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Fisher’s tea-tasting experiment, with Muriel Bristol

� = 2 components, 4 replications.



Order of addition experiment 

indicating the requirement for 

Ran, Crm1, and NXT1 early 

in the export pathway.

J of Cell Biology, 2001
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Journal of Neuroscience, February 15, 2001



6

PerkinElmer

User’s Guide to Alpha Assays: 

Protein-Protein Interactions



Order-of-Addition Experiments

• Lady Tasting Tea: � = 2 components

• Consider � = 3 components

• �! permutations

• An Order-of-Addition (OofA) experiment.
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�� → �

�
 → ��

1:    1  2

2:    2  1

1:    1  2  3

2:    1  3  2

3:    2  1  3

4:    2  3  1

5:    3  1  2

6:    3  2  1



Some questions

1. What are the factors for an �-component OofA

experiment? Levels?

2. Say �	= 4–7 components: reasonable way to select 

a fraction of all �!	runs?

3. Can we add process variables to the experiment in a 

natural way?

4. How can we analyze such experiments?
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(the talk!)

1:    1  2  3

2:    1  3  2

3:    2  1  3

4:    2  3  1

5:    3  1  2

6:    3  2  1



Q1: Factors?

1. What are the factors for an �-component OofA

experiment? Levels?

9

1:    1  2  3

2:    1  3  2

3:    2  1  3

4:    2  3  1

5:    3  1  2

6:    3  2  1



Factors: Van Nostrand (1995)

• Factors for the design?

• Idea: consider �



Pseudo-factors (PF’s)

• Here: pair-wise ordering
factors (PWOF’s)

• � = 3 example, all runs

• Note: not all possible 
combinations of PWOF’s
are possible

• Transitive property
If 1<2 & 2<3 ⇒ 1<3
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F1<2  F1<3  F2<3

1:    1  2  3      1 1 1

2:    1  3  2     1 1 0

3:    2  1  3   0 1 1

4:    2  3  1      0 0 1

5:    3  1  2       1 0 0

6:    3  2  1      0 0 0

F1<2 F1<3 F2<3

1  2  3 1 1 1       �

1  2  3 1 0 1 �



Q2: Fraction?

2. If there are �	= 4–7 components, say: a reasonable 

way to select a fraction of all �!	runs?...
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Our approach

• First: what was Van Nostrand’s approach?

– Used 2��� ideas. (Was not very useful…)

• Our approach

– Start with full �! runs  (� = 5 → � = 120)

– Generate corresponding PWOF combinations 

(� = 5 → �



= 	10 PWOF’s: F1<2, F1<3, … F4<5)

– Find optimal �-run design using �
 (balance) or 
�-criterion as goodness measure

• Balance??...
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Q2a: Fraction?

2. If there are �	= 4–7 components, say: a reasonable 

way to select a fraction of all �!	runs?

Balance?

To do this, first consider Orthogonal Arrays.
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OA of strength 

• An � × � array � with �
factors each at � levels is 
an OA (Orthogonal Array) 
with strength � if every 
� × � sub-array of �
contains all possible �-
tuples the same number 
of times

• OA with � = 2 often 
simply called an OA

• 2��
 : N = 8, � = 5, � = 2
– OA with � = 2

– Res III

• 2"�� : OA with � = 3
– Res IV.
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A B C D E

1  0 0 0 0 0

2 1 0 0 1 1

3  0 1 0 1 0

4  1 1 0 0 1

5 0 0 1 0 1

6 1 0 1 1 0

7  0 1 1 1 1

8 1 1 1 0 0

A D Freq

0 0   2

1 0   2

0 1   2

1 1   2



OofA OA of strength ?

• � = 3 example:

• Recall: we will use the 

PWOF’s as the factors in 

the OofA design

• Problem: even full

design not balanced

• So even full design not 

a (standard) OA of 

strength 2.
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F1<2  F1<3  F2<3

1:    1  2  3      1 1 1

2:    1  3  2     1 1 0

3:    2  1  3   0 1 1

4:    2  3  1      0 0 1

5:    3  1  2       1 0 0

6:    3  2  1      0 0 0

F1<2  F1<3 Freq

1     1     2

0     1     1

0     0     2

1     0     1



OofA OA’s of strength 

Definition

An � × � array � with � = �



PWOF’s is an OofA 

OA with strength � if every N × � sub-array of �

contains all possible �-tuples in the same proportions 

as the full array with �! runs.
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OofA patterns for 

• Ex: � = 4 ⇒ "



= 6 PWOF’s 

⇒ $



= 15	pairs of PWOF’s.
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F1<2 F1<3 F1<4 F2<3 F2<4 F3<4

1:  1 2 3 4   1    1    1    1    1    1 

2:  1 2 4 3   1    1    1    1    1    0 

3:  1 3 2 4   1    1    1    0    1    1 

4:  1 3 4 2   1    1    1    0    0    1 

...

