Introduction to the SEI’'s
Software Product Line
Erameworke

http: //www.sei.cmu.edu/productlines/frameweork. html#outline

Instructor: Peter Abowd MSE

©Carnegie Mellon University.

Goals of the Framework

Software product lines similar'to traditional Product lines
s Commenize parts|for less complex: manufacturing
= Goals:

Identify the foundational concepts underlying software product
linesiand the essential activities to consider before developing a
product line

Identify practice areasithat an organization developing software
product lines'must master:

s Developing Product lines imposes additionall needs to common; pratices

Define practices' in each practice area

= [For example, "Configuration Management" is a| practice area that applies to any.
software development effort, but it has special implicationsi for product line
development. Thus, we identify. "Configuration Management™ as| a practice area,
but we also are able to define one or mere effective configuration management:
practices for product lines.

= Provide ?_uidance to an organization about how to move to a
|

product line approach for software

Understanding Your Needs

The type of system(s) being built

The depth ofi domain experience

The legacy assets on hand

The organizational goals

The maturity of artifacts and processes
The skillllevel of the personnel available
The production strategy embraced

Software Product Lines

A software product lineis

“d setl of software-intensive systems that sharea.
comimon, managed set of features; satisfying the specific
needs of a particular market segment or mission and.
that are developed from a commorn. Set of core assets in
a prescribed way.

Supstantial production economies can be; achieved

s [lhe systems in a software product line are developed firom a
COmMMOnN Set off assets Ini a prescribed way.

= [hey are not developed separately, from scratch or infan
arbitrary fashion.

s [tis exactly these: production economies that: make: the software
product line approachi attractive.

Soltware Economy: of Scale

IHOW! IS preduction made more econoemical?

s Eachi preduct;is formed by taking
Applicable components firom: the base ofi Common assets,

Tlailoring thiemr asinecessary. threugh preplanned variation
MEChanIsms

= sUch as parameterization or inheritance
Adding any: new: components that may: be necessary.
Assembling the collectioniaccording te) the rules off a common,

product-line-wide architecture

s Building a new: preduct, (system) becomes more a matter of
assembly’ or' generation| than one of creation;

Tihe predominant activity' is integration rather than programming.

= For'each software product line there Is a predefined guide or
plan that specifies the, exact product-building approach.

Software Product Lines

TThe common set of assets and the, plan for how! they are used to
build preducts

a Don't just materialize without planming
= [hey reguire investment

Tihey require erdanizational foresight
= Investment, planning, and direction

Tihey reguire strategic thinking, that looks beyond a single: product

g I1~"he disciplined usel o the common; assets to build products deesnit just
dppen

Management must direct, track, and enforce the use of the assets.
Software product linesfare as much about BUSINESS practices as they.
are about technical practices.

Software, product lines givVe, economies of Scope,

x Means that organizations take economic advantade off the fact that
many. of thier products are very:similar—not by accident;, but because
they: plannediit that Way,

N ?ganizations make deliberate, strategic decisionsiand are; systematic in
effiecting thoese, decisions

Reuse Vs. Product Lines -1

Historic Reuse

Past reuse agendas have focused on the reuse: of relatively smallf pieces
ofr code—that Is, small-grained reuse.

Organizations! have built reuse libraries containing algorithms, moedules;
Objects, or components.
Almost anything a sofitware developer writes goes Into, the;library. Other

developers; are then uzjged (and sometimes required) to)use what the
library: provides insteadl ofi creating their own VErsions.

Challenges with| the common reuse model
It often takes longer to locate these small pieces andl integrate them intera

system tham it wouldl take to) build them anew.

Documentation,, iff it exists at all, might explain the situation fier which the
piece was created but not how! it can be generalized or adapted torother
situations.
Tihe; benefits of small-grained reuse depend upon

s Predisposition; of the software engineer to use what is inithe library.

s Suitability of what is ini the library for the engineer's particular needs

= Successfull adaptation and integration of the library unitsiinto the rest of the
SV/StEm

If reuse occurs under these conditions it is fortuitous with lew' payoftf

= [n a software proeduct line approach, the reuse is planned, enabled, and
enfiorced—the opposite of opportunistic

Reuse Vs. Product Lines -2

Traditional Reuse attempts often falter in to a clone and own

= [he “reusing” product replicates the code base and becomes itsiowner
Example i ineffective configuration management

\S

Planned Reuse of arProduct Line
s Software product lines reuse; assets that were designed explicitly fior reuse.

= [ihe proeduct line is treated as a whole
Not as multiple products that are viewed and maintained: separately

= [mature product line organizations

Tihe concept of multiple products' disappears

Eachi product isisimply: a tailoring of the: common assets
= The assets constitute the core of each product
s A preduct may: also contine a smalll collection of additional unigue artifacts

It isithe core assets that are designed carefully’ and evolved over' time
[t is|the core assets that are the erganization’s premiere intellectual property

Reuse Vs. Product Lines -3

» Building a Preduct firom a Product: Line
Components are assembled in a prescribed way.

Includes exercising| built-in variability: mechanisms inithe
components torput them ter use in Specific; products

ihe prescription comes from bothl the architecture and the
preduction plan

These| prescritpions and! plans are missing from standard

compoenent-based development:

Reuse Vs. Product Lines -4

Releases and Versions Vs P-Lines

=, Organizations routinely: produce new: releasesi and versions off products

s Eachof these new! versions and releases is typically’ constructed using

the architecture, components, test plans, and other features of the priox
ieleases.

s Why are, software product lines different?

In'a product line there are multiple; simultaneous; products, all' off which; are
going, through their own cycles of release and versioning| simultaneously

Tihe evelution| off a single product must be considered within a broader

context—namely, the evolution of the product: line as a whole

Inia product line, aniearly: version| ofi a product: that is still considered!to
have market potential can easily: be kept as a viable member of the family:

= [t isiani instantiation of the core assets, just like other versions of other products

Costs and Benefits of ProdUct Lines

llarge-scale productivity: gains
Pecreased time-to-market

Increased product guality

Increased’ customer satisfiaction

More efficient use off AUman| rEsOUrces
DIy to’ efifiect mass) customization
RIlity, tormaintain market presence
PIlity: to, sustain tnprecedented growtn

Benefits in Detail

Requirements: There are common product line requirements. Product requirements are deltas
to this CIestabllshed reguirements base. Extensive requirements analysis is saved. Feasibility: is
assured.

Architecture: An architecture for a software system represents a large investment of time; from
the organization’'simost talented engineers. The quality goals for a system—its performance,
reliability, modifiability, and seron—are largely: allowed or precluded once the architecture is in
place. Iff the architecture isiwrong, the system cannot be saved. The product line architecture is
used for each proeduct andi needi only: be;instantiated. Considerable time and risk are spared.

Components: Up to 100% of'the components, in the core asset basei are used in each product.
Tihese components may: need to be altered using inheritance or parameters, but the design is
intact, as are data structures and algerithms. In addition, the product line architecture provides
component specifications for all but any unigue components that may: be necessary.

Modeling and analysis: Performance models and the associated analyses are existing product

line coreiassets. Withi each new’ product there isiextremely. hi(?h confidence that the timing

problems have been worked out and that the bugs associated with| distributed computing—
symchronization, network loading, and absence of deadlock—have been eliminated.

Testing: Generic test plans, test processes, test cases, test data, test harnesses, and the
communication paths required to report and fix problems have already been built. They need! only:
be tailored on the basis ofi the variations related to the product.

Planning: The production plan has alieady been established. Baseline budgets andi schedules
from previous product development projects already exist and provide a reliable basis' for the
product work plans.

Processes: Configuration control boards, configuration management tools and procedures;
management processes, and the overall software development process are in place, have been
used before, and are robust, reliable, and responsive to the organization's special needs.
People: Fewer people are required to build' products and the people are more easily transferred
across the entire line.

Core Asset

Requirements: The reguirements are
written for the group of systems as a
whole; with requirements, for
individual systems specifiediby a
delta or an increment to the generic
Set.

Architecture: The architecture for the
productilineiis the blueprintifion how.
each productiisiassembled from the
components’in the core asset base.

Software components;: lIhe software
components that populate the core
asset base fiorm the building blocks
foreachi product in'the product line.
Some willlbe reused without
alteration. Othersiwill be tailored
according o prespecifiedivariation
mechanisms.

Performance modeling/and analysis:
Eor productsithat must meet real-
time; constraintsi(and 'some! that
hayve soft real-time constraints);
analysis must be performed to show,
that the system's performance will
be adeguate.

Costs and Benefits of Product Lines
Benefit

Commonality'and variation are
documented explicitly, which will
help leadito ani architecture for' the
product line. New:systemsiinithe
product line will'lbe muchisimpler to
specify because the reguirements
areireused and tailored:

Architecture represents alsignificant
investment by the erganization’s
most talented engineers. LLeveraging
this investment acroessiall preoducts
inithe product line means: that for
subseguent preducts; thermest
impertant'designistepiis largely,
completed.

Tihe interfaces for components arereused.
Eoractuall compoenents; that'are
reused, the designidecisions; data
structures; algorithms;
documentation, reviews, code, and
debugging efiiort can all be
leveraged across multipler products
in the product line.

