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Preface

This is a set of notes written for seniors or beginning graduate students in engineering, especially
for those in the mechanical sciences like mechanical, chemical, civil, or aerospace engineering. The
material can be covered as an introduction at the beginning of a course on any one of the specialized
applications such as elasticity, acoustics, or water-surface waves. It is also suitable for self-study by
working engineers or for those for whom a classroom course is not readily available. It is assumed
that the reader has a basic background in undergraduate mathematics including multi-variable and
vector calculus, linear algebra, and ordinary differential equations. Knowledge of partial differential
differential equations would be a plus, but is not essential since most of the details are included here.
Some useful background topics are included in the Appendix.

The notes emphasize the generic nature of wave theory that is common to most applications.
Most of this relates to the kinematics of waves and how they travel. For the incorporation of material
parameters and the generation and damping of waves, however, one has to recur to the dynamics
of the specific physical processes that enables them. In this context physical applications are also
introduced, more for the purpose of pointing out common features than to enter in depth in each
one, and the reader interested in an application should continue to one of the many specialized books
on each. For this part of the notes, it is assumed that the reader is familiar with undergraduate
statics, dynamics, solid mechanics, fluid mechanics, and heat transfer.

vii



Chapter 1

Introduction

Humans have interacted with some form of waves for a very long time, though of course they were
not known as such. Speech and sound, for example, which enabled communication among ourselves
and the creation of music, date from tens of thousands of years ago. Examples are the acoustics of
amphitheaters1 and musical instruments2. However, the science of the subject was really studied
relatively recently, culminating in classic books like Rayleigh (1877), Lamb (1910) and Jeans (1937).
Interaction between temperature differences and sound was discovered by Rijke in 1859, when he
found a way of using heat to sustain a sound in a cylindrical tube open at both ends.3 Water
waves is another area that was familiar to the ancients, and its recent history is well documented4.
Significant contributions were made by Airy, Stokes, and Scott5, among others. Electromagnetism
is another field that has made significant contributions to the general theory of waves. Huygens in
1690 explained the behavior of light in terms of waves, and in 1865 Maxwell was able to calculate
its speed from known material properties. This topic, not being a mechanical wave, will only have a
passing reference in the Appendix, though its contribution to the fundamental ideas of waves cannot
be overestimated.

There are many kinds of waves that mechanical engineers deal with. Some of them are
in solids and others in liquids and gases; some are on the surface of the material and some in its
interior. The basic quantity to be studied in a wave, that we will call u, will depend on the physical
applications. For example, for a water wave it is the instantaneous local height of the water surface
above a mean level, and for acoustics it is the instantaneous local pressure. In either case u is a
function of space x and time t.

1A.F Bilsen, Repetition pitch glide from the step pyramid at Chichen Itza, J. Acoustical Society of America,
Vol. 120, pp. 594-596, 2006; N.F. Declercq and C.S. Dekeyser, Acoustic diffraction effects at the Hellenistic amphithe-
ater of Epidaurus: Seat rows responsible for the marvelous acoustics, J. Acoustical Society of America, Vol. 121,
pp. 2011-2022, 2007.

2T. Higham, L. Basellb, R. Jacobi, R. Wood, C.B. Ramsey, N.J.Conard, Testing models for the beginnings of the
Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle, J. Human
Evolution, Vol. 62, pp. 664-676, 2012

3P.L. Rijke, On the vibration of the air in a tube open at both ends, Philosophical Magazine, vol. 17, pp. 419-422,
1859

4A.D.D. Craik, The Origins of Water Wave Theory, Annual Review of Fluid Mechanics, Vol. 36: 1-28, 2004.
5J.S. Russell, 1845, Report on Waves, Report of the fourteenth meeting of the British Association for the Advance-

ment of Science, York, pp. 311-390, September 1844, John Murray, London.
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Chapter 2

Wave kinematics

2.1 What is a wave?

A wave is a spatial form that translates in space while maintaining its shape. In general, a wave
traveling in the x-direction can be represented by the function of the form f(ξ), where ξ = x−ct−x0,
so that

u(x, t) = f(x− ct− x0), (2.1)

where c and x0 are constants, and u is whatever scalar physical quantity that constitutes the wave.
For the moment c has no physical meaning but has units of velocity, and x0 of length. x0 can
arbitrarily be absorbed in the independent variables x or t, i.e. by defining x′ = x−x0 or t′ = t+x0/c.
What Eq. (2.1) signifies is that at different instants of time, t1 and t1 + ∆t say, the two functions
u(x, t1) and u(x, t1 + ∆t) are identical in shape, but are displaced in the x direction by a distance
∆x, where ∆x = c∆t, as shown in Fig. 2.1. Depending on the sign of c, the function will be displaced
in the positive or negative x-direction.

1 2

x

f

Figure 2.1: Functions f(x, t1) and f(x, t1 + ∆t).

If we have a moving sensor with position xs(t), then it will see1

us(t) = f(xs(t)− ct− x0).

1Note that xs is a dependent variable, as opposed to x which is an independent variable.
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2.2. EQUATIONS FOR WAVES 4

If now the sensor moves such that the argument ξ = xs(t)− ct− x0 is constant, it will have to move
at velocity c. For a coordinate system moving with this velocity, the function in Eq. (2.1) always
has the same form. This is called the phase velocity.

The distance shift between two waves

u1 = f(x− ct− x0,1), (2.2a)

u2 = f(x− ct− x0,2), (2.2b)

is ∆x = x0,2 − x0,1. This quantity is useful only if there is more than one wave, and if the shapes
of the two waves are the same, i.e. if f and c are the same. Furthermore, one of the x0s can be
absorbed in x or t, so that the other will represent the distance shift. When dealing with many
waves, we can use one wave as a reference and measure the distance shifts for all the others from
this. For a single wave, we can omit x0 without loss of generality and write

u(x, t) = f(x− ct). (2.3)

The quantity traveling as a wave could be a vector u. For this the wave is

u(x, t) = f(x− ct).

If the wave motion u is normal to or along the direction of propagation of the wave, it is called a
transverse or longitudinal wave, respectively.

� Example

Q: Show that u(x, t) = A (sin kx cosωt− cos kx sinωt), where k and ω are constants, is a wave.
A: Using the trigonometric relation

sin(a− b) = sin a cos b− cos a sin b

we can write

u(x, t) = A sin (kx− ωt) ,

= A sin k
(
x−

ω

k
t
)

which is in the form of Eq. (2.3), and is hence a wave.

