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1 INTRODUCTION

Monte Carlo refers to a broad class of algorithms that solve problems through
the use of random numbers. They first emerged in the late 1940’s and 1950’s as
electronic computers came into use [1], and the name means just what it sounds
like, whimsically referring to the random nature of the gambling at Monte Carlo,
Monaco. The most famous of the Monte Carlo methods is the Metropolis algo-
rithm [2], invented just over 50 years ago at Los Alamos National Laboratory.
Metropolis Monte Carlo (which is not the subject of this chapter) offers an elegant
and powerful way to generate a sampling of geometries appropriate for a desired
physical ensemble, such as a thermal ensemble. This is accomplished through sur-
prisingly simple rules, involving almost nothing more than moving one atom at a
time by a small random displacement. The Metropolis algorithm and the numerous
methods built on it are at the heart of many, if not most, of the simulations studies
of equilibrium properties of physical systems.

In the 1960’s researchers began to develop a different kind of Monte Carlo algo-
rithm for evolving systems dynamically from state to state. The earliest application
of this approach for an atomistic system may have been Beeler’s 1966 simulation of
radiation damage annealing [3]. Over the next 20 years, there were developments
and applications in this area (e.g., see [3–7]), as well as in surface adsorption, dif-
fusion and growth (e.g., see [8–17]), in statistical physics (e.g., see [18–20]), and
likely other areas, too. In the 1990’s the terminology for this approach settled in as
kinetic Monte Carlo, though the early papers typically don’t use this term [21]. The
popularity and range of applications of kinetic Monte Carlo (KMC) has continued
to grow and KMC is now a common tool for studying materials subject to irradia-
tion, the topic of this book. The purpose of this chapter is to provide an introduction
to this KMC method, by taking the reader through the basic concepts underpinning
KMC and how it is typically implemented, assuming no prior knowledge of these
kinds of simulations. An appealing property of KMC is that it can, in principle,
give the exact dynamical evolution of a system. Although this ideal is virtually
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never achieved, and usually not even attempted, the KMC method is presented here
from this point of view because it makes a good framework for understanding what
is possible with KMC, what the approximations are in a typical implementation,
and how they might be improved. Near the end, we discuss a recently developed
approach that comes close to this ideal. No attempt is made to fully survey the lit-
erature of KMC or applications to radiation damage modeling, although some of
the key papers are noted to give a sense of the historical development and some
references are given for the reader who wants a deeper understanding of the con-
cepts involved. The hope is that this introductory chapter will put the reader in a
position to understand (and assess) papers that use KMC, whether for simulations
of radiation damage evolution or any other application, and allow him/her to write
a basic KMC program of their own if they so desire.

2 MOTIVATION: THE TIME-SCALE PROBLEM

Our focus is on simulating the dynamical evolution of systems of atoms. The
premiere tool in this class of atomistic simulation methods is molecular dynam-
ics (MD), in which one propagates the classical equations of motion forward in
time. This requires first choosing an interatomic potential for the atoms and a set
of boundary conditions. For example, for a cascade simulation, the system might
consist of a few thousand or million atoms in a periodic box and a high velocity
for one atom at time zero. Integrating the classical equations of motion forward in
time, the behavior of the system emerges naturally, requiring no intuition or fur-
ther input from the user. Complicated and surprising events may occur, but this is
the correct dynamical evolution of the system for this potential and these bound-
ary conditions. If the potential gives an accurate description of the atomic forces
for the material being modeled, and assuming both that quantum dynamical ef-
fects are not important (which they can be, but typically only for light elements
such as hydrogen at temperatures below T=300K) and that electron-phonon cou-
pling (non-Born-Oppenheimer) effects are negligible (which they will be unless
atoms are moving extremely fast), then the dynamical evolution will be a very ac-
curate representation of the real physical system. This is extremely appealing, and
explains the popularity of the MD method. A serious limitation, however, is that
accurate integration requires time steps short enough (∼ 10−15 s) to resolve the
atomic vibrations. Consequently, the total simulation time is typically limited to
less than one microsecond, while processes we wish to study (e.g., diffusion and
annihilation of defects after a cascade event) often take place on much longer time
scales. This is the “time-scale problem.”

Kinetic Monte Carlo attempts to overcome this limitation by exploiting the fact
that the long-time dynamics of this kind of system typically consists of diffusive
jumps from state to state. Rather than following the trajectory through every vibra-
tional period, these state-to-state transitions are treated directly, as we explain in
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the following sections. The result is that KMC can reach vastly longer time scales,
typically seconds and often well beyond.

3 INFREQUENT-EVENT SYSTEMS, STATE-TO-STATE
DYNAMICS, AND THE KMC CONCEPT

An infrequent-event system is one in which the dynamics is characterized by
occasional transitions from one state to another, with long periods of relative inac-
tivity between these transitions. Although the infrequent-event designation is fairly
general (and hence also the possible applications of KMC), for simplicity we will
restrict our discussion to the case where each state corresponds to a single energy
basin, and the long time between transitions arises because the system must sur-
mount an energy barrier to get from one basin to another, as indicated schematically
in Fig. 1. This is an appropriate description for most solid-state atomistic systems.
For a system that has just experienced a knock-on event causing a cascade, this
infrequent-event designation does not apply until the excess initial energy has dis-
sipated and the system has thermally equilibrated. This usually takes a few ps or a
few tens of ps.