A new: product can be fieldediwith high
confidence that real-time and
distributed-systems problems have
already been worked out, because
the analysis andimoedelinglcanibe
reused from product toproduct.
Process scheduling, network traffic
loads), deadlock elimination, data
consistency problems, and the like
will'all'have been modeled and
analyzed.

Additional Cost

Capturing reguirements for'al group off
systems may/ require sophisticated
analysis andlintense negotiation to
agree on both common
requirements: and variation: points
acceeptable for all the systems.

TThe architecture must support the vaniation
inherent in the productiline, which
Impeses an additional constraint.on
therarchitecture and requires greater
talent to define.

TThe compoenents must be designed to be
roebust and extensible so that they,
are applicable acress a range of
preduct contexts. Variation peints
must be built in'or atileast
anticipated. Often, components must
be designedito be more general
without loss off perfermance.

Reusing|the analysis may impese
constraints)on moving of ProceESSES
among| ProceSSoLS, onl creation of
NeW ProcessEes), or on
synehronization of existing
processes.

Costs and Benefits of Product Lines

Core Asset Benefit Additional Cost

Business case, market analysis, All of the business and management artifacts All of these artifacts must be generic, or be

marketing collateral, cost and
schedule estimates: These are the
Up=front'business necessities involved
in any: product. Genericiversions; are

built that support the entire’ product line:

Tiools and/processes for software

development and for making
changes: The infrastructure forturning
outia seftware product requires specific
product line processes and appropriate
tool support.

Test cases, test plans, test data: There are

generic testing artifacts for the entire
set ofi productsiinithe product line with
variation points to; accommodate
product variation.

People; skills, training: Infaiproduct line

organization, even thoughmembers; of
the development staff:may woerk on a
single product at a time, they:are in
reality: werking on the entire product
line. The product line is a single entity.
that'embraces multiple products.

invelvediin turning out already exist at
least in a generic form andican be
reused.

Configuration' control bearnds, configuration

management toolsiand procedures,
management processes, and the
overall seftware development process
arne in place and have been used
before. Tools and environments
purchased for one producticante
amojtizedracressthe entire’ product
line.

Tiest plans, test cases, test scripts; anditest

data have alreadybeenideveloped and
reviewed for the componentsi that are
reused. liesting artifacts represent a
substantiallerganizationall investment.
Any:saving in thisiarealisa bengefit.

Because of the'commonality of the products

and the production process, persennel
can be more easily transferred among
preduct; projects as: required. Their
expertise is usually’applicable acress
therentire product line:their
productivity, when measurediby. the
numberof products to,whichi their work
applies, rises dramatically: Resournces
spent onitraining developers to use
Processes, tools, and system
components are expended only once.

made extensible tolaccommodate
product variations.

Tthe boards, process definitions, tools, and

procedures must be more robust to
account;for unigue product line needs
and/for the differences between
managing a product linerand managing
a single product.

All'ofi the testing| artifactsi must be more

robust because they will support more
tham ene product. They also must be
extensible toraccommodate variation
among) the products.

Personnel'must be trained! beyond general

software engineering andl corporate
procedures to ensure. thatithey.
understand software product line
practices and canjUse. the core assets
and procedures associatediwithi the
product line. New! personnelimust be
much'more specifically/trained for the
preduct line. Training materialsimust be
created thataddressithe product line.
As product lines mature, the skills
required in'an organization tend! to
change, away from| programming and
toward relevant demain expertise and
technology forecasting. This transitio;M_
must be managed.

Key llerms

A software product /ielis a set of software-intensive systems sharing a
common, manaded set; of features that satisfy the ﬂsecific needs ofi a
particular market segment or' mission and that are developed firom: a
COMMON Set Off Core assets N’ a prescribed way.

Core gsselsiane those reusable artifiacts and resources that form the basis
fior the software; product line. Core; assets often; include;, but are not limited
10, the architecture, reusable software components, demain models;
reguirements statements, decumentation: and: Specifications, PErformance
models, schedules, budgets, test plans, test cases, work plans, and process
descriptions.

Developmientis a generic term| used to describe hew! core assets (or
preducts) come to fruition. Software; enters an erganization in any: ene; of
three ways: the organization can: buildiit itself, purchase; it, or commission It

A domiglnisi al specialized body: oft knowledge, an: area of expertise, or a
collection of related functionality. For example; the telecommunications
domainiis a set of telecommunications functionality, whichiin: turn| consists
Of other' domains sUch as switching, protocols, telephony, and netwerk. A
telecommunications: software; product line Is a SpPEeCIfic set of software
systems| that previde seme of that functionality.

Software product ine practicels the; systematiciUse off core assets to
assemble, instantiate, or generate the multiple products that constitute a
software product line. The cheice of verb depends oni the preduction
approach for the product line. Software product line practice; involves
strategic, large-grained reuse.

Preduct Line Development

Management

Domain Engineering Application Engineering

Core Asset Development

Product Line Scope
Core Assets
Production Plan
Product Constraints
Production Canstraints

Production Strategy
Inventory of Pre-existing Assels

Core Asset Development

Tihree thingsi are; required for a preduction
capability tor developr proaucts

s [hese three things are the outputs ofi the
Core Asset development activity,
Product line scope
Core assets
Production plan

Proauct LLine Scope

The product line scope! is a description of: the
products, that: will constitute the preduct line or
thati the preduct line isicapable off Includingk
Successiiull Product Line must be scoped! carefully

x 00 Small

Not enough future proofing off Core assets
s 100 LLarge
Diffiicult to; manage complexity: in Core

Core Asset Development

Architecture

s Covers the, general product line and defines
thevariation peints

Software Components
Knewledde off relevant patternsiand

[ramMEewWorks
s Available; iInventory: ofi preexisting assets

Core Asset Attached Process

Use the product line reguirements as the; baseline requirements

Specify. the variation reguirement for any. allowed variation point

Add any requirements outside the set off specified product line requirements
\/alidate that the variations and extensions can be supported by the architecture.

[]

Core Assets

D i
5 Attached
v § Processes Core Asset Repository

p co Lyl 00000
o Production Plan
“.‘" A+A+A+ A

Management

Production Plan

A production plan: prescribes how! the products are
produced from the core assets
= Set ofi these attached! processes with the; necessary: glue

s Each preduct in the product line will'vary consistent with
predefined variation points

s I'he production; plan shouldl describe how: Specific tools are to be
appliediin order to use, tailor, and! evolve the core assets.

Measurement plan teo

As will be seeni in' Product Development, these three
OUtpPULS are necessary. Ingredients for fieeding the
product development activity, Whichi turns eut products
that serve a particular custemer or market niche.

=/ Product Line Scope

s Core Assets

= Production Plan

Inputs to Core Asset Development

Product constraints

Jihe core assets must capitalize on the commonalities andl accommodate
envisioned variation with: minimal tradeofi: ter product quality drivers
suchrasisecurity, reliability, usability, and so 6n

Production constraints

.e. Whether' tolinvest Nl a generator environment or rely on manual
coding. This in turn will drive decisions about;what kind of variability
mechanisms to provide in the core assets, and what form the overall
production planiwill take

Production strategy

Jihe production strategy is the overall apFroach for realizing the core

assets andl proeducts:. Will' the product
reactively, or using some combination

Inventory of preexisting assets

[Legacy: systems embody an organizationts demain eExXpErtise; and/or define
its market presence. The product line architecture, ox at least pieces off
It, may. berrew! heavily: from! proven| structures ofi related Iegacy.
systems.

iIne be; built proactively:,

Product Development Inputs

Requirements for a particular product

= Often expressed as a delta or variation from some generic product description
contained in the product line scope ox as a delta from the set off product line

reguirements

Jihe product line scope
= [ndicates whether or not; the product under consideration can beifeasibly
included in the; product line

Tihe core assets from which: the product is built

Jihe production plan
s, Details hew the core assets are; to be used! to build the product

Product Development

Product
Development :

Management

Management

Jlechnicall management

s Oversees the core asset development;and to the product:
development activities by ensuring that the groups who: build

core assets and the grou?s whoe build preducts are engaﬂed in
the required activities, follow the processes) defined fior the

product line, and collect data sufficient to track progress
Organizational management
= determines a funding model that willfensure the evolution: ofi the

core assets and theni provides the funds accordingly.
Organizationall management alsororchestrates the technical
activities in and iterations' between the essential activities off core
asset development and product development.

Preduct: Line Management

s [hisi person must be a strong, visionary. leader who:can: keep; the
organization squarely’ peinted teward the: product line goals,
especially’ wheni the goeing gets rough in; the early stages.
[leadership: is required for software product line success.
Management and leadership are not always synenymous.

3 Activities of Product Lines

Core Asset Development
Product Development

Managment

Many organizations begin a software product line by
developing| the core assets first.

This is referred to as a proactive approach.

They define their product line scope to define the set of systems
that will constitute their product line. This scope definition
provides a kind of mission statement for'designing the product line
architecture, components, and other core assets with the right
built-in/ variation points to cover'the scope-

Producing| any product within that scope becomes a matter of
exercising the variation points of the components and

architecture—that is; configuring—and then assembling andi testing
the system.

