an L2 bounded (Ft) martingale then M1 ∈
L2(Ω,F1, P ), and

Mt = E[M1|Ft] a.s. for any t ∈ [0, 1].

Hence, by Theorem 9.11, there exists a unique process G ∈ L2
a(0, 1) such that

M1 = E[M1] +

ˆ 1

0

G · dB = M0 +

ˆ 1

0

G · dB a.s.,

and thus

Mt = E[M1|Ft] = M0 +

ˆ t

0

G · dB a.s. for any t ∈ [0, 1].

Since both sides in the last equation are almost surely right continuous, the identity

actually holds simultaneously for all t ∈ [0, 1] with probability 1.

Proof of Theorem 9.11. Uniqueness. Suppose that (9.4.1) holds for two processesG, G̃ ∈
L2
a(0, 1). Then

ˆ 1

0

G · dB =

ˆ 1

0

G̃ · dB,

and hence, by Itô’s isometry,

||G− G̃||L2(P⊗λ) =
∣∣∣
∣∣∣
ˆ

(G− G̃) · dB
∣∣∣
∣∣∣
L2(P )

= 0.

Hence Gt(ω) = G̃t(ω) for almost every (t, ω).

Existence. We prove the existence of a representation as in (9.4.1) in several steps −
starting with “simple” functions F .

1. Suppose that F = exp(ip · (Bt −Bs)) for some p ∈ Rd and 0 ≤ s ≤ t ≤ 1. By Itô’s

formula,

exp(ip ·Bt+
1

2
|p|2t) = exp(ip ·Bs+

1

2
|p|2s) +

ˆ t

s

exp
(
ip ·Br +

1

2
|p|2r

)
ip · dBr.

Rearranging terms, we obtain an Itô representation for F with a bounded adapted inte-

grand G.

2. Now suppose that F =
n∏

k=1

Fk where Fk = exp
(
ipk · (Btk −Btk−1

)
)

for some n ∈ N,
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p1, . . . , pn ∈ Rd, and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. Denoting by Gk the bounded

adapted process in the Itô representation for Fk, we have

F =
n∏

k=1

(
E[Fk] +

ˆ tk+1

tk

Gk · dB
)
.

We show that the right hand side can be written as the sum of
∏n

k=1E[Fk] and a stochas-

tic integral w.r.t.B. For this purpose, it suffices to verify that the product of two stochas-

tic integralsXt =
´ t

0
G · dB and Yt =

´ t

0
H · dB with bounded adapted processes G and

H is the stochastic integral of a process in L2
a(0, 1) provided

´ 1

0
Gt · Ht dt = 0. This

holds true, since by the product rule,

X1Y1 =

ˆ 1

0

XtHt · dBt +

ˆ 1

0

YtGt · dBt +

ˆ 1

0

Gt ·Ht dt,

and XH + Y G is square-integrable by Itô’s isometry.

3. Clearly, an Itô representation also holds for any linear combination of functions as in

Step 2.

4. To prove an Itô representation for arbitrary functions in L2(Ω,F1, P ), we first note

that the linear combinations of the functions in Step 2 form a dense subspace of the

Hilbert spaceL2(Ω,F1, P ). Indeed, if φ is an element in L2(Ω,F1, P ) that is orthogonal

to this subspace then

E
[
φ

n∏

k=1

exp(ipk · (Btk −Btk−1
))
]

= 0

for any n ∈ N, p1, . . . , pn ∈ Rd and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ 1. By Fourier inversion,

this implies

E[φ | σ(Btk − Btk−1
: 1 ≤ k ≤ n)] = 0 a.s.

for any n ∈ N and 0 ≤ t0 ≤ · · · ≤ tn ≤ 1, and hence φ = 0 a.s. by the Martingale

Convergence Theorem.

Now fix an arbitrary function F ∈ L2(Ω,F1, P ). Then by Step 3, there exists a sequence

(Fn) of functions in L2(Ω,F1, P ) converging to F in L2 that have a representation of

the form

Fn − E[Fn] =

ˆ 1

0

G(n) · dB (9.4.2)
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with processes G(n) ∈ L2
a(0, 1). As n→ ∞,

Fn − E[Fn] −→ F − E[F ] in L2(P ).