Figure 1. Contour plot of the potential energy surface for an energy-barrier-limited infrequent-event
system. After many vibrational periods, the trajectory finds a way out of the initial basin, passing a
ridgetop into a new state. The dots indicate saddle points.

To be a bit more concrete about the definition of a state, consider a 256-atom
system in a perfect fcc crystal geometry with periodic boundary conditions. Re-
move one of the atoms and put it back into the crystal somewhere else to create an
interstitial. Now, using a steepest descent or conjugate gradient algorithm, we can
“relax” the system: we minimize the energy to obtain the geometry at the bottom of
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the energy basin where the forces on every atom are zero. This defines a particular
state i of the system and the geometry at the minimum is Ri. If we heat the system
up a bit, e.g., by giving each atom some momentum in a random direction and then
performing MD, the system will vibrate about this minimum. As it vibrates, we still
say it is in state i (assuming it has not escaped over a barrier yet) because if we stop
the MD and minimize the energy again, the system will fall back to the exact same
geometry Ri. Adjacent to state i there are other potential basins, each separated
from state i by an energy barrier. The lowest barriers will correspond to moving the
interstitial (perhaps through an interstitialcy mechanism) or moving an atom into
the vacancy. Even though only one or a few atoms move in these cases, the entire
system has been taken to a new state. This is an important point – we don’t move
atoms to new states, we move the entire system from state to state.

The key property of an infrequent-event system caught in a particular basin is
that because it stays there for a long time (relative to the time of one vibrational
period), it forgets how it got there. Then, for each possible escape pathway to an
adjacent basin, there is a rate constant kij that characterizes the probability, per unit
time, that it escapes to that state j, and these rate constants are independent of what
state preceded state i. As we will discuss below, each rate constant kij is purely a
property of the shape of the potential basin i, the shape of the ridge-top connecting
i and j, and (usually to a much lesser extent) the shape of the potential basin j.
This characteristic, that the transition probabilities for exiting state i have nothing
to do with the history prior to entering state i, is the defining property of a Markov
chain [22, 23]. The state-to-state dynamics in this type of system correspond to a
Markov walk. The study of Markov walks is a rich field in itself, but for our present
purposes we care only about the following property: because the transition out of
state i depends only on the rate constants {kij}, we can design a simple stochastic
procedure to propagate the system correctly from state to state. If we know these
rate constants exactly for every state we enter, this state-to-state trajectory will be
indistinguishable from a (much more expensive) trajectory generated from a full
molecular dynamics simulation, in the sense that the probability that we see a given
sequence of states and transition times in the KMC simulation is the same as the
probability for seeing that same sequence and transition times in the MD. (Note
that here we are assuming that at the beginning of an MD simulation, we assign
a random momentum to each atom using a fresh random number seed, so that
each time we perform the MD simulation again, the state-to-state trajectory will in
general be different.)

4 THE RATE CONSTANT AND FIRST-ORDER PROCESSES

Because the system loses its memory of how it entered state i on a time scale that
is short compared to the time it takes to escape, as it wanders around vibrationally
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in the state it will similarly lose its memory repeatedly about just where it has wan-
dered before. Thus, during each short increment of time, it has the same probability
of finding an escape path as it had in the previous increment of time. This gives rise
to a first-order process with exponential decay statistics (i.e., analagous to nuclear
decay). The probability the system has not yet escaped from state i is given by

psurvival(t) = exp( − ktott), (1)

where ktot is the total escape rate for escape from the state. We are particularly
interested in the probability distribution function p(t) for the time of first escape
from the state, which we can obtain from this survival probability function. The
integral of p(t) to some time t′ gives the probability that the system has escaped by
time t′, which must equate to 1−psurvival(t

′). Thus, taking the negative of the time
derivative of psurvival gives the probablity distribution function for the time of first
escape,

p(t) = ktotexp( − ktott). (2)

We will use this first-passage-time distribution in the KMC procedure. The average
time for escape τ is just the first moment of this distribution,

τ =

∫
∞

0

t p(t)dt =
1

ktot

. (3)

Because escape can occur along any of a number of pathways, we can make
the same statement as above about each of these pathways – the system has a fixed
probability per unit time of finding it. Each of these pathways thus has its own rate
constant kij , and the total escape rate must be the sum of these rates:

ktot =
∑
j

kij . (4)

Moreover, for each pathway there is again an exponential first-escape time distri-
bution,

pij(t) = kijexp( − kijt), (5)

although only one event can be the first to happen. For more discussion on the
theory of rate processes in the context of stochastic simulations, see [24, 25].

We are now almost ready to present the KMC algorithm. Not surprisingly, given
the above equations, we will need to be able to generate exponentially distributed
random numbers, which we quickly describe.
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4.1 Drawing an xponentially istributed andom umber

Generating an exponentially distributed random number, i.e., a time tdraw

drawn from the distribution p(t) = k exp( − kt), is straightforward. We first draw
a random number r on the interval (0,1), and then form

tdraw = −(1/k)ln(r). (6)

A time drawn in this way is an appropriate realization for the time of first escape
for a first-order process with rate constant k. Note that the usual definition of the
uniform deviate r is either 0 < r < 1 or 0 < r ≤ 1; a random number generator
implemented for either of these ranges will give indistinguishable results in prac-
tice. However, some random number generators also include r = 0 in the bottom
of the range, which is problematic (causing an ill-defined ln(0) operation), so zero
values for r must be avoided.