2.2 Equations for waves

To find the differential equation for which Eq. (2.3) is a solution, we can differentiate it partially
once w.r.t. x and t independently to get

∂u

∂t
= −cf ′,

∂u

∂x
= f ′.

where the primes indicate derivatives w.r.t. ξ, and the chain rule of differentiation is used. From
these, we get

∂u

∂t
+ c

∂u

∂x
= 0. (2.4)

4 c© Mihir Sen, 2014



2.3. HARMONIC WAVES 5

We can stop here, but let us see if there are other equations with the same solution. In fact
further differentiations will lead us to

∂2u

∂t2
= c2f ′′,

∂2u

∂x2
= f ′′,

from which

∂2u

∂t2
− c2 ∂

2u

∂x2
= 0. (2.5)

Though one solution of Eq. (2.5) is indeed Eq. (2.3), it has another solution also, as we will see later.
Furthermore, we can easily show that Eq. (2.3) is also a solution to higher-order wave equations.

� Example

Q: Find a lowest-order differential equation with mixed derivatives that satisfies Eq. (2.3).
A: The lowest-order mixed derivative is

∂2u

∂x∂t
= −cf ′′,

so that

∂2u

∂t2
+ c

∂2u

∂x∂t
= 0.

In fact this can be written as

∂

∂t

(
∂u

∂t
+ c

∂u

∂x

)
= 0.

This is the time derivative of Eq. (2.4). The spatial derivative of the same equation will also satisfy Eq. (2.3).

2.3 Harmonic waves

A harmonic version of Eq. (2.3) is

u(x, t) = A cos (kx− ωt) , (2.6)

for a scalar, where A is the scalar amplitude. This is an infinite wave train. A sine function could
have been chosen instead of a cosine, i.e.

u(x, t) = A sin (kx− ωt) . (2.7)

The two are not identical since, there being a −90◦ phase difference between them, as will be shown
below.

For a vector

u = A cos(kx− ωt).

The amplitude A is now a vector.
We can give physical meaning to the quantities in the harmonic wave.

5 c© Mihir Sen, 2014



2.3. HARMONIC WAVES 6

• At a certain instant in time, i.e. if we take a snapshot at t = t0, the harmonic wave u(x, t0)
is a sinusoidal function in x. There are k peaks in 2π units of length; k is thus called a
wave-number.

• Similarly, when we consider a given point in space, i.e. we watch the harmonic wave at a
location x = x0, then u(x0, t) will be seen as oscillating sinusoidally in time. There will be ω
peaks in a 2π period of time; ω is thus called the radian frequency of the wave.

• The non-dimensional quantity φ = kx− ωt is called the phase.

Other commonly-used quantities that can be defined from these are

• The wavelength is λ = 2π/k. This is the distance between adjacent peaks of a wave at any
instant of time.

• The cyclic frequency is n = ω/2π, and is usually measured in cycles per second, or Hertz (Hz).
The cyclic frequency ω and the radian frequency n, though proportional to each other, should
not confused.

• The period is 1/n. This is the time interval between peaks at any given position in space.

• The phase difference between the two waves

u1(x, t) = A cos (kx− ωt) ,
u2(x, t) = A cos (kx− ωt+ ∆θ) .

is the angle ∆θ. For example, since cos (kx− ωt− 90◦) = sin (kx− ωt), the phase difference
between the waveforms in Eqs. (2.6) and (2.7) is −90◦. The distance shift in Eq. (2.2) is related
to the phase difference by ∆x = ∆θ/k.

Writing the wave function in the form

u(x, t) = A cos
{
k
(
x− ω

k
t
)}

,

we see that it is in the same form as Eq. (2.3), with

c =
ω

k
. (2.8)

Thus the phase velocity can also be written as

c = nλ.

In terms of complex numbers, Eq. (2.6) can be written as

f(x, t) = Aei(kx−ωt).

� Example

Q: If the height is a water wave is given by u(x, t) = 15 sin (1.5x− 7.5t) m, where x is in cm and t is s, find the
wavelength, cyclic frequency and period of the wave.
A: Given k = 1.5 cm−1, ω = 7.5 rad/s, so that the wavelength λ = 2π/k = 4.19 cm, cyclic frequency n = ω/2π = 1.194
Hz, period 1/n = 0.838.

6 c© Mihir Sen, 2014



2.4. SOLITARY WAVES 7

2.4 Solitary waves

These are waves that have a single peak and decay on either side of that. An example is

u(x, t) = A exp

{
−1

2

(
x− ct
σ

)2
}
.

This is a Gaussian with amplitude A and standard deviation σ that is traveling to the right with
velocity c.

2.5 Shock wave

This is a wave that is defined by

u(x, t) =

{
A if x < ct

B if x ≥ ct

A and B are different constants, so that the wave is a constant on either side of the point that is
traveling to the right with a velocity c. Another way to write this is

u(x, t) = (A−B) {1−H(x− ct)}+B, (2.9)

where H(x) is the Heaviside step function2. It is now in the form of Eq. (2.3). It is a single wave as
opposed to being a wave train.

� Example
Q: Find the equation for a single symmetrical triangular wave of width δ that is traveling at velocity c.
A: A triangle centered on the origin ξ = 0 is

u(ξ) =


0 if ξ < −δ/2
1 + 2ξ/δ if − δ/2 < ξ < 0

1− 2ξ/δ if 0 < ξ < δ/2

0 if ξ > δ/2

We can make the origin move by taking ξ = x− ct. Thus

u(x, t) =


0 if x− ct < −δ/2
1 + 2(x− ct)/δ if − δ/2 < x− ct < 0

1− 2(x− ct)/δ if 0 < x− ct < δ/2

0 if x− ct > δ/2

is the triangular wave with phase velocity c.

2.6 Sigmoid wave

This wave is of the form

u(x, t) =
B −A

1 + exp {−(x− ct)/x0}
+A.

2Defined to be zero if its argument is negative and unity if it is non-negative.

7 c© Mihir Sen, 2014



2.6. SIGMOID WAVE 8

which goes smoothly from a value of A on the left to B on the right of a moving point x = ct. It
becomes steeper and approaches the shock as x0 → 0.

