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Stretching and Bending of Plates - Fundamentals

Introduction

A plate is a structural element which is thin and flat. By “thin,” it is meant that the plate’s transverse
dimension, or thickness, is small compared to the length and width dimensions. A mathematical
expression of this idea is:

i/La«l

where t represents the plate’s thickness, and L represents a representative length or width dimension.
(See Fig. See Plate and associated (X, v, z) coordinate system...) More exactly, L represents the
minimum wave length of deformation, which can be much smaller than the plate minimum lateral
dimension for problems of localized loading, dynamics and stability. Plates might be classified as very
thin if Lt > 100, moderately thin if 20 < L.t < 100, thick if 3 < Lt < 20, and very thick if L.t < 3. The
“classical” theory of plates is applicable to very thin and moderately thin plates, while “higher order
theories” for thick plates are useful. For the very thick plates, however, it becomes more difficult and
less useful to view the structural element as a plate - a description based on the three-dimensional
theory of elasticity is required.
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FIGURE 1.1. Plate and associated (x, y, z) coordinate system.

In this chapter, we derive the basic equations which describe the behavior of plates taking advantage
of the plate’s thin, planar character. The approach is a generalization of the one-dimensional Euler-
Bernoulli beam theory, which exploits the slender shape of a beam. We will develop a
two-dimensional plate theory which employs the in-plane coordinates x and y in See Plate and
associated (x. vy, z) coordinate system.. as independent variables. Of particular interest are the plate’s
“stretching” behavior - associated with in-plane loads in the x- and y-directions, and the plate’s
bending behavior - associated with moment and shear loads applied to the plate’s edges, and
transverse loads in the z- direction.

Figure See Plate and associated (X, v, z) coordinate system.. depicts a plate and an associated (X, y, z)
coordinate system. The top and bottom surfaces lie at z = +t/2. The flat surface z = 0 is the plate
midsurface, which provides a convenient reference plane for the derivation of the governing equations
for the plate.

Three-Dimensional Considerations

Many things are easier if we begin with the three-dimensional equations of linear elasticity. The
solutions for three-dimensional problems is generally difficult and time-consuming for a computation.
In many respects, however, the derivation of the three-dimensional theory is more straight-forward
than the reduced approximate beam, plate and shell theories. Indeed, the three-dimensional theory is
the basis for all approximate theories. The equations can be found in many texts, including
Timoshenko and Goodier, 1970See Timoshenko SP and Goodier N (1970). Theory of Elasticity, Third
Edition, (McGraw-Hill, New York)...

Stress components

The application of external forces to a body produces an internal state of stress. Stress is measured in
units of force per unit area, and can be thought of as the intensity of the internal forces acting at a
particular point in the body. Figure See Stress components acting on the surfaces of a three-
dimensional element in cartesian coordinates.. depicts the stresses which act on the surfaces of a
three-dimensional element of a solid body.
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FIGURE 1.2. Stress components acting on the surfaces of a three-dimensional element in
cartesian coordinates.

The components in Fig. See Stress components acting on the surfaces of a three-dimensional element
in cartesian coordinates.. are identified by two indices. The first index denotes the direction of the
outward normal to the surface being acted upon, and the second index denotes the direction in which

the force acts. For example, 0 zx is the force per unit area of the surface with outward normal in the
positive z-direction and acting in the positive x-direction. The stress components O xx, Oyy, and O zz
act normally to the element faces, while the remaining six components O Xy, O Xz, O yX, Oyz, O zX,

and O zy are the components of shear stresses, which act tangentially to the element faces. On the
“back” faces not shown in Fig. See Stress components acting on the surfaces of a three-dimensional
element in cartesian coordinates.., i.e., the faces with outward normals in the negative directions of

the coordinate axes, the directions of all the components are reversed, as indicated by the component

O'yy. With this sign convention, tensile forces have positive values of stress and compressive forces
negative values.

Some authors choose the opposite order for the indices, with the first index giving the direction of
force and the second the face. However, the majority of publications on plates and shells use the

notation in Fig. See Stress components acting on the surfaces of a three-dimensional element in
cartesian coordinates...

Equilibrium
Divergence theorem

Consider the cube in Fig. See Stress components acting on the surfaces of a three-dimensional
element in cartesian coordinates.. to be located in the region of a body with the coordinates:

.1'1 =X 5.1'2 . _‘71 =y S_Vz . Sl =2 532

The total force in the x-direction can be obtained by integrating the components in the x-direction on
the six faces, with the result:

L3 N Fo e v eNTdede
J;” f}: [ogy(X0. 0, 2) = Opp(xy, ¥, 2 ) Jdvds + L J;»[a},x(x.‘vz. )= Oy, 2 )1dzdx
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» A0 Noe He,
(X, ¥, 2 ) — o, (X, ¥, 5y)]dxdy + ﬁ b (x.y,cMdzdvdx = 0
i temtrn )= catnetisy [ i

in which bx is the component in the x-direction of the body force per unit of volume. However, the
first surface integrals can be rewritten as volume integrals. (This is the divergence theorem for
rectangular coordinates.) Thus the equation becomes:

xjfy“ x‘ulia—cr,(,f(.wr 1=,:'!+io§.x(.\'.v,: ','+ic7 (x,p,2)+b (x,y, ::n]d.\'dvd: =0
Xz, LOX * ay v gs T r :

Within the body, the subregion can be chosen arbitrarily. For the result of the integration to be zero for
any arbitrary subregion, no matter how small or large, the integrand must be identically zero. Thus the
partial differential equations for equilibrium are obtained:

a—"’"‘+8—o:""+a—':""‘+bJr =0
ax ay ac

a—ar"y+ a‘735"+a—‘7"-"~r-b =0
ax 7

ay ac

3—?”+ g—‘:"‘+ 5’+ b, =0

in which bx, by, and bz are the components of the body force per unit of volume.
Moment equilibrium of the three-dimensional element in Fig. See Stress components acting on the

surfaces of a three-dimensional element in cartesian coordinates.. around each of the coordinate axes
leads to the condition of symmetry of the shear stress components for the classical theory of elasticity:

(=3 =g

(=3
o

vz = .

Xy 2 @ ¥

We mention that for “nonclassical” elasticity, in addition to a force per unit area, the possibility of a
torque per unit area acting on the body is included. For such theories, Eq. See : :. does not hold, and
the stress components are not symmetric.

Expansion method

The above derivation is exact. However, a direct method which is often used is to consider the
element in See Increments of the components of stress in the x-direction... The summation of the
forces in the x-direction gives:

(o, (x + 4Ax,p,2) - o (x,y, z) Ay 4z + [ayx('x JHAv,z)- c{},x(.\'._v, s)]Az Ax

log(x.p, =+ 4z) - o (x,p, 2)14x4y + b, Axdy Az = 0

Dividing by A x A y A z and taking the limit yields Eq. See .. The same procedure yields the other two
equations of equilibrium.
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FIGURE 1.3. Increments of the components of stress in the x-direction.

Strain and Displacement

The components of displacement in the x-, y-, and z- directions is often denoted by u, v, and w. The
strain (engineering) is the change in length divided by the original length, which gives the strain
components in the three directions:

and the components of shear strain:

v, U aw , v dl, dw
/. = —t— Som e — S = —t —
Wooaxoay . oz dy  dz . AT

)

If two lines that intersect at 90° are scribed on the body, then the change in the angle of intersection is
the shear strain.

Constitutive Relations

The stress components are related to the strain components by the generalized Hooke’s law for an
isotropic material:

1 .