Hence, by (9.4.2) and Itô’s isometry, (G(n)) is a Cauchy sequence in L2(P ⊗ λ(0,1)).

Denoting by G the limit process, we obtain the representation

F −E[F ] =

ˆ 1

0

G · dB

by taking the L2 limit on both sides of (9.4.2).

Application to option pricing

We return to the asset price model considered at the end of Section 9.3. For simplicity,

we now assume that the coefficients in (9.3.10) and (9.3.11) are constant:

αt ≡ α ∈ R, σt ≡ σ ∈ (0,∞), Rt ≡ r ∈ R.

Then the change of measure is given by the local densities

Zt = exp

(
r − α

σ
Xt −

1

2

(
r − α

σ

)2

t

)
, (9.4.3)

and by (9.3.11), the discounted stock price is proportional to the Itô exponential of σB

where Bt = Xt +
α−r
σ
t is a Brownian motion under the risk-neutral measure Q:

S̃t = S0 · exp(σBt − σ2t/2) (9.4.4)

Now suppose that we want to compute the no-arbitrage price of an option. For example,

let us consider a European call option where the payoff at the final time t0 is given by

Vt0 = (St0 −K)+

for a positive constant K. By (9.4.4), the discounted payoff

Ṽt0 =
(
S̃t0 − e−rt0K

)+
(9.4.5)
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is an FB,P
t0 measurable random variable. Therefore, by Itô’s Representation Theorem

and (9.4.4), there exists a process G ∈ L2
a(0, t0) such that

Ṽt0 = EP

[
Ṽt0

]
+

ˆ t0

0

Gr dBr = EP

[
Ṽt0

]
+

ˆ t0

0

Φr dS̃r,

where Φr := Gr/(σS̃r). Hence (Φr) is a replicating strategy for the option, i.e., in-

vesting Φr units in the stock and putting the remaining money on the bank account

yields exactly the payoff for the option at time t0 provided our initial capital is given by

EP

[
Ṽt0

]
. Since otherwise there would be an arbitrage opportunity by selling the option

and investing the gain by the strategy Φ, or conversely, we can conclude that under a

no-arbitrage assumption, the only possible option price at time 0 is given by

EP

[
Ṽt0

]
= EP

[(
S0e

σBt0−σ2t0/2 − e−rt0K
)+]

Noting that Bt0 ∼ N(0, t0) under P , we obtain the Black-Scholes formula for the no-

arbitrage price of a European call option. Notice in particular that the price does not

depend on the usually unknown model parameter α (the mean rate of return).

Application to stochastic filtering

XXX to be included
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Appendix A

Conditional expectations

A.1 Conditioning on discrete random variables

We first consider conditioning on the value of a random variable Y : Ω → S where S is

countable. In this case, we can define the conditional probability measure

P [A | Y = z] =
P [A ∩ {Y = z}]

P [Y = z]
, A ∈ A,

and the conditional expectations

E[X | Y = z] =
E[X ; Y = z]

P [Y = z]
, X ∈ L1(Ω,A, P ),

for any z ∈ S with P [Y = z] > 0 in an elementary way. Note that for z ∈ S with

P [Y = z] = 0, the conditional probabilities are not defined.

Conditional expectations as random variables

It will turn out to be convenient to consider the conditional probabilities and expecta-

tions not as functions of the outcome z, but as functions of the random variable Y . In

this way, the conditional expectations become random variables:

549



550 APPENDIX A. CONDITIONAL EXPECTATIONS

Definition (Conditional expectation given a discrete random variable). Let X :

Ω → R be a random variable such that E[X−] < ∞, and let Y : Ω → S be a dis-

crete random variable. The random variable E[X | Y ] that is P -almost surely uniquely

defined by

E[X | Y ] := g(Y ) =
∑

z∈S
g(z) · I{Y=z}

with

g(z) :=




E[X | Y = z] if P [Y = z] > 0

arbitrary if P [Y = z] = 0

is called (a version of the) conditional expectation of X given Y . For an event A ∈ A,

the random variable

P [A | Y ] := E[IA | Y ]

is called (a version of the) conditional probability of A given Y .

The conditional expectationE[X |Y ] and the conditional probability P [A |Y ] are again

random variables.They take the values E[X | Y = z] and P [A | Y = z], respectively,

on the sets {Y = z}, z ∈ S with P [Y = z] > 0. On each of the null sets {Y =

z}, z ∈ S with P [Y = z] = 0, an arbitrary constant value is assigned to the conditional

expectation. Hence the definition is only almost surely unique.