� Example

Q: Interpret x0 physically.
A: Taking the derivative of the sigmoid

u(ξ) =
B −A

1 + exp {−ξ/x0}
+A,

we get

u′(ξ) =
(B −A)e−ξ/x0

x0(1 + exp {−(ξ/x0)2}
+A.

As x0 → 0, this becomes Wrong!

u′(0) =
B −A
x0

.

For large x0, 1/x0 is proportional to the slope of the sigmoid at ξ = 0. As x0 → 0, the sigmoid approaches a Heaviside
step function.

Exercises

1. For a wave of the form

u(x, t) = A cos (kx− ωt) , (2.10)

what will a moving sensor with position xs(t) = a sin t read?

2. Show by substitution3 that the shock wave Eq. (2.9) is a solution of Eq. (2.4).

3The derivative of H(x − x0) is the delta function δ(x − x0). Both H and δ are actually not functions but
distributions or generalized functions.

8 c© Mihir Sen, 2014



Chapter 3

Properties of waves

3.1 Ray tracing

http://en.wikipedia.org/wiki/Ray_tracing_%28physics%29

ds

dt
= c

3.2 Dispersion relation

We can relax the independent k and ω assumptions in Eq. (2.6) and take

ω = ω(k).

This is called the dispersion relation, and the waves are dispersive. Though k and ω are still
constants, they are now dependent on each other. The phase velocity c(k) = ω(k)/k is then a
function of k; or, if one wants to think of it this way, it is a function of ω. A special case is when c
is independent of k; such waves are then non-dispersive.

The phase velocity c depends on the physical properties of the material through which the
wave is propagating and the kind of wave. This will be taken up when we discuss specific applications.

http://en.wikipedia.org/wiki/Group_velocity

� Example

Q: Show that the phase and group velocities are the same for a non-dispersive wave.
A: From Eq. (2.8) we have that ω = ck. Since c is independent of k for a non-dispersive wave, the group velocity is
cg = dω/dk = c.

3.3 Energy flow

The instantaneous energy flow is

E(t) = Au+B
∂u

∂t
.

9
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3.3. ENERGY FLOW 10

For a complex waveform

u(x, t) =

∫ ∞
−∞

U(k)ei(kx−ωt) dk (3.1)

where U(k) is the temporal Fourier transform of u(x, t). In the neighborhood of k = k0, a Taylor
series expansion of the dispersion relation gives

ω = ω0 + ωk,0 (k − k0) + . . .

where ω0 = ω(k0), and ωk,0 = (dω/dk)k=k0 . Substituting in Eq. (3.1), we get

u(x, t) = ei(k0ωk,0−ω0)t

∫ ∞
−∞

U(k)ei(k0ωk,0−ω0)t dk,

= ei(k0ωk,0−ω0)tu (x− ωk,0t, t) dk.

The argument of u on the right shows that it moves with a velocity

cg =
dω

dk

∣∣∣∣∣
k=k0

. (3.2)

This is called the group velocity, and is the velocity at which the energy of the wave moves.

� Example

Q: Show that the phase and group velocities are the same for a non-dispersive wave.
A: For a non-dispersive wave c does not depend on k. Thus

ω = ck,

cg =
dω

dk
,

= c.

As a simple example of a wave group, take two slightly different waves

u1(x, t) = A cos {(k + dk/2)x− (ω + dω/2)t} ,
u2(x, t) = A cos {(k − dk/2)x− (ω − dω/2)t} .

Superposition of these gives

u = u1 + u2,

= A cos {(k + dk/2)x− (ω + dω/2)t}+A cos {(k − dk/2)x− (ω − dω/2)t} ,
= 2A cos(kx− ωt) cos(dk x− dω t),

where we have used the identity

cos a+ cos b = 2 cos
a+ b

2
cos

a− b
2

.

This is a harmonic wave group with an envelope that travels at speed cg = dω/dk.

Exercises

1. Show that cg = c+ k dc/dk for a dispersive wave.

2. Show by substitution that u(x, t) = A cos (kx− ωt), A sin (kx− ωt), and Aei(kx−ωt) are all separately solutions
of the first-order one-dimensional wave equation.

3. Write the equation of a single unit pulse of width δ traveling at velocity c.

10 c© Mihir Sen, 2014



Chapter 4

Wave-like forms

It is not very common to see a harmonic wave train like Eq. (2.6) since it is over an infinite domain
of time and space, and does not grow or decay. Even the general wave represented by Eq. (2.3) goes
on for ever in time and space. More commonly we deal with situations in which u(x, t) is not exactly
of either form, but close to it to be recognizable as a wave.

4.1 Complex wave forms

If two individual waves

u1(x, t) = f1(x− c1t),
u2(x, t) = f2(x− c2t),

where the waves are different, are added, then u = u1 + u2 is not of the form of Eq. (2.3), and is
hence strictly not a wave. However, it may be possible to visually identify the two waves from the
signal u(x, t). It is much more difficult if many waves are added, as for instance if

u(x, t) =
N∑
i=1

fi(x− cit).

The total sum, in this case, is not a true wave while each one of the N different components is.

The continuum version of the sum of discrete waves is

u(x, t) =

∫ ∞
−∞

fi(x− ct) dc.

4.2 Standing waves

Take two equal harmonic waves traveling in opposite directions are

u1(x, t) = A cos(kx− ωt),
u2(x, t) = A cos(kx+ ωt).

11



4.3. DAMPED AND GROWING WAVES 12

The sum is

u = u1 + u2,

= A cos(kx− ωt) +A cos(kx+ ωt),

= 2 cos kx cosωt.

4.3 Damped and growing waves

Often a function of the form

u(x, t) = e−αxf(x− ct) (4.1)

or

u(x, t) = e−αtf(x− ct)

is known as a damped or growing wave if α > 0 or < 0, respectively . This is not a true wave in
the sense of a function translating itself in space and maintaining its shape intact, since it changes
in magnitude. Of course the special case of α = 0 gives a true wave as defined by Eq. (2.3).

Differentiating Eq. (4.1), we have

∂u

∂t
= −ce−αxf ′,

∂u

∂x
= e−αxf ′ − αe−αxf,

from which

∂u

∂t
+ c

∂u

∂t
= −ce−αxf ′ + c

(
e−αxf ′ − αe−αxf

)
,

= −cαe−αxf,
= −cαu.