5 THE KMC PROCEDURE

Having laid the conceptual foundation, it is now straightforward to design a
stochastic algorithm that will propagate the system from state to state correctly.
For now, we are assuming all the rate constants are known for each state; in later
sections we will discuss how they are calculated and tabulated.

Before discussing the procedure usually used by KMC practitioners, it is per-
haps instructive to first present a more transparent approach, one that is less ef-
ficient, though perfectly valid. (This method is presented as the “first-reaction”
method in an excellent early paper by Gillespie [24].) Our system is currently in
state i, and we have a set of pathways and associated rate constants {kij}. For each
of these pathways, we know the probability distribution for the first escape time
is given by Eq. 5. Using the procedure in Sect. 4.1, we can draw an exponentially
distributed time tj from that distribution for each pathway j. Of course, the actual
escape can only take place along one of these pathways, so we find the pathway
jmin which has the lowest value of tj , discard the drawn time for all the other path-
ways, and advance our overall system clock by tjmin. We then move the system to
state jmin, and begin again from this new state. That is all there is to it. This is less
than ideally efficient because we are drawing a random number for each possible
escape path, whereas it will turn out that we can advance the system to the next
state with just two random numbers.

We now describe the KMC algorithm that is in common use. The pathway se-
lection procedure is indicated schematically in Fig. 2a. We imagine that for each of
the M escape pathways we have an object with a length equal to the rate constant
kij for that pathway. We put these objects end to end, giving a total length ktot.
We then choose a single random position along the length of this stack of objects.

E D R N
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Figure 2. Schematic illustration of the procedure for picking the reaction pathway to advance the
system to the next state in the standard KMC algorithm. (a) Objects (boxes for this illustration),
each with a length proportional to the rate constant for its pathway, are placed end to end. A random
number r on (0,1), multiplied by ktot, points to one box with the correct probability. (b) In a computer
code, this is achieved by comparing rktot to elements in an array of partial sums.

This random position will “touch” one of the objects, and this is the pathway that
we choose for the system to follow. This procedure gives a probability of choosing
a particular pathway that is proportional to the rate constant for that pathway, as
it should. To advance the clock, we draw a random time from the exponential dis-
tribution for the rate constant ktot (see Sect. 4.1 ). Note that the time advance has
nothing to do with which event is chosen. The time to escape depends only on the
total escape rate. Once the system is in the new state, the list of pathways and rates
is updated (more on this below), and the procedure is repeated.

In a computer implementation of this procedure, we make an array of partial
sums. Let array element s(j) represents the length of all the objects up to and
including object j,

s(j) =
j∑
q

kiq, (7)

as shown in Fig. 2b. One then draws a random number r, distributed on (0,1),
multiplies it by ktot, and steps through the array s, stopping at the first element for
which s(j) > rktot. This is the selected pathway.

This rejection-free “residence-time” procedure is often referred to as the BKL
algorithm (or the “n-fold way” algorithm), due to the 1975 paper by Bortz, Kalos
and Lebowitz [18], in which it was proposed for Monte Carlo simulation of Ising
spin systems. It is also presented as the “direct” method in Gillespie’s 1976 paper
[24].
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6 DETERMINING THE RATES

Assuming we know about the possible pathways, we can use transition state
theory (TST) [26–28], to compute the rate constant for each pathway. Although
TST is approximate, it tends to be a very good approximation for solid-state dif-
fusive events. Moreover, if desired, the rate computed from TST can be corrected
for recrossing effects to give the exact rate. By underpinning the KMC in this way,
using high-quality TST rates that can be extended to exact rates if desired, the state-
to-state dynamics of the KMC simulations can, in principle, be made as accurate
as real molecular dynamics on the underlying potential. This concept was first pro-
posed in [17].

Figure 3. Illustration of the transition state theory rate constant. The unimolecular rate constant for
escape from state i to state j, kij , is given by the equilibrium outgoing flux through the dividing
surface separating the states.

6.1 Transition tate heory

Transition state theory (TST), first proposed in 1915 [26], offers a conceptually
straightforward approximation to a rate constant. The rate constant for escape from
state i to state j is taken to be the equilibrium flux through a dividing surface sepa-
rating the two states, as indicated in Fig. 3. We can imagine having a large number
of two-state systems, each allowed to evolve long enough that many transitions be-
tween these states have occurred, so that they represent an equilibrium ensemble.
Then, looking in detail at each of the trajectories in this ensemble, if we count the
number of forward crossings of the dividing surface per unit time, and divide this
by the number of trajectories, on average, that are in state i at any time, we obtain
the TST rate constant, kTST

ij . The beauty of TST is that, because it is an equilib-
rium property of the system, we can also calculate kTST

ij without ever looking at
dynamical trajectories. For a thermal ensemble (the only kind we are considering
in this chapter), kTST

ij is simply proportional to the Boltzmann probability of be-
ing at the dividing surface relative to the probability of being anywhere in state i.
Specifically, for a one-dimensional system with a dividing surface at x = 0,

TS
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kTST
ij = 〈|dx/dt| δ(x)〉i , (8)

where the angular brackets indicate a canonical ensemble average over the position
coordinate x and momentum p, the subscript i indicates evaluation over the phase
space belonging to state i (x ≤ 0 in this case), and δ(x) is the Dirac delta function.
Extension to many dimensions is straightforward [29], but the point is that once
the dividing surface has been specified, kTST

ij can be evaluated using, for example,
Metropolis Monte Carlo methods [29, 30].