Characteristic properties of conditional expectations

Let X : Ω → R be a non-negative or integrable random variable on a probability space

(Ω,A, P ). The following alternative characterisation of the conditional expectation of

X given Y can be verified in an elementary way:

Theorem A.1. A real random variable X ≥ 0 (or X ∈ L1) on (Ω,A, P ) is a version

of the conditional expectation E[X | Y ] if and only if

(I) X = g(Y ) for a function g : S → R, and
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(II) E
[
X · f(Y )

]
= E[X · f(Y )] for all non-negative or bounded functions f :

S → R, respectively.

A.2 General conditional expectations

If Y is a real-valued random variable on a probability space (Ω,A, P ) with continuous

distribution function, then P [Y = z] = 0 for any z ∈ R. Therefore, conditional

probabilities given Y = z can not be defined in the same way as above. Alternatively,

one could try to define conditional probabilities given Y as limits:

P [A | Y = z] = lim
hց0

P [A | z − h ≤ Y ≤ z + h]. (A.2.1)

In certain cases this is possible but in general, the existence of the limit is not guaran-

teed.

Instead, the characterization in Theorem A.1 is used to provide a definition of condi-

tional expectations given general random variables Y . The conditional probability of a

fixed eventA given Y can then be defined almost surely as a special case of a conditional

expectation:

P [A | Y ] := E[IA | Y ]. (A.2.2)

Note, however, that in general, the exceptional set will depend on the event A !

The factorization lemma

We first prove an important measure theoretic statement.

Theorem A.2 (Factorization lemma). Suppose that (S,S) is a measurable space and

Y : Ω → S is a map. Then a map X : Ω → R is measurable w.r.t. σ(Y ) if and only if

X = f(Y ) = f ◦ Y
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for a S-measurable function f : S → R.

(Ω, σ(Y )) (S,S) (R,B(R))
Y

X

Proof. (1). If X = f ◦ Y for a measurable function f , then

X−1(B) = Y −1(f−1(B)) ∈ σ(Y ) holds for all B ∈ B(R),

as f−1(B) ∈ S. Therefore, X is σ(Y )-measurable.

(2). Coversely, we have to show that σ(Y )-measurability of X implies that X is a

measurable function of Y . This is done in several steps:

(a) If X = IA is an indicator function of an set A ∈ σ(Y ), then A = Y −1(B)

with B ∈ S, and thus

X(ω) = IY −1(B)(ω) = IB(Y (ω)) for all ω ∈ Ω.

(b) For X =
∑n

i=1 ciIAi
with Ai ∈ σ(Y ) and ci ∈ R we have correspondingly

X =
n∑

i=1

ciIBi
(Y ),

where wobei Bi are sets in S such that Ai = Y −1(Bi).

(c) For an arbitrary non-negative, σ(Y )-measurable map X : Ω → R, there

exists a sequence of σ(Y )-measurable elementary functions such thatXn ր
X . By (b), Xn = fn(Y ) with S-measurable functions fn. Hence

X = supXn = sup fn(Y ) = f(Y ),

where f = sup fn is again S-measurable.

(d) For a general σ(Y )-measurable map X : Ω → R, both X+ and X− are

measurable functions of Y , hence X is a measurable function of Y as well.
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The factorization lemma can be used to rephrase the characterizing properties (I) und

(II) of conditional expectations in Theorem A.1 in the following way:

X is a version of E[X | Y ] if and only if

(i) X ist σ(Y )-messbar,

(ii) E[X ; A] = E[X ; A] für alle A ∈ σ(Y ).

The equivalence of (I) und (i) is a consequence of the factorization lemma, and the

equivalence of (II) and (ii) follows by monotone classes, since (ii) states that

E[X · IB(Y )] = E[X · IB(Y )] holds for all B ∈ S.

Conditional expecations given σ-algebras

A remarkable consequence of the characterization of conditional expectations by Con-

ditions (i) and (ii) is that the conditional expectation E[X | Y ] depends on the random

variable Y only via the σ-algebra σ(Y ) generated by Y ! If two random variables Y

and Z are functions of each other then σ(Y ) = σ(Z), and hence the conditional expec-

tations E[X | Y ] and E[X | Z] coincide (with probability 1). Therefore it is plausible

to define directly the conditional expectation given a σ-Algebra. The σ-algebra (e.g.