Sy = E[an— "'(ayy-"oxx |
£, = l-[c7 -vig,+0o,,)]
o F- W L LLa
Ey = l[0 -vio,, +o,,)]
xx T Fpy/

== Exx

where E is the Young’s modulus and Vis the Poisson’s ratio. The shearing strain components are:

. = T
}x’v_G
"
TG
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Vo =
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where G is the shear modulus. For the isotropic material, the shear modulus is determined by the
Young’s modulus and Poisson’s ratio:

E
G=—ro
21+ w)

So both the shear stress and shear strain components are symmetric in the two indices. For a general
anisotropic material, all the stress and strain components are related.

Force and Moment Resultants

The nine stress components shown in Fig. See Stress components acting on the surfaces of a three-
dimensional element in cartesian coordinates.. uniquely define the state of stress at a point in a three-

dimensional body, and are in general functions of X, y, and z. In the theory for a thin plate, however,
we would like to work with force quantities which depend on x and y alone. This can be achieved by
integrating the stresses in the z-direction, through the plate’s thickness, in order to obtain the
following stress resultant quantities:

12 2 12
No= [ouds Ny= [auds Q= [ o
-2 ; -2 5 -2
H2 2 12
Ny= [opds Ny= [auds Q= [ o
-t12 . -12 ; -2

’

and the moment resultant quantities:

n2 12
M, = f Oy, s Mx}, = f oxy:d:
-112 . -12
b
fn2 t2
My = J‘ oy},:d:. Myx = f oyx:d:
-112 . -2

k)

The stress resultants given by Eq. See ; ;. have the units of force per unit length, and act in the
directions shown in Fig. See Force resultants acting on a two-dimensional plate element... Nx and Ny
are in-plane tensile (when positive) stress resultants in the x- and y- directions; Nxy and Nyx are
in-plane shear stress resultants; and Qx and Qy are transverse shear stress resultants.

Loads on the plate in the x-, y-, and z -directions are denoted by px, py, and pz in Fig. See Force
resultants acting on a two-dimensional plate element... These are the external forces acting on the
plate at a given point. External loads can be applied as body forces, such as gravity, and they can be

applied as surface tractions, in which case they correspond to the stresses 0 zx, O zy, and O zz,
evaluated at z = + t/2, as shown in the next section. The loads have the units of force per unit area and
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FIGURE 1.4. Force resultants acting on a two-dimensional plate element.

FIGURE 1.5. Moment resultants acting on the two-dimensional plate element.

The moment resultants given by Eq. See :. have the units of moment per unit length, and act in the
directions shown in Fig. See Moment resultants acting on the two-dimensional plate element... Mx
and My are bending moment resultants. The directions of these moments are determined from Eq. See
%, so the right-hand vector representation is as seen in Fig. See Moment resultants acting on the
two-dimensional plate element... Thus the vector Mx is in the y-direction, and My is in the negative
x-direction. If one remembers the basic definitions Egs. See : :. and See :., then the directions of all

the resultants can be easily obtained. A positive value of the stress component 0 xx at the upper plate
surface (z = + t/2) causes a positive value of Mx. The vectors for Mx and My for the back faces are
shown in Fig. See Moment resultants acting on the two-dimensional plate element.., to emphasize
that, unlike the shear stress resultants, the moment resultants “chase each other around the plate’ (W.
Flugge). Earlier authors used various definitions for the moment resultants, but Eq. See :. seems to be
standard today. The quantities Mxy and Myx are the twisting moment resultants, which tend to twist
the edge of the plate around the x- or y-axis. The vector directions of the twisting moments can be

obtained by considering a positive value of 0 xy and O yx at the upper surface. For completeness, a
prescribed moment per unit area acting on the surface is shown in Fig. See Moment resultants acting
on the two-dimensional plate element.., with the components mx, my, and mz.
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The stress and moment resultants provide convenient force quantities for the analysis of plates, just as
moment, shear, and net tensile force are convenient in the analysis of beams. Note that the edge of the
plate has a force resultant with components in all three directions (X, y, z) but the moment resultant
has components only in the in-plane directions (x, y). This is even with the moment component mz
applied to the plate surface.

Equilibrium

When a plate carries a static load, the plate must be in equilibrium, which means that the forces and
moments acting on any arbitrary element of the plate must sum to zero. In general, there will be six
equilibrium conditions: one force balance equation and one moment balance equation for each of the
three coordinate directions. We consider two approaches to the derivation of the equations of
equilibrium.

Direct from Resultants

The equations of equilibrium can be obtained from the Taylor series expansion of the resultants for
the rectangular sub-region See Force resultants acting on a two-dimensional plate element.., as
follows. The forces in the x-direction are:

»

(Nx + %\) xm‘) 4y - N, 4y

»

+(1\:},x+ %V""‘A_v)m -Nydx +p,axdy = 0

Dividing by A x Ay and taking the limit yields the equation for force equilibrium in the x-direction:

N, N,

“ -0
i Ty P

Similarly, we obtain the equation for force equilibrium in the y-direction:

aN, N,
the force equilibrium in the z-direction:
a0y 30,
I +ﬁ +p, =10

the moment equilibrium in the y-direction:

M,  IM,,
* +3 -Ox+my, =10

the moment equilibrium in the x-direction:
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M, oM,
y * =
K +ﬂ —Q},—mx =0

and the moment equilibrium in the z-direction:
1\';},—1\5,,(+mx =0

However, for classical elasticity, the three-dimensional stresses are symmetric Eq. See : :., so that the
definition of the resultants Eq. See : ;. gives Nxy = Nyx, Consequently, Eq. See . shows that mz =0
for a plate theory consistent with classical elasticity theory. Because of Eq. See : :., it follows from
Eq. See :. that the twisting moment is also symmetric:

M, = M'wr

In order to simplify the derivation of Egs. See .-See ., it has been assumed that the forces can be
treated as acting on the undeformed plate element. The equations therefore apply only when the
deformation of the plate is small, i.e., for strains small relative to unity and normal displacement small
relative to the thickness t. The analysis for larger deformation is considered later.

Integrate 3-Dimensional Equations

An alternate method to obtain the equations of equilibrium is to integrate the three-dimensional
equations directly. This works particularly well for the flat plate under present consideration.
Integrating Eq. See . yields Eq. See ., in which the effective pressure is precisely related to the
3-dimensional stress on the surface and the body force:

Pr(x,p) = on(x,y,1/2)= on(x,p, 1 '3)+ﬁ'zf2bxd:

Similarly, integrating Eq. See . yields Eq. See . in which:
Py(xy) = ogxy,1/2)-og(x,y,-1/2)+ f_'“ggb_‘d:
Integrating Eq. See . yields Eq. See ., in which:
12

Pe(X¥) = oglx,y,1/2) - oglx,y, 4/2 j-+ﬁmbxd:

Multiplying Eq. See . and Eq. See . by z and integrating yields Eq. See . and Eq. See . in which:

I .

/) x v . 12 p g
[og (x,y, £/ 2)+ o (x,y,-1/2)]+ b,ods

m(xX.3) = 5 12

t

e uy _ t cw §/) T ok 12 e
M(x3) = = 5[e (%0, 1/2) + g, (x,y,-1/2)]- -;|2by"d"

Something new is the result of multiplying Eq. See . by z and integrating. The result is:
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M, M,
VE a7
— "+ —"*_N,+m,, =0
ax ay ol
where the new “resultants” are:
2 2 32
Mer = f oxx:.d: M},x = f oyx:.d: 1\:; = f crxxd:
-t12 : -t12 : -2

[}

which actually correspond to a self-equilibrating distribution of the 3-dimensional stress in the plate.
Thus these are not actually resultants. The other new term in Eq. See . is:

My (X,3) = ;[C’xx(-‘?.“-f 2+ o (x,y,-1/2)]+ ﬁ 'ngszsd:

which is also a self-equilibrating quantity and not actually a resultant moment. So integrating the
3-dimensional equations directly yields only five equations Eqgs. See .-See . with actual resultants and
a supplementary condition Eq. See ., that is useful in understanding effects of higher order. In
particular, from Eq. See . with the normal stress from the two surfaces added, it is clear that Eq. See .
is a statement regarding the stretching of the plate in the z-direction.

