Introduction to the Clinical Microbiology Laboratory

Holly Huse, Ph.D., D(ABMM), M(ASCP), PHM Microbiology Manager Huntington Memorial Hospital Pasadena, CA

At the conclusion of this program, you will be able to:

- Describe the primary role of a clinical microbiology laboratory with a focus on bacteriology.
- Explain how **improperly collected** specimens can contribute to misleading results.
- List examples where **bacteria reported** may **NOT** be contributing to an infection.
- Discuss tests used to determine if a bacterium is susceptible or resistant to an antimicrobial agent.
- Describe a **cumulative antibiogram** and how this report can be used to guide empiric therapy and monitor % of bacteria susceptible (%S) to specific antimicrobial agents.

Scenario: Sick patient in the hospital

Physician	Infection Prevention
 Physician sends a specimen to the clinical microbiology lab 	 Reviews microbiology laboratory reports
 What does he/she want to know? 	 What does he/she want to know?
 Does the specimen contain pathogens? What type? 	 Could the pathogens isolated have been acquired while the patient was in this facility?
 How many? What antimicrobials can I use to treat this patient? 	 What can be done to prevent the spread of the pathogens?

What is Clinical Microbiology?

- Function of the clinical microbiology laboratory:
- **Clinical**: diagnosis and management of infections
- Epidemiological: understand infectious microbes in patients and populations, and to find sources and routes of transmission necessary for prevention efforts
- General rules in clinical microbiology:
 - **#1:** Positive cultures do not make an infection
 - **#2:** No lab test is 100% accurate

Who are clinical microbiologists?

- Bachelor's degree that includes 2 years of specialized training in clinical laboratory sciences
- CLS: clinical laboratory scientist
- MLT: medical laboratory technician
- Ph.D.: perform research and development

www.wikipedia.com

Where are Clinical Microbiologists?

- Huntington Memorial Hospital
- Pasadena, CA
- Tertiary care, nonacademic
- 619 beds
- 6 outpatient clinics
- 1 urgent care

What is Clinical Microbiology?

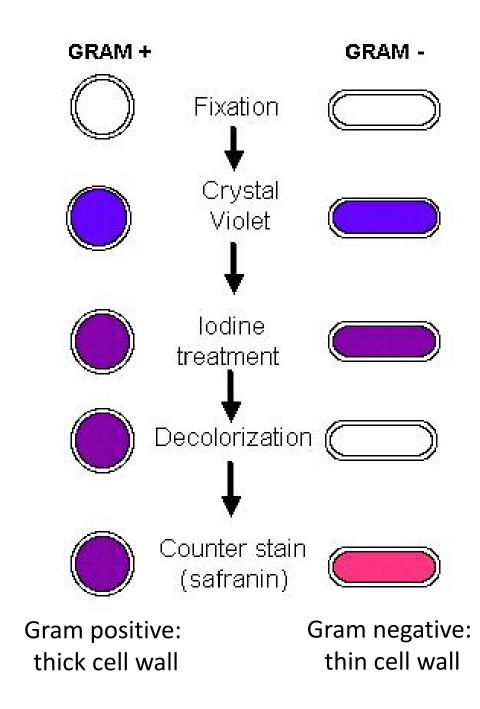
- Function of the clinical microbiology laboratory:
- Clinical: diagnosis and management of infections
- Epidemiological: understand infectious microbes in patients and populations, and to find sources and routes of transmission necessary for prevention efforts
- General rules in clinical microbiology:
 - **#1:** Positive cultures do not make an infection
 - #2: No lab test is 100% accurate


Specimen collection

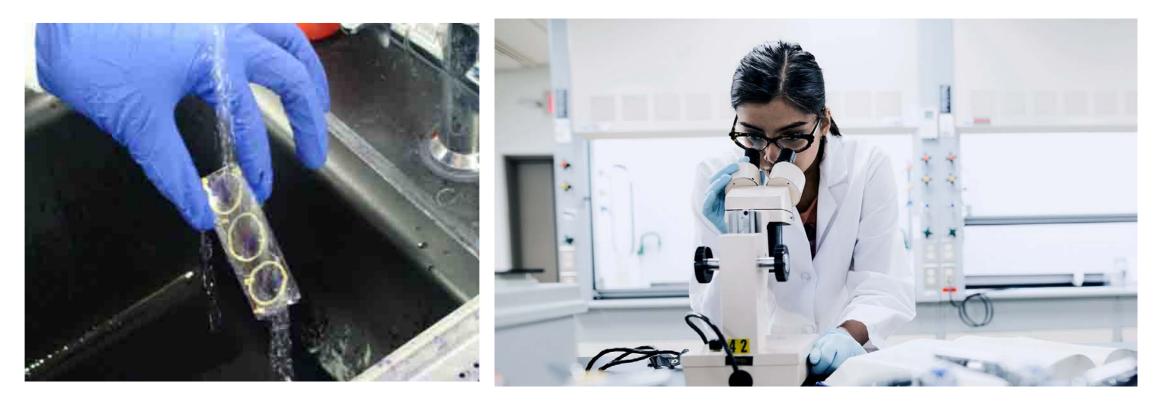
- Proper specimen collection is one of the most important factors in diagnosing infection
- Follow instructions for collecting and transporting specimens for microbiology tests
- The <u>best</u> specimens are tissue, aspirate, pus, body fluid
- Swabs are low yield and prone to contamination

Challenge: Microbiome

- Microorganisms that live on and within our bodies
- AKA "normal flora"
- Trillions of cells!
- 1000s of species!
- Both beneficial and potentially harmful
- Challenge: differentiating normal flora from pathogens