Thus a damped or growing wave is a solution of

∂u

∂t
+ c

∂u

∂t
+ cαu = 0.

Of course there are also higher-order equations of which Eq. (4.1) is a solution.

4.4 Modulated waves

There are a number of ways in which the wave

u(x, t) = A cos (kx− ωt− θ)

may be modulated.

12 c© Mihir Sen, 2014



4.5. NONLINEAR WAVES 13

Amplitude modulation

The expression

u(x, t) = fm(x, t) cos (kx− ωt)

may be thought of as harmonic wave with wavenumber and frequency k and ω, but with its amplitude
modulated by fm(x, t). The modulation may itself be a harmonic wave if, for example,

fm(x, t) = A cos(k′x− ω′t),

where the envelope travels at velocity c′ = ω′/k′. Other modulation functions can be used, such as

fm(x, t) = A exp
{
−(x− c′t)2

}
.

This function defines an envelope enclosing a wave packet. Notice that the speed of the envelope c′

and that of the individual waves c = ω/k may be different.

Frequency modulation

In this case

u(x, t) = A cos (kx− ω(t)t) .

Phase modulation

For this

u(x, t) = A cos (kx − ωt− θ(t)) .

4.5 Nonlinear waves

Consider a variant of Eq. (2.3)

u(x, t) = f(x+ c(u)t),

in which the phase velocity depends on u. We can show that

∂u

∂t
= (1− c′t∂u

∂x
)f ′,

∂u

∂x
= (−c′t∂u

∂t
− c)f ′,

from which

∂u

∂t
+ c

∂u

∂x
= (1− c′t∂u

∂x
)f ′ − c

{
(−c′t∂u

∂t
− c)

}
f ′,

=

{
−c′t

(
∂u

∂t
+ c

∂u

∂x

)}
f ′.

Thus

∂u

∂t
+ c

∂u

∂x
= 0.

Exercises

13 c© Mihir Sen, 2014
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1.

14 c© Mihir Sen, 2014



Chapter 5

Waves in inhomogeneous media

5.1 Slowly-varying media

If we assume that c(x) is slowly varying, i.e. if

λ

c

dc

dx
� 1

then the solution of

∂u

∂t
+ c(x)

∂u

∂x
= 0

and one solution of

∂2u

∂t2
− c(x)

∂2u

∂x2
= 0.

is still Eq. (2.3).
If the slowly varying condition is not satisfied, then I don’t know what happens.

5.2 Random media

Exercises

1.

15



5.2. RANDOM MEDIA 16

16 c© Mihir Sen, 2014



Chapter 6

Wave equations

6.1 First-order equations

Characteristics
If c is a constant, the solution of the equation

∂u

∂t
+ c

∂u

∂x
= 0

is

dt =
dx

c
=
du

0
,

from which

du = 0,

u = C1,

and

dx− c dt = 0,

x− ct = C2.

Putting C1 = f(C2), we get the general solution

u = f(x− ct).

� Example

Q: Solve

∂u

∂t
+ c

∂u

∂x
= 0.

where c = c(x).

17



6.2. SECOND-ORDER EQUATIONS 18

A: The characteristic equation is

dt =
dx

c(x)
=
du

0
.

We have u = C1, and

t−
∫

dx

c(x)
= C2,

so that the solution is

u = f

(
t−
∫

dx

c(x)

)
.

6.2 Second-order equations

The general solution of

∂2u

∂t2
− c∂

2u

∂x2
= 0. (6.1)

is

u = f(x+ ct) + g(x− ct), (6.2)

where f(x+ ct) is a wave running to the left, and g(x− ct) is to the right.
In fact, Eq. (6.1) can be written as(

∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0,

which is the same as (
∂

∂t
+ c

∂

∂x

)
u = v, (6.3a)(

∂

∂t
− c ∂

∂x

)
v = 0. (6.3b)

� Example

Q: Solve Eqs. (6.3) in sequence as first-order equations. Check!
A: The solution to the second equation is

dt = −
dx

c
=
dv

0
,

from which

C1 = ct+ x,

C2 = v.

Thus

v = f(ct+ x),

18 c© Mihir Sen, 2014



6.3. KORTEWEG-DE VRIES EQUATION 19

The solution to the first is

dt =
dx

c
=

du

f(ct+ x)
,

from which

C1 = ct− x,

C2 = u−
∫
f(2ct− C1) dt.

Thus

u =

∫
f(2ct− C1) dt+ g(ct− x),

=
1

2c

∫
f(ζ) dζ + g(ct− x), where ζ = 2ct− C1

= h(ζ) + g(ct− x),

= h(2ct− C1) + g(ct− x),

= h(ct+ x) + g(ct− x).

This can be transformed to Eq. (6.2) with suitable manipulation.

6.2.1 D’Alembert’s solution

With the initial conditions

u(x, 0) = f(x),

ut(x, 0) = g(x),

the solution of Eq. (6.1) is

u(x, t) =
1

2
{f(x− ct) + f(x+ ct)}+

1

2c

∫ x+ct

x−ct
g(s)ds,

which is known as D’Alembert’s solution.

6.2.2 Riemann-Volterra solution (Sneddon)

6.2.3 Telegraph equation

This is

c2
∂2u

∂x2
=
∂2u

∂t2
+ a

∂u

∂t
+ bu.

6.3 Korteweg-de Vries equation

This is the non-linear equation

∂u

∂t
+
∂3u

∂x3
+ 6u

∂u

∂x
= 0.

19 c© Mihir Sen, 2014



6.4. FOURTH-ORDER EQUATIONS 20

A solitary wave solution is

u(x, t) =
1

2
csech2

[√
c

2
(x− ct− a)

]
where c is the phase velocity and a is a constant.

A cnoidal wave solution is

η(x, t) = η2 +H cn2
(

2K(m)
x− c t
λ

m
)
,

where cn(·) is one of the Jacobi elliptic functions defined by

u =

∫ φ

0

dθ√
1−m sin2 θ

,

cn u = cosφ.

6.4 Fourth-order equations

Biharmonic equation

∇4u = − 1

p2
∂2y

∂t2

Exercises

1.

20 c© Mihir Sen, 2014



Chapter 7

Wave generation

Waves can be generated in two different ways through a time-dependent external forcing F (t). The
first is by injecting energy in the interior, and the other is to introduce it from the boundary.

