
Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Introduction to Verilog HDL

Jorge Ramírez

Corp Application Engineer

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• HDL Verilog

• Synthesis Verilog tutorial

• Synthesis coding guidelines

• Verilog - Test bench

• Fine State Machines

• References

Lexical elements
Data type representation
Structures and Hierarchy
Operators
Assignments
Control statements
Task and functions
Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL VERILOG

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

What is HDL?

• Hard & Difficult Language?
– No, means Hardware Description Language

• High Level Language
– To describe the circuits by syntax and sentences

– As oppose to circuit described by schematics

• Widely used HDLs
– Verilog – Similar to C

– SystemVerilog – Similar to C++

– VHDL – Similar to PASCAL

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Verilog

• Verilog was developed by Gateway Design
Automation as a proprietary language for logic
simulation in 1984.

• Gateway was acquired by Cadence in 1989

• Verilog was made an open standard in 1990
under the control of Open Verilog International.

• The language became an IEEE standard in 1995
(IEEE STD 1364) and was updated in 2001 and
2005.

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

SystemVerilog

• SystemVerilog is the industry's first unified
hardware description and verification language

• Started with Superlog language to Accellera in
2002

• Verification functionality (base on OpenVera
language) came from Synopsys

• In 2005 SystemVerilog was adopted as IEEE
Standard (1800-2005). The current version is
1800-2009

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

IEEE-1364 / IEEE-1800
Verilog 2005 (IEEE Standard
1364-2005) consists of minor
corrections, spec clarifications,
and a few new language
features

SystemVerilog is a superset of
Verilog-2005, with many new
features and capabilities to aid
design-verification and design-
modeling

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Types of modeling

• Behavioral
– Models describe what a module

does.
– Use of assignment statements,

loops, if, else kind of statements

• Structural
– Describes the structure of the

hardware components
– Interconnections of primitive gates

(AND, OR, NAND, NOR, etc.) and
other modules

Counter
If (rst)
cnt = 0;
else
cnt = cnt+1;

cnt [0:3]
clk

rst

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Behavioral - Structural

Behavioral
module cter (

 input rst, clock,

 output reg [1:0] count

);

always@(posedge clock)

begin

 if (rst) count = 0;

 else count = count +1;

end

endmodule

Structural
module cter (rst, clock, count);

 output [1:0] count;

 input rst, clock;

 wire N5, n1, n4, n5, n6;

 FFD U0 (.D(N5), .CP(clock),
 .Q(count[0]), .QN(n6));

 FFD U1 (.D(n1), .CP(clock),
 .Q(count[1]), .QN(n5));

 MUX21 U2 (.A(N5), .B(n4),
 .S(n5), .Z(n1));

 NR U3 (.A(n6), .B(rst), .Z(n4));

 NR U4 (.A(count[0]), .B(rst),
 .Z(N5));

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Simulation and Synthesis

• The two major purposes of HDLs are logic
simulation and synthesis
– During simulation, inputs are applied to a module, and

the outputs are checked to verify that the module
operates correctly

– During synthesis, the textual description of a module
is transformed into logic gates

• Circuit descriptions in HDL resemble code in a
programming language. But the code is intended
to represent hardware

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Simulation and Synthesis

• Not all of the Verilog commands can be
synthesized into hardware

• Our primary interest is to build hardware, we will
emphasize a synthesizable subset of the language

• Will divide HDL code into synthesizable modules
and a test bench (simulation).
– The synthesizable modules describe the hardware.

– The test bench checks whether the output results are
correct (only for simulation and cannot be
synthesized)

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

SYNTHESIS VERILOG TUTORIAL

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Lexical elements

• Case sensitive - keywords are lower case

• Semicolons(;) are line terminators

• Comments:

– One line comments start with // ...

– Multi-line comments start with /*and end
with*/

• System tasks and functions start with a dollar
sign, ex $display, $signed

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Lexical elements

• Variable names have to start with an alphabetic
character or underscore (_) followed by
alphanumeric or underscore characters

• Escaped identifiers (\)

– Permit non alphanumeric characters in Verilog name

– The escaped name includes all the characters
following the backslash until the first white space
character

wire \fo+o=a ; // Declare the varaible fo+o=a=a
wire \fo+o =a ; // Assign a to wire fo+o

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Compiler directives

• The directives start with
a grave accent (`)
followed by some
keyword

 `define
 Text-macro substitution

`ifdef, `ifndef, `else,
`endif
Conditional compilation

 `include
File inclusion

`include “file1.v”

// Used as `WORD_SIZE in code

`define WORD_SIZE 32

module test ();