Other'organizations begin with onejor a small' number of
products'they already have and from these generate the
product line core assets and future products.:

This is referred to as a reactive approach.
Iterations are likely: and useful between these; 2 approaches

End of Lecture 1

Practice Areas

A practice; areal Is aj body: off Work or a
collection off activities that'an: erganization
must master ter successtully: carry out the
essentiall Work off al product line.

5i Categories

s Sofitware; Engineering

s/ [lechnicall Management:

s Or@anizational Management

Software Engineering Practice Areas

Architecture Definition
Architecture Evaluation
Component Development:

CONS Utilization

MiRing EXxisting Assets
Reguirements Engineering
Sofitwarer System) Integration
Jlesting

Understanding Relevant: Demains

We will Discuss a Subset of these practices

Architecture Definition

Software Engineering| Practice Area

[he software architecture or'd prograri. o cComputifg System. /s the
StirUcture or: Strictures or the' systeni,

WIHICT. COPIISE SoItWare: e/erments;
el exterrialy VisibIe. Properties of tiiose) E/eEnts,
and. e relgLionsps: among e,

Externglly, visibIer Properties, Welare relerifig to) tHose assumipLions
OLfIer EIemIENLS! Can imighe. Of ali. EIEIENL, SUCT. a5 JLS ProVided Services,
PENTOMTIBICE ClgiaCleiStics, Tault: iardling, SHared resource Usage), aid.
50,0/ [Bass et &l

By making “externally: visible properties” off elements part of the
definition; we intentionally:and explicitly’ include elements” interfaces
and behaviors as part of the architecture

By’ contrast, design decisions or implementation; choices that der not
ave system-wide ramifications or visibility: are net architectural

Tihe architectureris the place where understandingl begins

Architecturall Definition -2

The complete architecure is composed these:

Architectural Reguirements

= An architecture's constraints go far beyond
Implementing the; required Lenavior:
Quality: Attributes
Systemy levell interactions
Business Goals

Sources; for the Components
s Internal, External, 31 Party: Contracted

Component Interface Definition
Connecting Components (1.e. middieware)
Architecturall Decumentation and: Views

Architectural Views

A view! Is ai representation of a set off system
elements and the relatienships amoengl thiem

A view! cani be theught of as ai projection; of the
architecture thatiincludes certain' Kinds ofi
Information and sUppresses other Kinds

Tihere are many. VIEWS, off an| architecture

s Chowesing whichienes terdocument Is' a matter of What
Information yeu: wishl to; convey

Product Line Unigue Architectural Aspects

Concerned with identiialing and proeviding mechanisms ter achieve a
set off explicitly allowed variations

= When variations' are exercised! these become; products

= A conventional architecture almost any’ instance will'do as/long as the
(simgle) system’si behavioral and quality: geals are met

Architecture Must Handle Complexity

s [n a conventional architecture, the mechanism for achieving different
instances; almost always! comes down ter modifying| the code

s [n a sofitware preductline, suppoert for Variation can take many. fiorms

Integration may: assume a greater role fior soeftware; product lines

than'for one-off systems simply: because; off the number of times it's
performed

There must be documentation for the product line architecture as it
resides in the core asset base and for each product's architecture

Specific Architecture Definition Practices

Architecture; Definition

Attribute Drivenr Design

Architectural Patterns

Quality, Attripute Workshoep

Aspect Oriented Programming

Many, of these covered in courses alieady

Important: Practice: Product Builders Guide

Introduction: goals and purpose of the document; intended audience; basic common
assumptions; applicable development standards

Sources of other information: references to documentsi containing the product line
architecture definition (whichiisimaintained separately from the product builder's guide because
its stakeholders include more than product builders) and associated! information suchi as terms
and terminology, the architecture's goals, architecture training materials, development standards,
and configuration management procedures and policies

Basic concepts: What is a variation point? What mechanisms for realizing| variation: points have

been used In this anchitecture? What is the relations between the product line architecture and the
architecture for a particular product? What is an architecture: layer, and how. is the concept used?
What is a service (in this case, the basic unit of reuse provided by the architecture)? And so forth.

Service component catalogue: This organization’s preduct line architecture contains some
preintegrated units of functionality’ called service components that product builders can use to
construct products. This section catalogues those service components, defines their interfaces,
and! explains how: service components related toreach other.

Building an application: This section gives code templates and examples for building
applications. It pregresses incrementally. First, how do you buildithe most trivial application
possible, one that perhapsi does nothing but start a process running? Then, how do you build the
most trivial application that actually: does somethingl observable, the domain's eguivalent off the
ubiguitous “Hello, world!™ program: that was the first computer programi many. of' us ever wrote?
Tihen, how! do yeu: buildr ani application that contains the functions common to many of the
products in the product line? Then, how: do your buildian application that runs on a single
processor? Distributed across multiple processors? And' so forth. The examples show how: to
instantiate the architecture’s variation; points at each step along the way.

Performance engineering: This section presented guidelines on how: to build a product when
performance Was a Concern.

Achieving Product: Varianility

Inheritance: in ebject-oriented systems, used when a method needs to be
impcllemelnted diffierently: (or' perhaps extended) fior each product in the
product line

Extensions and extension points: Used When parts 6f'a component can
beraugmented with additional’ behavior or filnctionality:

Parameterization: Used When a component's behavior can be
characterized! abstractly by a placeholder thatis thenrdefined at build time.
Macros and templates are fiorms) off parameterization.

Configuration and module interconnection languages: used to define
the build-time: structure; off a system, including selecting (or deselecting)
Whoele compoenents

Generation: used whenithere is arhigher-level language that can be used
to define a component'sidesired properties
Compile-time selection of different implementations: The variable

#lldersican be used when variability in a component can: be realized by
choosing different implementations.

Architectural Definition Practice Risks

Lack of a skilled architect: A product line architect must be skilled in current and promising
technologies, the nuances of the application domains at hand, modern design; technigues and tool
support, and profiessional practices such as the use of architectural patterns. The architect must
know! all of the sources of requirements and constraints en the architecture, including those (such
as organizational goals) not traditionally’ specified!in a requirements specification

Lack of sound input: The product line scoge and production strategy must be; well defined and
stable. The requirements for'products must be articulated clearly’ and completely: enough so that
architecturall decisions may. be reliably: based on them.

Poor communication;: The best architectureiis useless iffit is documented and communicatediin
ways that its' consumers-the product builders-cannet understand. An; architecture whose
documentation|is chronically. out of date, is, effectively the same as an undocumented: architecture.
There must be clear and open two-way: communication channgels between the; architect and the
organizations using therarchitecture.

Lack of supportive management and culture: There must be management support for the
creation and use of the product line architecture, especially if the architecture group: is separate
firom the product development group. Failing|this, product groups may “go renegade™ and make
unilateralfchanges to the architécture, or decline to uselit at all, wheni turning out their systems.
There are additional risks if management does not support the strong integration: of system and
software; engineering.

Architecture in a vacuum: The exploration and definition of software architecture cannoet take
place inia vacuum separate firom system architecture.

Poor tools: There are precious few tools fior this practice area, especially those that help with
designing, specifying, oK exercisingl an architecture’s variability' mechanisms—a fundamental part
of al product line architecture.

Poor timing: Declaring an architecture ready: for production too early leads to stagnation, while
declaring it too late may allow unwanted variation. Discretion is needed when deciding when and
how! firmly to freeze the architecture. The time required to fultl}/ develop the architecture alsormay
be too long. If product development is curtailed while the product line architecture is being
completed, developers may lose patience, management may lose resolve, and salespeople may.
lose market share.

37

Architectural Definition Practice Risks -2

Inappropriate parameterization: Overparameterization can make; a system
unwieldy: and difficult to understand. Underparameterization can eliminate some: of
the mecessary. customizations of the system. The; early binding of parameters can alse
pregfl_u_de easy customization, while the: late binding ol parameters can lead to
Inefficiencies.

Inadequate specifications: Compoenents may: not integrate J:)ro erly i their
specifications are sketchy: or limited! to static descriptions of individuall services.

Decomposition flaws: A component may not: provide the functionality: needed to
implement the systemi correctlyiff there is net an| appropriate; decompesition ofi the
required systemy functionality.

Wrong) level of specificity: A component may not be reusable!ifi the component: is
too specific or too general. If the component isimade so general that it encompasses
multiple domain| concepts, the component may: require complex configuration
infermation; to: make| it fit a specific situation and! therefore; be inherently: difficult to
reuse. The excessive generality may also tax performance and other guality’ attributes
10 an unacceptable point. If the compoenent is teo specific, there will be few: situations
in: whichy it is/ the correct choice.

Excessive intercomponent dependencies: A component may become less
reusable if it has excessive dependencies on other components.

Architectural Evaluation Practices

Software Engineering| Practice Area

The evaluation can be done at a variety of stages during| design

s [For example, the evaluation can eccur when the architecture. is;still on
the drawing board and candidate structures are being weighed.

= [he evaluation can alse be done; later, after preliminary: architectural
decisions have been made, but beforel detailed design has begun.

