Summer School<br>„Molecular Methods in Energy Research"<br>Wissenschaftspark Gelsenkirchen<br>2014

## Lecture: <br> Introduction to the ORCA Program System

Frank Wennmohs

Max Planck Institute for Chemical Energy Conversion

Stiftstr. 34-36
D-45470 Mülheim an der Ruhr
Germany

## The Computational Environment

In order to run calculations with ORCA, three things are necessary:
1.Installation of the ORCA program
2.Using a text-editor to specify the calculation details, i. e. the input file
3.Running the ORCA program (in a cluster environment possibly controlled by a batch system)

NOTE: ORCA is available for all popular platforms:

* Windows,
$\star$ MacOS,
* Linux


## The Computational Environment

$\star$ ORCA is available for the popular Windows, Mac OS X, and Linux platforms.
$\star$ ORCA is distributed as an archive for all platforms. In this archive resides a directory with all executables. There are plenty of programs for extracting files from archives on all platforms (gzip, tar, zip/unzip,...).
$\star$ On the following slides it will be shown how to run a calculation on Windows Vista/7, Mac OS X, and Linux.

* It is assumed, that the orca executables reside in a directory 'orca'


## Configuring ORCA under Windows Vista / 7

Setting the PATH variable to the ORCA directory (with administrator rights)


The Path Variable can be accessed via

Control Panel > System >
Advanced system Settings

Here it is assumed that ORCA resides in c:\orca

## Configuring ORCA under Windows Vista / 7

Setting the PATH variable to the ORCA directory (as normal user)


The Path Variable can be accessed via

Control Panel > User Accounts and Family Safety > User Accounts > Change my environment variables

Here it is assumed that ORCA resides in c:\orca

## Editing Textfiles under Windows Vista / 7

## Editing Text using Notepad



## Running ORCA under Windows Vista / 7

Opening a command window:


## Enter

‘cmd'
into the Search line,
then cmd.exe will be executed upon pressing RETURN.

## Running ORCA under Windows Vista / 7

## Executing the ORCA program

| 12. Windows Task Manager |  |  |  |  |  | 0 | 83 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Options View Help |  |  |  |  |  |  |  |
| Applications | Processes | Services | Performance |  | Networking | Users |  |
| Imsge Name |  | User Name | CPU | Memory (... Description |  |  |  |
| orca_scf.exe taskmg.exe orca.exe |  | frankw | 98 | 118,383 K | K orca_scf.... |  |  |
|  |  | frankw | 02 | $2,168 \mathrm{~K}$ | Windows... |  |  |
|  |  | frankw | 00 | 3,764K | orca.exe |  |  |
| TSWCache.exe |  | frarkw | 00 | 1,980 K | TortoiseS. |  |  |
| VBoxTray.exe |  | frankw | 00 | 368 K | Vrtualoox... |  |  |
| MSASCui.exe |  | frankw | 00 | 1,176 K | Widows ... |  |  |
| explorer.exe fir |  | frankw | 00 | 13,743 K | K Windows... |  |  |
| dvm.exe |  | frarkw | 00 | 800 K | Desktop ... |  |  |
| wsomcons.exe |  | frarkw | 00 | 932 K | Windows... |  |  |
| taskeng.exe |  | frankw | 00 | 1,564K | Task Sche... |  |  |
| conime.exe |  | frankw | 00 | 848 K | Console IME |  |  |
| and.exe |  | frankw | 00 | 768 K | Widows... |  |  |
| ond.exe |  | frankw | 00 | 536 K | K Widows... |  |  |
| cirss.exe |  |  | 00 | 592K |  |  |  |
|  |  | 00 | $1,468 \mathrm{~K}$ |  |  |  |
| 8how processes from all users |  |  |  | End Process |  |  |  |
| Processes: 46 | CPU Usage: 100\% |  | Physical Memory: 35\% |  |  |  |  |

Once ORCA is in the PATH, you can run jobs from any directory you want

Using the sequence orca myinput.inp > myinput.out' the output will be put in a file named like that.

The TaskManager is a handy tool to check if the calculation is still running.

## Getting Started with ORCA under Mac OS X

TextEdit \& Terminal


## Configuring ORCA under Mac OS X

TextEdit \& Terminal


ORCA path entered in the file
'.bashrc’
or
'.bash_profile’
using TextEdit

## Running ORCA under Mac OS X



## Configuring ORCA under Linux

Linux (Ubuntu 9.10): Setting the PATH variable


## Running ORCA under Linux

Linux (Ubuntu 9.10): Text Editor (gedit) \& ORCA execution


The ORCA Project


## Philosophy of the ORCA Project

General goal: Create a powerful tool to allow connection between theory and experiment. $\rightarrow$ Observables! (Spectra, Structures, Energies)

Design principles:

1. The program should be as flexible as possible
2. The program should be as efficient as possible (parallel, efficient algorithms, BLAS libraries)
3. The program should be as comprehensive as possible
4. The program should be as user friendly as possible
5. The program should be easily extendable (highly modular)
6. The source code should be as clean and well structured as possible (C
++ rather than Fortran).
7. The program should be platform independent

## Tasks to be Performed

- Calculation of single point energies
- Hartree-Fock calculations: RHF, UHF and ROHF
- Density functional calculations
- Optimization of molecular structures
- Equilibrium geometries
- Transition states and reaction rates
- Calculation of vibrational frequencies
- Characterization of stationary points
- Thermodynamic properties
- Vibrational spectra
- Calculation of ground state properties
- Looking at charge distributions and orbitals
- IR+Raman spectra
- NMR spectra
- EPR spectra and exchange couplings
- Mössbauer spectra
- Calculation of excited states and their properties
- DFT calculation of absorption and CD spectra
- Ab initio calculation of absorption and CD spectra
- Advanced: Resonance-Raman, X-Ray absorption, forbidden transitions, MCD, Excited state geometry optimizations, ...