7.1 Interior sources

For example, we can have

∂u

∂t
+ c

∂u

∂x
= g(x),

with the solution

u(x, t) = f(x− ct) +
1

c

∫
g(x) dx. (7.1)

The solution of

∂u

∂t
+ c

∂u

∂x
= g(t),

is

u(x, t) = f(x− ct) +

∫
g(t) dt. (7.2)

∂2u

∂t2
− c∂

2u

∂x2
= F (t).

The Green’s function of (
∇2 − 1

c2
∂2

∂t2

)
u = δ(x, t)

is

?

21



7.2. BOUNDARY SOURCES 22

7.2 Boundary sources

In this case we may have

∂2u

∂t2
− c∂

2u

∂x2
= 0,

with u(0, t) = F (t). To generate harmonic waves we can take F = A cos Ωt.

Exercises

1. Show Eqs. (7.1) and (7.2).

22 c© Mihir Sen, 2014



Chapter 8

Harmonic waves

Harmonic waves are the most common, so several of their properties will be mentioned here.

8.1 Traveling and standing waves

8.2 Beating

http://en.wikipedia.org/wiki/Beat_%28acoustics%29

8.3 Refraction

8.4 Reflection

8.5 Interference

8.6 Diffraction

8.7 Doppler effect

8.8 Scattering

Exercises

1.

23
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Chapter 9

Multi-dimensional waves

A scaler quantity traveling as a wave in three-dimensional physical space is

u(x, t) = f(x− ct). (9.1)

Note that the phase velocity c is a vector. From time instant t = t1 to t = t1 + ∆t, this wave travels
a distance ∆x = c ∆t. Similarly, a traveling vector quantity has the representation

u(x, t) = f(x− ct).

The directions of u and c are, in general, unrelated and may be different.

The equation that Eq. (9.1) satisfies can be easily found. We write

u(x, y, z, t) = f(ξx, ξy, ξz)

where ξ1 = x− cxt, etc. The derivatives are

∂u

∂t
= −cx

∂f

∂ξx
− cy

∂f

∂ξy
− cz

∂f

∂ξz
,

∂u

∂x
=

∂f

∂ξx
,

∂u

∂y
=

∂f

∂ξy
,

∂u

∂z
=

∂f

∂ξz
,

so that

∂u

∂t
+ cx

∂f

∂ξx
+ cy

∂f

∂ξy
+ cz

∂f

∂ξz
= 0.

This can also be compactly written as

∂u

∂t
+ c · ∇ξf = 0,

25



26

where

∇ξ = i
∂

∂ξx
+ j

∂

∂ξy
+ k

∂

∂ξz
.

The second-order multi-dimensional wave equation for a scalar u is1

∂2u

∂t2
− c∇2u = 0.

and for a vector u is2

∂2u

∂t2
− c∇2u = 0.

The harmonic version of the scaler wave is

u(x, t) = A cos(k · x− ωt), (9.2)

where k is a vector wavenumber. From time instant t = t1 to t = t1+∆t, this wave travels a distance
∆x, where k ·∆x = ω ∆t. Another way of writing Eq. (9.2) is

u(x, t) = A cos(kxx+ kyy + kzz − ωt).

We can also write

u(x, t) = A cos

{
k · (x− k

k2
ωt)

}
.

where k = |k|, so that

c =
k

k2
ω.

The velocity vector c and the vector wavenumber k are both in the direction of travel of the wave.
The generalization of the group velocity in Eq. (3.2) to multiple dimensions is

cg = ∇k ω (9.3)

where ∇k = i∂/∂kx + j∂/∂ky + k∂/∂kz.

Exercises

1. Prove Eq. (9.3).

1The operators ∇u = ex∂u/∂x + ey∂u/∂y + ez∂u/∂z and ∇2u = ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 in Cartesian
coordinates.

2Here, ∇2u = ∇(∇ · u)−∇× (∇× u).

26 c© Mihir Sen, 2014



Chapter 10

Transverse waves in a string and
membrane

10.1 String

∂2u

∂x2
=

1

c2
∂2u

∂t2

10.2 Membrane

∇2
Hu =

1

c2
∂2u

∂t2

Exercises

1.

27
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Chapter 11

Elastic waves in solids

http://en.wikipedia.org/wiki/Seismic_wave

http://en.wikiversity.org/wiki/Waves_in_composites_and_metamaterials/Waves_in_

layered_media_and_point_sources

11.1 Longitudinal waves

11.2 Shear waves

11.3 Thermoelastic waves

Exercises

1.

29

http://en.wikipedia.org/wiki/Seismic_wave
http://en.wikiversity.org/wiki/Waves_in_composites_and_metamaterials/Waves_in_layered_media_and_point_sources
http://en.wikiversity.org/wiki/Waves_in_composites_and_metamaterials/Waves_in_layered_media_and_point_sources


11.3. THERMOELASTIC WAVES 30
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Chapter 12

Surface waves in solids

http://en.wikipedia.org/wiki/Surface_acoustic_wave

http://en.wikipedia.org/wiki/Rayleigh_wave

Exercises

1.

31
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Chapter 13

Phonons in solids

http://en.wikipedia.org/wiki/Phonon

13.1 Single atom type

a b c

Figure 13.1: Lattice of atoms of a single type

A lattice of atoms of a single type is shown in Fig. 13.1. The mass of each atom is m,
the spring constants are r, and a is the mean distance between the atoms. For a typical atom n,
Newton’s second law gives

m
d2xn
dt2

= r(xn+1 − xn)− r(xn − xn−1)

= r(xn+1 − 2xn + xn−1).

http://en.wikipedia.org/wiki/Lennard-Jones_potential

Let

xi = x̂ei(nka−ωt),

then the dispersion relation is

ω =

(
2r

m

)1/2

(1− cos ka)
1/2

.

The phase velocity is

c =

(
2r

mk2

)1/2

(1− cos ka)
1/2

,

33
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13.2. TWO ATOM TYPES 34

and the group velocity is

cg =
( r

2m

)1/2 a sin ka

(1− cos ka)
1/2

.

For ka→ 0, we have

vg = a
( r
m

)1/2
.

13.2 Two atom types

ba

Figure 13.2: Lattice of atoms of two different type

Newton’s second law gives

m1
d2xi
dt2

= r(yi − xi)− r(xi − yi−1)

= r(yi − 2xi + yi−1),

m2
d2yi
dt2

= r(xi+1 − yi)− r(yi − xi)

= r(xi+1 − 2yi + xi).