The implicit assumption in TST is that successive crossings of the dividing
surface are uncorrelated; i.e., each forward crossing of the dividing surface cor-
responds to a full reactive event that takes the system from residing in state i to
residing in state j. However, in reality, there is the possibility that the trajectory
may recross the dividing surface one or more times before either falling into state
j or falling back into state i. If this happens, the TST rate constant overestimates
the exact rate, because some reactive events use up more than a single outgoing
crossing. As stated above, the exact rate can be recovered using a dynamical cor-
rections formalism [31–33], in which trajectories are initiated at the dividing sur-
face and integrated for a short time to allow the recrossing events to occur. While
the best choice of dividing surface is the one that minimizes the equilibrium flux
passing through it (the best surface usually follows the ridgetop), this dynamical
corrections algorithm recovers the exact rate constant even for a poor choice of
dividing surface. This dynamical corrections formalism can also be extended to
correctly account for the possibility of multiple-jump events, in which case there
can be nonzero rate constants kij between states i and j that are not adjacent in
configuration space [34].

In principle, then, classically exact rates can be computed for each of the path-
ways in the system. In practice, however, this is never done, in part because the TST
approximation is fairly good for solid-state diffusive processes. In fact, most KMC
studies are performed using a further approximation to TST, which we describe
next.

6.2 Harmonic ransition tate heory

The harmonic approximation to TST, and further simplifications to it, are often
used to calculate KMC rate constants. Harmonic TST (HTST) is often referred
to as Vineyard theory [35], although equivalent or very similar expressions were
derived earlier by others [36]. In HTST, we require that the transition pathway
is characterized by a saddle point on the potential energy surface (e.g., the dots in
Fig. 1). The reaction coordinate is defined as the direction of the normal mode at the
saddle point that has an imaginary frequency, and the the dividing surface is taken
to be the saddle plane (the hyperplane perpendicular to the reaction coordinate at
the saddle). One assumes that the potential energy near the basin minimum is well

TST
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described (out to displacements sampled thermally) with a second-order energy
expansion – i.e., that the vibrational modes are harmonic – and that the same is
true for the modes perpendicular to the reaction coordinate at the saddle point.
Evaluation of the ensemble average in Eq. 8 for a system with N moving atoms
then gives the simple form

kHTST =

3N∏
i

νmin
i

3N−1∏
i

νsad
i

exp(−Estatic/kBT ). (9)

Here Estatic is the static barrier height (energy difference between the saddle point
and the minimum) and kB is the Boltzmann constant. In the preexponential factor
(or prefactor), {νmin

i } are the 3N normal mode frequencies at the minimum and
{νsad

i } are the 3N − 1 nonimaginary normal mode frequencies at the saddle [37].
The computation of kHTST thus requires information only about the minimum
and the saddle point for a given pathway. The HTST rate tends to be a very good
approximation to the exact rate (e.g., within 10-20%) up to at least half the melting
point for diffusion events in most solid materials (e.g., see [38,39]), although there
can be exceptions [40]. Further, since prefactors are often in the range of 1012

s−1 - 1013 s−1 (though they can be higher; e.g., see Fig. 4 in [41]), a common
approximation is to choose a fixed value in this range to save the computational
work of computing the normal modes for every saddle point.

The form of the Vineyard approximation merits further comment. Note that the
only temperature dependence is in the exponential, and depends only on the static
(i.e., T=0) barrier height [42]. No correction is needed, say, to account for the extra
potential energy that the system has as it passes over the saddle region at a finite
temperature. This, and all the entropy effects, cancel out in the integration over the
normal modes, leaving the simple form of Eq. (9). Also note that Planck’s constant
h does not appear in Eq. (9). The kT/h preexponential sometimes found in TST ex-
pressions is an artifact of incomplete evaluation of the partition functions involved,
or a dubious approximation made along the way. TST is a classical theory, so h
cannot remain when the integrals are all evaluated properly. Confusion about this
expression, which introduces the wrong temperature dependence and an inappro-
priate physical constant, has persisted because kBT/h at T=300K (6.2 × 1012 Hz)
is coincidentally similar to a typical preexponential factor.

7 THE LATTICE ASSUMPTION AND THE RATE CATALOG

Typically in KMC simulations, the atoms in the system are mapped onto a lat-
tice. An event may move one atom or many atoms, perhaps in a complicated way,
but in the final state, each atom will again map onto a unique lattice point. Note that
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if, for example, harmonic TST is used to compute the rates, it requires that the sys-
tem be relaxed to find the energy and frequencies at the minimum. After relaxation,
the atoms will in general no longer be positioned on the lattice points, especially for
atoms near defects. However, if each atom is much closer to one lattice point than
any other lattice point, and if the mapping of the atoms onto the lattice points does
not change during the relaxation, then it is safe to map the system onto a lattice in
this way to simplify the KMC and the generation of the rate constants.