Plate Kinematics and Constitutive Relations

The equilibrium equations (See .-See .) alone are insufficient to determine the response of a plate to a
particular load, because they contain too many unknown resultant components. Egs. See .,See . are
two equations in three unknown in-plane stress resultants; and Eqs. See .-See . are three equations in
three unknown moment resultants and two unknown transverse shear resultants. The plate is therefore
statically indeterminate. In the analysis of beams and beam structures, there are many significant
problems that are directly statically determinant, so that the state of stress can be obtained only from
the equations of equilibrium. In contrast, there are few plate problems for which a useful solution can
be obtained directly from the equilibrium equations. Hence generally, it is necessary to consider the
displacements for the plate.

The kinematic relations Eqgs. See : :. and See : :. and constitutive relations Eq. See .-See . are
expressed in terms of the three-dimensional strains and stresses, but the equilibrium equations are
expressed in terms of stress and moment resultants that are functions of just x and y. Equations See :
i, See : :. and See .-See . must therefore be simplified to fit with our formulation in terms of the
midsurface coordinates (x, y). This requires the introduction of some approximations.

Basics
Plane Stress

From our experience with beams, we know that a beam carries loads primarily through axial and
bending stress components in the direction parallel to the beam’s axis. Transverse shear stresses and
stresses acting normal to the beam’s axis are relatively small. The generalization of this behavior to
the case of a thin plate suggests the following approximation:
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|°zx|* |°xz|‘ |‘fvx “

Thus the constitutive relations Eqgs. See ., See ., and See . reduce to the plane stress approximation:

"mfl‘ |°yy|' |° xyl

EXX 1 1 -V [] UXX
S| TE| -V 1 0 Sy
o 0 0 2014 v) Ty
which has the inverse:
1 v 0
xx Exx
_ _FE
oyl = 1_—\’2 v 1 0 Sy
“ry 4 0 (-v Y
2
and the additional conditions:
= v ‘ + '.
Exx"z-(oxx ! 'J'S—U ) y“EU

Plane Strain

The approximation Eq. See : :. is widely used for thin beam, plate and shell theories. However, in
certain situations, the plate or shell wall consists of stiff reinforcement in the transverse direction. An
example is the biological membrane. The appropriate approximation is then that the strain in the
radial direction is small:

|l «

The three-dimensional equations Eqgs. See .-See . then reduce to the plane strain relations:

‘xxl‘ I‘,v,vl

EX?{ l +v 1 -V =V U OXX

|~ F |-v 1-v 0 [|om

Vx 0o 0 2 iy

which has the inverse:
1-v v 0

oxx E EXX
ny = —(1 —3\' :'(1 T v 1 -\ 0 ‘y,v
Ty 0 0 (1=2wv)|

2

Expansion for displacements
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The displacements may be expanded in a Taylor series in the z-direction:

a ,2 82
w(xy,z) = u(xy,0)+:—u(xy,0)+ %_gu( xny, 0+
03 < dx
3 2 32
vix,y,z) = v(x,y,0)+:—v(x,y,00 + F—5v (%7, 0)+..
03 < dx
J 23
wixy,z) = wixy,0)+ :a__w (3,00 +=—w(xy,0)+..
N < ox

So different levels of approximation are obtained by retaining a different number of terms in the
expansion in the z-direction.

Classical Theory (Kirchhoff)

The “classical’ theory is obtained by retaining the linear terms in the in-plane displacement
components and only the constant in the normal displacement:

u(x,y,z) Euu(.r,y I+ z /Sﬁ,(.r‘.v )

B | S
V(x,p,z) Svi(x,p) +..,>y(.\,y )
w(xy,2)= wu (x,y)

in which the superscript O denotes the displacement of the midsurface (z = 0), and the coefficients of

the linear terms 8 x and By can be interpreted as the rotations of the midsurface in the x- and
y-directions. From the condition Eq. See : :. that the transverse shear strain components be small, the
rotations of the midsurface are related to the rotations of the unit normal to the surface:

0 0
dw dw
i - ST By

Substituting Eqs. See .-See :. into Egs. See : :.,See : :. yields the in-plane strain components:

0
|, 8B .
EX?{ = H +‘ﬂx = Exx+¢h'x
0
W B
Eyy = 5 +.-a‘1: = Eyy+ ..h}‘

0 0 g
Do v, 9B 9B 0 L
=gy Y Tl Ty ) T et

So each strain component has a constant term, corresponding to the midsurface strain, and a term
varying with z, corresponding to the change in curvature of the midsurface. Because of Eq. See :., the
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changes in curvature can be written in terms of the derivatives of the normal displacement:

ax- . o
With Eqgs. See .-See ., the three-dimensional strain is approximated by quantities dependent only on
the displacement of the midsurface, referred to as strain measures. Therefore, with the constitutive
relation Eq. See . and the definitions Eqs. See ; :., See :., the stress resultants can be obtained in terms
of the strain measures. For example, the x-components of force resultant is:

12 12
r 0 0 ) .
Nx = f O&xdi = f 1 2[5 wtveyp+Iis+ VEy .']d:
412 2t~V
and the moment is:
112 12
M, = cds = E 0 vayy+ 2l + viey Ve
x = foirx-' = fl 2[53“’ veyp+ (st vig) 1
412 2tV

So for the elastic properties E and V independent of the thickness coordinate z, the integrations reduce
substantially because the curvature terms drop out of the expression for the in-plane force resultant
Eq. See . and the in-plane strains drop out of the expression for the bending moment resultant Eq. See

N; = Et 2[Euxx+ \’Euyy]
l-v

Bt
5 [h’x+ vn'y]

M= ——
12(1- v

The complete system for the in-plane force resultants is:

1 v 0
Nx onx
| - Ei 0
Ab, - B \’2 v l U £ »
N, 1l o
ny 1 - V) I
0 U ( 3 Xy
with the inverse:
1} -
£ xx 1 | -v 0 N
Eoyy = ﬁ -V 1 0 ASJ
0 0 0 21+v)|N,
/oy ¥

and for the bending resultants:
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Mx 3 1 v 0 iy
Et
e BRI |
& - .
Mxy S 0 (I-v) oy
with the inverse:

7 I B I R
% = E_;3 —v 1 0 M,
*ay 0 0 (+wv M,

The bending stiffness coefficient is often denoted by the symbol D:

3
p._E
12(1 = v")

or alternatively as:
D = Eic?

where c is a reduced thickness:

e L
J120 -4

Some notes are the following:

(1) The shear strain Y0 xy in Eq. See . is the total while the twist Kk xy is half. This is convenient since
the twist is just the mixed second derivative of the displacement Eq. See : :..

(i1) The transverse shear strains and stresses are assumed to be small (Eq. See : :.); however, this does
not mean that the transverse shear force resultants Qx and Qy should be set to zero. These are very
significant in the equations of equilibrium (Egs. See .-See .).