σ(Y ), or σ(Y1, . . . , Yn)) then describes the available “information” on which we are

conditioning.

The characterization of conditional expectations by (i) and (ii) can be extended immedi-

ately to the case of general conditional expectations given a σ-algebra or given arbitrary

random variables. To this end let X : Ω → R be a non-negative (or integrable) random

variable on a probability space (Ω,A, P ).

Definition (Conditional expectation, general). (1). Let F ⊆ A be a σ-algebra. A

non-negative (or integrable) random variable X : Ω → R is called a version of

the conditional expectation E[X | F ] iff:
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(a) X is F -measurable, and

(b) E[X ; A] = E[X ; A] for any A ∈ F .

(2). For arbitrary random variables Y, Y1, Y2, . . . , Yn on (Ω,A, P ) we define

E[X | Y ] := E[X | σ(Y )],

E[X | Y1, . . . Yn] := E[X | (Y1, . . . , Yn)] = E[X | σ(Y1, . . . , Yn)].

(3). For an event A ∈ A we define

P [A |F ] := E[IA |F ], and correspondingly P [A |Y ] = E[IA |Y ].

Remark. By monotone classes it can be shown that Condition (b) is equivalent to:

(b’) E[X · Z] = E[X · Z] for any non-negative (resp. bounded) F -measurable

Z : Ω → R.

Theorem A.3 (Existence and uniqueness of conditional expectations). Let X ≥ 0 or

X ∈ L1, and let F ⊆ A be a σ-algebra. Then:

(1). There exists a version of the conditional expectation E[X | F ].

(2). Any two versions coincide P -almost surely.

Proof. Existence can be shown as a consequence of the Radon-Nikodym theorem. In

Theorem A.8 below, we give a different proof of existence that only uses elementary

methods.

For proving uniqueness let X and X̃ be two versions of E[X | F ]. Then both X and X̃

are F -measurable, and

E[X ; A] = E[X̃ ; A] for any A ∈ F .

Therefore, X = X̃ P -almost surely.
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Properties of conditional expectations

Starting form the definition, we now derive several basic properties of conditional ex-

pectations that are used frequently:

Theorem A.4. Let X, Y and Xn (n ∈ N) be non-negative or integrable random vari-

ables on (Ω,A, P ), and let F ,G ⊆ A be σ-algebras.

The following assertions hold:

(1). Linearity: E[λX + µY | F ] = λ E[X | F ] + µ E[Y | F ] P -almost surely for

any λ, µ ∈ R.

(2). Monotonicity: If X ≥ 0 P -almost surely, then E[X | F ] ≥ 0 P -almost surely.

(3). If X = Y P -almost surely then E[X | F ] = E[Y | F ] P -almost surely.

(4). Monotone Convergence: If (Xn) is increasing with X1 ≥ 0, then

E[supXn | F ] = supE[Xn | F ] P -almost surely.

(5). Tower Property: If G ⊆ F then

E[E[X | F ] | G] = E[X | G] P -almost surely.

In particular,

E[E[X | Y, Z] | Y ] = E[X|Y ] P -almost surely.

(6). Taking out what is known: Let Y be F -measurable such that Y ·X ∈ L1 or ≥ 0.

Then

E[Y ·X | F ] = Y · E[X | F ] P -almost surely.

(7). Independence: If X is independent of F then E[X |F ] = E[X ] P -almost surely.

(8). Let (S,S) and (T, T ) be measurable spaces. If Y : Ω → S is F -measurable

and X : Ω → T is independent of F , then for any product-measurable function

f : S × T → [0,∞) we have

E[f(X, Y ) | F ](ω) = E[f(X, Y (ω))] für P -fast alle ω.
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Proof. (1). Aus der Linearität des Erwartungswertes folgt, dass λE[X |F ]+µE[Y |F ]

eine Version der bedingten Erwartung E[λX + µY | F ] ist.

(2). Sei X eine Version von E[X | F ]. Aus X ≥ 0 P -fast sicher folgt wegen {X <

0} ∈ F :

E[X ; X < 0] = E[X ; X < 0] ≥ 0,

und damit X ≥ 0 P -fast sicher.