= [heevaluation; can even be done afiter the entire system has been; built

Iihe outputs will depend on the stage at which the evaluation Is
performed

Eneugh design decisions must liave been made so that the
achlleveg"nent of the requirements and' quality-attribute; goals cani be
analyze

Tthe more architectural decisions that have; been made, the more
precise the evaluation cani be

= However, the more decisions that have been made, the more difficult it
IS to change them

PLA Unigue Impact on Evaluation

a Architecture assumes ai duall role.
s [lhere is therarchitecture for the product line as a
whole

x [lhere are architectures fior' each of the products

Tihe latter are produced from the;fiermer by exercising the
built-in variation mechamisms! to achieve Instances

s Both sheuld be evaluated

s [lhe evaluation sheuld fecus upen the Varations

Makeisure they: are appropriate

They: ofifer sufficient flexibility to cover the product line's
iIntended scope

They can be exercised! in a way. that: lets preducts be built
guickly:

They do not impose unacceptable runtime performance costs

Specific Architecturall Evaluation: Practices

ATAMSM: The Architecture Tradeoff Analysis MethodSM
(ATFAM)) s al scenarie-based architecture evaluation
method that fecuses;onl a system's quality, goals

=, ATAM| can be used to evaluate beth product line and product
architectures at various stages) off development:

Software performance; engineering (SPE)
= Method for making sure that a desigmn willialloew' a' system; to
meet Its performance goals befiore it hasi been built
Active Reviews, for Intermediate Designs (ARID)

= A hybrid design review: method that combines the active design
review! philosophy: off ADRs with the scenario-based analysis of
the ATAM and SAAM. ARID was created to evaluate partial
(subsystem, for example? designs in their early: or conceptual
phases, before they: are fully documented

An: Active Design: Review! (ADR)

s A technigue that cani be/used to evaluate aniarchitecture still
under construction

Architectural Evaluation Practice Risks

Tihe major risk associated! with this practice is failing to perform an effective
architecture evaluation that will prevent unsuitable architectures firom being allowed
to pollute a software product: line effort

= Wrong people involved in the evaluation: If the anchitect is not invelved in
the evaluation, it 1si unlikely’ that enoughinfermation will be tuncovered to) make
the evaluation worthwhiler Similarly, i therarchitecture's stakehoelders are not
involved, the comprehensive goalsiand requirements for the architecture (against
whichi it must be evaluated) will not emerge.

Wrong| time in the life cycle: If the review!is too) early, not enough decisions
have been made, soithere isn't anything to evaluate: Iff the review! is too; late,
little can be changed! as a result off the evaluation.

No time for evaluation: If time is not planned for the evaluation, the people
whioneed to be invelved willlmet be able to give! it their attention, the evaluation
will'net be conducted efiectively, andi the resultsiwillbe superficiall at best:

Wrong interpretation of evaluation: The results of any: architecture
evaluation sheuld not be seenias a complete enumeration of allfof the risksiin
the development. Process deficiencies, resource; inadeguacies, personnell issues;
and doewnstream| implementation problems: are all risksiunlikely’ to be; exposed by
an| architecture evaluation.

Failure to reevaluate: As the architecture inevitably evolves, or the criterial for
itsi suitability. inevitably’ evolve, it shouldl be reevaluated (perhaps using a
lightweight version of the; original evaluation) periodically torgive the
organization| confidence that they are on the'right track.

Component Development Practices

Software Engineering| Practice Area

Al software Component IS a Unit: or composition Wil
contractually; Speciied Iteraces arid. eEXpIICIt COntEXT
GEPENIGENCIEs OfilY,
sl A soitware) Comporent can be deployed liaeperndentiy. arnd. /s
SUDJEC: Lo, CompPosItion: by thlrd. Parties:
Compoenent development
= [ihe preduction of components that implement specific

functionality: within| the context ofi a software architecture
= [he functionality Is encapsulated and packaded, then integrated
with other components using an interconnection method
Component-based sofitware develepment shifitsi the
EMPNasIs oM\ programiiiig SOware to) comiposiiidg
SOftWare) Systeris

Preduct line development.is the creation ofi component
whichi handle the specified variability. of the: preduct ine

43

Application to Product Development

Components for a product are:

a Used directly from the core asset bhase
' Used directly after binding the bullt=in; variabilities

a Used afiter modification| or adaptation
Wirapping or modifying

s Developed anew.
Only afiter Exiaustive search

Should determine if it then BECOmMES al Core asset

Component Level Variability Practices

Component Development Practice; Risks

Not enough variability:

s Compoenentsinot only: must meet their behavioral and quality:
requirements but also must be; tailorable’in Ereplanned Ways to enable
preduct developers to)instantiate them quickly and reliably in the
correct forms for specific, products

Too much variability:

= Building in teer muchi variability: can, prevent: the components from being
understood well enough to be used! efifectively, or can cause unforeseen
errors when: the variabilities, conflict; with eachr ether:

Choosing the wrong variation mechanism(s) for the job:

= [he wreng choice canl result inl components; that cannoet be tailored at
the time they need to be.

Poor: quality of components:

s Componentsiof poor quality will set back any effort, but poor core asset
componentsiwillfundermine; the entire product line. Proeduct builders will
lose confidence with the core asset builders, and pressure tor bypass
them will' moeunt. The “Tiesting™ practice area should' be applied to
ameliorate; this risk.

Mining| Existing Assets

Software Engineering| Practice Area

Mining existing assets refers to resurrecting and rehabilitating| a
piece of an old system) to serve in a new: system for which it was not
eriginally’ intended

Not Just Code artifacts
Business models

fiule bases, reguirements specifications; schedules;, budgets, test plans,
test cases; coding standards, algorithms, process definitions,
PErformance models

I good documentation; does not exist, the process ofi architecture
reconstruction may: need: to be employed
Reconstruction will reveal the interactions and' relationsiamong the
architecture’'s components
[Focus! first on large-grained assets that camn be wrapped or that will
rieguire only interface changes rather than changes in large chunks
of the underlying algoerithnms

s performance, modifiability, reliability, andl ether nonbehaviorall gualities

Product Line Aspects of Asset Mining

Mined assets

s Must be (re)packaged with reuse; in mind

s, Must meet the product line requirements

= Must align withrther preduct line architecture

s Must meet the gquality: goalsiconsistent: with' the goals

of the product line

Proeduct line systems emphasize guality.
attributes such'as mialatalinaoiity/and suitabiity
s [[hese attributes Become more Important over time

s Mined assets for preduct lines that are subeptimaliin
fulfiling specific tasks may: still be valuble i they,
meet the critical guality-attrbute; goals

Asset Miningl Application
to Core Asset Development
Key: activity: oft Core; Asset Development
Candidate software assets; must

= Alignr withi the preduct line anchitecture
s Meet specified component benavior requirements

s Accommodate; any Specified vVariation points

Specific Practices for Mining Core Assets

Options Analysis for Reengineering (OAR): OAR is a method that canbe usedi to evaluate the feasibility and
economy: of mining existing components for ai product line.
Establish mining context: First, capture your organization's product line approach, legacy.
base, and expectations for miningl components. Establish the programmatic and technical
drivers for the effort, catalogue the documentation available fromi the legacy systems, and
identify' a broad set of candidate components for' mining. This task establishes the needs of
the mining| effort and begins to illuminate the types of assets' that willl be most relevant for
mining. Italso identifies the documentation and artifacts that are available, and it enables
focused efforts to close gaps in existing decumentation.

Inventory components: Next, identify the legacy system components that can potentially
be mined for use in a product line core asset base. Durincr:| this activity, identify required
characteristics of the components (suchias functionality, language, infrastructure support, and
interfaces) in the context of the product line architecture. This activity creates ani inventory: off
candidate legacy components together withia list of the relevant characteristics off those
c?fmr%onents. Itialso creates al list of those needs that cannot be satisfied! throughi the mining
effort.

Analyze candidate components: Next, analyze the candidate set of legacy’ components!in
more detail to evaluate their potential for use as product line components: Screen| them on the
basis of how: well they match the required characteristics. This activity: provides: a list of
candidate comﬁonents, together with estimates of the cost and effort reguired for
rehabilitating these components.

Analyze mining options: Next, analyze the feasibility and viability of mining various
aggregations of components on the basis of cost, effort, and risk. Assemble! different
aggregations;of components and weigh their costs, benefits, and risks.

Select mining option: Finally, select the mining option that cani best satisfy the
organization’s mining goals by balancing the programmatic and technical considerations. First,
establish drivers for making a final decision, suchi as cost, schedule, risks and difficulty.
Tradeoffs often can be established by this activity. Evaluate each mining option (component
aggregation) on the basis of how well it satisfies the most critical driver. Select an option, and
then develop a final report to communicate the results.

50

Specific Practices for Mining Core Assets

Architecture recovery/reconstruction tools:

s Some, toolsi that are available; to assist in the architecture reconstruction process
include Rigi [], the Software; Bookshelf [], DISCOVER [
1, and the Dali'workbench | Iand the ARMINtool [I

Mining Architectures:

= In some cases the software architecture; off an existing system| can become the
product line architecture.
= Mining Architectures for Product Lines (MAP) is a method that determines
whether the architectures off existing systems are similar and whether the
Egrlgespogcili]ng systems have the poetential of becoming al software product: line
‘Brien .