(ii1) The reduction is shown for constant E and v . However, the key is the explicit form for the
dependence on z of the strains (Egs. See .-See .). Thus the same procedure holds for general layered
anisotropic plates, yielding the resultants in terms of the strain measures defined on the midsurface.
Generally, however, the in-plane quantities Eq. See . and the bending quantities Eq. See . will be
coupled. In the design of layered composite plates, a “balanced” design is often used, for which the
bending and stretching are uncoupled, and furthermore, a “quasi-isotropic” layup of the fibers is used,

for which Eqs. See . and See . are valid with effective values of E and V.
The assumptions made are summarized as:

(1) The displacements of the plate are small in comparison to the plate’s thickness, and the strains and
midsurface slopes are much less than unity.
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(ii) The displacements u and v vary linearly through the thickness of the cross section Eq. See . and
Eq. See ., or in other words, “normals remain straight.” This is analogous to the assumption that
“plane sections remain plane” in elementary beam theory (Euler-Bernoulli beam theory). However,
the plate kinematic model permits warping of an initially plane section, so that plane sections do not
necessarily remain plane.

(iii) The normal stress O zz is small in comparison with the in-plane components 0 xx, Oyy and O xy
. This yields the plane stress approximation Eq. See ..

(iv) The normal displacement w is essentially constant through the thickness Eq. See ..

(v) The transverse shear stresses 0 xz and 0 yz are small in comparison with the in-plane components

O xx, Oyy and O xy .Hence the transverse shear strains ¥ xz and Yy yz are small and the slope of the
mid-surface is the same as the rotation of the normals Eq. See ;.. In other words, “normals remain
normal.”

Shear Deformation Theory (Mindlin-Reissner)

Substantially better results for the thicker plates can be obtained by including the effect of transverse
shear deformation. Consistent treatments were introduced by Reissner (1945)See Reissner E (1945).
The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12 (2):
69-77.. 77 and M1ndhn (1951)See Mindlin RD (1951). Influence of rotatory inertia and shear on flexural
. . Mech. 18 (1):31-38... Egs. See .-See . remain valid.
However, assumption (v) above, giving Eq. See :., is not made. Instead, the transverse shearing strains
are computed from Egs. See : :.:

0
Bv dw
Vrz = Jsx"' h= = ’5?‘+a_v

bl

and the transverse shearing force resultants from Eq. See ; ;. are:

12 22

0
Qy= fo)'xd":_fG}yxd‘= u(ﬁ'v g‘:) o, '_ls‘zr'*'ﬂ

X
-2 -2

[l

A more careful consideration of the three-dimensional shear stress distribution, yields the correction
factor p =6/5 (Reissner, 1945See Reissner E (1945). The effect of transverse shear deformation on the
bending of elastic plates, J. Appl. Mech. 12 (2): 69-77..) to Eq. See ;.. The other relations Eqgs. See .,
See . remain the same as in the Kirchhoff theory. For the Kirchhoff theory, the unknown quantities are
the displacement components u0, v0, and w0. For the shear deformation theory, the rotation

components B x and By are also unknown. For a fiber reinforced, composite plate it is usually the
situation that the matrix is soft in comparison with the fibers. In this case the transverse shear stiffness

is determined mainly by the matrix modulus, while the effective E and Vv are determined by the fibers.
If we keep the relation Eq. See ., then the reduced matrix modulus can be taken into account by an

increased value of y . Typically for composites, 5 < (4 < 50.
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Higher Order Theories

There are a variety of techniques for including additional terms in the expansion for the
displacements, such as discussed by Lo, Christensen, and Wu (1977)See L.o KH. Christensen RM. and
Wu EM (1977). A high-order theory of plate deformation. J. Appl. Mech. 44: 663-676.., and in
countless subsequent publications. For the layered plate, however, the best approach is to use a
“zig-zag” displacement field, in which the preceding shear deformation theory is used for each
laminate, with the continuity of displacement enforced at each interface. When the elastic properties
of the laminates are substantially different, this approach is necessary. For all such theories, the degree
of complexity is substantially increased. For problems involving constraint conditions at the plate

surface, the normal stress 0 zz can be significant, and a more refined representation is required for the
normal displacement w. (See, e.g., Essenburg, 1975See Essenburg, F (1975). On the significance of

the inclusion of the effect of transverse normal strain in problems involving beams with surface
constraints. J. App. Mech., 42: 127-132...)

Stresses in Plates

After the solution for the resultants is obtained, it is necessary to determine the three-dimensional
stresses. The relation is obtained by substituting the strain distributions Eqgs. See .-See . into the stress-
strain relations Eq. See ., and make use of the resultants Eqs. See ., See ., with the result:

Oxx { N 1] %
Sy = 7| N +[_3 M,
hy NU M,

Within the framework of the present assumptions, two contributions to the in-plane stresses are
identified:

(1) Direct stresses, which are proportional to the in-plane stress resultants Nx, Ny, and Nxy. and are
uniformly distributed through the thickness.

(i1) Bending stresses, which are proportional to the moment resultants Mx, My, and Mxy, and vary
linearly through the thickness.

Equation See . is the two-dimensional analog of the formula for the stress in a beam subjected to
combined tension and bending. For extremely thin plates, or membranes, loads are carried
predominantly by means of the direct stresses. Thus the direct stresses are also referred to as
membrane stresses.

In addition to the three stress components given by Eq. See ., it may be required to know the values of
the transverse shear stresses 0 xz and O yz, as well as the normal stress 0 zz. Recall that these
stresses are generally much smaller than 0 xx, O'yy, and O xy. It is interesting that the smaller

quantities require more effort to estimate. After substitution for o xx, O'yy, and 0 xy from Eq. See .,
the first two equations Eqs See . and See . may be integrated with respect to z to obtain:
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Oyz = Coxx‘t[ahx M\W]- f3 (a\ ‘?’Iyx‘]
Cyz = C’,vx [61\5, 81\5.,{) f3(@1 3?4,.,;]

where 0 0xz and 0 Oyz are integration constants. The equilibrium equations (Egs. See ., See ., See .,
and See .) can be used to rewrite Egs. See ., See . as:

[ ( ]2] +R,
5’[1 -(2)) 2] +R

where the terms with zero average value are collected into Rx and Ry:

Ty X, ¥,

cyx( .\'.‘V, z)

my

(9 o4+ e gt

-2

Ry = °'xz[‘ Vs tl]

B = oy{xy. L) + 2 -2 ] Yi+29p,- Ib}d:

-2

where the constants of integration have been chosen to satisfy the surface conditions at z = +t/2. The
significant term is that due to the transverse shear resultant, which causes a transverse shear stress that
varies parabolically through the thickness and has a maximum at the midsurface z = 0.

The normal stress is calculated from the third equation of equilibrium Eq. See . in a similar fashion.
The shear resultants Qx and Qy can be eliminated with Eq. See .. The result is completely
independent of the resultants! So we have a “statically determinate” result of a stress component
determined directly from the surface loading. The distribution that satisfies the conditions on the faces
z==+t/21s:

/ v 3 -
catin) = oalrin—t) 433+ 24 e pouie- f (e

-2 -t2

The significant effect is the loading in the z-direction, which according to Eq. See . causes a normal

stress O zz that varies as a cubic polynomial in z. Because the total integrals of Rx and Ry are zero,
the last term in Eq. See . is zero at both faces.

The approximate kinematic conditions and the constitutive relations are based on the assumption that
the stresses Egs. See ., See ., and See . are small in comparison with Eq. See .. Therefore these can be
calculated for a verification.

Plate Differential Equations
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The preceding equations can be reduced to partial differential equations of a standard form. Until this
point the partial derivatives have been written fully; subsequently the following shorter notation will
be used, in which the comma before the index indicates the partial derivative:

oF
o4 _F
ax *

The particular advantage of the linear solution for the homogeneous, isotropic plate, or the balanced
composite plate, is that the in-plane and the out-of-plane bending problems are uncoupled.