(3). Dies folgt unmittelbar aus (1) und (2).

(4). Ist Xn ≥ 0 und monoton wachsend, dann ist supE[Xn | F ] eine nichtnegative

F -messbare Zufallsvariable (mit Werten in [0,∞]), und nach dem "‘klassischen

"’ Satz von der monotonen Konvergenz gilt:

E[supE[Xn |F ] ·Z] = supE[E[Xn |F ] ·Z] = supE[Xn ·Z] = E[supXn ·Z]

für jede nichtnegative F -messbare Zufallsvariable Z. Also ist supE[Xn | F ] eine

Version der bedingten Erwartung von supXn gegeben F .

(5). Wir zeigen, dass jede Version von E[X | G] auch eine Version von E[E[X |F ] | G]
ist, also die Eigenschaften (i) und (ii) aus der Definition der bedingten Erwartung

erfüllt:

(i) E[X | G] ist nach Definition G-messbar.

(ii) Für A ∈ G gilt auch A ∈ F , und somit E[E[X | G] ; A] = E[X ; A] =

E[E[X | F ] ; A].

(6) und (7). Auf ähnliche Weise verifiziert man, dass die Zufallsvariablen, die auf der rechten

Seite der Gleichungen in (6) und (7) stehen, die definierenden Eigenschaften der

bedingten Erwartungen auf der linken Seite erfüllen (Übung).

(8). Dies folgt aus (6) und (7) in drei Schritten:

(a) Gilt f(x, y) = g(x) · h(y) mit messbaren Funktionen g, h ≥ 0, dann folgt

nach (6) und (7) P -fast sicher:

E[f(X, Y ) | F ] = E[g(X) · h(Y ) | F ] = h(Y ) · E[g(X)|F ]

= h(Y ) ·E[g(X)],
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und somit

E[f(X, Y )|F ](ω) = E[g(X)·h(Y (ω))] = E[f(X, Y (ω))] für P -fast alle ω.

(b) Um die Behauptung für Indikatorfunktionen f(x, y) = IB(x, y) von pro-

duktmessbaren Mengen B zu zeigen, betrachten wir das Mengensystem

D = {B ∈ S ⊗ T | Behauptung gilt für f = IB}.

D ist ein Dynkinsystem, das nach (a) alle ProdukteB = B1×B2 mitB1 ∈ S
und B2 ∈ T enthält. Also gilt auch

D ⊇ σ({B1 × B2 | B1 ∈ S, B2 ∈ T }) = S ⊗ T .

(c) Für beliebige produktmessbare Funktionen f : S × T → R+ folgt die Be-

hauptung nun durch maßtheoretische Induktion.

Remark (Convergence theorems for conditional expectations). The Monotone Con-

vergence Theorem (Property (4)) implies versions of Fatou’s Lemma and of the Domi-

nated Convergence Theorem for conditional expectations. The proofs are similar to the

unconditioned case.

The last property in Theorem A.4 is often very useful. For independent random variables

X and Y it implies

E[f(X, Y ) | Y ](ω) = E[f(X, Y (ω))] für P -fast alle ω, (A.2.3)

We stress that independence of X and Y ist essential for (A.2.3) to hold true. The

application of (A.2.3) without independence is a common mistake in computations with

conditional expectations.

A.3 Conditional expectation as best L2-approximation

In this section we show that the conditional expectation of a square integrable random

variable X given a σ-algebra F can be characterized alternatively as the best approxi-

mation of X in the subspace of F -measurable, square integrable random variables, or,
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equivalently, as the orthogonal projection of X onto this subspace. Besides obvious

applications to non-linear predictions, this point of view is also the basis for a simple

existence proof of conditional expectations

Jensen’s inequality

Jensen’s inequality is valid for conditional expectations as well. Let (Ω,A, P ) be a

probability space, X ∈ L1(Ω,A, P ) an integrable random variable, and F ⊆ A a σ-

algebra.

Theorem A.5 (Jensen). If u : R → R is a convex function with u(X) ∈ L1 or u ≥ 0,

then

E[u(X) | F ] ≥ u(E[X | F ]) P -almost surely.