Requirements Reuse and Feature Interaction Management
s Understanding of interaction management. is key to understandinIg how/ to) reuse
requirements and describes) a conceptual process; framework for fiermulating and
reusing requirements
Wrapping:
= Wrapping involves changing thelinterface off a component to;comply: withi a new.
architecture, but not making other changes in the component’s internals.
Adapting components:

= Software components that are/being used in a context other tham the one for
which: they were originally’ developed often dor not exactly fit their assigned roles.

Mining Assets Practice Risks
(Searching Risks)

Flawed search:

= The search for reusable assets may be fruitless, resulting in a waste of time and
resources. Or, relevant assets may’ be overlooked, resultingl in time and
resources being wastedi duplication of what already: exists. A speciall case of the
latter is wheni noncode assets! are shortsightedly: ignored. To minimize both of
these, risks, build al catalogue of your reusable assets (including nencode assets)
and treat that catalogue asiaj core asset of the preduct: line: It will save time and
effort next time.

Overly successful search:

o Thelre may be too many similar assets, resulting in too: much effort spent on
analysis.

Fuzzy criteria:

= The criteria fior what tersearceh, fior need to be crisp enough so: that an overly.
succeslsféiul search isiaveided, yet general enoughi soithat not all viable candidates
arié; fuied out.

Failure to search for nhonsoftware assets:

s Failure to consider nonsoftware; assets in your search, such as specifications, test
suites, procedures, budgets, work plans, requwements andi design rationale, will
redlice the effectiveness of any' mining Gperation.

Inappropriate assets:

= Assets recovered from al search may appear to be usable but later turni out to be
of inferior guality or unable toraccommodate the scope of variation required.

Bad rehabilitation estimates:

= Initial estimates of the cost of rehabilitation may be inadequate, leading to
escalating and unpredictable costs.

Mining Assets Practice Risks
(Corporate Risks)

Lack of corporate memory:

s Corporate memory: may not be able to provide sufficient: data to utilize
the sofitware: asset effiectively.

Inappropriate methods:

= [he wrongl reengineering methods and toels may: be selected, leading
to sehedule and cost overruns.

Lack of tools:

= [00ls required for the mining effort may: not be integrated: to the extent
necessary, leading torrisky: andl expensive; Workarounds.

Turf conflicts:

s Potentiall turii conflicts may: Underming the decision process!in selectin?
between similar candidaterassets. Or, a repository. off assets may: be ofif
imits for pelitical or erganizational reasons.

Inability to tap needed resources:

= There may be an inability: to free resources fromithe group: that
originally: createdi the component torrehabilitate or' renevate It.

Software System Integration

Software Engineering| Practice Area

Software system integration refers to the practice of
combining Individual seftware components inte an
Integrated wnole

Software IS integrated When compoenents are combined

INtO, sUbsystenmsior When subsystems are combined into
products

Anrincrementall approach to integration decreases) risk

s Problems encountered during seftware integration: are often the
most complex, incrementall steps reduce this risk

Significance of “Interfaces

s Simplistic; programming language definition teo incomplete
Tihis definition: off “interface” may: let two compoenents; compile

to%ether successtully, but enly the Parnas definition (Which
su

sumes the simplerene) will let twor compenents Work together
correctly

Product Line aspects off Integration

2. points of integration

= [n a product line effiort, software system Integration 0ceurs
during the installation| of: core assets Into; the core asset base
and alsorduring the building of an' individual product

RANge of effort for Integration

= Considerable coding may: be invelvedi to bring together the right
Core compoenents INto a conesive whoele

s Generate finall products by supplyingl the actual parameters
Specific to the individual product reguirements and then
lalNchINg the construction; tool

s In practice, organizations fall in the middie; ofi thisi range

Specific Practices for Integration

Interface languages:

= Programming|languages suchias IDL allow you tordefine machine-independent
syntactic interfaces
Wrapping:

= Wrapping, describedias a specific practice in the "Mining Existing| Assets™ practice
area, involves writing a small piece of software to, mediate: between the interface
that a comhponent USer expects and the interface that the used component
COmes with.

Middleware:

= An especially integrable kind of architecture employs a specific class) of software
products to be the intermediaries’ betweenr user’ interfaces on the one hand and
the data generators and repositories on the ether

System generation
= all (or most) ofi the preduct line variability istknewn' in advance
FASIT generators

= TThe Family-Oriented! Abstraction, Specification, and Translation (FAST) process
begins by explicitly identifying specific commonalities;and! variabilities among
potential family: members and thenidesigning a small special-purpose language
to express both. The language isiused asi the basis fior building| a generator

Software System Integration
Practice Risks

Natural-language interface documentation: Rerinlg too heavily on natural
language: for system interface documentation and not relying heavily: enoughi on the
automated checking ofi system) interfaces willllead to integration; errors. Natural
language interfaces are imprecise, incomplete, and error-prone. Carrying forward in
the face, off undetected! interface errors increases the cest of correcting such errors
and increases the overall cost of integration. Autemated tools, hewever, are; more
oriented torsyntactic checking and are; less effective at; checking race; conditions,
semanticimismatch,, fidelity: mismatch, and so on. Some interface specifications’ must
still be; done largely: with naturalflanguage and: are still error-prone.

Component granularity: There is a risk in trying to integrate components that are
too small. The cost of integration is directly’ proportional torthe number and size of
the interfaces. If the componentsi are small, the number of interfaces increases
propertionally, iff not geometrically, depending on the connections) they: have tor each
other. This leads to greatly increasedi testing time. One of the lessons of the
CelsiusTech case study was that "Celsiusiiech found! it econoemically infeasible to
integrate large systems at the Ada-unit level™| 1. Although the
compoenent granularity. isidictated by: thes architecture, we capture the risk here,
because this'is where the consequence will make itself knewn.

Variation support: There is a risk in trying teimake variations andi adaptations, that
are too large or tooe different from| existing components. When| new: components' or
subsystems are added, they must be integrated. Variations and adaptations within
components are relatively inexpensive as far asi system integration: is concerned, but
new: components may cause architectural changes that structure the; product in ways
that cause integration problems:.

End of Lecture 2

Technical Management Practice Areas

Management of the develepment and evelution
Off both core assets and products

Jlechnical management practices) arke; carried out
N the, technical activities represented by the
core asset and product develepment

Technical Management Practice Areas

In alphabetical order, the practice areas) in
technicallmanagement are as follows:

s Configuration Management

s [Data Collection;, Metrics, and Tracking

x Make/Buy/Mine/Commission Analysis

s Process Definition

s Scoping

s flechnical Planning

s [echnicall Risk*Management

= [lool Support

We willfdiscuss Several of these Practice Areas

Configuration Management

Tlechnicall Management Practice; Areas

[HE pUrpose ofSortware: Conliguration Marnagement /s
10, EStablis1il drd malatali e Jtegrity, O tiie products or:
e software) Project tirougnout tie project s soiware
e cycle.

Sortware Connguration. Marnagement IvolVes iaentiying
conNguUIranor. JLemis 1or: tie Sortware) Project:

Corntroling these connguration. Itemis arid. clignges tor tiesn

REcording. and reporiing Statls: and. clhiange aetivity 1ol tiese
connguranon items [SEL

Configuration Management

Tlechnicall Management Practice; Areas

Successfiull €M reguires: a well-defined and! institutionalized
set off pelicies andl standards that clearly: define:
s the set of artifacts (configuration items) under the jurisdiction oft CM
= how artifacts are named
= how! artifacts enter and leave the controlled set
= how an artifact under' CM'is allowed te change
|

how! diffierent versions of an artifact under CM are made available
and under'what conditions each is allowed to be' tsed

s how CM tools are used to enable and enforce €M

Jihese policies and standarnds are documented inia EM plan
that Infiorms everyoene in the erdanization just how: CMFIs
carried out

Unigue Aspects of CM for Product Lines

CM for product lines' is mere complex thani it is for single systems

s [n single-system CM, each version of the system: has a configuration
asseciated with It that defines the versions of the configuration; Items
that went Into its; production

In: product line; €M, there must be a configuration maintained fox each
VEISION: O/EaC]] proguct

In' single-system’ CM,, each’ product with: all off its versions may: be
managediseparately.

In’ product line; €M, thisiisiuntenable because the core assets are used
across all products. Hence, the entire; product line is usually: managed
withi a single, unified €M process.
Product line CM must control the configuration of the: core asset
base and its use by all product develepers

= [t must account fior the fact that core assets are usually’ preduced by,
one team andl used ini parallel by: several others

s Single-system CM has ne such burden: the component developers and
the product developers arne the same

Only the most capable CM tools can be used in a product line effort

= Many tools that are adeguate for single-system CM are simply: not
sufficiently: rebust to handle the demands of product line CM

Product Line Demands Upon CM

Parallel development:

= In a product line development, there are occasions when the same items are being worked on by
different people/groups and for different purposes. This imposes a dual requirement on the CM
process—to allow separate strands off work to continue without conflict andi to provide for their
ultimate consolidation. Thus, when shopping for a CM tool, look for branch and! join capabilities to
manage and track the version history of an artifact.

Distributed engineering:

s Organizations that develop product lines might have more than one development/maintenance
siter This requires CM to support distribution, possibly via a network. Dependinﬂ on; the speed! of
the network connection, this may imply replication off configuration items, which would reguire the
CMito keep replicated configuration items consistent over the network. In a distributed
development/maintenance environment, it is also likely that the different groups will be working in
different development environments. In that case, CM will need to support heterogeneous
environments, which will reguire import/export features.