In-Plane Equation

A convenient approach to the in-plane problem is to introduce the Airy stress function ¢ . In terms of

the scalar function @@= @ (X, y) the in-plane resultants are:

. X ) ro_ 3 r
NR’ = Q’Ja’v_fdpxd'\ i N,v - q’uxx—ﬁprvd" . A’N}' = _9,.3')'

It is easily verified that the relations Eq. See : :. satisfy identically the equations for in-plane
equilibrium Eqgs. See . and See .. the strains are then easily computed from Eq. See .:

Exx = E[l QJ’vy— \’g’xx—fapxd.\ + v bpyd“‘,]

0 1/ s+ v podx
£yy= E[Iqaﬂ— vgow—f:p);{v + \prdAJ

2(1+wv)
TR T

The function ¢ is however, restricted since the strains must yield a consistent displacement
distribution. The method for this is to consider the strain-displacement relations from Eqgs. See .-See .:

0 0 0 0 0 0 0
Eﬁﬁ':H‘x;E};}u=vbv;}’ﬁy=“‘y+v‘x

For the strains prescribed, Eq. See : ;. gives three equations for the two displacement components u
and v. Consequently, there must be a condition on the strain components to permit a solution for the
displacements. The condition, referred to as compatibility of strain, is:

0 0 0
Sxrgyt yyan =V wypay = 0

It is easily seen that substitution of the strains in terms of displacements Eq. See ; ;. satisfies Eq. See ..
Now, substituting the strains in terms of the stress function Eqgs. See .-See . into Eq. See . yields the

equation for ¢ :

X . \ Ay
Adgp = fd(p,w_ VPy o X +fa o \pyw,.rb.
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in which A is the Laplacian, or harmonic operator:

Aq’ = 9"x;{+ 9"}:}!

The differential operator AA is often referred to as the biharmonic operator. Since the Laplacian can
be interpreted as the divergence ¥ of the gradient ¥ , the operators are also written as:

A= Ve V= \'2

O o I

Bending Equation (Kirchhoff)

The basic approximation that normals remain normal Eq. See :. gives the rotations in terms of the
displacement of the midsurface. Equations See .-See . give the curvature change measures in terms of
the rotations, and Eqgs. See . give the moments in terms of the curvature changes. Therefore, the
transverse shear Eq. See . can be written in terms of the displacement:

o, = m, + M, .+ MJ'KJ’

o . 1-v), .
= my+D[(px.x+ v,>y‘y,|x+(+(,3w+p”pvv

= M= DLW+ W )+ (1 - v,

.“J‘]

W

= m,—=Diw , +w )

= my,- DAw.K

For this reduction, the plate bending stiffness D is constant. Substituting Eq. See . and the similar
equation for the y-component into the equation of equilibrium Eq. See . yields the final equation:

(my, - Daw )+ (-m, - Daw , )y Pz = 0

which can be rewritten as:

DAdw = p+ My =y

Thus both the in-plane and the out-of-plane problems reduce to the biharmonic operator.

Plate Bending with Transverse Shear Deformation (Mindlin-Reissner)

For the consideration of the transverse shear deformation, the components of the rotation of the
normal 8 x and By can be rewritten in terms of two functions @ and ¥:

By = ~%,+Y,
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In terms of vector analysis, we are using the standard procedure of writing the rotation vector as the

sum of the gradient of the scalar @and the curl of a vector with the z-component ¥. Since we are
dealing with a linear system of equations, the equations for each component can be handled
separately. It is also necessary to split the load terms into two parts:

My = Mg+ M,

My = Mg, +Me,

where mG and mC are two scalar functions. Note that the curl part mC drops out of the equation See

Gradient part

The substitution of the @ part of Egs. See . and See . into Eq. See . yields instead of Eq. See . the
results:

= —D{é"m{'F Vé‘}‘,}' :l
My = —D(#"yy-F v#:m )

M, = -D(l-vi,,

o
]

MGy - D4 é}f

Jo
[

= mGJ-DAv#y

So, instead of Eq. See . the result is exactly the same equation for @:

DAA# = Pptmy, —m

¥~ My = pyt+dmg

The equation for the normal displacement w comes from Eq. See :.:

ug@,

Wy = ¢'x+—

Gt
so from Eq. See .:

w

u, .
x = éx"'"ﬁ("!G.x'DAé.x»'

u .
= ¢J,+-—t(mGJ,-DA¢*yJ

WJ, G

so the integral of each is the same:
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u

) = P+
W G[

(mg-DAa®)

By Eq. See . the effect of the transverse shear deformation can be estimated. The Laplacian term has

the coefficient & G2, where:
S-= D¢ &8
O (g YO

If the solution @ of Eq. See . varies significantly over the distance L, then each derivative has the
magnitude:

[l <12

The Laplacian term in Eq. See . is small for L >>d G, e.g., for a deformation with the variation
distance L that is large in comparison with the plate thickness. A similar argument can be made for the

mG term. When both terms are neglected in Eq. See ., we have the Kirchhoff result Eq. See . with @ =
w.

Curl Part

the component ¥in Egs. See . and See . leads to a rather different type of equation. The bending
moment and transverse shears components are:

Mﬁ, =(l- \')Dw‘xy

M, = -1 - vDY,,

Mxy = %D(l —-v)( Wyy— L

0, = [ d S 2y W+mc]

Y

o

o, = —[D(l = Vg W+mcj|x

With these shear components, the equation of transverse force equilibrium Eq. See . is identically
satisfied, and the derivatives of the normal displacement are:

W, = [- W+"(5;_‘t(D(l+.v:'A W+nzc) L

(1= .
W, = _|:- w2 (pl ‘A W+mc:|
Gt(n 2 ) »

So, the only solution for these two equations is for w to be identically zero, and for ¥'to satisfy the
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partial differential equation:

un(l-v) u
-=D LAY+ Y = —m
Gt 2 Gt ©

The solution of this equation consists of a particular solution, due to the nonhomogeneous load term
on the right-hand side, and a complementary solution of the homogeneous equation, (with zero

right-hand side). The coefficient of the derivative terms is & C2, where:

P (l—vﬁl=t,f u
¢ JGfD 2 4na- A

So 6 C is equal to a length less than the thickness. For a plate with lateral dimensions large in
comparison with the thickness, this is called a singular perturbation problem. The solution of the

homogeneous equation consists of terms which decrease exponentially within the distance  C from
the boundary of the plate, and so are referred to as boundary layer solutions. Therefore, the effect of
this extra work in including the transverse shear deformation consists of a little correction to the
displacement w in the potential solution Eq. See . and a boundary layer correction within a thickness
of the boundary from the curl part Eq. See .. Consequently, an excellent understanding of the general
behavior of the plate can be obtained by considering only the reduced Kirchhoff theory.