21:  4 2 1 3   0    1    0    1    0    0 

22:  4 2 3 1   0    0    0    1    0    0 

23:  4 3 1 2   1    0    0    0    0    0 

24:  4 3 2 1   0    0    0    0    0    0 



OofA patterns for 
• Ex: 

� = 4 ⇒ "



= 6 PWO’s ⇒ $



= 15	pairs of PWO’s

• 2 non-isomorphic patterns (� = 4; 24 runs)

• So, different pairs of PWOF’s may have different 
proportions in the full array.
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Synergistic: 12
F1<2

0  1

F1<3  0   8 4

1   4  8

Independent: 3
F1<2

0  1

F3<4  0   6 6

1   6 6



OofA patterns for 
• Can have up to 5 non-isomorphic patterns

• Ex: � = 6 ⇒ $



= 15 PWOF’s ⇒ ��
%

= 455	3-tuple PWOF’s

– An example of a 3-tuple: F1<2, F1<3, F2<3

• Patterns, on a 24-run (not 720-run) basis:

• Ex of Type 1: F1<2, F1<3, F2<3 (3 compon’s—3 in 2 PWOF’s)

• Ex of Type 2: F1<2, F1<3, F2<4. (4 compon’s—2 in 2 PWOF’s).

• Ex of Type 5: F1<2, F3<4, F5<6 (6 compon’s)
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Two simple OofA-OA results

• OofA OA of � = 2

– for � & 3,

need � = 0	�'(	12

• OofA OA of � = 3

– for � & 3,

need � = 0	�'(	24.
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Q2b: Fraction?

2. If there are � = 4–7 components, say: a reasonable 

way to select a fraction of all �!	runs?

• How to select a good fraction? Consider � = 2 only

– When � = 0	�'(	12 ?

– In other cases?...
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Selecting good fractions

• Very limited closed-form methods—for � ≥ 4, only for 

larger �	(Peng, Mukerjee, Lin, 2018)

• � = 4, 5, 6, 7	 → � = 12, 60, 120, 840

• In general

– �-criterion (done here)—model-based

– �
 criterion—balance-based.
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From 
to 

• Theorem: An OofA OA of � = 2 exists (�
 = 0 for its 

PWOF design matrix +) in � runs if and only if its 

associated , = - + has �-efficiency = 1. 

(Voelkel, 2017; Peng, et al., 2018)

– �-efficiency measured wrt the full OofA design
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Some results

• � = 4,5, � = 12

– �-eff’y 1, so OofA OA

– � = 4: two non-isomorphic designs found (not equal)

– There are good, and there are better, OofA OA’s!

– � = 5: only one design found.
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Some results

• � = 5, � =24

– �-eff’y = 1 for top 37 of 100 (SAS Optex) and 

for top 1 (at least) of 20 (R AlgDesign)

– Only two of these 38 were isomorphic! 37 were not

– How to see if some designs are better than others?

• A technical measure (Minimum-moment aberration 

(Xu, 2003)) works—we will show this idea

• We will mostly use more intuitive measures here.
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Some results
• � = 5, � =24

– 37 designs, non-isomorphic, had �-eff’y = 1

– How to see if some designs are better than others?

• Minimum-moment aberration (Xu, 2003)

– Idea: better designs have rows that are less similar 

1 0 1 1 0 0 0 1

1 0 0 1 0 1 1 0

– Similarity = 3 � Similarity = 1 ☺
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Some results
• Some more intuitive statistical measures

(recall: all 37 are OofA OA’s with strength � = 2)

• How do designs compare wrt strength � = 3?

– Important! Interactions likely in OofA experiments

• For each design, what fraction of the 
�.
%

= 120 sets of 

� = 3 columns are OofA orthogonal?

– Worst: 0.58. Best 4: 0.85-0.77

• For each design, average �%

 over 120 sets of 3 columns?

– Worst: 1.71. Best 4: 0.51-0.81

• Extremely similar to results using Xu’s measures

• Projective properties:  two of the five  4 components.
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Some results

• � = 6, � =24

– �-eff’y = 1 for top 3 of 1000 (SAS Optex) and 
for top 1 (at least) of 100 (R AlgDesign)

– None of these 4 were isomorphic

– Xu’s rankings: Design #’s 3, 4, 2, 1

– Fraction of the 
��
%

= 455	 sets of � = 3 columns 

OofA orthogonal? Rankings: # 3, 4, 1, 2

– Average �%

? # 3, 4, 2, 1

– Projective properties:  four 4-component sets

• � = 7, � =24.  Best D-eff’y = 0.990.
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Q3: Adding Process Variables?