Build and release management:

= Build mana?ement enables deyvelopers to createa version ofi a product, which' cani beranything

from| a single component to a complete customer solution for the purpose of testing and/or
integration. Release management builds the final customer selution, which also includes
instantiation: of the developing and testing environment. In a product line context, release
management includes the release of core assets to product developers. When shopping for' CM
tools, make sure the one you buy can help you build releases.

Change management:

= An authorized group must analyze carefully: any: changes proposed to artifacts that are under
configuration control. The resolution of the proposals must be communicated, and any: resultant
changes must be planned, assigned, tracked, and broadcast. Changes in core assets need to be
weighed carefully for their impact on the entire product line. Requests for changes in core assets
can come from any product team or from the core asset team.

Configuration and workspace management:

= [he individual handling of artifacts is also important to manage. Configuration and workspace
management specifies what a configuration is; this includes the testingl and support environment
(for instance, a compiler and a debugger) and how: users cani create their own workspaces or
views when workingi on a configuration. Whether or not your CM tool helps you with this,
remember to carry along the environmental information with: each; artifact. 64

Product Line, Demands Upon CM

Process management:

s Defined processes are essential for a mature CM capability. Especially in ai product line environment, the
CM must define the process life cycles for the configuration items and set up appropriate change control
and authorization policies for product element modifications. CM processes need to be reviewed and
improved asi the product line effort matures. Any: changes in the CM process need to be managed and
rolled out carefully to the entire product line organization. The defined process must address:

life-cycle management: The life cycle is defined for every type off configuration item, assigning states
and possible transitions to it. Changes iniany. item need'to; be analyzed, autherized, planned,
implemented, documented, reviewed, tracked, and communicated. Also included are: a list of actions
(suchi as netifying a set of interested parties) that meed to occur whenian item transitions firom one state
to another; change authorization policies that define how: changes are autherized for an item; and
closure rules that specify: when aniitem (such as ai change request) is closed.

roles' and responsibilities: There are roles and responsibilities associated with each configuration
item. For example, roles include ewner (Who has the responsibility for the artifact), reviewer (who
analyzes changes in the artifact), implementer (who makes the changes), and so on. CMI must support
the definition and management of product line'roles, many: of which; are nontraditional.

configuration item identification and attributes: Specific configuration items need specific names
and! information (labels). The information needed for ai core component (for example, the products in
which the core asset isi currently used) diffiers from: that needed for product-specific components. There
might also be al requirement within a particular product line development to assign speciall attributes: (for
instance, has a proxy). The product line CM system has tohave a means of applying this kind of
attribute customization.

repository management: This facilitates the storage of the configuration items with version
management andi branching, and their attached infermation, as well as providing a comprehensive
guery: capability for accessing all the information in the repository.

Product line: CM must also support the process of merging| results either because new: Versions
off core assets are included in'a product or because product-specific results are introduced! into
the core asset base. Finally, since introducing changes may: affect multiple versions of multiple
products, you'lll'want your CM system for'a product line to deliver sound! data| for an impact
analysis tor help youl understand what impact a propesed change will have. a5

Specific CMi Practices

Identify the configuration items, compoenents, and related work
preducts that will"be placed under configuration management.

Establish and maintain; ar cenfiguration| mamnadement andl chande
mManagement system fior controlling work: products.

Create or release; baselines for internal use and for delivery: to the
CUStomer.

Track chamnge: reguests for the configuration items.
Control changes in the content of configuration; items.
Establish and maintain; records describing configuration; items.

Perform configuration audits ter maintain the integrity ofi the
configuration baselines.

CM Practice Risks

Process not sufficiently robust:

s CM for product lines!is more complex than CM for single systems. Iff an organization does
not define a robust enough; CMi process, CM will fail, and the product line approach to
product building will' become less efficient.

CM occurs too late:

= If the organization developing the product line does not have CM practices in place well
before the first product is shipped, buildingl new: product versions or rebuilding shipped
verilionslyvill be very: time-consumingl and expensive, negating one of the chief benefits off
product lines.

Multiple core asset evolution paths:

= There s a risk that a core asset may evolve in different directions. This can happen by
designi to enable the usage of a core asset in different environments (operating systems, for
example) or by accident when ai core asset evolves within a specific product. The first case
increases the complexity of the CM but might net be avoidable. Attention sheuld be directed
tczlo thedsedcond case. If thisicannot be avoided, the usefulnessi of the core asset base willl be
egraded.

Unenforced CM practices:

s Owing to the complexity of the'total product line configuration
can result in totall chaos (much werse than for'a single systemS.

Tool support not sufficiently robust:

s CMisophisticated enough to support a nontrivial product line requires tool support, and
there is no shortage of available. commercial CM systems. However, most of themi do not
directly support the required functionality to be useful in a product line context. Many: of
them| can be "convinced” to provide the necessary functionality, but this convincing is a
time-consuming task requiring specialized knowledge. If the organization fails to assign
someone to customize the CM system, to the needs within the product line development, the
CM tool support is likely to be ineffectual. Such a person needs to have both a good
understanding of the product line processes and ai solid grounding in CM

not enforcing a CM process

67

Data Collection, Metrics, and Tracking

Tlechnicall Management Practice; Areas

The manager of an effort sets goals, defines objectives that satisfy
those goals, and then creates a plan and applies resources to
achieve those objectives

Initiation Phase

Tihe initiation phase Isi a planning' activity’ that involves the following steps:
s Designate the goals that will be tracked.
= Define the metrics that will' be used to track the progress toward those; goals.

s Identify the data that must be collected in order to derive those metrics.

Characterize the expected results and issues that may: be discovered, based on
any. foreseen risks.

o S|:r)]ecify how! the data will be coellected, when the data will be; collected|, and! by
WROM.
Performance Phase
Tihe perfiormance phase carriesiout the plan, and involves the following
SLEePs:
Collect the specified data.

Analyze and translate the collected data inter metrics and compare: them| against
the expectationsithat were characterized during the initiation: phase.

Determine the actions that: are needed to remedy any: discovered! issues.
Confirm; whether those actions were appropriate fior addressing those issues.

Product Line Unigue Measurement:

In a product line data collection needs to provide information from
three perspectives
= Not just the single perspective of product development.

s Recall the three 'essential activities off product line; development:
Core Asset Development

Product Development
Management

Core asset development:

= COmprising effiorts to produce reusable assetsiand the supporting
infirastructure for their use

Preduct; development

= comprising effiorts to produce individual products; fer customers
Management of the overall product line

s Including the strategic planning and direction| of a total product line
enterprise

A product line managder Is concerned with tracking Whether the
overall multiproduct effort is efficient, and effective; and Is
progressing properly toward achieving) its strategic goals and
satisfying the product line's production constraints

Data Collection and Metrics Specific, Practices

Data Collection and Metrics Practice Risks

Metric mismatch:

s Metrics that are not based on| product line, suboerdinate core asset, or
product development goals williresult in'wasted effiort spent collecting
data that do net contribute termanagement decision making.

Goals without metrics:

s Goals that have ne associated metrics will result in managers being
unable to) detect any: issues that hinder the achievement of those, goals
until'an Unacceptable expenditure off Work or time; has been incurred.

Measurement not aligned:

= Any measurement activity that is, not integrated into the product: line
proecess will'result inydatal collection| that dees not mesh properly: into
other product line activities and that leads|ter inaccurate results that:
either hide legitimate issues or raise false ISsUes.

Costly metrics:

= Metrics that' are tooscostly: or difficult ter obtain will result in failure to
track progress, whichi in turn will result in failure or delays in detecting
preblem Issuesior interference with the; effort's primany. Work.

Process Definition Practices

Tlechnicall Management Practice; Areas

Whether or not a formal model is built from a defined process, its definition should be
represented in a form that is understandable by humans and should be clear and complete
enough tos satisfy the following goals:

Facilitate human'understanding and communication
= Enable communication about and agreement on the software process.

s Provide sufficient information to allow: an individual or team to perform the intended
PrOCESS.

s Formiaibasis, for training individuals to follow. the intended process.

SUpPpPOrt process management
s Develop a project-specific software process toraccommodate therattributes of a particular

project, such' as its' product or organizational envirenment.
Reason about the attributes of seftware creation or evelution.
Support the development of plans for the; project.

Monitor, manage, and coordinate the process.

Provide a basis for process measurement, such as the definition off measurement points
within the context of al Specific process.

Support precess improvement
= Reuse well-defined and! effective software processes on future projects.
s Compare alternative software processes.

= Estimate the impacts of potential changes in a software process before putting them into
actual practice.

s Assist in the selection and incorporation of technology (tools, for example) into a process.

Product Line Unigue Process Definition Aspects

Product line software engineering| requires EXTREME cooperation

s Because ofi the plurality: of products and of groqu cooperating to
develop those products; the entire; apparatus willlwork only iiFeveryone
doges his or her'jeb within agreed-Upon: parameters.