Proof. Jede konvexe Funktion u lässt sich als Supremum von abzählbar vielen affinen

Funktionen darstellen, d.h. es gibt an, bn ∈ R mit

u(x) = sup
n∈N

(anx+ bn) für alle x ∈ R.

Zum Beweis betrachtet man die Stützgeraden an allen Stellen einer abzählbaren dichten

Teilmenge von R, siehe z.B. [Williams: Probability with martingales, 6.6]. Wegen der

Monotonie und Linearität der bedingten Erwartung folgt

E[u(X) | F ] ≥ E[anX + bn | F ] = an · E[X | F ] + bn

P -fast sicher für alle n ∈ N, also auch

E[u(X) | F ] ≥ sup
n∈N

(an · E[X | F ] + bn) P -fast sicher.
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Corollary A.6 (Lp-contractivity). The map X 7→ E[X | F ] is a contraction on

Lp(Ω,A, P ) for every p ≥ 1, i.e.,

E [|E[X | F ]|p] ≤ E[|X|p] for any X ∈ L1(Ω,A, P ).

Proof. Nach der Jensenschen Ungleichung gilt:

|E[X | F ]|p ≤ E[|X|p | F ] P -fast sicher.

Die Behauptung folgt durch Bilden des Erwartungswertes.

The proof of the corollary shows in particular that for a random variable X ∈ Lp, the

conditional expectation E[X | F ] is contained in Lp as well. We now restrict ourselves

to the case p = 2.

Conditional expectation as best L2-prediction value

The space L2(Ω,A, P ) = L2(Ω,A, P )/ ∼ of equivalence classes of square integrable

random variables is a Hilbert space with inner product (X, Y )L2 = E[XY ]. If F ⊆ A is

a sub-σ-algebra then L2(Ω,F , P ) is a closed subspace of L2(Ω,A, P ), because limits

of F -measurable random variables are F -measurable as well. For X ∈ L2(Ω,A, P ),
each version of the conditional expectation E[X | F ] is contained in the subspace

L2(Ω,F , P ) by Jensen’s inequality. Furthermore, the conditional expectation respects

equivalence classes, see Theorem A.3. Therefore, X 7→ E[X | F ] induces a lin-

ear map from the Hilbert space L2(Ω,A, P ) of equivalence classes onto the subspace

L2(Ω,F , P ).

Theorem A.7 (Characterization of the conditional expectation as best L2 approxi-

mation and as orthogonal projection). For Y ∈ L2(Ω,F , P ) the following statements

are all equivalent:
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(1). Y is a version of the conditional expectation E[X | F ].

(2). Y is a “best approximation” of X in the subspace L2(Ω,F , P ), i.e.,

E[(X − Y )2] ≤ E[(X − Z)2] for any Z ∈ L2(Ω,F , P ).

(3). Y is a version of the orthogonal projection of X onto the subspace

L2(Ω,F , P ) ⊆ L2(Ω,A, P ), i.e.,

E[(X − Y ) · Z] = 0 for any Z ∈ L2(Ω,F , P ).

L2(Ω,F , P )

L2(Ω,A, P )
X

0

E[X | F ]

Figure A.1: X 7→ E[X | F ] as orthogonal projection onto the subspace L2(Ω,F , P ).

Proof. (1) ⇐⇒ (3): Für Y ∈ L2(Ω,F , P ) gilt:

Y ist eine Version von E[X | F ]

⇐⇒ E[Y · IA] = E[X · IA] für alle A ∈ F
⇐⇒ E[Y · Z] = E[X · Z] für alle Z ∈ L2(Ω,F , P )
⇐⇒ E[(X − Y ) · Z] = 0 für alle Z ∈ L2(Ω,F , P )

Stochastic Analysis Andreas Eberle



A.3. CONDITIONAL EXPECTATION AS BEST L2-APPROXIMATION 561

Hierbei zeigt man die zweite Äquivalenz mit den üblichen Fortsetzungsverfahren

(maßtheoretische Induktion).

(3) ⇒ (2): Sei Y eine Version der orthogonalen Projektion von X auf L2(Ω,F , P ).
Dann gilt für alle Z ∈ L2(Ω,F , P ):

E[(X − Z)2] = E[((X − Y ) + (Y − Z))2]

= E[(X − Y )2] + E[(Y − Z)2] + 2E[(X − Y ) (Y − Z)︸ ︷︷ ︸
∈L2(Ω,F ,P )

]

≥ E[(X − Y )2]

Hierbei haben wir im letzten Schritt verwendet, dass Y−Z im Unterraum L2(Ω,F , P )
enthalten, also orthogonal zu X − Y ist.