`ifdef TEST

// A implementation

`else

// B implementation

`endif

assign out = `WORD_SIZE{1’b1};

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Reserved keywords

and always assign attribute begin buf bufif0 bufif1

case cmos deassign default defparam disable else endattribute

end endcase endfunction endprimitive endmodule endtable endtask event

for force forever fork function highz0 highz1 if

initial inout input integer join large medium module

nand negedge nor not notif0 notif1 nmos or

output parameter pmos posedge primitive pulldown pullup pull0

pull1 rcmos reg release repeat rnmos rpmos rtran

rtranif0 rtranif1 scalared small specify specparam strong0 strong1

supply0 supply1 table task tran tranif0 tranif1 time

tri triand trior trireg tri0 tri1 vectored wait

wand weak0 weak1 while wire wor

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Logical values

• A bit can have any of these values

– 0 representing logic low (false)

– 1 representing logic high (true)

– X representing either 0, 1, or Z

– Z representing high impedance for tri-state
(unconnected inputs are set to Z)

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Logical values

• Logic with multilevel (0,1,X,Z) logic values

– Nand anything with 0 is 1

– Nand two get an X

• True tables define the how outputs are
compute

 & 0 1 X Z
0 0 0 0 0

1 0 1 X X
X 0 X X X

Z 0 X X X

| 0 1 X Z
0 0 1 X X

1 1 1 1 1
X X 1 X X

Z X 1 X X

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Number representation

<size>'<base format><number>

• <size>:
– number of bits (optional)

• <base format>:
– It is a single character ' followed by one of the following

characters b, d, o and h, which stand for binary, decimal,
octal and hex, respectively.

• <number>
– Contains digits which are legal for the <base format>
– ‘_’ underscore can be use for readability

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Number representation

• Negative numbers are store as 2’s
complement

• Extended number
– If MSB is 0, X or Z number is extended to fill MSBs

with 0, X, Z respectively

– If MSB is 1 number is extend to fill MSBs with 0/1,
depending on the sign

3’b01=3’b001 3’bx1=3’bxx1 3’bz=3’bzz

3’b1=3’b001 -3’b1=-3’b01=3’b111

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Number representation

Unsized numbers (at least 32 bit)
549 // decimal number
'h8F_F // hex number
'o765 // octal number

Size numbers
4'b11 // 4-bit binary number 0011
3'b10x // 3-bit binary number with LSM bit unknown
8'hz // 8-bit binary high-impedance number
4'hz1 // 4’bzzz1
5'd3 // 5-bit decimal number

Signed numbers
-8'd6 // 8-bit two's complement of 6 (-6)
 4'shF // 4-bit number ‘1111’ to be interpreted as
 // 2’s complement number

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Data types (reg)

• A reg (reg) stores its value from one
assignment to the next (model data storage
elements)
– Don’t confuse reg with register

– Default value is X

– Default range is one bit

– By default are unsigned, but can be declare
signed, using keyword signed

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Data types (Nets)

• Nets (wire) correspond to physical wires that
connect instances
– Nets do not store values

– Have to be continuously driven

– The default range is one bit

– By default are unsigned

• The wire declaration is used most frequently,
other net types are wand, wor, tri, triand,
trior, etc.

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Other data types

• Integer (integer)

– Convenient to counting purposes

– At least 32-bit wide

– Useful for loop

• Real (real) simulation only

– Can be specified in decimal and scientific notation

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Verilog vectors

Know as BUS in hardware

• Declare by a range following the type
 <data type> [left range : right range] <Variable name>

• Single element that is n-bits wide
reg [0:7] A, B; //Two 8-bit reg with MSB as the 0th bit

wire [3:0] Data; //4-bit wide wire MSB as the 4th bit

• Vector part select (access)
A[5] // bit # 5 of vector A

Data[2:0] // Three LSB of vector Data

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Verilog arrays

• Array: range follows the name

<datatype> <array name> [<array indices>]

reg B [15:0]; // array of 16 reg elements

• Array of vectors

<data type> [<vector indices>]<array
name>[<array indices>]

 reg [15:0] C [1023:0]; // array of vectors

• Memory access

<var name>[<array indices>] [<vector indices>]

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Data storage and Verilog arrays

module RAM (output [7:0] Obus,
 input [7:0] Ibus,
 input [3:0] Adr,
 input Clk, Read
);
reg [7:0] Storage[15:0];
reg [7:0] ObusReg;

assign Obus = ObusReg;

always @(posedge Clk)
 if (Read==1’b0) Storage[Adr] = Ibus;
 else ObusReg = Storage[Adr];

endmodule

Simple RAM Model

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Data storage and Verilog arrays