For example, neronelis allewed! to change core;assets unilaterally

Besides configuration management; two other prime examples of
preduct line processes are:

= [ne operational concept for the product ling; suchias the one embodied
IN al preduct: liné concept: off Operations:
The concept of operations, is essentially: the expression off a process;, and
proecess definition; skills must be brought: to bear' to buildl an eperational

definition: that; everyone canifollow, that can be improved, and! that will
serve the goals of the product line.

= [lhe attachedl processes that help, product: builders instantiate; core
assets for specific products
Tihese, processes must account: for a wide variety of core assets and

variabilities and accommodate the different role-players who are going| to
carry them out.

Product Line Specific Process Definition Practices

Electronic process documents for the user ofi a process
A Web-based processi handbook or an electronic process guide.
These documentsiallow: process definitions terbe focused or presented! in
different ways toi shield the process user fromi scores oft unnecessary. details.
Instead, the electronicidocumentation| displays a narrewed! view! that descrilbes at
any. specific time| the process stepsi that shouldibe performed

In fge_n_eral, role-specific Views of' a process decrease the complexity: of process
defimition and allow ene toi focus on;those aspects ofi the process that are
relevant to a specific user.

Integrated process support environments utilize computer systems to
dutomate some of the required process steps

= E.g. Informing al quality: assurance erdanization that a document isiready: for
review! or sending a| chiange: request to: core asset: developers

A generic process definition willlobviate the needito define al comprenhensive
product line process that woeuld take interaccount all the possible
variabilities—al daunting task
= A generic process represents, a class of processes fior building| a class of preducts.
In"ether words, a| product: lineprocess, represents; a family: off processes

= Tihe variations in the processes withini ai family: reflect the variations ini the
products

Process Definition Practice Risks

Process mismatch:

= [here is a possibility off a process mismatch among a humber of factors, such as the
organizational structure, the organizational culture, the process that is employed, employees’
experience and expertise, and the market to which the process. is applicable. For example,
the defined process may be too complex for the organization, resulting in detailed! practices
that are net followed. On the other hand, the process may be too simplistic and thus too
generaliand at too highia level to provide practical guidance.

Process doesn't address product line needs:

= The process may not accommodate a bidirectional flow. betweeni core asset development:
and product development processes. This flow! is mecessary for product line success.

Inadequate process support:

s Processes have to beisupported within an organization, especially: newly: introduced ones.
[.ack of support (such as training, motivation, templates, and examples) will lead to) rejection
of the process.

Uneven process quality:

= Because of divergent goals, skills, and backgrounds, there may be uneven guality in the
contributions, of the core asset teams and product development teams. This may: also result
in'a lack of harmonization in the processes for the different teams.

Lack of buy-in:
= [he organization may mot buy into: process definition, resultingl in failure to adopt it.
Dictatorial introduction:

s One organizational unit mandating the processes that another must follow:is likely to result
in resentment and failure to adopt them.

Scoping

Tlechnicall Management Practice; Areas

Scoping isian activity that bounds a system or set of
systems Dy defining those benaviors or aspects that are
“In™ anadl thiese Pehaviors Or aspects that are; "out. ™
s/ All'system development invelves scopingf; there isino system for
Which' everything is “in"”
Scoping isfa fundamental activity: that will determine the
long-term Viability: of the productline

Iihe scope definition identifies those entities with Which
preducts;in the; preduct line willlinteract
s It also establishes the commonality: and bounds, the variability: of
the product line
Iihe goal off the scope definition is te: draw. the beundary.
petween| in and out infsuch: afway’ that the product line Is
profitable

Scoping Drivers

Tihe prevailing| or predicted market drivers, obtained
through “Market Analysis™ practices

ihe nature off competing effiorts, obtained threugh

“Market Analysisi or “Understanding Relevant Domains:
PIracliCes

BUSINEsS goals that led to: embarking ena preduct ine
approeach,ebtained through the “Building ar Business
Case” practice area

s Aniexample of a scope-setting goal is the merging of a set ofi

similar, but: currently independent;, product development: projects
to save cost

Scopingis a way: te help: informi decision-making

s Given a product opportunity, should the organization bring| that
product inteithe product line family?

s [However mature ﬁroduct line organizations know: hew: to Use
their scope: to make their own product epportunities

Product Line Scoping Practices

Examining existing products: Conducting a therough study: of
existing Froducts nelps identify: commonality’ across al petential
Ine and identifies the types ofi differences that are likely to

product
OCCUF.

Identify existing products similar te those that will' be; part ofi the
product line.

Gather any: available decumentation and conduct; product:
demonstrations:

Conduct orall or written: surveys; off the current developers, Users, and
maintainers) of these, productsiand preduct experts.

Identify’ the products’ capabilities, structure, and evelution, and any
other relevant factors about them.

Determine which: elements of these products should be considered part
of the product line.

Conducting ajworkshop to understand product line goals
and! products
the business goals to be satisfied by the; product line

the mapping off product line business goals teithe erganization’s
business goals and! to users’ needs

descriptions of current and potential future products that will constitute
the product line

essential product line core assets that may include platforms, standards

'/
protecols, and processes &

Scoping practice Risks

Scope too big or too small:

s For'a product line to be successful, itsi scope must be defined
carefully. If-ani attempt is made torencompass product members
that vary: teo widely, the core assets will be strained beyonad
their ability: toraccommodate the variability; econemies of
production willfbe lost; and the product line will collapse into the
old-style, ene-at-a-time product development: effiort.

Scope includes the wrong products:

s, Commonalitiesand variations acressi current and future systems
will include functional reguirements, User concerns, and
interactions with' externall systems. [n addition, these
commonalities and variations will include system gualities,
Performance Issues, and technology: evolution:

Essential stakeholders don't participate:

s [ihe specific practices In scoping require participation from: a
wide range of stakeholders:. Thesel stakeholders willlinclude
management, developers, customers, users, methodologists, and

subject-matter experts.

Other Technical Management: Practice Areas

Tlechnical Planning
RISk Manadement
Jjoel Support

Organizational Management

Practice Areas
Building|a Business Case
Customer: Interface Management
Developing an Acquisition Strategy
Eunding
Launching and Institutionalizing
Market Analysis

Operations
Organizational Planning
Organizational Risk Management
Structuring the Organization
Technology Forecasting
Training
We will discuss a few of these key practice areas

Building A Product Line Business Case

Organizational Management Practice Areas

A business case addresses the key questions that an|
organization faces when| planning major changes in its
current ways of doing business:

= What are the specific changes that must occur?
=’ What are the benefits of making the change?
s What are the costs and risks?
= How dowe measure success?
An effective business case must convince management
= That the investment is financially sound
The PLA is realistic for the organization

_|
= The PLA is aligned with other business strategies
_|

THere Isia clear course of action for putting the change into
effect

Business case results are often summarized using several
well-defined financial metrics such as net cashflow,
disc_:o:llnted cash flow, internal rate of return, and payback
perio

Business Case Description -2

Tihe business case documents how: closely aligned the opportunity: is
with establishedl business goals for'such things as:

reduced time-te-market

reduced cost

higher productivity.

improved quality:

Increased customer base ox bigger market share

ease of upgrades
Tihere is no standard organization for'a business case, but it should
address| the fiellowing

Deciding what to dox list any assumptiens ﬂmarket conditions,
organizational goals;, and seion), develop alternative approaches, and
then' either choose one or decide to) build a comparison.

Estimating the likely costs and potential risks of all alternatives.

Estimating the likely: benefits contrasted with the' current; business
Practice.

Developing a proposallfor proceeding.

Closing the deal: how! ter make final adjustments and proceed to
execution.

Product Line Specifics for Business Cases

A business case in a product line context cam Serve ene off two purposes

= The first is to justify the effort toradept the product line approachi for building
systems

s Tlhe second is te decide whether'or not to include a particular proeduct as a
member’ offa product line.

Iihe business case shouldl be
= Agdreed upon
= Documented
= Communicated toi the entire organization
= Validated by market analysis and organizational experience and expertise
[Here, the initial’ go/no-goerdecision; answers the guestion:
"Doiwe build the set off products we'relconsidering as a product line or not?*

As parit off the businessi case analysis, the erganization determines
= How many: products are likely tor be built ini the product line over'a certain time
= Who the customers will be

= Whether a product line approach compares faverably: withi other business
Opportunities

Product LLine; Specifics for Business Cases

Key: Questions
s Do we have the right capability and resources to launch a
product line?

=i Can we leveragerour domain Understanding to provide a unigue
oppertunity: and create market demand fior our' product line?

= What are'the financial and business consequences off adopting a
proeduct ine approach?

A Mature Product LLine based Org Merphs the, questions
s Do we have the right capability’ and resources to: build this
product as'a member off our product line?

= Caniwe leverage our domain Understanding| to provide a unique
opportunity: and create market demand for this preduct?

s What are the financial and business conseguences off including
this product in our product line?

Impact ofi Business Case On Core Asset Development

The Business Case IS a Core Asset and should be managed

There is an initial start-ups cost
= Shown in the figure as 30 units of effort, for meving to a product line approeach;
=, In addition tol costs fior developing core assets, the business case must include
the cost ol adopting processes fior product lines
including the costs of training, incentives, and. tooll development or procurement. In the
figure, this cost isi shown as accruing even before the launch of the first project.
With' eachi successive: project, core assets) must; be maintained and
enhanced, and new! core assets added. Thus, the cumulative cost for
developing| core assets INCreases Over time

In the figure, the “Production Effort with Assets™ line represents the
cumulative effort off developing all'three prejects shown

= Project cost includes start-ufp cost, the cost of enhancing| the core asset base for

that preject; and the cost ofi project-specific development.