## Common Jobs in Computational Chemistry

- Energy Calculations
- Geometry Optimizations
- Frequency Calculations
- Transition States


## Common Jobs in Computational Chemistry

## - Energy Calculations <br> -Geom $90 \%$ zations Of all Calculations!

## First Stop: Energy Calculations

## A First ORCA Job



One atom each line:
atomic symbol x y z coordinates in Angström

## Output of Single Points

We first echo the input file and some references to the basis sets used Then you get information on the job-type, the input coordinates in various formats and the basis set
****************************

* Single Point Calculation *
****************************

| CARTESIAN COORDINATES | (ANGSTROEM) |  |  |
| :--- | :--- | :--- | :--- |
| C | 0.000000 | 0.000000 | 0.000000 |
| 0 | 0.000000 | 0.000000 | 1.130000 |

BASIS SET INFORMATION
There are 2 groups of distinct atoms

| Group | 1 Type C : 7s4p1d contracted to 3s2p1d pattern $\{511 / 31 / 1\}$ |
| :--- | :--- |
| Group 2 Type $0: 7 s 4 p 1 d$ contracted to 3 s2p1d pattern $\{511 / 31 / 1\}$ |  |

Next the one-electron integrals are calculated (and perhaps also the twoelectron integrals if conv if requested for "conventional SCF")

## ORCA GTO INTEGRAL CALCULATION

BASIS SET STATISTICS AND STARTUP INFO

| \# of primitive gaussian s |  | 24 |
| :---: | :---: | :---: |
| \# of primitive gaussian fu |  | 48 |
| \# of contracted shell |  | 12 |
| \# of contracted basis func |  | 28 |
| Highest angular momentum |  | 2 |
| Maximum contraction depth |  | 5 |
| Integral threshhold | Thresh | $1.000 \mathrm{e}-010$ |
| Primitive cut-off | TCut | 3.000e-012 |

Next the SCF program is taking over and commences with giving all details about the SCF settings

## CF SETTINGS

| Hamiltonian: |  |
| :---: | :---: |
| Density Functional Method | DFT (GTOs) |
| Exchange Functional Exchange | B88 |
| X-Alpha parameter XAlpha | 0.666667 |
| Becke's b parameter XBeta | 0.004200 |
| Correlation Functional Correlation | LYP |
| LDA part of GGA corr. LDAOpt | VWN-5 |
| Gradients option PostSCFGGA | off |
| Hybrid DFT is turned on |  |
| Fraction HF Exchange ScalHFX | 0.200000 |
| Scaling of DF-GGA-X ScaldFX | 0.720000 |
| Scaling of DF-GGA-C ScaldFC | 0.810000 |
| General Settings: |  |
| Integral files IntName | JOB-01 |
| Hartree-Fock type HFTyp | . RHF |
| Total Charge Charge | 0 |
| Multiplicity Mult | 1 |
| Number of Electrons NEL | 14 |
| Basis Dimension Dim | 28 |
| Nuclear Repulsion ENuc | 22.4778902655 Eh |
| Convergence Tolerance: |  |
| Energy Change TolE | 1.000e-008 Eh |
| Max Density Change TolMaxP | . 1.000e-007 |
| RMS Density Change TolRMSP | . 1.000e-008 |
| DIIS Error TolErr | . $1.000 \mathrm{e}-007$ |
| Diagonalization of the overlap matrix: |  |
| Smallest eigenvalue | . $1.911 \mathrm{e}-002$ |
| Time for diagonalization | 0.010 sec |
| Time for construction of square roots | 0.030 sec |
| Total time needed | 0.040 sec |

## The integration grid is produced and the initial guess performed

## dft grid generation

| General Integration Accuracy | IntAcc | 4.010 |
| :---: | :---: | :---: |
| Total number of grid points |  | 5057 |
| INITIAL GUESS: MODEL POTENTIAL |  |  |
| Loading Hartree-Fock densities . . . .etc |  | . done |
| Now organizing SCF variables |  | done |

INITIAL GUESS DONE
Now we are ready to start the SCF iterations

## scf titerations

---------- *** Starting incremental Fock matrix formation *** ***Turning on DIIS***
! ITERATION 0 !
Total Energy Energy Change
MAX-DP
RMS-DP
Actual Damping
Int. Num. El.
Exchange
Correlation
DIIS-Error
-112.951951547431 Eh
-112.951951547431 Eh
0.674569966353
0.053899776162 0.0000
14.00002071 (UP= $\quad 7.00001035$
-10.98287769
-0. 58429246
0.450135783168

Which hopefully eventually converge and:

The total energy and its components are printed

## TOTAL SCF ENERGY

-------------
Total Energy : -113.17273851 Eh -3079.50944 eV

Components
Nuclear Repuls
Electronic Energy

One Electron Energy
Two Electron Energy:
Virial components:
Potential Energy : - $\quad 225.62136955 \mathrm{Eh} \quad-6139.31540 \mathrm{eV}$
Kinetic Energy : $\quad 112.44863104 \mathrm{Eh} \quad 3059.80596 \mathrm{eV}$

| 22.47789027 Eh | 611.63913 eV |
| ---: | ---: |
| -135.65062877 Eh | -3691.14856 eV |
| -198.09397475 Eh | -5390.27572 eV |
| 62.44334598 Eh | 1699.12715 eV |
|  |  |
| -225.62136955 Eh | -6139.31540 eV |
| 112.44863104 Eh | 3059.80596 eV |
| 2.00643945 |  |

## eV

Next you get the orbital energies printed:

## ORBITAL ENERGIES

| NO | OCC | $E(\mathrm{Eh})$ | $E(\mathrm{eV})$ |
| ---: | :--- | ---: | ---: |
| 0 | 2.0000 | -19.243280 | -523.6231 |
| 1 | 2.0000 | -10.301611 | -280.3141 |
| 2 | 2.0000 | -1.152619 | -31.3636 |
| 3 | 2.0000 | -0.568518 | -15.4698 |
| 4 | 2.0000 | -0.476766 | -12.9731 |
| 5 | 2.0000 | -0.476766 | -12.9731 |
| 6 | 2.0000 | -0.373742 | -10.1698 |
| 7 | 0.0000 | -0.026298 | -0.7156 |
| 8 | 0.0000 | -0.026298 | -0.7156 |
| 9 | 0.0000 | 0.221613 | 6.0303 |
| 10 | 0.0000 | 0.400346 | 10.8937 |
| 11 | 0.0000 | 0.457384 | 12.4458 |
| 12 | 0.0000 | 0.457384 | 12.4458 |