Stretching of Normal

Equation See . provides the solution for the distribution of the stress in the normal direction in terms
of the surface loading. However, insight into the effects of higher order can be obtained by
considering the stretching of the normal. Instead of Eq. See .-See ., we add a term to the normal
displacement:

w(x,y,z) Euo(.t..v )+ 2B (X))
v(x,y,z) Evu(x J+ 5/3y(~"~." )
w(x,p,2)= w0 (x,y)+ :,Sx(.\' ¥

The strains from Eqgs. See : ;. and See ; :. are:

g = Wattig = 2P+ 4

g = Wytvg= B+ B

which give the resultants from Egs. See : :.:
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Hn2 Gf3
Mg = f Oygods = ﬁ/sz,x
-2
Hn2 Gf3
Myx = f ny.'.'d.’, = ﬁ/sx\l'
-2
2
N = f oggds = Eif + v('Nx+1V;}
-2
Thus Eq. See . yields the equation for S z:
—G—pAS +45 = l[m - viN,+N,)]
Er =T T ey

which is a second order equation for the average normal strain S8 z.The coefficient of the Laplacian
operator is & z2, where:

—_ |--o-
(O]

Once again, for a solution with the variation on the distance L >> & z, the Laplacian term is small and
the average strain is:

1

B = Ff [mg, — v(N, + 1\!;, )]

which is the condition that the normal stress be small. The solution of Eq. See . with zero right-hand
side, however, permits the prescription of the normal strain on the boundary. This is again a boundary

layer effect, with the decay distance & z. This decay distance is about the same as for the transverse
shear layer Eq. See .. Therefore, in general, the solution for the plate separates into global effects
described by the classical Kirchhoff theory and three dimensional effects that are restricted to the
region of about one thickness near the boundaries.

Boundary Conditions

The boundary conditions are perhaps most easily understood for the rectangular, three-dimensional
body in Fig. See Stress components acting on the surfaces of a three-dimensional element in cartesian
coordinates... For the face with outward normal in the positive x-direction, the tractions, or

components of stress, that can be prescribed are 0 xx, 0 xy, and 0 xz. The displacements in the
directions of the stress components are u, v, and w. So the differential work that the boundary
tractions perform on the body is the product of the stress components and the corresponding
differential displacements. Therefore, the rate of work on the face is:

W= J‘: J‘_ " [ogst + oy + oy 1dzdy
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where the dots denote the time derivative. (Alternately, the dots could denote the virtual
displacements.) With the approximation for the displacements Eq. See .-See ., the expression for the
work becomes:

: 13 0 0 0
W= fv« [o,( +z8)+c,,(v +28,)+o,dw +:8,) Mzdy
}&f-tlﬁ XX X Xy y X ¢4

which from the definitions of the resultants Eqs. See : :. and See :. reduces to the plate quantities:

W= f N +M8, + Ny + M, f,+ 0w +N, &1y
J’«

Hence, the edge tractions on the face of the three-dimensional body are reduced to the plate resultants
which can be prescribed on the edge of the plate:

Nx, Nxy, Mz, Mx, Mxy, Qx

and the corresponding displacement and rotation quantities:

u0, vO, BZ, ﬂx, By, w0

For boundary conditions, either the force quantities Eq. See Nx, Nxy, Mz, Mx, Mxy, Ox., or the
displacement quantities Eq. See u0, v0, Bz, Bx, By, w0., may be prescribed on the edge. Another
possibility is to prescribe a linear combination of the force and displacement quantities which includes
a mix of some displacement and some force quantities. For the isotropic plate, the in-plane and
bending problems are uncoupled.

Isotropic Plate In-Plane

Equation See . governs the in-plane behavior of the plate, also referred to as the plane stress problem.
This is a fourth order partial differential equation for the stress function ¥ . In the classification of
partial differential equations, this is referred to as elliptic. Consequently, exactly two scalar boundary
conditions must be prescribed at each point of the boundary. The two force quantities are obviously:

Nx, Nxy,

and the two corresponding displacement quantities are:

u0, vO

From the relation of the stress resultants and the stress function Eq. See ; :., prescribing the resultants
Eq. See Nx, Nxy.. is equivalent to prescribing the value of ¥ and its normal derivative on each point
of the boundary. This convenient treatment for prescribed forces on the boundary is an advantage of
the stress function approach. Displacements require more effort, since the strain displacement
relations Eq. See : ;. must be integrated, and no simple relation between the stress function and the
displacement components can be found. However, a combination of displacements can be considered,
namely the strain along the boundary and the change in curvature of the boundary. These are
quantities that are independent of rigid body translation and rotation. For the positive x- edge, the
strain along the edge is:
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Py = Vy= L%[:“P,xx- VP yy _[;nyi" + *‘f: Px)
and the curvature change of the edge is:
"= '“Uw:v =- (“Uw“’n‘x Wt (VOJ‘ =yt foy.v‘x
Writing the strain quantities in terms of the stress function yields:
%y = %[A(p‘x+(l + V)@ -]:py‘xdv + \px]

Thus the derivatives of the displacements along the boundary yield results in terms of the derivatives
of the stress function, which is convenient for many problems.

The effect of stretching of the normal can be added. Equation See . is a second order equation for 8 z,
once the resultants Nx and Ny are known. Thus one scalar condition is required on each point of the

boundary, either the average strain S z or the “resultant” Mxz in terms of the derivative of Bz given
by Eq. See ..

Isotropic Plate Bending with Mindlin-Reissner Theory

After deleting the in-plane quantities, three force and three displacement quantities remain to be
satisfied Egs. See Nx. Nxy, Mz, Mx. Mxy. Ox. and See u0. v0. Bz. Bx. By. w0.. The gradient part of
plate bending Eq. See . is a fourth order equation and the curl part Eq. See . is a second order
equation. So together, three conditions on each point of the boundary can be prescribed. The in-plane
resultants and the stretching, discussed in the previous section, can be handled separately. It is
unfortunate that the gradient and curl parts of the bending problem are mixed together. The
displacement quantities that can be prescribed on the positive x-edge are repeated from Egs. See ., See
., and See .:

Py

Il
I
,9:9'

+
L=
«

/Sy= _<I>J,—W
W= S+ m.—Dad)
G @ '

and the corresponding resultants are from Eqgs. See ., See ., See ., See ., See ., and See .:

MN = -D[é'.ﬁ’ﬁ-*- \"}"J,y— (1-v) g{ﬁ’,}']

. 1 -
Mxy =-Dd - "-'I:'#',xy— 5( Yor= ¥ J:|

o, = mG‘x+mcy—DA|:¢"x- a : v) WJ‘:I
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Apparently no exact separation of the @ and ¥ contributions can be made. However, because of the
boundary layer nature of the ¥ contribution, an approximate uncoupling is possible. For a

computational finite element approach, a separation of the problem into the @ and ¥ contributions is
not made, and the formulation in terms of the basic quantities Eq. See . is straightforward.

Isotropic Plate Bending for Kirchhoff Theory

The preceding shear deformation theory is satisfying from several aspects. However, it is also more
elaborate than is necessary for the general problem of plate bending. The simpler classical theory of
Kirchhoff (1850)See Kirchhoff G (1850). Uber das Gleichgewicht and die Bewegung einer
elastischen Scheibe, Journal fur reine und angewandte Mathematik, 40: 51-88.. is widely used. The
biharmonic Eq. See . with the displacement w governs the problem. This is a fourth order equation, so
that two independent quantities must be prescribed at each point of the boundary. A problem emerges,
however, since the three displacement quantities (the displacement w, and the two rotation

components B x and By) or the three force quantities (Qx, Mx, and Mxy) can be prescribed in the
preceding shear deformation theory. the proper reduction to only two boundary conditions can be
obtained from the work on the edge Eq. See .. For the Kirchhoff theory the rotation components are
related directly to the derivatives of the normal displacement Eq. See ;.. Thus the edge work rate for
the bending problem becomes:

W= f:’ (M, 5, + M, 8, + O,w 1y

= J)/ “[_wal‘x - Mx},w: P Qxﬁ ldy

»

However, the second term may be integrated by parts, giving:
= (—Mx},w )E+ﬁ[—M,{w‘x + (M?‘}'J‘ + 0, w iy

Thus the work done by the normal displacement w depends on the magnitude of the combined term
Vx = Qx + Mxy,y. This represents an effective transverse shear force on the edge. Thus the Kirchhoff
theory uses the force boundary quantities of only:

Mx and Vx = Qx + Mxy,y
and the corresponding displacement and rotation quantities:
ﬂ x =-wx and w

Writing the boundary quantities See Mx and Vx = Qx + Mxy.y. in terms of the displacement gives:

Mx = —D(w‘m+ W

Do

Vﬁ, = Mg, +m - D(Aw‘,{ +(1 - VIW 3n)
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So it is interesting that without surface loads, the in-plane stress problem, with the boundary
conditions on the strain See . and curvature change See ., is exactly analogous to the Kirchoff plate
bending problem, with the boundary conditions on moment Mx See . and effective transverse shear
Vx. See ., except for a change in the sign of Poisson’s ratio. Similarly, the in-plane problem, with
boundary conditions on both stress components, is analogous to the bending problem of prescribed
displacement and rotation.