Production Effort
with Assats

Assel
Development
Effort

(] Project 1
e [] Project 2

of [7T [[[] [®%=

Time

Based on: Weiss, el.al. Software Product Line Engineering

Product Line Business Case Practices

Estimating the likely costs and benefits:

s For each alternative, the erganization makes reasonable cost estimates.
Tihese costsimay be accrued at different times:

Initial costs:

s When the product line's core assets are developed and thelinitial
products are fielded.

Incremental costs:

» Whenever the preduct line;isiextended with' new: core assets. The
extensions include improvements within' the; existingl SCOpPe or an
extension| off the scope! itself:

Product development costs:

s, (Costs associated with: using| core assets In developing products.
Annual costs:

s Upgrades and annual maintenance; costs to) fix defiects:

Tihe Structured Intuitive Model fier Preduct Line Econoemics (SIMPLE)
IS ani econemic models specifically: geared fior software product lines

Product Line Business Case Practice Risks

Insufficient data:

s Itis usually: necessary to set cost expectations early and then refine the cost
information as the preject progresses.

Unreliable historical data:

= Most cost development methods rely on good historical data, eitherfrom within
the organization; or firom industry.

Approaches' that fail to work across erganizational boundaries
Uncertain market conditions:

= What will.be the cost of transition? Who will use the core assets? How many.
products will be' needed per year? How: long will the preduct line;last?
Management indecision:
= The group developing the businessicase must understand! the audience. This

audience must include these who' canimake the final go/no-go) decision fox
proceeding oni the, proposals contained! in the business case

Shift in organizational goals and needs:

= [Ifithe goals and needs! of the organization: have shifted during the preparation of
the business case, the results may not be useful or meaningful.

Customer Interface Management

Organizational Management: Practice Areas

Managing the custemer interface will reguire
VOoulr organization: to:

s [dentify/the groups or individuals whor are responsible
for Interfacing with: custemers
What defines| the customer interface;and whom doges It involve?
\Whois the customer?

a Define clearly the roles andl responsibilities of the

designated customer: representatives

s Ensure that customer representatives are; trained
properly in their roles andl responsibilities

s Implement efifective processes to govern the
Organization’s customer interactions and ensure; clean
Interfaces among customer representatives

Customer Interface Management

Tihe major elements of the customer interface; that: must
e managded! are as; follows:

What the customer willf see

Whorare the customer representatives and what are their
customer interface responsibilities?

What are the standard! preduct offierings and the preplanned
feature variability?

What are; the corresponding cost, schedule, and guality: benefits?
Whatis the product line strategy: for future features and
evolution?

What!the ground rules are;fior tiansacting bUSINess

s What protocoll must be followed and what policies’and
precedures apply?

= [How: are customer requirements to be negotiated and managed?
= How will'a disciplined interface with the customer berenforced?

Customer Interface

Marketer: “You: Know, I you Were to) relax: ths requirement over ere, and. drop that
JItt/e) one over there, ard. chiange this one over Here just & bit, themn welcould bulld.
Yo & SysSten tiat S il Oul: Sortware product line.

Customer: 1 see, And. this matters: o me because.. . .7

Marketer: "Because i werbulld. your: System. o, Scraich, It Wil oSt you. $4 millior,
lGKE tWO) Years to) deliver, ard your: soltware Wil be drigue: Ii- you take & memper: or:
OUI product e, It Wil .Cost you $2 milion, DE reaay il SiX motis, and. your: Soriware
Wil De thel sarme that IS currerntly rumming reliably 1or 16 Otier CUSLomErS: BUt of
COUISE, LS entirely, up to) you.

The interfiace with'customers becomes market driven andi no longer
focuses on aniindividual customer’si specialized requirements

s Specialized requirements cani be accommodated, but must be considered individually: and
have speciall cost andl schedule implicationsi to which both partiesimust agree.

Strict preduct line; erganizational interfaces are enforced

Customers choose from standardi product offerings

s Relinguishing, some flexibility in return for cost and time-to-market advantages
Customers may form| User groups to) give the, market a voice and
drive reguirements for product evelution jointly

Tihe organization can consistently deliver products of predictable
guality at predictable cost and delivery: time

Customer Interface Specific Practices

Communicate the product line strategy to the customer

Establish an overarching customer interface process
= For developing work proposals and negotiating new contracts

ITrain product line marketers and product managers
Provide centralized! product support to customers

Establish a user's group, or other liaison means

= To assist the product line organization in identifying and
prioritizing its customers' emerging and long-term future needs

Customer Interface Practice Risks

Failure to recognize the extent of the customer interface
and its effects

Organizational discontent and resistance in transitioning to
a new business paradigm

Marketers promise the world and fail to point out any.
tradeoffs that are involved

Marketers and product managers are insensitive to
specialized customer requirements

Customers fail to recognize benefits properly and see only
the loss of flexibility

The product line organization releases a scheduled product
upgrade to all customers that includes unannounced
changes that cause sporadic problems for customers

Faillure to enforce the interface
Improperly trained customer interface staff

Customers with their own agendas dominate user group
Ir“orulys so that other users or customer communities are not
ear

Product Line Architecture Funding

Organizational' Management: Practice Areas

Tihe key fundingl question for a product: line organization
IS how! to fundl the; core assets which will be tsed across
seyverall products, most ofif which will-propably: not come
INte existence until leng after the core; assets are; initially
putiin place

A seftware product lIne reguires an Investment to get It
ofi* the ground

Tihis funding must; be suificient so that the core assets
can be ofi high' quality: and have the appropriate
applicapility

Tihe “up-frent™ work oni a product line often has ter be
accomplishediin parallelf with 6ngoing eperations

s As a result, new or innovative sources ofi funding for the
organization are often required for the; product line launch

Funding Specific Practices

Funding Practice Risks

Inflexibility of the organization’s fiscal
Infrastructure

Instability off initiall management
commitment

Waning management commitment
Externally imposed fiscal constraints
Lack of strategic focus

Inadequate funding

Structuring| the Organization for Product Lines

Organizational' Management: Practice Areas

A product line approachi entailsinew. roles and
responsibilities related to) the creation: ofi core
assets and! of products from those core assets

s [IhiS practice; area dealsiwith placing those,; reles into
the appropriate organizationall tnits ter suppert
effiectively’ the product line appreach

In a product line context, the dualidevelopment
Off Core assets and products dictates an
organizational structure that IS not product=
centric

Organizational Structure Needs

An organizational structure shouldl be chosen to at least determine
WRICA URIt or Units:

s produce;and maintain the architecture for the preduct line.

= determine the reguirements for the proeduct line and product line
MemBbers:

design, produce, and maintain the product line’s core; assets.
assess| the; core assets fior their utility. and guide their evelution.
preduce products:

determines the processes to be followediand measure or ensulie
compliance; with them.

maintain the preduction environment in Which products are produced.

= forecast new: trends; technologies) and other developmentsithat might
affiect the future ofi the proeduct line

A first-order choice that must be made wheni choosing an
organizational’ structure is where to house the people'whordevelop,
maintain, and evolve the product line's core assets. Tiypically,
organizations take one of two approaches: either they form: a
separate unit for' the developers and maintainers off core assets, or
they house that effort in the same unit or units that build products.

Deciding Structure

The size of effort and number of products:

= Ina groduct line with: many: product groups andjor a large number off developers,
distributing the core asset task results in am untenably’ high: number off communication
channels: every product group will have to talk torevery other one. In this circumstance, a
dedicated core asset, group will'help:

New development or mostly legacy-based development:

= In product line efforts wherein the core assetsi are built largely frem: legacy compoenents, it
makes more sense,; tor have product developers (Who will probably be mere familiar with the
legacy assets) be responsible for' making the legacy assets more generic to; fit the scope: of
the product line.

The funding model:

s Funding a component engineering group: can be problematic. Who: pays fox it? When
working from legacy: systems or when the product line approach matures, it may be hard to
justify. a separate component group when the product development groups are adding
product-specific features to the core assets.

The high or low effort for tailoring core assets:

= How much development has to be done to get from the core assets to the products? If the
amount of tailoring and new development is small, it may make sense to have most people
work inral dedicated! fashion on the core assets. Iif producing preducts requires substantial
tailoring and new: development, the component engineering jobi is small by comparisen, and
integrated groups may: be the answer.

The volatility of core assets:

= Having core assets that evolve freguently and substantially’ argues for having a dedicated
group to manage them, rather than overwhelming the product builders.

Parallel or sequential product development:

s Iff products are built sequentially, it makes sense to have an integrated team working on
them. When several product development projects are performed in parallel, there is a
stronger need for a separate core asset group to avoid the multiple redevelopment of the
same functionality. 99

Structure Practices and Risks

We will discuss a specific example ini the next lecture
Risks:

s The current level of organizational stress
= The implementation history
s Sponsorship

= Resistance management
s Culture
= Change agent skills

End of Lecture 3

End off Material that will be basis
oF NOMEWOrK