Now comes the "soft science" (e.g. population analysis of the SCF density matrix

## ********************************

* MULLIKEN POPULATION ANALYSIS *
********************************


## MULLIKEN ATOMIC CHARGES

```
    0 C : 0.01666
Sum of atomic charges: -0.0000000
```

MULLIKEN REDUCED ORBITAL CHARGES

| 0 C | c s | : | 3.834569 | S | : | 3.834569 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | pz | : | 1.009723 | p | : | 2.073008 |
|  | px | : | 0.531642 |  |  |  |
|  | py | : | 0.531642 |  |  |  |
|  | dz2 | : | 0.027088 | d | : | 0.075754 |
|  | dxz | : | 0.024333 |  |  |  |
|  | dyz | : | 0.024333 |  |  |  |
|  | dx2y2 | : | 0.000000 |  |  |  |
|  | dxy | : | 0.000000 |  |  |  |
| 10 | 0 s | : | 3.737862 | s | : | 3.737862 |
|  | pz | : | 1.381818 | P | : | 4.256855 |
|  | px | : | 1.437518 |  |  |  |
|  | py | : | 1.437518 |  |  |  |
|  | dz2 | : | 0.008940 | d | : | 0.021953 |
|  | dxz | : | 0.006506 |  |  |  |
|  | dyz | : | 0.006506 |  |  |  |
|  | dx2y2 | : | 0.000000 |  |  |  |
|  | dxy | : | 0.000000 |  |  |  |

## MULLIKEN OVERLAP CHARGES

B( 0-C , 1-0): 1.3340

The Löwdin analysis contains a detailed breakdown of the MOs in terms of angular momentum components of each atom. This helps a lot when you select the orbitals for plotting.

```
************************************
* LOEWDIN POPULATION ANALYSIS *
```

LOEWDIN ATOMIC CHARGES

| 0 | $C$ | $:$ | -0.050462 |
| ---: | ---: | :--- | ---: |
| 1 | 0 | $:$ | 0.050462 |

etc
LOEWDIN REDUCED ORBITAL POPULATIONS PER MO


## Looking at Orbitals

There is a utility program orca_plot which lets you generate graphics information. The information about the MOs, the geometry and the basis set is stored in the so called gbw-File (,geometry-basis-wavefunction').

To generate the plot information interactively use:

```
orca_plot myjob.gw -i
```

You will get a "stone-age" menu which you can use to generate the necessary files.

```
1. Press 5 ENTER to choose the output formation. (press }7\mathrm{ ENTER for
    gaussian cube, the preferred format)
2. Press 4 ENTER to choose the number of grid intervals. Something like 40
    will be o.k. For high resolution on larger molecules choose 65-75.
3. To plot an orbital from a closed shell calculation press 3 ENTER and
    choose O ENTER. For spin-up from UHF/UKS the same. For spin down from
    UHF/UKS choose 1 ENTER.
4. Press 2 ENTER and enter the number of the MO that you want to plot.
    NOTE THAT COUNTING STARTS WITH O!!!
5. Press 10 ENTER to generate the output file.
6. Repeat steps 4 and 5 until all desired files are produced
```

The orca_plot program automatically produces an ,xyz‘ file which contains the molecular coordinates.

We presently like the Chimera program for vizualization. There are many free alternatives such as Molekel, gOpenMol, Molden,... any program that reads .xyz and .cube files

With Chimera, do the following:

1. Start Chimera
2. Choose „File Open" and navigate to open the .xyz file of interest
3. Choose „Presets $\rightarrow$ Publication 1"
4. Choose „Actions $\rightarrow$ Atoms\&Bonds $\rightarrow$ ball \& stick"
5. Choose „Actions $\rightarrow$ Color $\rightarrow$ By element"
6. Choose „Tools $\rightarrow$ Volume Data $\rightarrow$ Volume Viewer"
7. Choose „File $\rightarrow$ Open Map" and Gaussian Cube format and open the cube file of interest
8. Enter in "Level" 0.03 and press ENTER. Then click on Color and choose red (or whatever you like)
9. Hold the Ctrl-key and click on the negative part of the contours. Enter in „Level" -0.03 and press ENTER, then go to color and choose yellow (or whatever you like)
10. Orient the contour in the way you like and go to „File $\rightarrow$ Save Image". Choose PovRay „true" and go ahead.

## What You Need for an Energy Calculation

## Energy calculations make up the simplest computational task available

To actually start a calculation three things have to be determined before:

- Method
- Basis set
- Coordinates


## Method: Ab initio wavefunction based or DFT?

Accuracy versus Computing Time Tradeoff

| Hartree Fock | Fast, but not accurate enough. <br> Usually only as a basis for higher methods |
| :---: | :---: |
| DFT | Fast, usually good accuracy. <br> But is the accuracy also good in my case? <br> Very dependent on the Functional |
| Correlated, <br> wavefunction based <br> methods | Very high accuracy, |
| with Coupled Pair Theories up to Chemical Accuracy. |  |
| BUT: Calculation scales formally at least |  |
| with the size of the basis set to N5 |  |

## Method: Ab initio wavefunction based or DFT?

Roughly there are three main branches available:


## The Functional Zoo

| Name | Type | Comments |
| :--- | :---: | :--- |
| BLYP | GGA | One of the earliest GGA functionals. Usually inferior to BP86 and PBE. Predicts <br> too long bonds. |
| BP86 | GGA | Excellent geometries and vibrational frequencies. Energetics is usually not highly <br> accurate but performs often well in spectroscopic investigations. |
| PW91 | GGA | One of the older GGA functionals with excellent accuracy for exchange <br> couplings. |
| PBE | GGA | A GGA version designed to replace PW91. Very popular in physics. Often similar <br> to BP86. |
| OLYP | GGA | Violates the uniform electron gas limit but gives improved results for molecules |
| B3LYP | Hybrid | De facto standard in chemistry for structures, energies and properties. See <br> discussion in the text. |
| PBE0 | Hybrid | Excellent accuracy; competitive with B3LYP <br> TPSS <br> Meta-GGA <br> TPSSh <br> Hyprovement over PBE. Includes the kinetic energy density and obeys more <br> constraints known from rigorous theory. <br> GGA |
| Probably improvement over PBE0; perhaps increase fraction of HF to 25\% <br> (TPSSO) |  |  |
| B2PLYP | Double hybrid | First (and prototypical) member of the double hybrid class of functionals. So far <br> been proven excellent for energies and geometries. More exploration needed. |

## Efficient DFI: The RI Approximation

As long as there is NO Hartree-Fock exchange present (no hybrid functionals), a very efficient approximation can be used to speed up (factor 10-100) DFT calculations: the RI approximation (also called density fitting method)

In this method the electron density is fit to an auxiliary basis set which must be provided by the user. The effect of the approximation on structures and frequencies is barely visible. Absolute energies are affected to a few $\mathrm{kcal} / \mathrm{mol}$, relative energies much less.


## Efficient HF and Hybrid DFT: RIJCOSX

Unfortunately, RI does not smoothly carry over to Hartree-Fock and hybrid DFT calculations. One attempt to do so is the RI-JK approximation that needs to be invoked together with ,JK‘ fitting bases. RI-JK cannot be used for optimizations

```
! B3LYP RI-JK def2-SVP def2-SVP/JK TightSCF
```

A more efficient approximation that leads to large speedups is the RIJCOSX approximation. it uses RI-J for the Coulomb part and a special approximation ,COSX‘ for the exchange part. It is available throughout the program and leads to large speedups at very little loss in accuracy

```
! B3LYP RIJCOSX def2-SVP def2-SVP/J TightSCF
```

If combined with RI-MP2 you need to give two auxiliary basis sets for optimal speed and accuracy:

```
! RI-MP2 RIJCOSX def2-SVP def2-SVP/J def2-SVP/C TightSCF
```


## The Crux of DFT: Which Functional to Choose?

## Always first thing to do:

## RI BP86

The BP86 functional in combination with the Resolution of Identity approximation (RI) is the fastest way to calculate by far, with reasonable results with respect to geometries, etc.

For a more quantitative result, for example, the calculation of energy differences, the following hybrid functionals are known to provide good results:

> B3LYP RIJCOSX ( PBEO RIJCOSX)

To keep in mind:
Usually the results are good, but this does not rule out the possibility, that it might produce wrong results in other cases!

## Modern DFT: Double Hybrid Functionals

* A Special feature of ORCA are ,double hybrid functionals' proposed in 2006 by Stefan Grimme. Here part of the DFT correlation is replaced by a MP2 like term and part of the DFT exchange by Hartree-Fock exchange.
$\star$ For main group thermodynamics and kinetics it is more accurate than standard functionals
$\star$ ORCA is the only program to have analytic gradients and excited states for these functionals
* The prototypical member is „B2PLYP"

```
! RI-B2PLYP def2-SVP def2-SVP/C TightSCF Opt
```

$\star$ It can be combined with RIJCOSX

```
! RI-B2PLYP RIJCOSX def2-SVP def2-SVP/J def2-SVP/C TightSCF Opt
```

$\star$ And together with empirical van der Waals corrections (also proposed by Stefan Grimme) it is particularly accurate:

```
! RI-B2PLYP D3BJ RIJCOSX def2-SVP def2-SVP/J def2-SVP/C
TightSCF Opt
```


## Choice of Basis Set

$$
\begin{gathered}
\text { 6-31G } \\
6-31 \mathrm{G}^{*} \\
6-31 \mathrm{G}^{* *} \\
6-31++\mathrm{G}^{* *} \\
6-3111++\mathrm{G}^{* *} \\
\text { DZP } \\
\text { TZP }
\end{gathered}
$$

Ahlrichs SVP
Ahlrichs TZVP

## Lots of basis sets to choose from

Which one is the best for one's purpose?

```
    cc-pVDZ
    cc-pVTZ
aug-cc-pVTZ
```


## Choice of Basis Set

Pople basis sets: (most popular)
polarization functions on heavy atoms

$\xrightarrow{\square}$ Core orbitals are represented by a contraction of six primitive gaussian functions. The valence shell is double- $\zeta$ with 3 primitives in first contraction, one in second.
There is a set of diffuse orbitals ( $p, d$ ) on heavy atoms as well as on hydrogen atoms (diffuse s-orbitals). There is one additional set of d-functions on heavy atoms and one additional set of p-polarization functions on hydrogen atoms.
note: Core orbitals have the lowest energy. Thus, an accurate description is necessary (otherwise the variational principle makes the valence orbitals "core like").
$\rightarrow$ Deep contraction for core orbitals, but only one function per AO (because the core-radial function does not change much in the molecule)!

## Choice of Basis Set

$$
\begin{gathered}
6-31 \mathrm{G} \\
6-31 \mathrm{G}^{*} \\
6-31 \mathrm{G}^{* *} \\
6-31++\mathrm{G}^{\star *} \\
6-3111++\mathrm{G}^{\star *}
\end{gathered}
$$

DZP

TZP
Ahlrichs SVP
Ahlrichs TZVP

$$
\begin{gathered}
c c-p V D Z \\
c c-p V T Z \\
\text { aug-cc-pVTZ }
\end{gathered}
$$

> These Pople style basis sets are very popular in the English-speaking community. They are also very popular due to their availability in the Gxx series of programs.

## Better:

The Ahlrichs basis sets provide better results at the same computational cost.