Let

xi = x̂ei(nka−ωt),

yi = ŷei(nka−ωt),

so that

−m1x̂ω
2 = r

(
ŷ − 2x̂+ ŷe−ika

)
,

−m2ŷω
2 = r

(
x̂eika − 2ŷ + x̂

)
,

which can also be written as[
2r −m1ω

2 −r(1 + e−ika)
−r(1 + eika) 2r −m2ω

2

] [
x̂
ŷ

]
=

[
0
0

]
.

This means that

(2r −m1ω
2)(2r −m2ω

2)− r2(1 + e−ika)(1 + eika) = 0,

34 c© Mihir Sen, 2014



13.2. TWO ATOM TYPES 35

which simplifies to

m1m2ω
4 − 2r(m1 +m2)ω2 + 2r2(1− cos ka) = 0.

The solution is

ω2 =
1

2m1m2

[
2r(m1 +m2)± 2r

√
m2

1 +m2
2 + 2m1m2 cos ka

]
.

The positive sign corresponds to the optical and the negative to the acoustic mode.
http://demonstrations.wolfram.com/PhononDispersionRelationInBrillouinZone/

Exercises

1.
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Chapter 14

Thermal waves

Exercises

1.
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Chapter 15

Water surface waves

http://en.wikipedia.org/wiki/Airy_wave_theory

http://en.wikipedia.org/wiki/Stokes_wave

http://en.wikipedia.org/wiki/Clapotis

15.1 Governing equations

For potential flow

∂2φ

∂x2
+
∂2φ

∂z2
= 0, (15.1)

where φ(x, z, t) is the velocity potential. The velocity components are

u =
∂φ

∂x
, (15.2a)

w =
∂φ

∂z
. (15.2b)

15.1.1 Boundary condition at lower surface

The lower surface is impermeable, so that

∂φ

∂z
= 0 at z = −h. (15.3)

η

z = -h

z = 0

39
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15.1. GOVERNING EQUATIONS 40

15.1.2 Boundary conditions at upper surface

The free surface is at z = η(x, t).

Kinematic condition

A particle of fluid on the surface will remain on the surface, i.e.

D

Dt
(z − η) = 0,

where

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
,

is the material derivative following a fluid particle. Thus(
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)
(z − η) = 0,

−∂η
∂t
− u∂η

∂x
+ w = 0,

−∂η
∂t
− ∂φ

∂x

∂η

∂x
+
∂φ

∂z
= 0.

at the surface.
Linearization gives

−∂η
∂t

+
∂φ

∂z
= 0, (15.4)

at the surface. Furthermore, instead of imposing the surface boundary conditions at z = η(x, t), we
can impose them at z = 0. Thus

∂φ

∂z

∣∣∣∣∣
z=η

=
∂φ

∂z

∣∣∣∣∣
z=0

+ η
∂2φ

∂z2

∣∣∣∣∣
z=0

+ . . . ,

=
∂φ

∂z

∣∣∣∣∣
z=0

,

so that Eq. (15.4) applies at z = 0.

Dynamic condition

Bernoulli’s equation is

∂φ

∂t
+
p

ρ
+

1

2

(
u2 + w2

)
+ gη = C,

at the surface, where C is a constant. Linearizing, we have

∂φ

∂t
+
p

ρ
+ gη = C, (15.5)
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15.2. WAVE SOLUTION 41

at z = 0.
For a fluid with surface tension

p = patm − σ
(

1

R1
+

1

R2

)
,

where σ is the coefficient of surface tension, patm is the atmospheric pressure, and R1 and R2 are
the radii of curvature in two orthogonal planes. For plane waves we can take 1/R2 = 0, and

1

R1
=

∂2η/∂x2[
1 + (∂η/∂x)

2
]3/2 ,

which linearizes to

1

R1
=
∂2η

∂x2
.

Thus

p = patm − σ
∂2η

∂x2
.

Eq. (15.5) becomes

∂φ

∂t
+

(
patm
ρ
− σ

ρ

∂2η

∂x2

)
+ gη = C,

at z = 0. The time derivative is

∂2φ

∂t2
− σ

ρ

∂3φ

∂x2∂z
+ g

∂φ

∂z
= 0, (15.6)

using Eq. (15.4).

15.2 Wave solution

Consider a traveling wave of the form

η(x, t) = Aei(kx−ωt). (15.7)

Letting

φ(x, z, t) = Φ(z)ei(kx−ωt),

Eq. (15.1) becomes

−k2Φ +
d2Φ

dz2
= 0. (15.8)

The solution is

Φ = aekz + be−kz,
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15.2. WAVE SOLUTION 42

so that

φ =
(
aekz + be−kz

)
ei(kx−ωt).

Since

∂φ

∂z
= k

(
aekz − be−kz

)
ei(kx−ωt),

the boundary condition at the lower surface, Eq. (15.3) becomes

k
(
ae−kh − bekh

)
ei(kx−ωt) = 0.

This is true for all x and t, so that we must have

ae−kh − bekh = 0,

from which

b = ae−2kh.

Thus

φ = ae−kh
{
ek(z+h) + e−k(z+h)

}
ei(kx−ωt),

or

φ = c cosh k(z + h)ei(kx−ωt),

where c = 2ae−kh.
From Eqs. (15.4) and (15.7), we have

−Aiωei(kx−ωt) = c k sinh khei(kx−ωt),

from which

c = − iAω

k sinh kh
,

so that

φ(x, z, t) = − iAω

k sinh kh
cosh k(z + h)ei(kx−ωt)

From Eqs. (15.2), the velocity components are

u(x, z, t) =
Aω

sinh kh
cosh k(z + h)ei(kx−ωt),

w(x, z, t) = − iAω

sinh kh
sinh k(z + h)ei(kx−ωt).

Using the boundary condition Eq. (15.6), we get(
i2Aω3

k sinh kh

)
cosh kh ei(kx−ωt) −

(
iσAωk2

ρ sinh kh

)
sinh kh ei(kx−ωt) −

(
iAωg

sinh kh

)
sinh kh ei(kx−ωt) = 0.
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This reduces to

ω2

k
coth kh− σk2

ρ
= g,

or

ω =

√(
gk +

σ

ρ
k3
)

tanh kh.