(2) ⇒ (3): Ist umgekehrt Y eine beste Approximation von X in L2(Ω,F , P ) und Z ∈
L2(Ω,F , P ), dann gilt

E[(X − Y )2] ≤ E[(X − Y + tZ)2]

= E[(X − Y )2] + 2tE[(X − Y )Z] + t2E[Z2]

für alle t ∈ R, also E[(X − Y ) · Z] = 0.

The equivalence of (2) and (3) is a well-known functional analytic statement: the best

approximation of a vector in a closed subspace of a Hilbert space is the orthogonal

projection of the vector onto this subspace. The geometric intuition behind this fact is

indicated in Figure A.1.

Theorem A.7 is a justification for the interpretation of the conditional expectation as

a predicion value. For example, by the factorization lemma, E[X | Y ] is the best L2-

prediction for X among all functions of type g(Y ), g : R → R measurable.

Existence of conditional expectations

By the characterization of the conditional expectation as the best L2-approximation,

the existence of conditional expectations of square integrable random variables is an
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immediate consequence of the existence of the best approximation of a vector in a closed

subspace of a Hilbert space. By monotone approximation, the existence of conditional

expectations of general non-negative random variables then follows easily.

Theorem A.8 (Existence of conditional expectations). For every random variable

X ≥ 0 or X ∈ L1(Ω,A, P ), and every σ-algebra F ⊆ A, there exists a version of the

conditional expectation E[X | F ].

Proof. (1). Wir betrachten zunächst den FallX ∈ L2(Ω,A, P ). Wie eben bemerkt, ist

der RaumL2(Ω,F , P ) ein abgeschlossener Unterraum des HilbertraumsL2(Ω,A, P ).
Sei d = inf{‖Z −X‖L2 | Z ∈ L2(Ω,F , P )} der Abstand von X zu diesem Un-

terraum. Um zu zeigen, dass eine beste Approximation von X in L2(Ω,F , P ) ex-

istiert, wählen wir eine Folge (Xn) aus diesem Unterraum mit ‖Xn −X‖L2 → d.

Mithilfe der Parallelogramm-Identität folgt für n,m ∈ N:

‖Xn −Xm‖2L2 = ‖(Xn −X)− (Xm −X)‖2L2

= 2 · ‖Xn −X‖2L2 + 2 · ‖Xm −X‖2L2 − ‖(Xn −X) + (Xm −X)‖2L2

= 2 · ‖Xn −X‖2L2︸ ︷︷ ︸
→d2

+2 · ‖Xm −X‖2L2︸ ︷︷ ︸
→d2

−4

∥∥∥∥
Xn +Xm

2
−X

∥∥∥∥
2

L2︸ ︷︷ ︸
≤d2

,

und damit

lim sup
n,m→∞

‖Xn −Xm‖2L2 ≤ 0.

Also ist die Minimalfolge (Xn) eine CauchyLfolge in dem vollständigen Raum

L2(Ω,F , P ), d.h. es existiert ein Y ∈ L2(Ω,F , P ) mit

‖Xn − Y ‖L2 → 0.

Für Y gilt

‖Y −X‖L2 = ‖ lim
n→∞

Xn −X‖L2 ≤ lim inf
n→∞

‖Xn −X‖L2 ≤ d,

d.h. Y ist die gesuchte Bestapproximation, und damit eine Version der bedingten

Erwartung E[X | F ].
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(2). Für eine beliebige nichtnegative Zufallsvariable X auf (Ω,A, P ) existiert eine

monoton wachsende Folge (Xn) nichtnegativer quadratintegrierbarer Zufallsvari-

ablen mit X = supXn. Man verifiziert leicht, dass sup
n
E[Xn | F ] eine Version

von E[X | F ] ist.

(3). Entsprechend verifiziert man, dass für allgemeineX ∈ L1(Ω,A, P ) durchE[X|F ] =

E[X+ | F ]−E[X− | F ] eine Version der bedingten Erwartung gegeben ist.
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