## Tip:

Always start calculations at the SVP level, especially geometry optimizations. Only when precise energies are requested, switch to TZVP (or even: def2-TZVPP)

## Generation of Coordinates

## In principle:

Only a texteditor is needed to enter a molecule's coordinates

Small molecules can be entered by specification of internal coordinates and their values. This is usually called a

Z-Matrix
But this is only feasible for molecules of a few (<5) atoms.

## Today

Molecules are created with full specification in an xyz space using common programs.

## Generation of Coordinates

## Today

Molecules are created with full specification in an xyz space using common programs.


Building molecules using PyMol

## Generation of Coordinates

## Today

Molecules are created with full specification in an xyz space using common programs. (Molden, PyMol, GaussView, etc. )

There are two ways to get coordinates into ORCA, once those have been created and exported into an .xyz file:

1. Copy the contents of the .xzy file into the ORCA input file, using copy/ paste facilities of the texteditor or operating system
2. Read in the .xyz file via ORCA input, using the *xyzfile command

## Generation of Coordinates

## Today

Molecules are created with full specification in an xyz space using common programs.

There are two ways to get coordinates into ORCA, once those have been created and exported into an .xyz file:

1. Copy the contents of the .xzy file into the ORCA input file, using copy/ paste facilities of the texteditor or operating system
2. Read in the .xyz file via ORCA input, using the *xyzfile command

Although the first method looks somewhat more cumbersome at first, it usually is the safer way:
By this, all information reside in your input file, reducing the error margin and making the file more easily transportable.

## Other Sources of Molecular Structures

Today there are many more sources for acquiring the molecular structure of molecules. It is quite easy, to generate a small organic molecule from scratch.
This is definitely not the case with large biomolecular structures like proteins or DNA!
The structures deposited in publicly available databanks might have different origins:

- Crystal Structures:

Structures generated by analyzing X-Ray diffraction patterns.
Very good resolution with organic/inorganic molecules, varying with large biomolecules

- NMR Structures:

Structures, or usually an ensemble of structures, by applying NMR structural information into the generation of structures.
Very good for accessing structures in solution.

- Theoretical Models

Sometimes there are neither X-Ray nor NMR information available. In that case people try to come up with a theoretical model, which is usually refined by techniques like simulated annealing etc. to make certain the overall structure reaches a state of low energy.
It can be hard to assess the quality of these structures at time. The difficulty of generating good theoretical models gets worse with increasing molecular size.

## SCF Convergence

## Sooner or later it happens: The SCF cycles does not converge!

## What now?

There are serveral reasons causing the SCF not to converge.

- Molecular Structure contains errors For example, missing atoms, the electronic state is wrong, etc.
- Very Large Systems

Due to the accumulation of numerical noise the SCF might not converge

- Difficult Chemical Bonding

Bonding situations containing transition metals might be hard to converge due, especially if the specified state is far away from the ground state

## SCF Convergence

## What now?

There are many ways to influence the SCF convergence, for example:

- Damping
- Level Shift
- DIIS
- SOSCF
- Newton - Raphson


## SCF Convergence

## What now?

There are many ways to influence the SCF convergence, for example:

- Damping
- Level Shift
- DIIS
- SOSCF
- Newton - Raphson


# First thing to try: Specifying!slowconv 

Otherwise:

- Increase Level Shift
- Increase DIIS Length


## Transition Metal Calculations

For open-shell transition metals convergence of the SCF is often a problem. There are a few ways in ORCA to help this process:

```
# Help a transition metal calculation to converge 
%scf shift shift 0.1 erroff 0 end expect slow-convergence
    damp fac 0.80 erroff 0.001 end
    end
* xyz -2 2
Cu 0 0 0
F 1.900
F -1.9 0 0
F 0 1.9 0
F 0 -1.9 0
```

... Actually, this particular job converges without any damping or shifting. However, in many situations, the damping and shifting is necessary as you will undoubtedly find out yourself once you start calculations in the „real world".

In the present example the convergence „aids" acctually strongly slow down convergence. It is quite uniform since the energy is always decreasing. Thus, these „helpers" more or less „babysit" the job to a converged solution.

## Restarting Calculations

In many cases it is a very good idea to start from the convergence MOs of a previous job.


Note that the calculation can be started from a gbw file which is from a nearby geometry, uses a different basis set of theoretical method or HFType (UHF,RHF or ROHF). The program will take care to translate the orbitals to the present situation.

## Second Stop: Geometry Optimizations

## Geometry Optimizations

## From a formal point of view:

A geometry optimizations minimizes the overall energy of the system by changing the atomic coordinates.

Minimum: All gradients have to vanish

$$
f_{i}=\left.\frac{\partial E(\mathbf{R})}{\partial R_{i}}\right|_{\mathbf{R}=\mathbf{R}^{(k)}}
$$

Problem:
Leads to the nearest local minimum, not the global minimum of the system!


## Geometry Optimizations

## Things to keep in mind when performing geometry optimizations:

- The SCF wavefunction has to be quite precise to generate a smooth potential surface without 'bumps'
- Geometry optimizations might be tough if the molecule contains many soft potentials, for example dihedrals with very low barriers


## Geometry Optimization

To optimize the geometry of the molecule, simply include the keyword opt

```
! RKS SV(P) B3LYP TightSCF Opt
* int 0 1
C 0 0 0 0 0
0}110000\mp@code{1.15}00
H 1 2 0 1.00 115 0
H 1 2 3 1.00 115 180
*
```

The program will first produce a set of „redundant internal coordinates" which are used in the calculation.

| Redundant Internal Coordinates |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Defintion |  |  |  | Inj | tial Value | Approx d2E/dq |
| 1. B ${ }^{\text {O }}$ | 1, C | 0) |  |  | 1.1500 | 1.351281 |
| 2. B $\mathrm{H}^{\text {l }}$ | 2, C | 0) |  |  | 1.0000 | 0.501167 |
| 3. B $\mathrm{H}^{\text {l }}$ | 3, C | 0) |  |  | 1.0000 | 0.501167 |
| 4. A ( H | 2, C | 0,0 | 1) |  | 115.0000 | 0.425466 |
| 5. A H | 3, C | 0,0 | 1) |  | 115.0000 | 0.425466 |
| 6. A H | 3, C | O, H | 2) |  | 130.0000 | 0.323418 |
| 7. I ( 0 | 1, H | 3, H | 2, C | $0)$ | 0.0000 | 0.151694 |

TIP: Always use TightSCF or VeryTightSCF in geometry optimizations. Otherwise the gradients are somewhat noisy.