The phase velocity is

c =
ω

k
,

=

√(
g

k
+
σ

ρ
k

)
tanh kh.

15.3 Special cases

15.3.1 Shallow-water waves

Taking kh→ 0, tanh kh→ kh, and neglecting σ, we have

ω = k
√
gh,

c =
√
gh.

These are non-dispersive.

15.3.2 Deep-water waves

For kh→∞, and tanh kh→ 1, we get

ω =

√
gk +

σ

ρ
k3,

c =

√
g

k
+
σ

ρ
k.

These are dispersive.
Gravity waves are deep-water waves dominated by gravity for which

ω =
√
gk,

c =

√
g

k
,

cg =
1

2

√
g

k
,

=
c

2
.
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Capillary waves, on the other hand, are dominated by surface tension, and for these

ω =

√
σ

ρ
k3,

c =

√
σ

ρ
k,

cg =
3

2

√
σ

ρ
k.,

=
3

2
c.

http://en.wikipedia.org/wiki/Capillary_wave

http://en.wikipedia.org/wiki/Dispersion_(water_waves)

Exercises

1.
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Chapter 16

Internal gravity waves

Exercises

1.
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Chapter 17

Hydraulic jump

Exercises

1.
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Chapter 18

Instabilities in fluids

18.1 Parallel flow

Substituting a two-dimensional perturbation of the steady-state velocity field

u = (U(z) + u′(x, z, t))i + v′(x, z, t)j,

and

u′ = aeiα(x−ct)

into the Navier-Stokes equation an linearizing, we get the Orr-Sommerfeld equation

µ

iαρ

(
d2

dz2
− α2

)2

ϕ = (U − c)
(
d2

dz2
− α2

)
ϕ− U ′′ϕ.

where ϕ is the streamfunction.

18.2 Kelvin-Helmholtz instability

18.3 Stratified flow

Exercises

1.
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Chapter 19

Acoustics in gases

Consider the propagation of small pressure, density, temperature and velocity disturbances in an
otherwise quiescent gas. The gas is assumed to obey the perfect gas law

p = ρRT. (19.1)

The pressure, density, temperature and velocity are

p = p0 + p′, (19.2a)

ρ = ρ0 + ρ′, (19.2b)

T = T0 + T ′, (19.2c)

u = u0 + u′, (19.2d)

respectively, where p0, ρ0, T0 and u0 are the background values, and p′(x, t), ρ′(x, t), T ′(x, t) and
u′(x, t) are small perturbations around them. We will assume that u0 = 0.

The one-dimensional equations of mass and momentum conservation are

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
.

Using Eqs. (19.2), these become

∂ρ′

∂t
+ ρ0

∂u′

∂x
= 0, (19.3a)

∂u′

∂t
= −u′ ∂u

′

∂x
− 1

ρ0

(
1− ρ′

ρ0

)−1
∂p′

∂x
, (19.3b)

= − 1

ρ0

(
1 +

ρ′

ρ0
+ . . .

)
∂p′

∂x
, (19.3c)

= − 1

ρ0

∂p′

∂x
. (19.3d)

where the non-linear terms have been neglected.
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We also assume that the fluctuations are fast enough for the heat conduction to be negligible,
so that the process is isentropic. So, in addition to the above, we have

p

p0
=

(
ρ

ρ0

)γ
,

where γ is the ratio of specific heats. From Eqs. (19.2), this becomes

1 +
p′

p0
=

(
1 +

ρ′

ρ0

)γ
,

= 1 + γ
ρ′

ρ0
+ . . .

Thus

p′ = γ
p0
ρ0
ρ′. (19.4)

From Eqs. (19.3), we get

∂2ρ′

∂t2
= −ρ0

∂2u′

∂t ∂x
,

=
∂2p′

∂x2
.

Using Eq. (19.4),

∂2ρ′

∂t2
= c2

∂2ρ′

∂x2
. (19.5)

where

c =

√
γ
p0
ρ0
.

Since p0 = ρ0RT0

c =
√
γRT0.

For air at 20◦C, c = 343.2 m/s.

� Example

Q: Show that similar second-order wave equations hold for p′, u′ and T ′.
A: Eq. (19.4) directly gives

∂2p′

∂t2
= c2

∂2p′

∂x2
. (19.6)

Furthermore, from Eq. (19.1),

p0 + p′ = (ρ0 + ρ′)R(T0 + T ′),

= ρ0RT0 + ρ′RT0 + ρ0RT
′.

so that

T ′ =
1

ρ0R
p′ −

T0

ρ0
ρ′.

Multiply Eq. (19.5) by −T0/ρ0 and add the result to Eq. (19.6) multipled by 1/ρ0R to get a wave equation in T ′.

Exercises

1.
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Chapter 20

Shocks in gases

Exercises

1.
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Appendix A

Appendix

A.1 Complex numbers

The unit of the imaginary numbers is i, defined by i2 = −1. A complex number is one that has a
real and an imaginary part. Thus, a complex number z can be represented as z = x + iy, where
x and y are real numbers. The real part of z is x, written as <(z) = x, and the imaginary part
is =(z) = y. For two complex numbers to be equal their real and imaginary parts must both be
equal. Complex numbers can be added, subtracted, multiplied, divided using the same rules as for
real numbers.

It is useful to show complex numbers as points on a plane; so Fig. A.1 shows the point P
to be the complex number x+ iy1. One must, however, remember that this representation is just a
matter of convenience, and that the complex number is not a two-dimensional vector.

Definitions: The complex conjugate of z = x + iy is z∗ = x − iy. The absolute value (or modulus)

of z is |z| = +
√
x2 + y2; it is the length r is Fig. A.1. The argument of z is the angle it makes with

the abscissa, which is θ = tan−1(y/x) in the figure.

x

y

a

P

r

Figure A.1: Planar representation of a complex number.

1Called an Argand diagram after Jean-Robert Argand (1768-1822).
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A.1. COMPLEX NUMBERS 56

A.1.1 Euler’s formula

If the Taylor series expansion for the exponential of an imaginary number is assumed to be valid,
then

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ . . .

=

[
1− θ2

2!
+
θ4

4!
− . . .

]
+ i

[
θ − θ3

3!
+
θ5

5!
+ . . .