Figure 4. Schematic illustration of the rate catalog concept for the diffusional jump of a vacancy.
Atoms in the lattice sites labelled 1-10 can affect the rate constant significantly, so TST rate constants
are computed for all possible occupations (differing atom types or vacancies) of these sites. This list
of rates makes up a rate catalog, which can be accessed during the KMC simulation to determine the
rate constant for the jump of a vacancy in any direction for any environment.

Lattice mapping also makes it easy to exploit locality in determining rates. We
assume that only the atoms near a defect affect the rate constant for any change
or migration of that defect. An example of this is shown in Fig. 4 for a pathway
schematically corresponding to the jump of a lattice vacancy. For each of the local
environments of the jumping atom (i.e., in which each of the numbered sites in
Fig. 4 is either vacant or filled with one atom type or another), we can compute a
TST rate constant [17]. The number of possible rates, ignoring symmetry, is

nrate = (ntype + 1)nsite , (10)

where nsite is the number of sites explicitly considered (nsite = 10 in Fig. 4)
and ntype is the number of possible atom types that can be at each of those sites.
Equation 10 results from the fact that each site, independently, may either be vacant,
or have an atom of one of the ntype types. (For the purposes of this formal counting,
we are overlooking the fact that some of the pathways involving multiple vacancies
in the environment may be ill defined if the adatom has no neighbors.)

Introduction to the Kinetic Monte Carlo Method 11



The set of rates computed in this way comprise a “rate catalog” [17], which we
can then use to look up the rates we need for every state the system visits. By mak-
ing the local environment larger, we can make the rates in it more accurate, and in
principle we can make the environment as large as we need to achieve the accuracy
we desire. In practice, however, the fact that the number of rates that will have to
be computed grows as a strong power law in nsite means that we may settle for less
than ideal accuracy. For example, for a vacancy moving in an fcc metal, includ-
ing just nearest-neighbor sites of the jumping atom, nsite=18 and ntype=1, giving
218 = 262,144 rates to be computed (many equivalent by symmetry). For a classi-
cal interatomic potential, this is feasible, using an automated procedure in which
a nudged elastic band calculation [43, 44] or some other saddle-finding algorithm
(e.g., Newton-Raphson) is applied to each configuration. However, just increasing
this to include second nearest neighbors (228 = 2.7x108 rates, ignoring symmetry)
or to consider a binary alloy (318 = 3.8x108 rates, ignoring symmetry) increases the
computational work enormously.

This work can be reduced somewhat by splitting the neighborhood into two sets
of sites [45], one set of sites that most influence the active atom in the initial state
(e.g., sites 1,2,3,5,7,8, and 9 in Fig. 4) and another set of sites that most influence
the active atom at the saddle point (e.g., sites 2,3,8, and 9 in Fig. 4). Two catalogs
are then generated, one for the minima and one for the saddle points. Each catalog
entry gives the energy required to remove the active atom (the one involved in the
jump) from the system. Subtracting these special vacancy formation energies for a
given minimum-saddle pair gives the energy barrier for that process.

Another way to reduce the work is to create the rate catalog as the KMC sim-
ulation proceeds, so that rate constants are computed only for those environments
encountered during the KMC.

While achieving convergence with respect to the size of the local environment is
formally appealing, we will see in Sect. 9 that it is usually more important to make
sure that all types of pathways are considered, as missing pathways often cause
larger errors in the final KMC dynamics.

Finally, we note that the locality imposed by this rate-catalog approach has the
benefit that in the residence-time procedure described in Sect. 5, updating the list
of rates after a move has been accepted requires only fixed amount of work, rather
than work scaling as the number of atoms in the entire system.

7.1 Assuming dditive nteractions

As discussed above (see Eq. 10), computing every rate necessary to fill the rate
catalog may be undesirably expensive if nsite and/or ntype are large, or if a com-
putationally expensive electronic structure calculation is employed to describe the
system. Within the HTST framework, where the rate is specified by a barrier height
and a preexponential factor, an easy simplification is to assume that the barrier

A I
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height can be approximated by additive interactions. For example, beginning from
the example shown in Fig. 4, the neighboring atoms can be categorized as class m1
(nearest neighbors to the jumping atom when the system is at the minimum, sites
2, 5 and 8), class m2 (second nearest neighbors to the jumping atom when the sys-
tem is at the minimum, sites 1, 3, 7 and 9), class s1 (first neighbors to the jumping
atom when the system is at the saddle point, sites 2, 3, 8, and 9), and so forth. This
example is shown in Fig. 5. The barrier energy is then approximated by

Estatic = Esad − Emin, (11)

where the energy of the minimum (Emin) and the energy of the saddle (Esad) are
given by

Emin = E0
min + nm1Em1 + nm2Em2 (12)

Esad = E0
sad + ns1Es2 + ns2Es2. (13)

Here, nm1 is the number of atoms in m1 positions, and similarly for nm2, ns1, and
ns2. In this way, the rate catalog is replaced by a small number of additive inter-
action energies. The energies E0

minEm1, Em2, E
0
sad, Es1, and Es2 can be simply

specified ad hoc or adjusted to give simulation results that match experiment (this
is the way almost all KMC simulations were done until the mid 1980’s, and many
still are), or they can be obtained from a best fit to accurately calculated rate con-
stants (e.g., see [46]). For the prefactor, 1012−1013s−1 is a good estimate for many
systems.