After calculating the SCF energy and the gradient of the energy, a relaxation is step is carried out:

ORCA GEOMETRY RELAXATION STEP


The status of the geometry convergence is printed:

| Item | value |  | Tolerance | Converged |
| :---: | :---: | :---: | :---: | :---: |
| RMS gradient | 0.0 | 145 | 0.00010000 | NO |
| MAX gradient | 0.1 | 649 | 0.00030000 | NO |
| RMS step | 0.1 | 586 | 0.00200000 | no |
| MAX step | 0.1 | 086 | 0.00400000 | NO |
| Max (Bonds) | 0.0980 | Max (Angles) | 4.89 |  |
| Max (Dihed) | 0.00 | Max (Improp) | 0.00 |  |

The optimization has not yet converged - more geometry cycles are needed

And a new geometry is proposed:

| Redundant Internal Coordinates (Angstroem and degrees) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Definition |  |  |  |  | Value | $\mathrm{dE} / \mathrm{dq}$ | Step | New-Value |
| 1. B $\mathrm{O}_{0}$ | 1, C | 0) |  |  | 1.1500 | -0.142336 | 0.0535 | 1.2035 |
| 2. B $\mathrm{H}^{\prime}$ | 2, C | 0) |  |  | 1.0000 | -0.103355 | 0.0980 | 1.0980 |
| 3. B H | 3, C | $0)$ |  |  | 1.0000 | -0.103355 | 0.0980 | 1.0980 |
| 4. A H | 2, C | 0,0 | 1) |  | 115.00 | -0.017685 | 2.44 | 117.44 |
| 5. A H | 3, C | 0,0 | 1) |  | 115.00 | -0.017685 | 2.44 | 117.44 |
| 6. A ( H | 3, C | 0, H | 2) |  | 130.00 | 0.035370 | -4.89 | 125.11 |
| 7. I ( 0 | 1, H | 3, H | 2, c | 0) | 0.00 | -0.000000 | 0.00 | 0.00 |

Then the next SCF is done and the next gradient calculated, a new geometry is proposed until (hopefully) finally:

## ***********************HURRAY**************************) <br> *** THE OPTIMIZATION HAS CONVERGED <br> ************

Following this statement one more energy calculation is performed in order to make sure that the energy and properties are really done at the stationary point of the PES.

## Constraints and Relaxed Scans

You can „freeze" certain geometrical parameters in an optimization:

```
! RKS B3LYP/G SV(P) TightSCF Opt
%geom Constraints
        {\begin{array}{llllllllll}{B}&{0}&{1}&{1.25llll}\end{array}|
        end
    end
* int 0 1
\begin{tabular}{rrrrrr} 
C & 0 & 0 & 0 & 0.0000 & 0.000 \\
O & 1 & 0 & 0 & 1.2500 & 0.000 \\
H & 1 & 2 & 0 & 1.1075 & 122.016 \\
H & 1 & 2 & 3 & 1.1075 & 122.016 \\
& & & & 0.00 \\
\end{tabular}
```

... Or freeze some and vary others (one frequently used possibility is to only optimize hydrogen positions OptimizeHydrogens true). Constrained surfaces are calculated as:

## \%geom Scan

```
    B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned
    end
    end
```


## Third Stop: Frequency Calculations

## Frequencies? What Frequencies?

Behind the simple term 'Frequency Calculation' quite a few useful properties are hidden.

Calculation of the mass weighted Hessian matrix, i. e. the second derivative of the energy with
respect to all coordinates

$$
H_{A B}=\left.\frac{\partial^{2} E^{(I)}}{\partial X_{A} \partial X_{B}}\right|_{X_{A}=X_{B}=\ldots \bar{X}}
$$

Following the strict meaning, it describes the calculation of frequencies, usually in the domain of Infrared, in the harmonic approximation of all coordinates of the molecule.

Upon diagonalization we get the frequencies of the normal modes:

$$
\omega=\frac{1}{2 \pi c} \sqrt{\frac{k}{m}}
$$

## Transition State?

At times the geometry optimization might not lead to a minimum on the PES, but to a transition state.


Two-dimensional potential energy surface for the system $\mathrm{H}-\mathrm{H}-\mathrm{H}$ in a linear arrangement. A transition state is observed
around the $\mathrm{H}_{1}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{H}_{3}$ distances being both 1.0 Angström.

A transition state is defined as the point, where all coordinates are at a minimum level, with the exception of one, which is at its maximum.

## Transition State?

At times the geometry optimization might not lead to a minimum on the PES, but to a transition state.


Analyzing the Normal Modes and Frequencies:

A Transition State has exactly one negative frequency!

Two-dimensional potential energy surface for the system $\mathrm{H}-\mathrm{H}-\mathrm{H}$ in a linear arrangement. A transition state is observed
around the $\mathrm{H}_{1}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{H}_{3}$ distances being both 1.0 Angström.

A transition state is defined as the point, where all coordinates are at a minimum level, with the exception of one, which is at its maximum.

## Zero Point Energy (ZPE)

## As known from basic Physical Chemistry, even at OK a molecule still has some vibrational energy.

Having calculated all normal modes of the molecule, as well as the frequency of vibration, it is fairly easy to calculate the zero point energy using the harmonic approximation.

