
Introduction to UML

CSE 5324, Summer 2017

Credits: Slides burrowed heavily from http://sunset.usc.edu/classes/cs590_s2002/CPT-Readings.html

About this lecture…

• Will attempt to introduce you to UML and
Rational Rose

• Not possible to teach everything
• Requires that you study on you own after
• Goal is to get you familiar
• Make use of on-line tutorials, books, etc.

2CSE 5324, Summer 2017, Ali Sharifara UTA

Introduction to UML

• What is UML?
• Motivations for UML
• Types of UML diagrams
• UML syntax
• Descriptions of the various diagram types

– Rational Rose and UML
• UML pitfalls

3CSE 5324, Summer 2017, Ali Sharifara UTA

What is UML?

• A standardized, graphical “modeling language” for
communicating software design.

• Allows implementation-independent specification of:
– user/system interactions (required behaviors)
– partitioning of responsibility (OO)
– integration with larger or existing systems
– data flow and dependency
– operation orderings (algorithms)
– concurrent operations

• Pretty pictures.
• UML is not “process”. (That is, it doesn’t tell you how

to do things, only what you should do.)

4CSE 5324, Summer 2017, Ali Sharifara UTA

Motivations for UML

• UML is a fusion of ideas from several
precursor modeling languages.

• We need a modeling language to:
– help develop efficient, effective and correct

designs, particularly Object Oriented designs.
– communicate clearly with project stakeholders

(concerned parties: developers, customer, etc).
– give us the “big picture” view of the project.

5CSE 5324, Summer 2017, Ali Sharifara UTA

Types of UML diagrams

• There are different types of UML diagram,
each with slightly different syntax rules:
– use cases
– class diagrams
– sequence diagrams
– package diagrams
– state diagrams
– activity diagrams
– deployment diagrams.
– etc

6CSE 5324, Summer 2017, Ali Sharifara UTA

UML syntax, 1

• Actors: a UML actor indicates an interface
(point of interaction) with the system.
– We use actors to group and name sets of system

interactions.
– Actors may be people, or other systems.
– An actor is NOT part of the system you are

modeling. An actor is something external that
your system has to deal with.

• Boxes: boxes are used variously throughout
UML to indicate discrete elements, groupings
and containment.

7CSE 5324, Summer 2017, Ali Sharifara UTA

UML syntax, 2

• Arrows: arrows indicate all manner of things,
depending on which particular type of UML
diagram they’re in. Usually, arrows indicate
flow, dependency, association or
generalization.

• Cardinality: applied to arrows, cardinalities
show relative numerical relationships
between elements in a model: 1 to 1, 1 to
many, etc.

8CSE 5324, Summer 2017, Ali Sharifara UTA

UML syntax, 3

• Constraints: allow notation of arbitrary constraints on
model elements. Used, for example, to constrain the
value of a class attribute (a piece of data).

• Stereotypes: allow us to extend the semantics of
UML with English. A stereotype is usually a word or
short phrase that describes what a diagram element
does. That is, we mark an element with a word that
will remind us of a common (stereotypical) role for
that sort of thing. Stereotypes should always be
applied consistently (with the same intended meaning
in all instances).

9CSE 5324, Summer 2017, Ali Sharifara UTA

UML diagrams: use cases

• A use case encodes a typical user interaction with
the system. In particular, it:
– captures some user-visible function.
– achieves some concrete goal for the user.

• A complete set of use cases largely defines the
requirements for your system: everything the user
can see, and would like to do.

• The granularity of your use cases determines the
number of them (for you system). A clear design
depends on showing the right level of detail.

• A use case maps actors to functions. The actors
need not be people.

10CSE 5324, Summer 2017, Ali Sharifara UTA

Use case examples, 1
(High-level use case for powerpoint.)

11CSE 5324, Summer 2017, Ali Sharifara UTA

About the last example...