Counter

module cter (input rst, clock, jmp,
 input [7:0] jump,
 output reg [7:0] count
);
always@(posedge clock)
begin
 if (rst) count = 8’h00;
 else if (jmp) count = jump + count;
 else count = count + 8’h1;
end
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Structures and Hierarchy

• Hierarchical HDL structures are achieved by
defining modules and instantiating modules

TOP

COMP

M
U

X

top.v

comp.v

mux.v

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Module declaration

module <module name> #(<param list>) (<port list>);

 <Declarations>

 <Instantiations>

 <Data flow statements>

 <Behavioral blocks>

 <task and functions>

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Module header

• Start with module keyword, contains the I/O ports

• Port declarations begins with output, input or
inout follow by bus indices

• Each directions are followed by one or more I/O
names

• Each declaration is separated by comma (,)

module ALU (output [31:0] z,
 input [15:0] A, B,
 input clock, ena);

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Port declaration

• input and inout are declared as wires

• outputs port can be declared as reg (holds a
value)

• 2 flavors for port declaration:

module S1 (a, b, c, d, e);
input [1:0] a, b;
input c;
output reg [1:0] d;
output e;
//Verilog 1995 Style
endmodule

module S2 (input [1:0] a, b,
 input c,
 output reg [1:0] d,
 output e);

//ANSI C Style
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Parameters

• Parameters are means of giving names to
constant values

• The values can be overridden when the design
is compiled

• Parameters cannot be used as variables

• Syntax:

parameter <name> = <constant expression>;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Parameter declaration
• Default value need to be set at declaration time

• 32 bit wide by default, but may be declared of
any width

• 2 declaration flavors:
Inside a module In module header

module test (... I/O’s ...)
parameter ASIZE = 32, BSIZE =16;
//…
reg [ASIZE -1:0] Abus, Zbus;
wire [BSIZE-1:0] Bwire;
//…
endmodule

module test
 #(parameter ASIZE = 32, BSIZE =16)
 (... I/O’s ...);
//…
reg [ASIZE -1:0] Abus, Zbus;
wire [BSIZE-1:0] Bwire;
//…
endmodule

parameter [2:0] IDLE = 3’d0;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Example

Adder
N-bits

(8 by default)
reg-ouputs

A[N-1:0]

B[N-1:0]
S[N-1:0]

Cout Cin

Clk

ANSI C style

module Adder (A, B, Cin, S,
Cout, Clk);
parameter N=8;
input [N-1:0]A, B;
input Cin;
input Clk;
output [N-1:0] S;
output Cout;
reg [N-1:0] S;
reg Cout;
//module internals
endmodule

module Adder #(parameter N=8)
 (input [N-1:0]A, B,
 input Cin,
 input Clk,
 output reg [N-1:0] S,
 output reg Cout
);
//module internals
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Structures and Hierarchy

• Instance of a module
– Instantiation is the process of “calling” a module

– Create objects from a module template
 <module name> #(<param list>)

 <instance name> (<port list>);

Where:

 <module name> Module to be instantiated

 <param list> Parameters values passed to the instance

<instance name> Identifies the instance of the module

 <port list> Port list connection

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Port list connections

• Ports

– Provide the interface by which a module can
communicate with the environment

– Port declarations (input, output, inout)

net

net

net reg o net net reg o net

input output
inout

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Port connections/Parameter overwrite

• Named connection

– Explicitly linking the 2 names for each side of the
connection

my_mod #(.W(1), .N(4)) U1 (.in1(a), .in2(b),
.out(c));

• Order connection

– Expression shall be listed in the same order as the
port declaration

my_mod #(1,4) U2 (a, b, c);

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Hierarchy example

module TOP (…port_list…);

ALU U1 (…port connection…);

MEM U2 (…port connection…);

endmodule

module ALU (…port_list…);

FIFO S1 (…port connection…);

endmodule

module FIFO (…port_list…);

//...

endmodule

TOP

ALU

MEM

FIFO

U1

U2

S1

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Relational operators

• Mainly use in expression (e.g. if sentences)

• Returns a logical value (1/true 0/false)

• If there are any X or Z bit returns X (false on a
expression)

< a < b // is a less than b?
> a > b // is a greater than b?
>= a >= b // is a greater than or equal to b
<= a <= b // is a less than or equal to b

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Arithmetic operators

• Binary operators

– Takes 2 operators

• Unary operators (+/-)