In addition, taking into account a finite
Temperature, the vibrational part of the ZPE accounts to

$$
H_{v i b}=R \sum_{i=1}^{3 N-6(7)}\left(\frac{h v_{i}}{2 k_{B}}+\frac{h v_{i}}{k_{B}} \cdot \frac{1}{e^{h v_{i} / k_{B} T}-1}\right)
$$

For the translational and rotational degrees of freedom, the statistical equipartition of energy is applied, meaning

$$
H_{\text {trans }}=H_{\text {rot }}=3 / 2 \mathrm{RT}
$$

## Frequency Calculations

There are several good reasons for calculating the harmonic frequencies:

1. Characterize stationary points as minima (no negative frequencies), transition states (one negative frequency) or higher-order saddle point (more negative frequencies
2. Predict vibrational spectra (IR, Raman)
3. Calculate thermodynamic properties (zero-point energy, finite temperature correction)

ORCA presently calculates harmonic frequencies through (one- or two-sided) numeric differentiation of analytic frequencies


The first thing that is printed are the vibrational frequencies. The first six modes are translations and rotations and these are zero because they are projected out.

## VIBRATIONAL FREQUENCIES

| 0 : | $0.00 \mathrm{cm**}-1$ |
| :---: | :---: |
| 1: | $0.00 \mathrm{cm**}-1$ |
| 2 : | $0.00 \mathrm{~cm} * *-1$ |
| 3 : | $0.00 \mathrm{~cm} * *-1$ |
| 4 : | $0.00 \mathrm{~cm} * *-1$ |
| 5 : | $0.00 \mathrm{cm**}-1$ |
| 6 : | $1140.72 \mathrm{cm**}-1$ |
| 7 : | $1230.49 \mathrm{cm**}-1$ |
| 8 : | $1498.92 \mathrm{cm**}-1$ |
| 9 : | $1812.75 \mathrm{cm**}-1$ |
| 10 : | $2773.72 \mathrm{cm**}-1$ |
| 11: | 2805.59 cm**-1 |

Then the program prints the normal modes. This is usually not very revealing. The program produces a BaseName . hess file which you can run through orca_vib to get additional information.
XYZ files to be used for animation of vibrational modes are produces by the program orca_pltvib.
Then you get the IR spectrum:

## IR SPECTRUM

The IR spectrum can be plotted through the orca_mapspc utility (orca_mapspc BaseName.out IR)


Finally, the thermodynamic properties at 298.15 K are printed (assuming ideal gas behaviour)

| Electronic energy | -114.41435858 Eh |
| :---: | :---: |
| Zero point energy | $16.10 \mathrm{kcal} / \mathrm{mol}$ |
| Thermal vibrational correction | $0.03 \mathrm{kcal} / \mathrm{mol}$ |
| Thermal rotational correction | $0.89 \mathrm{kcal} / \mathrm{mol}$ |
| Thermal translational correction | $0.89 \mathrm{kcal} / \mathrm{mol}$ |
| Total thermal energy | -114.38582646 Eh |

## Then enthalpy+entropy and finally the free energy:

| Total enthalpy | -114.38488225 Eh |
| :--- | ---: |
| Total entropy correction | $-15.36 \mathrm{kcal} / \mathrm{mol}$ |

Final Gibbs free enthalpy -114.40935858 Eh $\mathrm{G}-\mathrm{E}(\mathrm{el})=0.00500000 \mathrm{Eh}=3.14 \mathrm{kcal} / \mathrm{mol}$

| Mode | freq (cm** | 1) T**2 | TX | TY | TZ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 : | 1140.72 | 1.465985 | ( -1.210739 | -0.008963 | -0.004000) |
| 7 : | 1230.49 | 10.082152 | ( 0.004428 | -3.175237 | -0.001184) |
| 8 : | 1498.92 | 4.648016 | ( -0.000197 | 0.001760 | -2.155925) |
| 9 : | 1812.75 | 105.821353 | ( -0.000043 | 0.002847 | -10.286950) |
| 10 : | 2773.72 | 73.358541 | ( 0.000042 | -0.020336 | -8.564936) |
| 11: | 2805.59 | 205.230431 | ( -0.000359 | -14.325864 | 0.007790) |

## Solvation

$\star$ The effects of solvation can be quite important for many properties (and in particular for charged molecules - for cations less than for anions).
$\star$ Solvation effects can be (relatively crudely) modelled by polarizable continuum models. In ORCA the Conductor Like Screening (COSMO) model by Klamt is implemented in an efficient way for energies and structures (don't do frequencies!)


## A Second ORCA Job



## A Second ORCA Job

1. Create a folder / directory named 'water'
2. Open your text-editor
(Windows: Notepad, MacOS: TextEdit)
3. Enter the 'water' example in the text-editor
4. Save the water example as 'water.inp' in the 'water' folder that has been created before
5. Open the command-line window

On Windows: Type 'cmd.exe' in the program-search field
On MacOS: Open the 'Terminal' program from
‘Application' -> 'Utilities’
6. In the command-line window, move to the water folder/directory:

Windows: cd C:\Documents\water
MacOS: cd /Users/MyUSERNAME/Documents/water
7. Execute the ORCA program with the water example, type:
orca water.inp

## A Second ORCA Job

Timings for individual modules:


TOTAL RUN TIME: 0 days 0 hours 0 minutes 13 seconds 767 msec

```
# A simple water
! RKS B3LYP SVP OPT
* xyz 0 1
O 0 0 0
H O O 1.2
H O 0 -1.2
*
```

C: \Documents \water>

## Where did my output go?

## A Second ORCA Job



```
# A simple water
! RKS B3LYP SVP OPT
* xyz 0 1
O 0 0 0
H O O 1.2
H O 0 -1.2
*
```


## Where did my output go?

Starting ORCA for the advanced user:

## orca water.inp > water.out

This will put the output of the calculation into the file 'water.out'. This file can be opened with the text-editor and examined at leisure.

## Where is my result?

(Or is water really linear?)