• Although this is a valid use case for
powerpoint, and it completely captures user
interaction with powerpoint, it’s too vague to
be useful.

12CSE 5324, Summer 2017, Ali Sharifara UTA

Use case examples, 2
(Finer-grained use cases for powerpoint.)

13CSE 5324, Summer 2017, Ali Sharifara UTA

About the last example...

• The last example gives a more useful view of
powerpoint (or any similar application).

• The cases are vague, but they focus your attention
the key features, and would help in developing a
more detailed requirements specification.

• It still doesn’t give enough information to characterize
powerpoint, which could be specified with tens or
hundreds of use cases (though doing so might not be
very useful either).

14CSE 5324, Summer 2017, Ali Sharifara UTA

Use case examples, 3
(Relationships in a news web site.)

15CSE 5324, Summer 2017, Ali Sharifara UTA

About the last example...

• The last is more complicated and realistic use case
diagram. It captures several key use cases for the
system.

• Note the multiple actors. In particular, ‘AP wire’ is an
actor, with an important interaction with the system,
but is not a person (or even a computer system,
necessarily).

• The notes between << >> marks are stereotypes:
identifiers added to make the diagram more
informative. Here they differentiate between different
roles (ie, different meanings of an arrow in this
diagram).

16CSE 5324, Summer 2017, Ali Sharifara UTA

UML

More UML later,
now on to…

17CSE 5324, Summer 2017, Ali Sharifara UTA

Using Rational Software

• IBM Rational resources
• Getting the program:

– http://www-01.ibm.com/software/rational/
– http://en.wikipedia.org/wiki/Rational_Software

18CSE 5324, Summer 2017, Ali Sharifara UTA

http://www-01.ibm.com/software/rational/
http://en.wikipedia.org/wiki/Rational_Software

What is Rational Rose?

• An expensive CASE (Computer-Aided Software
Engineering) tool for object-oriented modeling.

• Based on UML (more or less).
• Provides semantics (a ‘compiler’) for UML.
• Has a reasonably intuitive GUI similar to standard

drawing programs, like Illustrator. Is available for
Windows and other platforms.

• Makes creating and maintaining your UML diagrams
easier (or at least more consistent).

• Has many bizarre features, including generation of
C++ (and other) code from your diagrams.

19CSE 5324, Summer 2017, Ali Sharifara UTA

What is a Rose Model?

• A Rose “model” is a representation of the
problem domain and system software
– Each model contains views, diagrams, and

specifications to visualize and manipulate the
elements in the model

– There are many views of each underlying element
– Every “object” in the design is represented once in

the Rose “model”
– Rose maintains a consistent semantic

representation in the “model”

20CSE 5324, Summer 2017, Ali Sharifara UTA

About the next 2 slides…

• The next slides introduce the Rose UI.
• Main points are the:

– “Browser”, a drop-down list of things in your
model.

– “Documentation window”, where you can add
notes to a thing in your model.

– “Diagram windows”, where you draw your
pictures.

21CSE 5324, Summer 2017, Ali Sharifara UTA

The Rose User Interface

• Rose consists of:
– Standard toolbar
– Diagram toolbar
– Browser
– Documentation window
– Diagram windows
– Specifications
– Status bar

22CSE 5324, Summer 2017, Ali Sharifara UTA

Rational Rose

23CSE 5324, Summer 2017, Ali Sharifara UTA

Standard
Toolbar

Browser

Documentation
Window

Diagram WindowDiagram Toolbar

Status
Bar

About the next slide…

• Most things in your model (classes, use
cases, actors, etc) have all manner of
attributes and parameters. You edit these via
the “Specification” dialogue associated with
each.

• To get the specifications, right-click a thing in
the browser or a diagram and choose
“Specification”.