The extra term in the work Eq. See . from the integration is of considerable importance. This shows
that the twisting moments Mxy at the corners y =yl and y = y2 has the effect of a concentrated force.
This is called the corner force. For the rectangular plate, There are also contribution from the edges x
= x1 and x2. So the total corner force is equal to 2Mxy and, for positive Mxy, acts in the negative
z-direction on the corners (x1, y1) and (x2, y2). On the corners (x1, y2) and (x2, y1) the force 2Mxy
is in the positive z-direction, as shown in See Effective resultants from Kirchhoff theory acting on the
rectangular plate...

FIGURE 1.6. Effective resultants from Kirchhoff theory acting on the rectangular plate.

Cylindrical Bending of Plates

The plate equations are two-dimensional, in the x-y plane. However, it is of value to consider the
situation for which the solution depends on only one variable, that we take to be the x-coordinate. The
displacement in the y-direction is taken as identically zero. Thus the exact solution for the three-
dimensional body reduces to the plane strain problem in the x-z plane. The plate equation reduces to a
one-dimensional equation in the x-coordinate, exactly that of a straight beam, but with the plate
stiffness term which has dependence on Poisson’s ratio. The following problems are of interest
because an exact solution of the plane strain equation can be compared with the approximate plate
solution. For convenience, the plate equations necessary for the cylindrical bending are summarized
here. The equilibrium equations See . and See . reduce to:

QKJ; = _px

M, = Qx“my

and the moment-curvature relations See . give:
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M, = Dx,
M, = vDx,
The curvature-rotation relation See . is:
= /gx.x

and the rotation- displacement relation from the Kirchhoff theory See :. is:
'WU‘X = —ﬁh,
while that from the Mindlin-Reissner theory See . is:

'WU,X = —/SX + F

ug,

t
For statically determinate problems, Qx and Mx are known at some point. In this case, the shear
diagram is the integral of See . and the moment diagram is the integral of See .. The rotation is
obtained from the integral of See . and the displacement from the integral of See ., or See . for more
accuracy. For statically indeterminate problems, the boundary conditions may be in terms of the
displacement and rotation. The elimination of the stress resultants in the system of equations leads to
the equations for Mindlin-Reissner theory:

(DB ) gy = —Pz=Myy

. u a
Wy= -5+ AG—[ [(Dpx.x",x +my]

while for the Kirchhoff theory the final equation reduces to:

(Dw LN

alay = Pety,

For constant bending stiffness D, this is the same as See . with the dependence on the y-coordinate
removed.

Pure Bending
This is the most simple problem in beam and plate bending.

In See Pure bending of plate.. is a sketch of a plate clamped to a wall at x = - L and loaded at the end
x =0 by a moment ML. The z-coordinate is chosen in the downward direction, so that the positive

moment from See :. is in the direction corresponding to tension in the i “&: :
x-direction at positive values of z. - |
................ _
e
L
Plate Solution [ E—
=Y
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29 of 41

For zero transverse loading pz, zero distributed moment my, and zero
end shear Qx, the solution of See . is Qx identically zero, and from Figwre 2. 1Pure bend ing of plate.
See . that Mx is constant. Thus:

M,=M; = Dx, = Dj,,

In addition, See . shows that the moment in the y-direction is nonzero:

MJ‘ = V. h’x

Therefore, the stress components from See ., See ., and See . are:

12M;

Cyx = ] s
i

Oy = O = 0

Since the transverse shear Qx is zero, the rotation is related to the derivative of the displacement in
both the Kirchhoff theory See . and in the shear deformation theory See .. Thus the integral of See .
gives the rotation:

M
/Sx = 33('.\' +L) = —Wn‘x

with the constant of integration chosen so that the rotation is zero at the clamped end. So See . gives
the tangential displacement:

Mz
= —=(x+L)z
u D (x

and the integration of See . gives the transverse displacement:

- 35

(x+L)°

Exact Solution

The body in See Pure bending of plate.. can be considered as a plane strain in the x-z plane. So the
See . is valid with the y-coordinate replaced with z. The exact solution has the stress function:

_EMz}
p=—z-
t

which yields exactly the stress components See . and See .. The displacements are:

MZL- Xy
u = T(.Hi.)‘
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T— X r v {3
Y="3D [(. Y1) *parea

Therefore in the case of pure bending, the plate solution gives the exact stress distribution and the
exact tangential displacement u. The exact transverse displacement w See . agrees with the plate
solution on the midsurface z = 0 See ., but changes with the distance from the midsurface. Note also
that the exact condition of zero w at every point of the clamped end is not satisfied by this exact
solution. (In fact, to satisfy this condition a singular stress state is required at the clamped corners.)
The maximum error at the end x = 0 is however of the magnitude:

v
Enor = )

;(1
41+ v)\L

So for a beam longer than the thickness, the additional displacement in See . is rather small.

Pure Shear Loading

Now we consider the next most basic problem in beam and plate wo
bending. In See Pure shear loading of plate.. is a sketch of a plate + |
clamped to a wall at x = - L and loaded at the end x =0 by a shear ™ e -~
force QL. The solution is that the shear is constant but that the /" 7 7 ‘—f L *
moment varies along the beam. | e

21
Figwe 2.2 Pure shear loading of plate.

Plate Solution

For zero pz and my, and nonzero shear at z = 0, See . and See . are satisfied by a constant transverse
shear and a linearly varying bending moment:

Qﬁ’ = Qz
Mh’ = Dh‘x = D/g“r = Q;.\'
The constant of integration is chosen to give the moment Mx that is zero at the end x = 0. As before,
See . shows that the moment in the y-direction is nonzero:

M, = \Dx,

Therefore, the tangential stress component is from See .:

120,
Cyy = 3 X

t

while the transverse shear stress is computed from See .:
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e = 221 (5]

and the normal stress is zero from See .:

og = 0

The rotation is the integral of See ., with the constant of integration chosen to give zero rotation at x =
- L:

_-‘_]
3

so See . gives the tangential displacement:

" = QzL |1-_]-

Another integration gives the transverse displacement. For the Kirchhoff theory See :. gives:

WO = QI'L

)
+1][1 31 ‘L2

while the Mindlin-Reissner theory See :. gives an additional displacement contribution:

w°=Q35 +l][1+ _ 2, 3uD

au? G
Writing out the additional contribution gives:

3uD _ ;4!2
GtL* 1= I

So for the isotropic plate, with y = 6/5, the shear deformation correction is small when the length is
greater than the thickness.