Figure 5. Schematic illustration of the additive rate catalog for the diffusional jump of a vacancy.
Sites are labeled by class for (a) the minimum and (b) the saddle point.
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7.2 Obeying etailed alance

In any chemical system, we can make general statements about the behavior of
the system when it is in equilibrium that are useful for understanding the dynam-
ical evolution when the system is out of equilibrium (as it typically is). Formally,
exact equilibrium properties can be obtained by gathering statistics on a very large
number of systems, each of which has run for an extremely long time before the
measurements are made. At equilibrium, the fractional population of state i, χi, is
proportional to exp(−Gi/kBT ), where Gi is the free energy of state i. For every
pair of connected states i and j, the number of transitions per unit time (on average)
from i to j must equal the number of transitions per unit time from j to i. Because
the number of escapes per time from i to j is proportional to the population of state
i times the rate constant for escape from i to j, we have

χikij = χjkji, (14)

and the system is said to “obey detailed balance.” Because the equilibrium pop-
ulations and the rate constants are constants for the system, this detailed balance
equation, which must hold even when the system is not in equilibrium, places re-
quirements on the rate constants. If a rate catalog is constructed that violates de-
tailed balance, then the dynamical evolution will not correspond to a physical sys-
tem. This ill-advised situation can occur, for example, if a rate constant is set to
zero, but the reverse rate is not, as might happen in a sensitivity analysis or a model
study. It can also arise if there is an asymmetry in the procedure for calculating the
rates (e.g., in the way that saddle points are found) that gives forward and reverse
rates for a connected pair of states that are not compatible.

8 COMPUTATIONAL SCALING WITH SYSTEM SIZE

For a system with M escape pathways, the residence-time algorithm described
in Sect. 5, in its simplest implementation, would require searching through a list
of M rates to find the pathway that is selected by the random number. The com-
putational work to choose each KMC step would thus scale as M . Over the years,
papers [47–49] have appeared discussing how to implement the residence-time pro-
cedure with improved efficiency. Blue, Beichl and Sullivan [48] pointed out that by
subdividing the list of rates into hierarchical sublists, the work can be reduced to
that of searching a binary tree, scaling as log(M ). Recently, Schulze [49] demon-
strated that for a system in which there are equivalent rates that can be grouped
(e.g., the rate for a vacancy hop in one part of the system is equivalent to the rate
for a vacancy hop in another part of the system), the work can be reduced further,
becoming independent of M .

After the pathway is selected and the system is moved to the new state, the rate
list must be updated. In general, for this step the locality of the rate constants can be

D B
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exploited, as discussed in Sect. 7, so that only a fixed amount of work is required,
independent of M .

The overall computational scaling of KMC also depends on how far the system
advances in time with each KMC step. In general, for a system with N atoms, the
number of pathways M will be proportional to the number of atoms N [50]. If
we increase the size of a system in a self-similar way, e.g., doubling N by placing
two equivalent systems side by side, then the total escape rate ktot will be propor-
tional to N (see Eq. 4). Since the average time the system advances is inversely
proportional to ktot (see Eq. 3), this means that the overall work required to prop-
agate a system of N atoms forward for a certain amount of time is proportional
to N (within the Schulze assumption that there is a fixed number of unique rate
constants) or at worst N logN .

9 SURPRISES – THE REAL REASON KMC IS NOT EXACT

As claimed in the introduction, KMC can, in principle, give the exact state-to-
state dynamics for a system. This assumes that a complete rate catalog has been
generated, containing an accurate rate constant for every escape pathway for every
state that will be encountered in the dynamics. We have discussed above the fact
that the TST rate is not exact (unless augmented with dynamical corrections) and
the difficulty in fully converging the environment size (see Eq. 10). However, for
a typical system, neither of these effects are the major limitation in the accuracy
of the KMC dynamics. Rather, it is the fact that the real dynamical evolution of
a system will often surprise us with unexpected and complex reaction pathways.
Because these pathways (before we have seen them) are outside our intuition, they
will typically not be included in the rate catalog, and hence cannot occur during the
KMC simulation.

Figure 6. Exchange mechanism for adatom on fcc(100) surface. (a) initial state; (b) saddle point; (c)
final state. This mechanism, unknown until 1990 [51], is the dominant diffusion pathway for some
fcc metals, including Al, Pt, and Ir.
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The field of surface diffusion provides a classic example of such a surprising
pathway. Until 15 years ago, diffusion of an adatom on the simple fcc(100) sur-
face was assumed to occur by the adatom hopping from one four-fold site to the
next. Using density functional theory calculations, Feibelman discovered in 1990
that the primary diffusion pathway on Al(100) actually involves the exchange event
shown in Fig. 6, in which the adatom plunges into the surface, pushing a substrate
atom up into the second nearest neighbor binding site [51]. In field-ion microscope
experiments, this exchange mechanism was shown to be the dominant pathway for
Pt/Pt(100) [52] and Ir/Ir(100) [53]. For Pt/Pt(100), the barrier for the hop mech-
anism is roughly 0.5 eV higher than for the exchange mechanism. Thus, a KMC
simulation of Pt adatoms on a Pt(100) surface, using a rate catalog built assum-
ing hop events only (which was standard practice for KMC on the fcc(100) surface
until recently), would give a seriously flawed description of the diffusion dynamics.