24CSE 5324, Summer 2017, Ali Sharifara UTA

Specifications

• Most modeling elements have a Specification
that contains additional information about the
modeling element

25CSE 5324, Summer 2017, Ali Sharifara UTA

About the next slide…

• The next several slides refer to use cases, a
particular type of diagram

• The next slide shows the “Use Case View”
section of the browser. Any actors, use
cases and use case diagrams each get an
entry. “Associations”, ie arrows, are grouped
together.

• Use the browser to add elements to your
model, then draw a picture to show how they
go together.

26CSE 5324, Summer 2017, Ali Sharifara UTA

Use Case Diagrams

27CSE 5324, Summer 2017, Ali Sharifara UTA

About the next slide…

• The next slide shows a full use case diagram.
• The stick figures denote actors, and the ovals are use cases

(a function or behavior or interface your software provides).
• The arrows indicate ‘use’ or dependency. For example, the

“Student” uses the function “Register for Courses”, which in
turn uses the external “Catalog System”.

• The <<uses>> tokens attached to some of the associations
(arrows) are stereotypes, an indication of what the
association means. In this diagram, <<uses>> indicates that
the association means a direct software link, ie, that the
function “Register for Courses” will directly use the function
“Login”. This is different than the unmarked arrows, which
indicate “use” in the vague sense of manipulating or
interacting.

28CSE 5324, Summer 2017, Ali Sharifara UTA

Use Case Relationships

29CSE 5324, Summer 2017, Ali Sharifara UTA

About the next slide…

• The next slide shows how documentation
(notes, etc) can be added to a particular
element.

• Here, they’re adding the documentation via
the Specification dialogue.

30CSE 5324, Summer 2017, Ali Sharifara UTA

Brief Description -- Register for Courses

31CSE 5324, Summer 2017, Ali Sharifara UTA

UML in your documents

• UML is intended to ease the task of
communicating software designs.

• Typical uses of UML in G64HLL:
– conceptual component diagrams in the concept

document.
– use cases and class diagrams in the requirements

document.
– class, sequence, state, package and deployment

diagrams in the architecture document.

32CSE 5324, Summer 2017, Ali Sharifara UTA

UML pitfalls, 1

• UML is a language, with a (reasonably)
rigorous syntax and accepted semantics; that
is, the diagrams have a meaning. Thus you
have to be careful that the meaning of your
diagram is what you intended.

• However, the semantics of UML are less well-
defined than a programming language (where
the semantics are defined by the compiler).
Thus there is some leeway to use UML your
own way: but you must be consistent in what
you mean by the things you draw.

33CSE 5324, Summer 2017, Ali Sharifara UTA

UML pitfalls, 2

• Arrow happiness: people tend to draw arrows
(associations) everywhere in their diagrams,
inconsistently without much regard for the UML
meaning of a given arrow.

• Diagram fever: it’s easy to do too many diagrams.
The trick is to get the correct granularity. Eg, the
requirements document should leave implementation
detail to the architecture.

• General loopiness: be careful about slapping
together UML diagrams, or doing a diagram without
thoroughly understanding your system. You should
always be able to give a clear and concise
explanation of your diagram, and why you did it that
way.

34CSE 5324, Summer 2017, Ali Sharifara UTA

Exporting Rational diagrams?

• You can use screen captures
• Find out other ways to do this …

35CSE 5324, Summer 2017, Ali Sharifara UTA

Learning Rational …

• Lots of practice
• Read online tutorial

36CSE 5324, Summer 2017, Ali Sharifara UTA

UML diagrams: class diagram

• Motivated by Object-Oriented design and
programming (OOD, OOP).

• A class diagram partitions the system into
areas of responsibility (classes), and shows
“associations” (dependencies) between them.

• Attributes (data), operations (methods),
constraints, part-of (navigability) and type-of
(inheritance) relationships, access, and
cardinality (1 to many) may all be noted.

37CSE 5324, Summer 2017, Ali Sharifara UTA

Class diagram “perspective”

• Class diagrams can make sense at three distinct levels, or
perspectives:
– Conceptual: the diagram represents the concepts in

the project domain. That is, it is a partitioning of the
relevant roles and responsibilities in the domain.