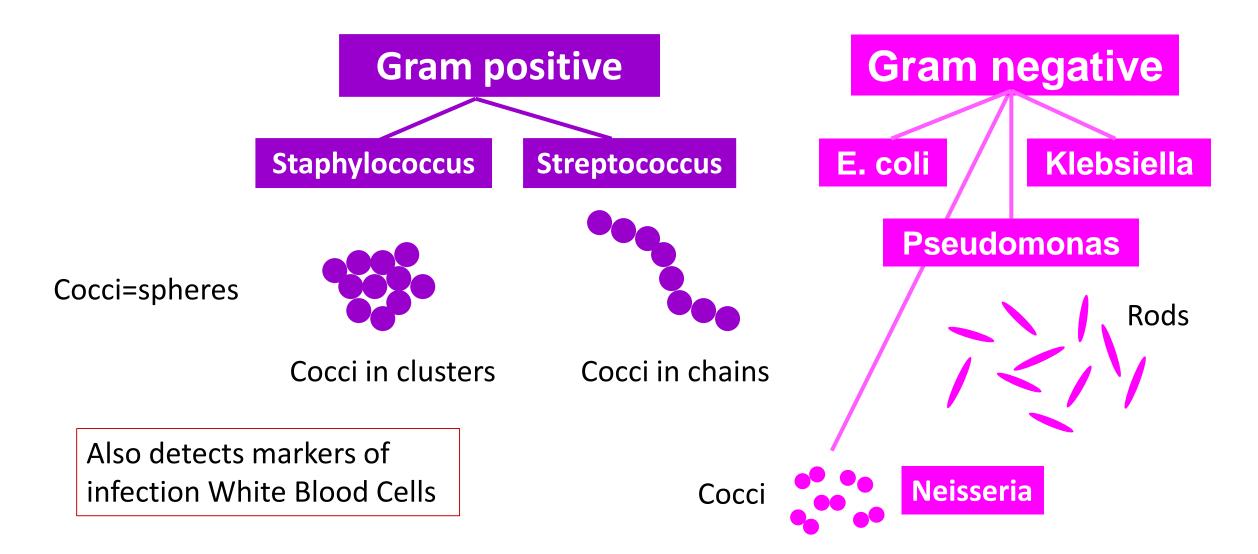

Specimen processing

Biosafety Cabinet (BSC)

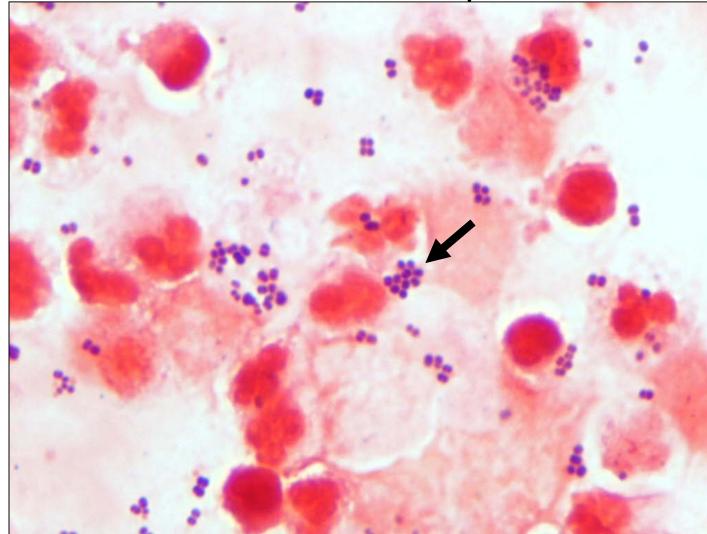


Gram stain

- Han Christian Gram: 1884
- Method of classifying bacteria into 2 large groups: Gram positive (+) and Gram negative (-)
- Differentiates bacteria by the chemical and physical properties of their cell walls
- Helpful in guiding initial empiric therapy
- Reported to physicians ASAP

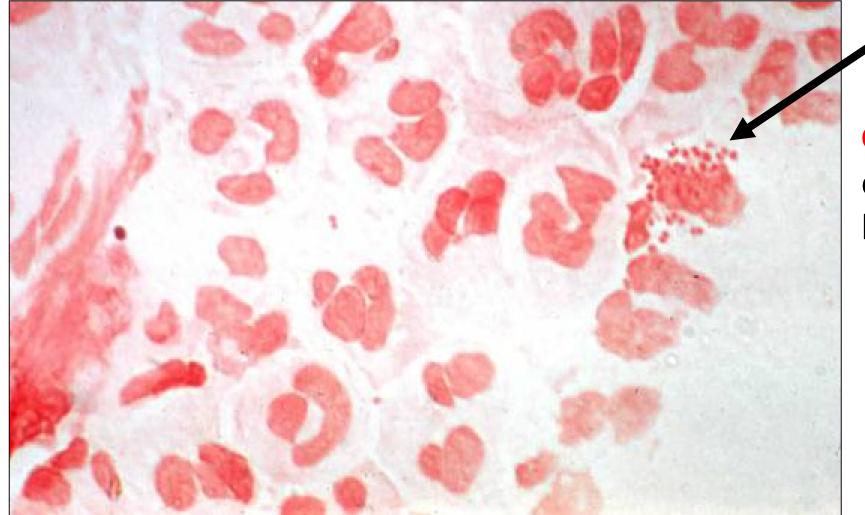


Perform **Direct Gram stain** for bacteria



Report results within a few hours Quick insight into possible causes of an infection

Gram stain reactions for select bacteria


Direct Gram stain of pus from a wound

Gram-positive cocci in clusters White blood cells

Staphylococci

Direct Gram stain of urethral discharge

Gram-negative cocci within white blood cells

Gonorrhoeae

Culturing bacteria

Incubator: human body temperature

Should I identify these bacteria and perform antimicrobial susceptibility tests?