More recently, there have been many examples of unexpected surface and bulk
diffusion mechanisms [54–58]. In some cases, the discovered mechanisms are so
complex that it would not be easy to incorporate them into a KMC rate catalog, even
after the existence of the pathway is known. This issue was the primary motivation
for the development of the accelerated molecular dynamics methods [59] described
in the next chapter.

10 SIMULATION TIME ACHIEVABLE WITH KMC

The total simulation time that can be achieved in a KMC simulation is strongly
system dependent. Each KMC step advances the system by a time (on average)
no greater than the inverse of the fastest rate for escape from the current state. This
rate depends exponentially on the barrier height divided by the temperature, and the
size of the lowest barrier can change, perhaps dramatically, as the system evolves.
However, to get some sense of what is possible, we observe that on present-day
computers, one can take roughly 1010 steps in a few hours of computer time (the
exact value, of course, depends on the type and size of the system). If we assume
that for every state there is one fast escape pathway with a fixed lowest barrier Ea

and a prefactor of 1013, then we can achieve a simulation time of 1010/(1013exp(−
Ea/kBT )). For Ea = 0.5 eV, this gives a total simulation time of 2.5x105 s at
T=300K, 16 s at T=600K and 0.33 s at T=1000K. For a very low barrier, times
are even shorter but the temperature dependence is much weaker. For example,
Ea = 0.1 eV gives 50 ms at T=300K, 10 ms at T=600K, and 3 ms at T=1000K.
These times are all significantly longer than one can achieve with direct molecular
dynamics simulation (typically between 1 ns and 1 µs).

Radiation Effects in Solids16



11 THE LOW-BARRIER PROBLEM

It is interesting to note how important the lowest barrier is. A persistent low
barrier can significantly decrease the total accessible simulation time, and many
systems exhibit persistent low barriers. For example, in metallic surface diffusion,
adatoms that diffuse along the edge of a two-dimensional cluster or a step edge
usually do so with a much lower barrier than for diffusion on an open terrace [17].
In bulk fcc materials, interstitials typically diffuse with very low barriers in the
range of 0.1 eV or less. In glassy materials, low-barriers abound. This is a common
and long-standing problem with KMC simulations.

One approximate approach to the problem is to raise the lowest barriers artifi-
cially to slow down the fastest rates. This will give accurate dynamics if the fast
processes are reasonably well equilibrated under the conditions of interest, and if
they are still able to reach equilibration when they are slowed down. In general,
though, it may be hard to know for sure if this is corrupting the dynamics.

Often the structure of the underlying potential energy surface is such that the
system repeatedly visits a subset of states. Among the states in this superbasin, an
equilibrium may be achieved on a much shorter time scale than the time it takes
the system to escape from the superbasin. In this situation, if all the substates are
known and a list of all processes that take the system out of the superbasin can
be enumerated, then one of these processes can be selected with an appropriate
Boltzmann probability. An example of this kind of approach has been presented
recently by Samant and Vlachos [60]. Two difficulties typically arise: 1) efficiently
identifying and recognizing all the substates, the number of which may be very
large; and 2) being sure the system is truly equilibrated in the superbasin.

hashing procedure based on the Zobrist key [62], developed for recognizing pre-
viously stored configurations in chess, can be used to efficiently identify revisited
states in a KMC simulation. In lattice-based KMC, as in chess, the number of possi-
ble states is typically astronomical, vastly exceeding the number of indices that can
be stored in computer memory. The Zobrist approach maps a lattice-based config-
uration onto a non-unique index (key) that has a low probability of colliding with
other configurations. Mason et al showed that retrieving previously visited states
based on their Zobrist key saved substantial time for a KMC simulation in which
rates were calculated from scratch for each new configuration. This type of index-
ing could also be powerful for enumerating and recognizing states in a superbasin.

Novotny has presented a general method [63] that circumvents the second prob-
lem (that of establishing equilibration in the superbasin). The implementation re-
quires setting up and diagonalizing a transition matrix over the revisited states.
While this probably becomes too costly for superbasins with large numbers of sub-
states, the generality of the method is very appealing. It yields the time of the first
transition out of the set of revisited states and the state the system goes to, while

Regarding the first problem, Mason et al [61] have recently pointed out that a.
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making no requirement of a local equilibrium or even that the complete set of states
in the superbasin be known.

A recent review by Vlachos [64] discusses other methods relevant to these low
barrier problems. Finally, we note that the low-barrier problem is also an issue for
the accelerated molecular dynamics methods discussed in the next chapter, as well
as for the on-the-fly KMC discussed in Section 13.

12 OBJECT KINETIC MONTE CARLO

A higher level of simulation, which is still in the KMC class, can be created
by constructing state definitions and appropriate rate constants for multi-atom en-
tities such as interstitial clusters, vacancy clusters, etc. This type of simulation is
becoming more common in radiation damage annealing studies. As in basic atomic-
level KMC, this object KMC approach is usually performed on a lattice using the
residence time algorithm, perhaps augmented by additional rules. By treating the
diffusive motion of a cluster, for example, as proceeding by simple KMC steps of
the center of mass, rather than as a cumulative result of many individual basin-to-
basin moves that move atoms around in complex (and often unproductive) ways,
object KMC can reach much longer time and length scales than pure atom-based
KMC. A good example of this approach, with references to earlier work, can be
found in [65].