– Specify the sign of the operand

– Negative numbers are represented as 2’s
complement

* c = a * b ; // multiply a with b
/ c = a / b ; // int divide a by b
+ sum = a + b ; // add a and b
- diff = a - b ; // subtract b from a
% amodb = a % b ; // a mod(b)

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Logical operators
• Logical operators evaluate to a 1-bit value

• If an operant is not zero is treat as logical 1

• If an operant is Z o X is treat as X (false)

&& a && b ; // is a and b true? returns 1-bit true/false
|| a || b ; // is a or b true? returns 1-bit true/false
! if (!a) c = b; // if a is not true assign b to c

A=3; B=0;
A&&B //Evaluates to 0 Equivalent to (logical-1 && logical-0)
!B //Evaluates to 1 Equivalent to (!logical-0)

A=2’b0x; B=2’b10;
A&&B //Evaluates to x Equivalent to (x && logical-0)

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Equality and Identity operators

== c == a ; /* is c equal to a returns 1-bit true/false
applies for 1 or 0, logic equality, using X or
Z operands returns always false ('hx == 'h5
returns 0) */

!= c != a ; // is c not equal to a, returns 1-bit true

=== a === b ; // is a identical to b (includes 0, 1, x, z)

!== a !== b ;
/* is a not identical to b returns 1-bit
true/false*/

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Bitwise and Reduction operations

& b = &a ;
/* AND all bits of a
(reduction) */

| b = |a ; /*OR all bits (reduction)*/

^ b = ^a ;
/*Exclusive or all bits of
a (reduction)*/

~&, ~|,~^ c = ~& b ;
/* NAND, NOR, EX-NOR all
bits together */

~,&, |, ^ b = ~a ; e = b | a
/*bit-wise NOT, AND, OR,
EX-OR*/

~&, ~|, ~^ e = a ~^ b ;
/*bit-wise NAND, NOR, EX-
NOR*/

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Shift and other operator

<< a << 1 ; // shift left a by 1-bit

>> a >> 1 ; // shift right a by 1

<<< b <<< 1 ; // arithmetic shift by 1

>>> b >>> 1 ; // arithmetic shift by 1

?: c = sel ? a : b ;
/* if sel is true c = a, else c
= b , ?: ternary operator */

{} {co, sum} = a + b + ci;

/* add a, b, ci assign the
overflow to co and the result to
sum: operator is called
concatenation */

{{}} b = {3{a}}
/* replicate a 3 times,
equivalent to {a,a,a} */

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Operators precedence

Unary, Multiply, Divide,
Modulus

+,-,!,~ Highest

*, / %

Add, subtract, shift
+, -

<<. >>

Relational
Equality

<, < =, >, >=

=, ==. !=

===, !==

Reduction
Logical

&, ~&

^, ^~

|, ~|

&&

||

Conditional ?: Lowest

Operator precedence

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Concurrent blocks

• Blocks of code with no well-defined order
relative to one another

– Module instance is the most important concurrent
block

– Continuous assignments, and procedural blocks
are concurrent within a module

module AND (input A, B, output C);

wire w;

NAND U1 (A, B, w);

NAND U2 (w, w, C);

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Continuous assignments

• Continuous assignments imply that whenever
any change on the RHS of the assignment
occurs, it is evaluated and assigned to the LHS

• Continuous assignments always implement
combinational logic

• Continuous assignments drive wire variables

wire A;
assign A = (B|C)&D;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Continuous assignments

• Implicit continuous assignment

– Continuous assignment can be placed when the
net is declared

• Implicit net declaration (not recommended)

– If a signal name is used to the left of a continuous
assignment, a implicit net declaration will be
inferred

wire A = i1 & i2;

wire i1, i2;
assign A = i1 & i2;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Example

A

B

C

A

B

C

module NAND (A, B, C);
input A, B;
output C;
// Continuous assignments
assign C = ~(A&B);
endmodule

module AND (A, B, C);

input A, B;

output C;

wire w;

// 2 NAND instantiations

NAND U1 (A, B, w);

NAND U2 (w, w, C);

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Procedural blocks

• Each procedural block represent a separate
activity flow in Verilog

• Procedural blocks

– always blocks

• To model a block of activity that is repeated continuously

– initial blocks simulation only

• To model a block of activity that is executed at the beginning

• Multiple behavioral statements can be grouped
using keywords begin and end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Procedural assignments

• Procedural assignment changes the state of a reg

• Used for both combinational and sequential
logic inference

• All procedural statements must be within always
(or inital) block

reg A;
always @ (B or C)
begin
 A = ~(B & C);
end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Always block – Event control (@)