Criteria for identification

- Should I identify these bacteria and perform antimicrobial susceptibility tests?
- Body site
- Pure versus mixed culture
- Pathogen versus normal flora

Methods Used to Identify Bacteria

Traditional methods:

- Gram stain and microscopic exam
- Growth rate and colony appearance on various types of agar media
- Reactivity with various chemicals/reagents

Modern methods:

- DNA/RNA content of microorganisms
- Protein profile (MALDI-TOF MS) of microorganisms

Case 1

- 85 year old male
- He has been sick for 3 days
- Getting progressively worse
 - Shortness of breath
 - Fever, chills, sweats, productive cough
- \bullet Temperature of $102^\circ F$
- Pneumonia
 - Sputum cultures
 - Blood cultures

Blood culture

Common Lower Respiratory Tract Pathogens

• Community-acquired pneumonia (CAP)

Streptococcus pneumoniae

Haemophilus influenzae

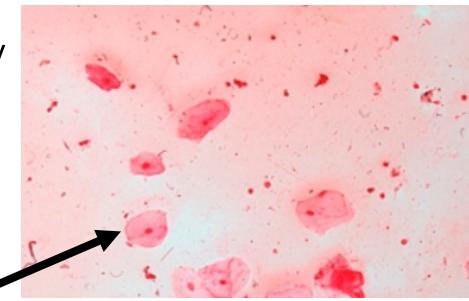
Moraxella catarrhalis

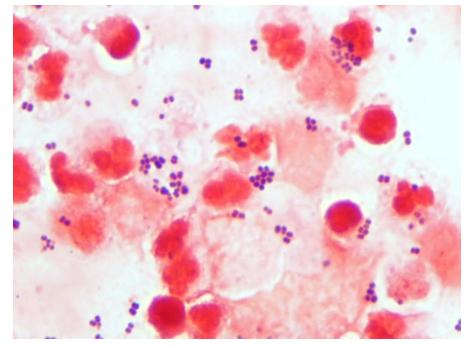
"Atypicals" – Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila

Often more difficult to recover / identify

 Hospital-acquired pneumonia (HAP): Most often ICU or ventilatorassociated

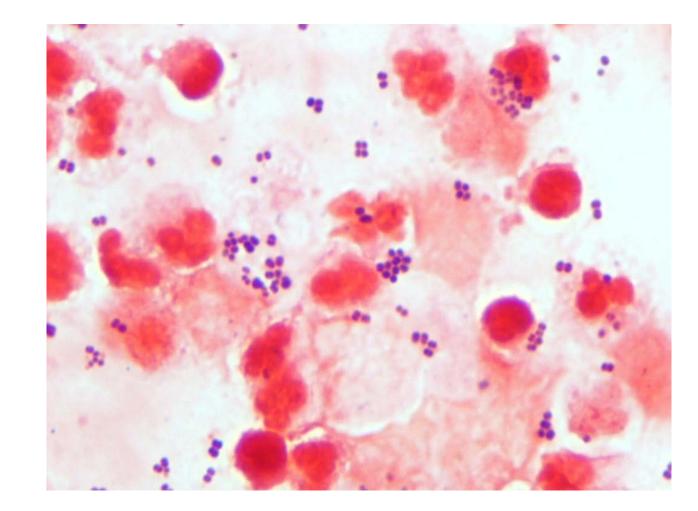
Klebsiella pneumoniae Pseudomonas aeruginosa

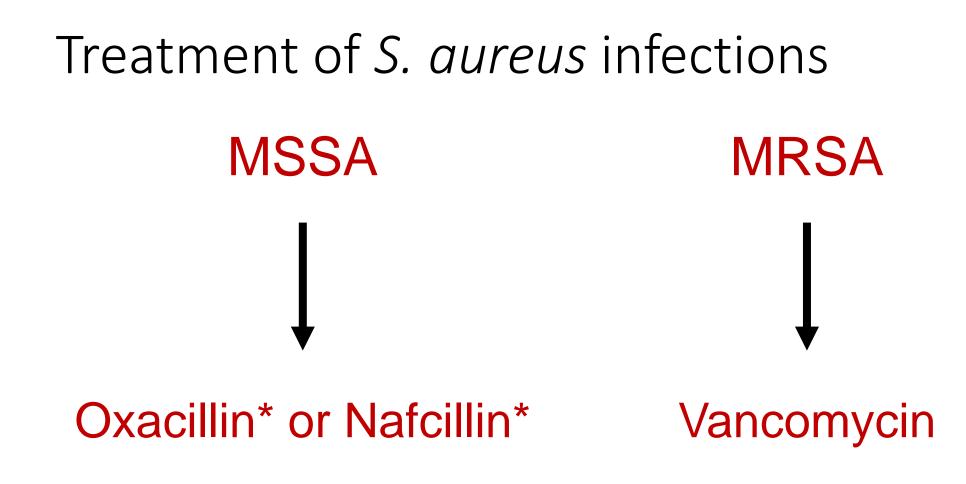

• Either CAP or HAP


Staphylococcus aureus MRSA or MSSA

Assessing Sputum Specimen Quality

- If saliva instead of sputum is collected, we may not recover the "true pathogens"
- Prepare a direct Gram stain
- Count the number of squamous
 epithelial cells (SEC)


# SEC/low power field	Interpretation
< 10	No significant oral contamination
≥ 10	Indicates poorly collected specimen


Direct Gram Stain Results

- Report:
 - Many WBCs
 - Many Gram-positive cocci in clusters
 - Moderate normal oral flora
- Physicians:
 - Staphylococcus!