• Can be done naturally—and successfully

• Idea: start with a �-optimal OofA design, then add 

process variables

• Ex: � = 5, � =24, with 2" (4 main effects)

– �-eff’y = 1

• Ex: � = 5, � =24, with 3 × 2
 (3 main effects)

– �-eff’y = 1 (4000 iterations to find this).
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Q4: Analysis?

• Case Study (real problem, real data) used here

• Based on work from Kevin P. Gallagher, PPG 

Industries, Pennsylvania, USA
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Case study: introduction

• Automotive coatings (“paint”). Several layers:

– Corrosion protection

– Primer

– Color

– Protective clearcoat (the case study)

• Quality influenced by Viscosity. For car doors:

– high enough to prevent excessive flow (sags and drips)

– low enough to allow paint to flow and level to provide 

smooth, attractive finish.
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Case study: physics of viscosity

• A coating may:

– Have a constant viscosity vs. shear rate 

(Newtonian fluid)

– Have a changing viscosity vs. shear rate 

(non-Newtonian fluid)

• Automotive coatings

– Non-Newtonian behavior desired is shear thinning—

viscosity decreases at higher shear rates.
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Case study: why shear thinning?

• Higher viscosity levels before use, in can 

(longer times without settling)

• Lower viscosity levels during spray application 

(smoother coating finish)

• Higher viscosity on vertical surfaces after being 

applied (less sagging)
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Case study: graphs

• Rheology : branch of physics 
on deformation and flow of 
matter, including non-
Newtonian flow of liquids. 

• Rheological-flow curves
(viscosity vs. shear rate)
characterize viscosity shear 
dependence

• log(LSV/HSV) used to quantify 
shear thinning

– LSV = low shear visc’y
(shear rate = 0.1 s-1)

– HSV =  high shear visc’y
(shear rate = 1000 s-1).
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Case study: three experiments

• Experiments on components of new premium 
automotive clearcoat

• Solvent: always added first (so, not part of DOE)

• Three experiments were run (shown on next slide)

• Resin (Wikipedia)

– Polymer chemistry: solid or highly viscous substance 
that is typically convertible into polymers.

• Crosslinking

– Chemistry: a bond that links one polymer chain to 
another.
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Case study: three experiments

Component Abb In (4,24) In (5, 15) In (6,24)

primary binder resin R1 � � �

secondary binder resin R2 � � �

flow and leveling additive A1 � � �

rheology modifier #1 M1 � � �

crosslinking resin X � �

rheology modifier #2 M2 �

36

• We will only examine (�=4,�=24) and (6,24) here.



Case study: analysis method

• Response: log(LSV/HSV)

• For (4,24), 4 components: R1, R2, A, M1

• So, 6 PWO factors: 
R1<R2, R1<A, R1<M1, R2<A, R2<M1, A<M1

• Analysis method:

– Fit full main-effect model (6 factors)

– Use a stepwise regression method to reduce the model 
(AIC, small-sample adjusted)

– From this reduced model, add two-factor interactions 
(2fi’s) of largest-effect terms. Run this “reduced + 2fi’s 
model” using stepwise regression again.
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Case study: (4,24) results

• Largest effect: R1<M1

• Smaller effects:

– R1<R2 effect existed

– Interaction with R1<M1 

also detected.

• Next: summaries using 

actual response—

log(LSV/HSV)
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Case study: (4,24) results
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Case study: (6,24)

• 6 components: X, R1, R2, A1, M2, M1

• 15 PWO factors: 

– X<R1, X<R2, X<A1, X<M2, X<M1

– R1<R2, R1<A1, R1<M2, R1<M1

– R2<A1, R2<M2, R2<M1

– A1<M2, A1<M1

– M2<M1

• Modeling: fit 15 main effects, stepwise, ...
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Case study: (6,24) results

• Largest effect: R1<M1

– Same as (4,24)

• Smaller effects:

– R1<R2, same as (4,24)

– X<R1

– R1<M2

• All non-Newtonian, 

shear-thinning
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What have we found?

• Order-of-Addition Experiments—not unusual

• Little information available to construct good designs

• The factors in an �-component OofA exp’t: PWO’s

• Optimal ways to select a fraction of all �! runs

• Addition of process variables to an OofA design

• The analysis of such experiments.
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Thank you!

Questions?
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