– Specification: shows interfaces between components
in the software. Interfaces are independent of
implementation.

– Implementation: shows classes that correspond
directly to computer code (often Java or C++ classes).
Serves as a blueprint for an actual realization of the
software in code.

38CSE 5324, Summer 2017, Ali Sharifara UTA

Class diagram examples
(A classroom scheduling system: specification

perspective.)

39CSE 5324, Summer 2017, Ali Sharifara UTA

About the last example...

• Each box is a class, with necessary attributes
and operations specified.

• Navigability arrows show which classes can
reference which others.

• Cardinality marked in bi-directional manner
on arrows.

• The classes together represent the complete
system; thus the the classes are a partitioning
of the system.

40CSE 5324, Summer 2017, Ali Sharifara UTA

Rational Software

Class Diagrams

41CSE 5324, Summer 2017, Ali Sharifara UTA

About the next 4 slides…

• The next several slides deal with classes and class
diagrams.

• The next two slides show classes and packages in
the browser. A package contains some classes.

• The following two slides show adding attributes (a
class’s data; “operations” are a classes methods)
to a class from the Specification dialogue, and from
the browser directly.

• As you’d expect, the menus pop up when click the
right mouse button.

42CSE 5324, Summer 2017, Ali Sharifara UTA

Classes in the Browser

43CSE 5324, Summer 2017, Ali Sharifara UTA

Packages in the Browser

44CSE 5324, Summer 2017, Ali Sharifara UTA

Using the Class Specification -
Attributes

45CSE 5324, Summer 2017, Ali Sharifara UTA

Attributes and Operations and the
Browser

46CSE 5324, Summer 2017, Ali Sharifara UTA

About the next slide…

• The next slide shows how to specify the
visibility of class attributes in the model.

• The visibilities correspond to the notions of
visibility in Java (public, private, protected,
etc).

47CSE 5324, Summer 2017, Ali Sharifara UTA

Attribute Visibility Options

48CSE 5324, Summer 2017, Ali Sharifara UTA

NewClass
+ Public attribute
Protected attribute
- Private attribute

About the next 2 slides…

• The next slide shows the icons for packages and
classes in a class diagram.

• The third icon is a class, marked with a stereotype.
Here the stereotype indicates a type of class, ie that it
is an “interface”. This doesn’t necessarily mean that
the class is a Java-type interface (but that’s probably
what they mean).

• The following slide shows the types of associations
(arrows) Rose allows in a class diagram. They
correspond to constructs in OO design and
programming.

49CSE 5324, Summer 2017, Ali Sharifara UTA

What is a Class Diagram?

• A class diagram is a view of the static
structure of a system
– Models contain many class diagrams

• Class diagrams contain:
– Packages, classes, interfaces, and relationships

• Notation:

50CSE 5324, Summer 2017, Ali Sharifara UTA

Package
Name

Class Name Interface Name
<<Interface>>

Relationships

• Class diagrams may contain the following
relationships:
– Association, aggregation, dependency, realize,

and inheritance
• Notation:

51CSE 5324, Summer 2017, Ali Sharifara UTA

Association Aggregation Dependency

Inheritance Realize

About the next 2 slides…

• The next slide shows a package diagram,
with dependencies.

• The following slide shows a class diagram,
with various associations between the
classes.

52CSE 5324, Summer 2017, Ali Sharifara UTA

Package Relationships

53CSE 5324, Summer 2017, Ali Sharifara UTA

Class Relationships

54CSE 5324, Summer 2017, Ali Sharifara UTA

About the next 2 slides…

55CSE 5324, Summer 2017, Ali Sharifara UTA

• The next slide shows how cardinalities are
denoted in Rose.

• The following slide is the class diagram
example from before, but this time with
cardinalities marked on the associations.