When Staphylococcus is suspected...

- Many different species of Staphylococci
 - Pathogenicity
 - Antimicrobial susceptibility profiles
- Questions:
 - Is this **Staphylococcus aureus**?
 - If yes, is this methicillin-resistant *S. aureus* (MRSA) or methicillin-susceptible *S. aureus* (MSSA)?
 - Is this another species of *Staphylococcus*?
 - Typically lumped into "coagulase-negative Staphylococci" (CoNS)
 - Often **contaminant**; less clinically significant than MRSA or MSSA

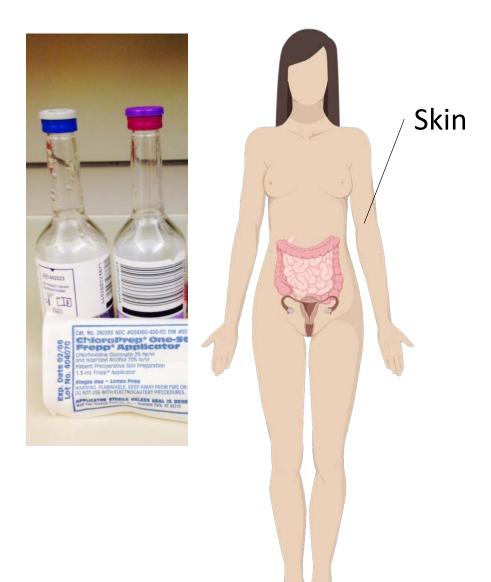
*Methicillin very similar but no longer available

Blood Culture

- Blood culture bottles
 - Blue: Aerobic bottle
 - Purple: Anaerobic bottle
 - Pink: Pediatric bottle
- Contain:
 - SPS
 - Anticoagulant
 - Antiphagocytic
 - Media
 - Resin

Blood Culture: Collection

- Proper collection site preparation is important for avoiding contamination by normal flora
- Collection sites:
 - Peripheral or IV catheter
 - If drawn from IV catheter, also draw from peripheral site
- Disinfect bottle tops with an alcohol wipe
- Disinfect puncture site using ChloroPrep
 - Scrub for 30 seconds


Blood Culture: Volume

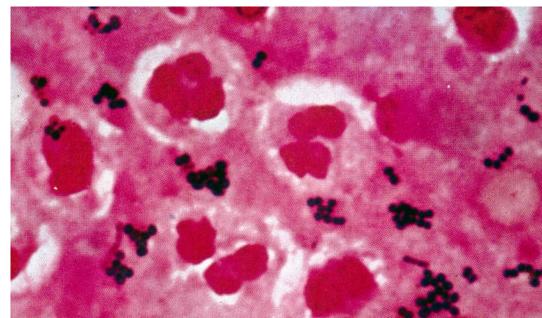
- <u>Volume</u> is the most critical factor in pathogen recovery
- Adults:
 - Collect 2-3 blood culture sets per episode prior to antibiotic treatment
 - Order a minimum of 2 sets
 - Aerobic and anaerobic bottles should be drawn as a set
 - Optimum: 16-20 ml/set, 8-10 ml/bottle
 - Inoculate aerobic bottle first
 - Do not order more than 3 sets in a 24-hour period

Bloodstream infections

- Any organism present in blood is significant except blood culture contaminants
- Typically found in 1/2 blood culture bottles
 - Coagulase-negative staphylococci (CoNS)
 - Diphtheroids (Corynebacteria)
 - Bacillus spp.
 - Propionibacterium spp.
 - Viridans streptococcus
 - Micrococcus spp.
- True infection:
 - 2 sets of blood cultures must be positive
 - Patient shows signs and symptoms of a bloodstream infection

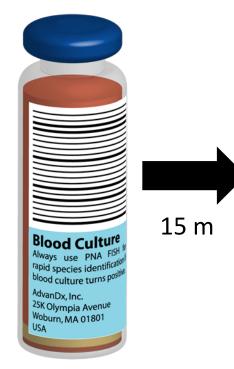
Automated blood culture

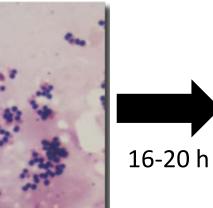
- Blood culture bottles are placed in automated blood culture instruments
- If bacteria are present, they multiply and produce CO2
- The machine detects **CO2** and sounds an **alarm** when it reaches a certain threshold



Positive blood culture bottle work-up

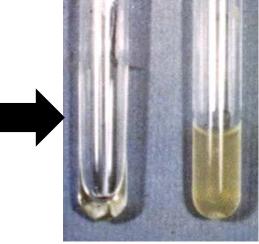
Gram stain and culture


Gram stain: Gram-positive cocci in clusters


Blood "Traditional" Culture Workup (1)

Pos Blood

Culture


Gram Stain

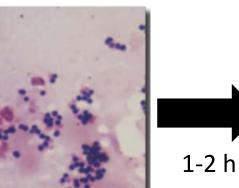
Sheep's Blood Agar Medium Staphylococcus spp.