Exact Solution

The body in See Pure shear loading of plate.. can be considered as a plane strain in the x-z plane. So
See . is valid with the y-coordinate replaced with z. The exact solution has the stress function:

. le[ _3”1

i

which yields exactly the stress components See .-See .. The displacement in the tangential direction is:
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o)

A two-dimensional effect appears, in the additional z-dependence in the exact solution compared with
the plate solution See .. Since the behavior is cubic in the z-coordinate, this is referred to as warping
of the normal. The effect is, however, also small when the length L is greater than the thickness t.
However, using See . to compute an averaged tangential displacement u,defined by:

0,1
2D

U=

M)t
2

u(x) = W(X, 2 )oyy(x,5)dz

yields exactly the same as the plate solution See .. The exact transverse displacement is:

2o 3,
S -]

-

L ' 2
= =2 (X4 X _2
W= £35) |:(-L+l‘][‘1+3L 3]_2,

However, the averaged displacement w, defined by:

4

W(x) = é Izw(x,: )y (X, 2 M2
2

yields:

3
- 2 Y] .
. QzL X t 3

(L”][ 55 EsI o,

which is exactly the plate solution See . for ¢/ = 6/5, which is a justification for the use of this value of

U . So for the pure shear problem, as well as the pure bending problem, the difference between the
Kirchhoff theory, the Mindlin-Reissner theory and the exact solutions is in terms that have the size of
t2/L.2. Also to note is the ratio of the maximum of the transverse shear stress See . to the maximum of
the tangential stress See .:

I .Vlmax - i
Ionlmax

So for the thin plate, the transverse stress is small in comparison with the tangential. This is the
justification for the Kirchhoff approximation See : :. that the transverse shear strain in small in
comparison with the tangential.

Transverse Loading

Now we consider a problem with a uniform transverse loading of the
plate with the nonzero magnitude pz. In See Uniform loading of
plate.. is the sketch of the plate clamped to a wall at x = - L and free

iiiiiiii+

-
x
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at the end x = 0. The solution has a resultant shear that varies linearly i,.—,., *
and a resultant moment that varies quadratically along the beam. The €

) . 2
exact solution has a nonzero transverse normal stress O zz that is of

interest to compare with the plate approximation. To obtain a simple
exact solution, however, a special distribution of body force is used:

Figwe 2.3 Uniform Joad g of plate.

5 Bel2(-v)2
z f3 v -
with the surface tractions:
/Ot 1
Oxx(‘.’n j,) = —px(.:—v - 1)

;o 1
O’xx(‘.\'. —5‘] = px(‘z—v— 1)

It can be verified that substituting See .-See . into See . yields pz, the resultant force per unit length of
the midsurface. The dependence of the body force and tractions on Poisson’s ratio is strange, but it
works.

Plate Solution

The equilibrium equations See . and See . are satisfied by the distribution of transverse shear and
bending moment:

Qg = ﬂ’gr

M, = Dx, = Df,, = 2%

XX 3

The constants of integration are chosen so that both the moment Mx and the transverse shear are zero
at the end x = 0. As before, See . shows that the moment in the y-direction is nonzero:

M, = \Dx,

Therefore, the tangential stress component is from See .:

while the transverse shear stress is computed from See ..
3px y 2 3 X
w37 (7)

For this case, the normal stress from See . is not equal to zero:
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The rotation is the integral of See ., with the constant of integration chosen to give zero rotation at x =
-L:

L

1‘3'
By = —5(1 "‘P]

so See . gives the tangential displacement:

Another integration gives the transverse displacement. For the Kirchhoff theory See :. gives:

4
o PLx o xox
W o= E(.Z+l-][1+3_l._ﬁ+373]

while the Mindlin-Reissner theory See :. gives an additional displacement contribution, again of the
relative size of t2/1.2:

VLN < oS- SFURY P SR SV I SR
8D\L ) 3L 312 3]_3 L23(1—v)- L

Exact Solution

The body in See Uniform loading of plate.. with the body force See . and surface tractions See . and
See . has the plane strain solution given by the stress function:

o= B2 -a(3) ]

which yields exactly the stress components See .-See .. The averaged tangential displacement
u,defined by See . yields the result:

- Lit+5
L3 10(1 - \’:ILg[- L]:|

- 3 3 a a2
u='%[”" 3(1-3v)t

Thus for this problem, the averaged tangential displacement differs from the plate result See . by

terms that are the size of t2/L2. Note that the difference is zero for v=1/3, a typical value for many
materials. The total displacement in the tangential direction is:
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- 2 PTR o_un (3 2221
U= H+—- —zm[ —(.T,] ]].

which has the cubic variation in the z-direction. The averaged displacement in the z-direction w,
defined by See . yields:

4 3
_BL x 2R E TS 300 B 213w
W = SD(L+1)[ 4 3L2+3L3+L25(1-*’?[(5 3u(1-3) -2 3»,]]

Which is exactly the plate solution See . for 4/ = 6/5, when v = 1/3. The exact transverse displacement
has additional terms:

"= P;é [Lr(l;wl [(3_:]2 1”

P;é [m‘[ Gt )[(_)4—%]_3[%)2_%]]]

So for this particular transverse load problem, as well as the pure AMaz=t/2  wz=s 3
bending and pure shear problems, the difference between the Exact w 4_;,;& ‘\ it
Kirchhoff theory, the Mindlin-Reissner theory and the exact solution P ","‘ M-Rw ol s
. . . Ts ‘
is in terms that have the size of t2/L.2. y e Kirchhoff w

/,, _-.a-""'.
In See Transverse load, £.t = 0.5.. is shown a comparison of the PP Ll

. . . . . . L =0.8 =0.6 =0.4 -1.2

Kirchhoff solution See ., the Mindlin-Reissner solution See ., and the Distance .x/7
exact solution See . at the surface z = t/2, for a very short beam, L.t = Figwe 2.4 Transverse bad, 7= 05.

0.5. Even for this short beam, the Mindlin-Reissner correction gives a reasonable approximation for
the normal displacement. In See Transverse load. £.t = 2.. are the results for Lt = 2, for which the
Mindlin-Reissner approximation is fairly good. For Lt = 5 in See Transverse load, L.t = 5.., the
Kirchhoff solution is not too far in error. For higher values of Lt the three are indistinguishable.

P

E\t z= 152 ',;a i d
xact w ".- yR' s
M-R w el 0.6

AN

""" Kirchhoff w'"

<l
L 08 -0 -0.4  -0.2

Distance x/%

Transverse load, L.t = 2.
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A
Atz=1/2 e v
Exact w o
i;((/ Ref
\ \ .
Kirchhoff w
-1 -0.8 -n é -n 4 -D 2

Distance x/4
Transverse load, L.t = 5.

Also note that the ratio of maximum shear stress to maximum tangential stress is:

|0

xeima _
[

and the ratio of maximum transverse stress to maximum tangential stress, for v=1/3, is:

| _

“¥rmac 6L

These results of relatively small transverse shear and normal stress are consistent with the kinematic
approximation of the Kirchhoff theory.

Rectangular Plates

Results for plate strip with shear load on end: loadLoc/a = 1/4, loadWidth/a = 1/64

80.0
60.0
1 M=2
aoo 4 ] e 12 M=10
% - 13 M=40
*U. 0.0 S nd M=80
- 234 M=160
0.0
(20.0) T T :
2 o 92 9=z e
= < = = -
xdist/a
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a.as
a.aa =
—_— . M.
a.as | wz M-Q
“: .......... wl M -ag
B ag.azr i w- wW-za
g w>r ™-TBa
a.av -
a.aa T T T
< o n ] o
-~ - -
xdliat/a
1.5

10

Mx/P
Q
w

0.0

fo.s?

0.2 ]

T T
" -
a e

=dist/P

Local distribution for q, for loadLoc/a = 1/4, loadWidth/a = 1/64
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Circular Plates

Moderate Rotation Theory

Fourier Series Method for Polygonal Plates
Bending of Circular Plates with Circular Holes
Fracture Mechanics with Fourier Series
Example Problems
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