Multiplicity Indicators

56CSE 5324, Summer 2017, Ali Sharifara UTA

• Each end of an association or aggregation
contains a multiplicity indicator
– Indicates the number of objects participating in the

relationship

Zero or more0..*

One or more1..*

Zero or one0..1

Specified range2..7

Exactly one
1

Multiplicity Indicators

57CSE 5324, Summer 2017, Ali Sharifara UTA

Sequence Diagrams

58CSE 5324, Summer 2017, Ali Sharifara UTA

Sequence Diagrams

UML diagrams: sequence diagram

59CSE 5324, Summer 2017, Ali Sharifara UTA

• Sequence diagram describe algorithms, though
usually at a high level: the operations in a useful
sequence diagram specify the “message passing”
(method invocation) between objects (classes, roles)
in the system.

• The notation is based on each object’s life span, with
message passing marked in time-order between the
objects. Iteration and conditional operations may be
specified.

• May in principle be used at the same three levels as
class diagrams, though the specification level will
usually be most useful. (At the implementation level,
you might better use pseudocode.)

Sequence diagram example

60CSE 5324, Summer 2017, Ali Sharifara UTA

About the last example...

61CSE 5324, Summer 2017, Ali Sharifara UTA

• Each box with connected line represents a distinct thing, where
all the things aren’t necessarily in the same piece of software, or
software at all.

• Arrows indicate message passing. That is, an arrow indicates
that one thing tells another thing to do something.

• Reverse arrows are implied. If arrow goes from A to B, and then
immediately afterward an arrow goes from A to something else,
it is understood that B completed it’s operation and returned
control (and a result, probably) to A.

• Time runs down the page. An comes before an arrow that is
below it.

• Bracketed expressions indicate conditions. In the diagram, an
error document is returned if the fileLoad() operation returns and
error.

About the next 3 slides…

62CSE 5324, Summer 2017, Ali Sharifara UTA

• The next several slides are about sequence diagrams
(for algorithms, processes).

• The next slide shows how to create a sequence
diagram in browser, by associating it with a use case.

• The following slide shows some “objects” in a
sequence diagram, and the slide after shows how to
associated an object with a class. Objects are a bit
more general than classes, but you’ll get the best
results if you create a one-to-one association
between the objects in your sequence diagrams and
the classes you’ve defined (define your classes first,
if you can!).

Creating a Sequence Diagram

63CSE 5324, Summer 2017, Ali Sharifara UTA

Representing Objects

64CSE 5324, Summer 2017, Ali Sharifara UTA

Actor
Object
only

Class
only

Object and
Class

Assigning Objects to Classes

65CSE 5324, Summer 2017, Ali Sharifara UTA

• A new class can be
created for the object

• An object can be assigned
to a class already defined

About the next 3 slides…

66CSE 5324, Summer 2017, Ali Sharifara UTA

• The next slide shows how to denote message
passing in a sequence diagram. To pass a message
is usually to call a method on an object.

• The following slide shows a notation for “focus of
control”. This means that an object in control when
there is a box around its lifeline. The example
indicates that “Student” maintains control throughout
“drop a course”, even while “Maintain schedule form”
does its thing. Among other things, this can be used
to imply that called methods terminate and return.

• The third slide shows a full sequence diagram
example.

Messages

67CSE 5324, Summer 2017, Ali Sharifara UTA

Focus of Control

68CSE 5324, Summer 2017, Ali Sharifara UTA

Exercise: Sequence Diagram

69CSE 5324, Summer 2017, Ali Sharifara UTA

70CSE 5324, Summer 2017, Ali Sharifara UTA

Other Diagrams

UML diagrams: Package diagram

71CSE 5324, Summer 2017, Ali Sharifara UTA

• A type of class diagram, package diagrams show
dependencies between high-level system component.

• A “package” is usually a collection of related classes,
and will usually be specified by it’s own class diagram.