Coagulase

neg pos

GPCC+

Blood "Molecular" Culture Workup (2)

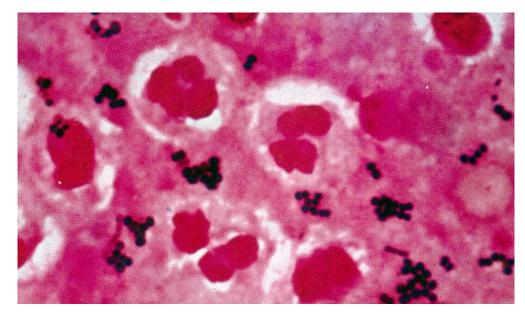

Pos Blood

Culture

Gram Stain

GPCC+

Molecular Assay Results: MSSA or MRSA or CoNS

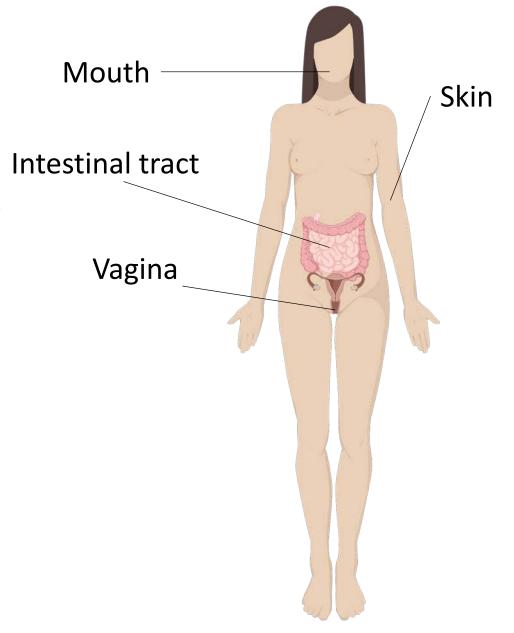

www.bd.com/geneohm


Final report

Gram Stain:

Gram-positive cocci in clusters Culture:

Staphylococcus aureus (MRSA)ClindamycinRDaptomycinSLinezolidSOxacillinRVancomycinS



"MRSA isolated. Please check infection control policies."

Case #2

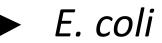
- 25 year old female
- Presents with dysuria (painful urination)
- Frequency of urination
- Urinary tract infection (UTI)
- Challenge: pathogens from normal flora

Most common UTI pathogens

• Community acquired

- Most common: E. coli
- Klebsiella, other Enterobacteriaceae
- Staphylococcus saprophyticus

• Hospital acquired


- E. coli, Klebsiella, other Enterobacteriaceae
- Pseudomonas aeruginosa
- Enterococci
- Staphylococci

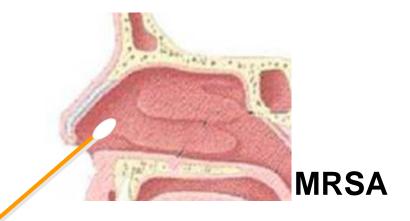
Spot indole test

Positive

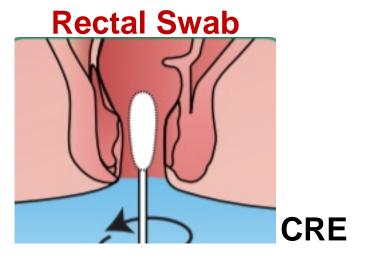
Urine collection and transport

- Must test within 2 hours of collection if stored at room temperature
- Must test with 24 hours if refrigerated
- Must test within 2 days if in boric acid preservative ("Grey top")

What is Clinical Microbiology?


- Function of the clinical microbiology laboratory:
- **Clinical**: diagnosis and management of infections

 Epidemiological: understand infectious microbes in patients and populations, and to find sources and routes of transmission necessary for prevention efforts


- General rules in clinical microbiology:
 - **#1:** Positive cultures do not make an infection
 - #2: No lab test is 100% accurate

Infection Prevention: Surveillance Cultures

- Different than diagnostic cultures
- Must order as "surveillance culture"
- Must send appropriate specimen
- Only tested for "targeted" pathogen
 - MRSA: nares swab
 - Rectal swab: carbapenem resistant Enterobacteriaceae (CRE)