The tradeoff in this approach, however, is that important pathways may go miss-
ing from the rate catalog as atomistic details are eliminated. For example, the diffu-
sion rate as a function of cluster size must be specifed directly, as well as rules and
rates for coalescense or annihilation two clusters that encounter one another. When
the real dynamics are explored, these dependencies sometimes turn out to be sur-
prisingly complicated. For example, in the case of intersitial clusters in MgO, the
diffusion constants are strongly non-monotonic with cluster size, and, worse, the
cluster resulting from coalescence of two smaller clusters can sometimes form in
a long-lived metastable state with dramatically different diffusion properties [58].
So, while object KMC is an effective way to reach even greater time and size scales
than standard KMC, it is perhaps even more important to keep in mind the dangers
of missing pathways.

13 ON-THE-FLY KINETIC MONTE CARLO

As discussed above, while ideally KMC simulations can be carried out in a way
that is faithful to the real dynamics for the underlying interatomic potential, this is
virtually never the case in real applications due to the fact that reaction pathways
are invariably missing from the rate catalog. In part, this deficiency arises from the
fact that keeping the system on lattice precludes certain types of diffusive events,
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but the far more dominant reason is simply that we usually make up rate catalogs
based on our intuition about how the system will behave, and the real dynamics is
almost always more complicated. This situation can be improved by gaining more
experience on the system to be simulated, e.g., by observing the types of events
that occur during extensive direct MD simulations. However, even this approach
is usually inadequate for finding all the reactive events that could occur during the
evolution of the system.

It is this situation that has motivated research in recent years to develop alterna-
tive methods that can reach long time scales while maintaining (or coming close to)
the accuracy of direct MD. The next chapter in this book describes one powerful
approach to this problem, accelerated molecular dynamics, in which the classical
trajectory is retained (rather than collapsing the description to a set of states, as in
KMC), and this classical trajectory is coaxed into finding each escape path more
quickly. We finish the present chapter with a brief description of another approach,
one which retains the flavor of KMC.

Recently, Henkelman and Jónsson [68] have proposed a variation on the KMC
method, in which one builds a rate catalog on the fly for each state. The key to this
approach is having an efficient way to search for saddle points that are connected to
the current state of the system. For this, they use the “dimer” method [57]. Given a
random starting position within the energy basin, the dimer algorithm climbs uphill
along the lowest eigenvector of the Hessian matrix, reaching the saddle point at the
top. Because it only requires first derivatives of the potential [69], it is computa-
tionally efficient. In principle, if all the bounding saddle points can be found (and
hence all the pathways for escape from the state), the rate for each of these path-
ways can be supplied to the KMC procedure described in Section 5, propagating the
system in a dynamically correct way to the next state, where the procedure is begun
again. In practice, it is hard (probably impossible) to demonstrate that all saddles
have been found, especially considering that the number of saddle points bounding
a state grows exponentially with the dimensionality of the system. However, with
a large number of randomly initiated searches, most of the low-lying barriers can
be found, and this approach looks very promising [70]. Examining the pathways
that these systems follow from state to state, often involving complicated multiple-
atom moves, it is immediately obvious that the quality of the predicted dynamical
evolution is substantially better than one could hope to obtain with pre-cataloged
KMC. This approach can be parallelized efficiently, as each dimer search can be
performed on a separate processor. Also, for large systems, each dimer search can
be localized to a subset of the system (if appropriate). On the other hand, this type
of on-the-fly KMC is substantially more expensive than standard KMC, so the user
must decide whether the increased quality is worth the cost.
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14 CONCLUSIONS

Kinetic Monte Carlo is a very powerful and general method. Given a set of rate
constants connecting states of a system, KMC offers a way to propagate dynami-
cally correct trajectories through the state space. The type of system, as well as the
definition of a state, is fairly arbitrary, provided it is appropriate to assume that the
system will make first-order transitions among these states. In this chapter, we have
focused on atomistic systems, due to their relevance to radiation damage problems,
which are the subject of this book. In this case, the states correspond to basins in
the potential energy surface.

We have emphasized that, if the rate catalog is constructed properly, the easily
implemented KMC dynamics can give exact state-to-state evolution of the system,
in the sense that it will be statistically indistinguishable from a long molecular
dynamics simulation. We have also pointed out, however, that this ideal is virtually
never realizable, due primarily to the fact that there are usually reaction pathways
in the system that we don’t expect in advance. Thus, if the goal of a KMC study
is to obtain accurate, predictive dynamics, it is advisable to perform companion
investigations of the system using molecular dynamics, on-the-fly kinetic Monte
Carlo (see Section 13), or accelerated molecular dynamics (see next chapter).

Despite these limitations, however, KMC remains the most powerful approach
available for making dynamical predictions at the meso scale without resorting to
more dubious model assumptions. It can also be used to provide input to and/or
verification for higher-level treatments such as rate theory models or finite-element
simulations. Moreover, even in situations where a more accurate simulation would
be feasible (e.g., using accelerated molecular dynamics or on-the-fly kinetic Monte
Carlo), the extreme efficiency of KMC makes it ideal for rapid scans over different
conditions, for example, and for model studies.
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