]
so that

eiθ = cos θ + i sin θ. (A.1)

Furthermore

e−iθ = cos θ − i sin θ. (A.2)

From Eq. (A.1) and Fig. A.1, we can show that

reiθ = r (cos θ + i sin θ)

= x+ iy.

This a complex number can be represented in its Cartesian form x+ iy, or its equivalent polar form
reiθ.

Also, from Eqs. (A.1) and (A.2)

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

Complex numbers can be used to find particular solutions of linear ordinary and partial
differential equations. The method is equivalent to using real functions, but with much easier
algebra. We will illustrate with an example. Let us find the particular solution of

ÿ + ẏ + y = F (t), (A.3)

using the method of undetermined coefficients, where

(a)

F (t) = cosωt, (A.4)

(b)

F (t) =
1

2

(
eiωt + e−iωt

)
, (A.5)

(c)

F (t) = eiωt. (A.6)
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A.1.2 Using real numbers

Using Eq. (A.4), we propose a particular solution of the form

y = A cos(ωt+ φ),

where A and φ are real numbers representing the amplitude and the phase angle, respectively.
Substituting in Eq. (A.3), we get

−ω2A cos(ωt+ φ)− ωA sin(ωt+ φ) +A cos(ωt+ φ) = cosωt.

Expanding the equation

(1− ω2)A (cosωt cosφ− sinωt sinφ)− ωA (sinωt cosφ+ cosωt sinφ) = cosωt.

Taking the inner product of the above with respect to cosωt and sinωt, respectively, we get

(1− ω2)A cosφ− ωA sinφ = 1,

−(1− ω2)A sinφ− ωA cosφ = 0.

From this, we have

tanφ =
−ω

1− ω2
,

A =
1√

(1− ω2)2 + ω2
.

Therefore, the final solution is

y =
cos(ωt+ φ)√
(1− ω2)2 + ω2

.

A.1.3 Complex form of real numbers

With Eq. (A.5), the particular solution is

y = Ceiωt + Ce−iωt,

where C is the complex conjugate of C. Substituting in Eq. (A.3), we get

−ω2(Ceiωt + Ce−iωt) + iω(Ceiωt − Ce−iωt) + (Ceiωt + Ce−iωt) =
1

2

(
eiωt + e−iωt

)
.

Expanding the eiωt and e−iωt terms in the above equation using Euler formula, and collecting the
coefficients of cos(ωt) and sin(ωt), we have

−ω2(C + C) + iω(C − C) + C + C = 1,

−ω2(C − C) + iω(C + C) + C − C = 0.

Adding the two equations together,

−2ω2C + 2iωC + 2C = 1.
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The expression for C is

C =
1

2

1− ω2 − iω
(1− ω2)2 + ω2

,

And

C =
1

2

1− ω2 + iω

(1− ω2)2 + ω2
.

Therefore, the expression for the particular solution is

y =
1

2

1− ω2 − iω
(1− ω2)2 + ω2

eiωt +
1

2

1− ω2 + iω

(1− ω2)2 + ω2
e−iωt,

=
1− ω2

(1− ω2)2 + ω2
cosωt+

ω

(1− ω2)2 + ω2
sinωt,

=
cos(ωt+ φ)√
(1− ω2)2 + ω2

.

where,

tanφ =
−ω

1− ω2
.

Note: If we notice the linear independence of eiωt and e−iωt in Eq. (??), we can actually collect the
coefficients of these terms directly,

−ω2C + iωC + C =
1

2
,

−ω2C − iωC + C =
1

2
.

And the results are the same as the previous ones.

A.1.4 Using complex numbers

In the case of Eq. (A.6), we can take

y = Beiωt.

Substituting into Eq. (A.3), we get

−ω2B + iωB +B = 1,

From which, we can solve for B

B =
1− ω2 − iω

(1− ω2)2 + ω2
.

And the solution is

y =
1− ω2 − iω

(1− ω2)2 + ω2
eiωt,

=
eiφ√

(1− ω2)2 + ω2
eiωt,

=
1√

(1− ω2)2 + ω2
ei(ωt+φ),
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where

tanφ =
−ω

1− ω2
.

The real part of the solution is

cos(ωt+ φ)√
(1− ω2)2 + ω2

.

which is exactly the same as the results from the previous two methods.

A.2 Solution of first-order PDE

The procedure for the solution of

P (x, y)
∂u

∂x
+Q(x, y)

∂u

∂y
= R(x, y)

is the following. We write

dx

P
=
dy

Q
=
du

R
.

If the two ordinary differential equations equations can be solved, their solutions are

C1 = C1(x, t),

C2 = C2(x, t).

The solution is then

C1 = f(C2).

A.3 Classification of second-order PDEs

A linear second-order PDE in the unknown u(x, y) is of the form

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂x
+ f = g.

where a through g are functions of x and y. It is classified depending on whether the discriminant
D = b2 − 4ac is locally zero, positive or negative. The three canonical cases are the following.

D = 0: Parabolic (heat equation)

∂u

∂t
= α

∂2u

∂x2
.

D < 0: Elliptical (Laplace’s equation)

∂2u

∂x2
+
∂2u

∂y2
= 0.

D > 0: Hyperbolic (wave equation)

∂2u

∂t2
= c2

∂2u

∂x2
.
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A.4 Electromagnetic waves

Electromagnetic waves is the where much of the theoretical material has been developed. This is
introduced even though the rest of the manuscript deals mainly with mechanical waves.

Maxwell’s equations of electromagnetic theory are

∇×H = J +
∂D

∂t

∇×E = −∂B

∂t
∇ ·D = ρ

∇ ·B = 0

where H, B, E, D, J, and ρ are the magnetic intensity, magnetic induction, electric field, electric
displacement, current density, and charge density, respectively. For linear materials D = εE, J = gE
(Ohm’s law), and B = µH, where ε is the permittivity, g is the electrical conductivity, and µ is the
permeability. For free space ε = 8.8542× 10−12 C2N−1m−2, and µ = 1.2566× 10−6 NC−2s2,

For ρ = 0 and constant ε, g and µ, it can be shown that

∇2H− εµ∂
2H

∂t2
− gµ∂H

∂t
= 0

∇2E− εµ∂
2E

∂t2
− gµ∂E

∂t
= 0

The speed of an electromagnetic wave in free space is c = 1/
√
µε. The directional energy flux density

is given by the Poynting vector

S = E×H.

Exercises

1.
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