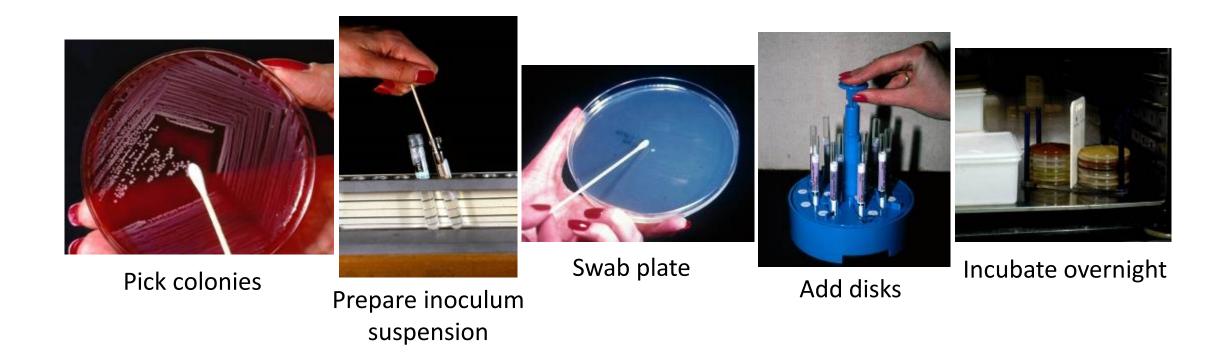
Nares Swab

Tests to Detect Antimicrobial Susceptibility

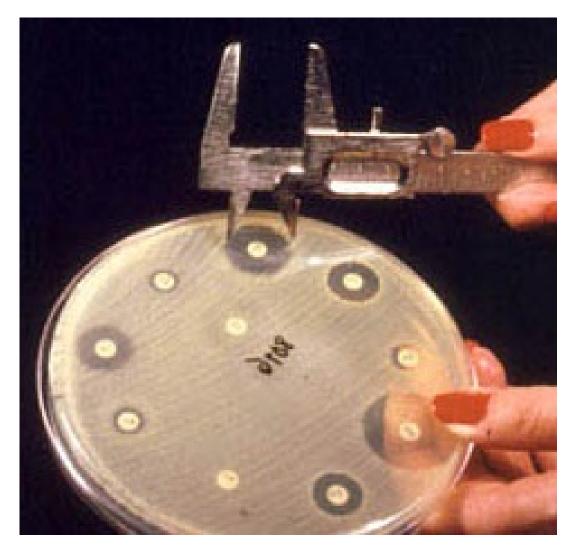
Antimicrobial Susceptibility Testing (AST)

Disk diffusion (Kirby Bauer)

Broth Microdilution MIC



MIC = minimal inhibitory concentration (lowest concentration of drug that inhibits growth of the test bacteria)


Reported results:

- Susceptible (S) drug likely to work providing it can get to the infection site
- **Resistant (R)** drug won't work
- Intermediate (I) drug may or may not work depending on site of infection and patient's status

Disk Diffusion (Kirby Bauer)

Measure zone sizes

Larger zone of clearing = more susceptible

Zone Diameter "Breakpoints" (mm)

Zoru carnou

CLSI, Clinical and Laboratory **Standards Institute**

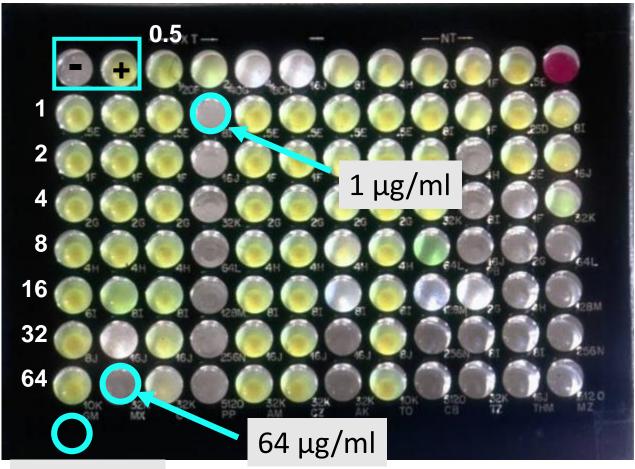
M100

INSTITUTE"

Performance Standards for Antimicrobial Susceptibility Testing

This document includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07, and M11.

A CLSI supplement for global application.


Table 2A. Enterobacteriaceae (Continued)

Test/Report	Antimicrobial	Disk	Interpretive Categories and Interpretive Categories and MIC Zone Diameter Breakpoints, nearest whole mm µg/mL									
Group	Agent	Content	S	SDD		R	S	SDD	I	R	Comments	
PENICILLINS												
A	Ampicillin	10 µg	≥17	-	14–16	≤13	≤8	-	16	≥32	(4) Results of ampicillin testing can be used to predict results for amoxicillin. See general comment (2).	
0	Piperacillin	100 µg	≥21	-	18-20	≤17	≤16	-	32-64	≥128		
0	Mecillinam	10 µg	≥15	-	12–14	≤11	≤8	-	16	≥32	(5) For testing and reporting of E. coli urinary tract isolates only.	
β-LACTAM C	OMBINATION AGENTS											
В	Amoxicillin-clavulanate	20/10 µg	≥18	-	14–17	≤13	≤ 8/4	-	16/8	≥32/16		
В	Ampicillin-sulbactam	10/10 µg	≥15	-	12-14	≤11	≤ 8/4	-	16/8	≥32/16		
В	Ceftolozane- tazobactam	30/10 µg	≥21	-	18–20	≤17	≤2/4	-	4/4	≥8/4	(6) Breakpoints are based on a dosage regimen of 1.5 g every 8 h.	
В	Ceftazidime- avibactam	30/20 µg	≥21	-	-	≤20	≤8/4	-	-	≥16/4	(7) Breakpoints are based on a dosage regimen of 2.5 g (2 g ceftazidime + 0.5 g avibactam) every 8 h over 2 days.	
В	Piperacillin-tazobactam	100/10 µg	≥21	-	18-20	≤17	≤16/4	-	32/4-64/4	≥128/4		
0	Ticarcillin-clavulanate	75/10 µg	≥20	-	15-19	≤14	≤16/2	-	32/2-64/2	≥128/2		
CEPHEMS (P	EPHEMS (PARENTERAL) (Including cephalosporins I, II, III, and IV. Please refer to Glossary I.)											