• The software in two distinct packages is separate;
packages only interact through well-defined interfaces,
there is no direct sharing of data or code.

• Not all packages in a system’s package diagram are
new software; many packages (components) in a
complex system are often already available as existing
or off-the-shelf software.

Package diagram example

72CSE 5324, Summer 2017, Ali Sharifara UTA

About the last example...

73CSE 5324, Summer 2017, Ali Sharifara UTA

• This package diagram indicates that:
– there are three dependent but decoupled

software components that will be developed in “My
Project”, which is itself a package or component.

– Parts of my software depend on some existing
software packages, which I won’t be developing,
but just using (“Webserver” and “Database”).

– There is a globally available package “User
authentication” which all the other packages
depend on.

About the next slide…

74CSE 5324, Summer 2017, Ali Sharifara UTA

• The next slide shows a complete deployment
diagram.

• A deployment diagram is useful for showing
how your software will be deployed on
hardware. It may show how your system will
integrate with existing systems in the domain.

Exercise: Deployment Diagram

75CSE 5324, Summer 2017, Ali Sharifara UTA

UML diagrams: other diagrams

76CSE 5324, Summer 2017, Ali Sharifara UTA

• State diagrams: similar in function to
sequence diagrams, but with focus on the
prerequisites for an operation, rather than the
exact sequence of actions.

• Deployment diagrams: shows the installation
of software on hardware platforms.

• Others: activity diagrams, collaboration
diagrams.

• Look in UML Distilled for examples.

UML diagrams: other diagrams

77CSE 5324, Summer 2017, Ali Sharifara UTA

• UML Distilled: A Brief Guide to the Standard
Object Modeling Language
Martin Fowler, Kendall Scott

• IBM Rational
https://www.ibm.com/developerworks/rationa
l/library/content/RationalEdge/sep04/bell/

	Introduction to UML
	About this lecture…
	Introduction to UML
	What is UML?
	Motivations for UML
	Types of UML diagrams
	UML syntax, 1
	UML syntax, 2
	UML syntax, 3
	UML diagrams: use cases
	Use case examples, 1�(High-level use case for powerpoint.)
	About the last example...
	Use case examples, 2�(Finer-grained use cases for powerpoint.)
	About the last example...
	Use case examples, 3�(Relationships in a news web site.)
	About the last example...
	UML
	Using Rational Software
	What is Rational Rose?
	What is a Rose Model?
	About the next 2 slides…
	The Rose User Interface
	Rational Rose
	About the next slide…
	Specifications
	About the next slide…
	Use Case Diagrams
	About the next slide…
	Use Case Relationships
	About the next slide…
	Brief Description -- Register for Courses
	UML in your documents
	UML pitfalls, 1
	UML pitfalls, 2
	Exporting Rational diagrams?
	Learning Rational …
	UML diagrams: class diagram
	Class diagram “perspective”
	Class diagram examples �(A classroom scheduling system: specification perspective.)
	About the last example...
	Rational Software
	About the next 4 slides…
	Classes in the Browser
	Packages in the Browser
	Using the Class Specification - Attributes
	Attributes and Operations and the Browser
	About the next slide…
	Attribute Visibility Options
	About the next 2 slides…
	What is a Class Diagram?
	Relationships
	About the next 2 slides…
	Package Relationships
	Class Relationships
	About the next 2 slides…
	Multiplicity Indicators
	Multiplicity Indicators
	Sequence Diagrams
	UML diagrams: sequence diagram
	Sequence diagram example
	About the last example...
	About the next 3 slides…
	Creating a Sequence Diagram
	Representing Objects
	Assigning Objects to Classes
	About the next 3 slides…
	Messages
	Focus of Control
	Exercise: Sequence Diagram
	Slide Number 70
	UML diagrams: Package diagram
	Package diagram example
	About the last example...
	About the next slide…
	Exercise: Deployment Diagram
	UML diagrams: other diagrams
	UML diagrams: other diagrams