## Look for 'HURRAY':

Below it you will find the optimized structure


## A Second ORCA Job

# Sometimes it might be difficult to imagine the structure by looking at the xyz coordinates... 

Redundont Internal Coordinates
－－－Optimized Paraneters－－－ （Angstroen and degrees）

| Definition |  |  |  | Oldval | dE／dq | Step | Finalval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1． $\mathrm{B}(\mathrm{H}$ | 1，0 | 0） |  | 0.9378 | 0.800333 | －0．0003 | 0.9375 |
| 2． $\mathrm{B}(\mathrm{H}$ | 2，0 | 0） |  | 0.9378 | 0.800333 | －0．0003 | 0.9375 |
| 3． $\mathrm{L}(\mathrm{H}$ | 1，0 | $0, \mathrm{H}$ | 2，2） | 180.00 | 0.800000 | －0．00 | 180.00 |
| 4．L（H） | 1，0 | $0, \mathrm{H}$ | 2，1） | 180.08 | 0.800000 | －0．00 | 180.00 |


＊＊＊FINAL ENERGY EVALUATION AT THE STATIONARY POINT＊＊＊ ＊＊＊（AFTER 6 CYCLES）＊＊＊＊＊

## CARTESIAN COORDINATES（ANGSTROEM）

| 0 | 0.860900 | －0．0ө日日өө | －0．0อออ日ө |
| :---: | :---: | :---: | :---: |
| H | －0．800000 | 0.000000 | 0.937514 |
| H | －0．800060 | 0.000808 | －0．937514 |

## CARTESIAN COORDINATES（A．U．）

| NO LB | ZA | FRAG | MASS |
| :---: | :---: | :---: | :---: |
| 60 | 8.6000 | 0 | 15.999 |
| 1 H | 1.0000 | 0 | 1.808 |
| 2 H | 1.0000 | 0 | 1.868 |

 $-0.080800015434265$ －0．080е8อ015434265
－ด．ด๐ด๐๐๐๐34755270 0．000อ00017377635 0.00 ออ00017377635
-8.8 ввввояе2434515 1.771645136378302 $-1.771645133943787$
INTERNAL COORDINATES（ANGSTROEM）

| 0 | 0 | 0 | 0 | 0.000000 | 0.000 | 0.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| H | 1 | 0 | 0 | 0.937514 | 0.000 | 0.000 |
| H | 1 | 2 | 0 | 0.937514 | 180.000 | 0.000 |

INTERNAL COORDINATES（A．U．）

| 0 | 0 | $\theta$ | 6 | 0.0 อөө日ө | 0.000 | 0.808 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 1 | 0 | 0 | 1.771645 | 0.000 | 0.800 |
| H | 1 | 2 | 0 | 1.771645 | $180.0 อ 0$ | 0.80 |

1．）Copy the cartesian coordinates to a new and empty text－editor window：

＊＊＊

2．）Place the numer of atoms in the first line，followed by an
empty line
3．）Save it as＇water＿opt．xyz＇

Open the molecule with a molecule-viewer, e.g. Chimera...

Open the molecule with a molecule-viewer, e.g. Chimera...


Ahm..... what happened?!

## A Second ORCA Job

## Slight modification:

```
# A simple water
! RKS B3LYP SVP TightOPT Freq
* xyz 0 1
O 0 0 0
H 0 0 1.2
H 0 0 -1.2
```

This will result on the calculation of vibrational frequencies


## Negative frequencies: The optimization has converged to a saddle-point!!!

## A Second ORCA Job

## Solution: Start from a different structure

```
# A simple water, 90 degrees
! RKS B3LYP SVP TightOPT Freq
* xyz 0 1
O
```

| $-\cdots$ | 0.000060 | 0.116774 | 0.116774 |
| :--- | :--- | :--- | :--- |
| H | 0.000060 | 0.005866 | 1.077360 |
| H | 0.000060 | 1.077360 | 0.005866 |

CARTESIAN COORDINATES (A.U.)

| $-\cdots O$ | LB | ZRAG | MASS |
| :---: | :---: | :---: | :---: |
| 00 | 8.0060 | 0 | 15.999 |
| 1 H | 1.0060 | 0 | 1.008 |
| 2 H | 1.0060 | 0 | 1.008 |

 0.000000000000000

0.220670558659413 0.011085364462620 2.035915437583469

## INTERNAL COORDINATES (ANGSTROEM)

| 0 | 0 | 0 | 0 | 0.000000 | 0.000 | 0.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | 1 | 0 | 0 | 0.966968 | 0.000 | 0.000 |
| H | 1 | 2 | 0 | 0.966968 | 183.172 | 0.000 |
| INTERNAL COORDINATES (A.U.) |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0.000000 | 0.000 | 0.000 |
| H | 1 | 0 | 0 | 1.827304 | 0.000 | 0.000 |
| H | 1 | 2 | 0 | 1.827304 | 183.172 | 0.000 |

## Same procedure as before...

$$
\begin{aligned}
& \text { Forning perturbed density Hessian con } \\
& \text { Making the perturbed densities } \\
& \text { 2nd integral derivative contribs } \\
& \text { Exchange-correlation Hessian } \\
& \text { Dipol derivatives } \\
& \text { Total SCF Hessian time: } 0 \text { days } 0 \text { hour: } \\
& \text { Writing the Hessian file to the disk } \\
& \hline \text { VIBRATIONAL FREQUENCIES }
\end{aligned}
$$

## water_90.out

| Forning perturbed density Hessian contributions | . . . . done | $1.1 \mathrm{sec})$ $0.0 \mathrm{sec})$ |
| :---: | :---: | :---: |
| Making the perturbed densities | done | 0.0 sec ) |
| 2nd integral derivative contribs | done | 0.3 sec ) |
| Exchange-correlation Hessian | .. done | 0.7 sec ) |
| Dipol derivatives | . . . done | $0.1 \mathrm{sec})$ |

Total SCF Hessian time: 0 days 0 hours 0 nin 3 sec
$3787.36 \mathrm{~cm}^{* *}-1$
$3883.54 \mathrm{~cm} * *-1$

## NORMAL MODES

## The End