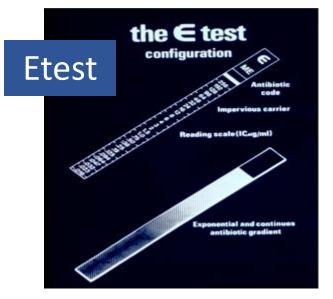
(8) WARNING: For Salmonella spp. and Shigella spp., 1st- and 2nd-generation cephalosporins and cephamycins may appear active in vitro, but are not effective clinically and should not be reported as susceptible

(9) Following evaluation of PK-PD prope celtriaxone) and aztreonam were first breakpoints was necessary for the dos longer necessary to edit results for cept control purposes. For laboratories that H Note that breakpoints for drugs with lim these drugs for <i>E. coli, Klebsiella</i> spp., cefamandole, and cefoperazone should	Drug	S		R
(10) Enterobacter, Citrobacter, and Sen Therefore, isolates that are initially susc A Cefazolin	Ciprofloxacin	≥21	16-20	≤15
	Gentamicin	≥15	13-14	≤12

MIC Testing

28th Edition

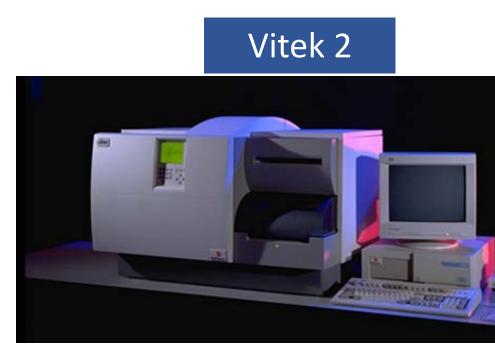
M100


Performance Standards for Antimicrobial Susceptibility Testing

MIC "Breakpoints" (µg/ml) Enterobacteriaceae

Drug	S	-	R
Ciprofloxacin	≤1	2	≥4
Gentamicin	≤4	8	≥16

>64 µg/ml


Commercial Antimicrobial Susceptibility Test Systems

OBD

Photonia 10

Antimicrobial susceptibility testing (AST)

- Criteria on when to perform:
 - If **1 or 2 potential pathogens** is isolated form culture
 - If it is likely that the bacteria are **causing an infection**
 - If bacteria have a susceptibility pattern that is unpredictable

Urine culture

• Report 1

• > 10⁵ CFU/ml *E. coli*

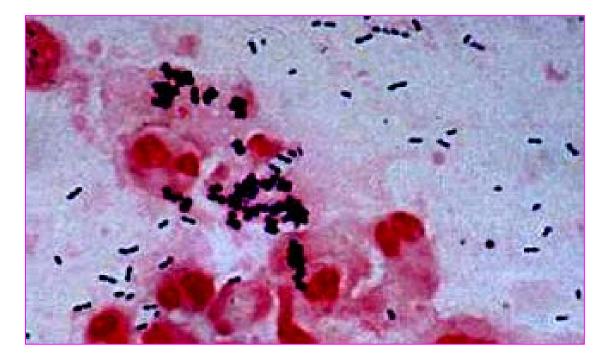
Perform AST

Significant quantity of potential pathogen *E. coli* is a common UTI pathogen No contaminants

• Report 2

- > 10⁵ CFU/ml *Corynebacterium*
- 40,000 CFU/ml *E. coli*
- 10,000 CFU/ml yeast
- 40,000 CFU/ml Lactobacillus

Do not perform AST


Contamination likely: mixed Encourage **re-collection** if UTI is still suspected

Sputum culture

- Gram stain:
 - Many oral flora
 - Many Gram positive diplococci
 - Many WBCs
- Culture:
 - Many normal flora
 - Many Streptococcus pneumoniae

Perform AST

Good correlation of Gram stain with culture Significant quantitate of a potential pathogen

Throat culture

- Culture
 - Many Group A Streptococcus
- Do not perform AST routinely
 - Group A Streptococcus is always susceptible to penicillin
 - Penicillin allergy
- Not necessary to perform AST on bacteria that are always (predictably) susceptible to the antimicrobial agents typically prescribed

AST on all organisms

- Why do we **NOT** perform AST on every potential pathogen isolated?
 - AST results on a report suggest that bacteria are causing an infection
 - Report results when NOT needed may lead to:
 - Unnecessary or inappropriate therapy
 - Selection of resistant bacteria
 - Patients on antibiotics are at higher risk for *Clostridium difficile* infections
 - Failure to look further to identify the true cause of the patient's symptoms

AST: Infection Prevention

Review of **S**, **I**, **R** most important for IP

For MIC tests, must report S, I, R with or without MIC value.

	Morganella mor	ganii Iso1
	MIC (MCG/ML)	
Amikacin		
Ampicillin	R	R
Azithromycin		
Cefepime	<=1	S
Ceftazidime		
Ceftazidime/Avibactam		
Ceftolozane/Tazobacta m		
Ceftriaxone		
Ciprofloxacin	>=4	R
Colistin		
Ertapenem	<=0.5	S
Fosfomycin		2
Gentamicin	<=1	S
lmipenem Levofloxacin		
Meropenem		
Minocycline		
Moxifloxacin		
Nitrofurantoin	64	1
Oral Cephalosporins		
Piperacillin + Tazobactam	<=4	S
Tobramycin		
Trimethoprim/Sulfamet hoxazole	>=320	R

Two E. coli urine isolates

Agent	#1	#2
Ampicillin	S	R
Cefazolin	S	R
Cefepime		R
Ceftriaxone		R
Ciprofloxacin	S	R
Ertapenem		S
Gentamicin	S	S
Meropenem		
Nitrofurantoin	S	R
Pip-tazo		S
Trimeth-sulfa	S	R

Note: Broad Spectrum drug results suppressed when "S" to narrow spectrum drugs

Isolate 1: "Typical" *E. coli* - NO "R"!

Isolate 2: Acquired "R" to all PO agents. Request fosfomycin – usually not tested routinely!

3 more *E. coli* isolates

Potential outbreak?

Agent	#1	#2	#3	#4	#5
Ampicillin	S	R	R	R	R
Cefazolin	S	R	R	R	R
Cefepime		R	R	R	R
Ceftriaxone		R	R	R	R
Ciprofloxacin	S	R	R	R	R
Ertapenem			R	R	R
Gentamicin	S	S	S	S	S
Meropenem			R	R	R
Nitrofurantoin	S	R	R	R	R
Piper-tazo		S	R	R	R
Trimeth-sulfa	S	R	R	R	R

CRE = carbapenem-resistant Enterobacteriaceae

CRE = R to
doripenem,
ertapenem,
imipenem <mark>OR</mark>
meropenem

The Cumulative Antibiogram Report

- Analyzes data from routine antimicrobial susceptibility tests performed in the clinical laboratory
- Separate report prepared for each healthcare facility
- Primarily used to guide empiric therapy
- Sometimes used to monitor resistance
 - Changes in %S from year to year

Recommendations: Preparation of Cumulative Antibiogram

- Analyze/present data at least annually
- Include only species with ≥ 30 isolates of each species
- Include diagnostic isolates
- Include the 1st isolate/patient; no duplicate patient isolates

Note: Often difficult to get 30 isolates in LTCFs

M39-A4

Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline—Fourth Edition

This document describes methods for recording and analysis of antimicrobial susceptibility test data, consisting of cumulative and orgoing summaries of susceptibility patterns of clinically significant microorganisms.

guideline for global application developed through the Clinical and Laboratory Standards Institute conservus prece

	ted	Am	ninoglycosi	ide	βL	βL/	′βLi		Cephal	osporin		FQ	Carbap	benem	
GRAM NEGATIVE ORGANISMS ADULT (≥18 yr) INPATIENT	# total isolates tested	Amikacin	Gentamicin	Tobramycin	Ampicillin	Ampicillin/sulbacta m	Piperacillin/tazobac tam	Cefazolin	Ceftazidime	Ceftriaxone	Cefepime	Ciprofloxacin	Ertapenem	Meropenem	Trimethoprim- Sulfamethoxazole
ORGANISMS	No.		% Susceptible												
Acinetobacter baumanii	42	48	31	33	0	33	73	-	-	-	37	29	0	36	50
Citrobacter freundii	62	100	85	87	0	0	73	0	-	71	94	84	90	-	81
Enterobacter aerogenes	63	100	98	94	0	0	63	0	-	60	86	95	90	-	92
Enterobacter cloacae	131	100	98	98	0	0	74	0	-	68	87	99	80	98	94
Escherichia coli (all)	1366	100	91	90	52	57	96	97	-	97	99	74	99	99	71
(Non-urine)	373	100	89	90	47	55	94	70	-	96	98	78	97	98	69
Urine isolates	993	100	91	90	53	53	97	92	-	97	99	73	99	99	71
Klebsiella oxytoca	67	100	100	100	0	36	91	43	-	91	96	100	100	100	100
Klebsiella pneomoniae	484	99	98	98	0	79	92	91	-	98	99	94	99	100	91
Morganella morganii	73	100	78	88	0	8	96	0	-	85	97	55	99	100	58
Proteus mirabilis	310	99	82	83	42	77	98	54	-	89	94	52	99	100	67
Pseudomonas															
aeruginosa (all)	598	99	92	97	0	0	72	0	80	0	73	72	0	76	0
Urine	226	100	95	98	0	0	77	0	88	0	82	77	0	78	0
Blood	23	100	100	100	0	0	78	0	88	0	67	83	0	83	0
Respiratory	180	97	85	94	0	0	61	0	69	0	59	61	0	65	0
Body Fl/Wound/Tissue	137	100	95	99	0	0	76	0	85	0	79	76	0	86	0
Serratia marcescens	59	98	98	81	0	0	93	0	-	72	98	95	97	100	97
Stenotrophomonas															
maltophilia	42	0	0	0	0	0	0	0	45	0	0	0	0	0	98
E.coli, ESBL (all)	354	100	60	45	0	18	78	0	0	0	0	13	95	99	37
Urine	264	100	58	45	0	18	78	0	0	0	0	14	95	98	34
K. pneumo, ESBL (all)	60	100	58	47	0	3	67	0	0	0	0	28	91	98	22
Urine	38	100	53	42	0	5	24	0	0	0	0	34	86	97	24

Summary

- Assessment of patient's clinical symptoms together with reliable clinical microbiology laboratory results are essential for accurate diagnosis of infections.
- Reliable clinical microbiology laboratory results are dependent on:
 - Appropriate collection and transport of specimens.
 - Accurate identification and antimicrobial susceptibility testing.
 - Good communication between healthcare providers and lab.
- Review of clinical microbiology laboratory results is key to identification of potential hospital transmission of microbes.
- Additional clinical microbiology laboratory tests may be needed for epidemiological investigations.
- A local cumulative antibiogram can help guide empiric therapy decisions and monitor "%S" for antimicrobial agents appropriate for common pathogens.

Acknowledgements

- ACDC, LACPH
- Janet Hindler

- HMH Microbiology Laboratory
 - Lori Magallanes
 Jun Martinez
 Barbara Saavedra
 Tong Lam
 Norman Ilagan
 Oya Amores
 Elna Corriente
 Ann Henson
 Ann Mao
- Janis Buckley Estela Lemus Alma Adriano Kenleigh Umali Arman Zhamkochyan Cris Diaz-Izazaga Roseanne Hui