• Always blocks model an activity that is
repeated continuously

• @ can control the execution

– posdege or negedge make sensitive to edge

– @* / @(*), are sensitive to any signal that may be
read in the statement group

– Use “,”/or for multiple signals

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Always block – Event control (@)

module M1 (input B, C, clk, rst, output reg X, Y,Z);
// controlled by any value change in B or C
always @ (B or C)
 X = B & C;

// Controlled by positive edge of clk
always @(posedge clk)
 Y = B & C;

// Controlled by negative edge of clk or rst
always @(negedge clk, negedge rst)
 if (!rst) Z = B & C;
 else Z = B & C;
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Example

G

D Q

R

D Q

module FFD (input Clk, R, D,
 output reg Q);
always @ (posedge Clk)
begin
 if (R)
 Q = 1'b0;
 else
 Q = D;
end
endmodule

module LD (G, D, Q);
input G, D;
output Q;
reg Q;
always @(G or D)
if (G)
 Q = D;
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Blocking / Non-Blocking assignment

Blocking assignment

• (= operator) acts much like in
traditional programming
languages

• The whole statement is done
before control passes on to the
next statement.

Non-blocking assignment

• (<= operator) Evaluates all the
right-hand sides for the current
time unit and assigns the left-
hand sides at the end of the time
unit.

always @(posedge Clk)
begin
 //blocking procedural assignment
 C = C + 1;
 A = C + 1;
end

always @(posedge Clk)
begin
 //non-blocking procedural assignment
 D <= D + 1;
 B <= D + 1;
end

Example: During every clock cycle
A is ahead of C by 1
B is same as D

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Procedural blocks (summary)

• Blocks of code within a concurrent block
which are read (simulated, executed) in order

• Procedural blocks may contain:
– Blocking assignments

– Nonblocking assignments

– Procedural control statements (if, for, case)

– function, or task calls

– Event control (‘@’)

– Nested procedural blocks enclosed in begin … end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Conditional statements (if … else)

• The statement occurs if the expressions controlling
the if statement evaluates to true

– True: 1 or non-zero value

– False: 0 or ambiguous (X)

• Explicit priority

always @ (WRITE or STATUS)

begin

 if (!WRITE)

 begin

 out = oldvalue;

 end

 else if (!STATUS)

 begin

 q = newstatus;

 end

end

if (<expression>)
// statement1
else if (<expression>)
// statement2
else
// statement3

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Conditional statements (case)

• case, casex, casez: case statements are used for
switching between multiple selections
– If there are multiple matches only the first is evaluated
– Breaks automatically

• casez treats Z as don’t care
• casex treats Z and X as don’t care

case (<expression>)
 <alternative 1> : <statement 1>;
 <alternative 2> : <statement 2>;
 default : <default statement>;
endcase

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Conditional statements (case)

always @(s, a, b, c, d)

case (s)

 2'b00: out = a;

 2'b01: out = b;

 2'b10: out = c;

 2'b11: out = d;

endcase

always @*

casex (state)

/*

during comparison : 3'b01z,

3'b01x, 3b'011 ... match case

3'b01x

*/

3'b01x: fsm = 0 ;

3'b0xx: fsm = 1 ;

default: fsm = 1 ;

endcase

always @*
casez (state)
// 3'b11z, 3'b1zz,... match
3'b1??
3'b1??: fsm = 0;
3'b01?: fsm = 1;
endcase

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Example

out

s[0]

d

c

b

a

s[1]

8-bit
4-to-1

 multiplexer

module mux(a, b, c, d, s, out);
input [7:0] a, b, c, d;
input [1:0] s;
output [7:0] out;
reg [7:0] out;
// used in procedural statement
always @ (s or a or b or c or d)
 case (s)
 2'b00: out = a;
 2'b01: out = b;
 2'b10: out = c;
 2'b11: out = d;
 endcase
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Latches / Muxes (Comb logic)

• Assuming only level sensitivity on a always block:
– A variable or signal when is fully specified (it is

assigned under all possible conditions) a mux or
combinational logic.

– If a variable or signal is not fully specified a latch will
be inferred

always @ (a,b,sel)
 if (sel==1’b1)
 z=a;
 else
 z=b;

always @ (DATA, GATE)
 if (GATE)
 Q = DATA;

always @ (DATA, GATE)
begin
 Q = 0;
 if (GATE) Q = DATA;
end

MUX COMB LOGIC LATCH

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Loop statements (for)

• Works the same ways as C

• Unary increment/decrement is not allowed

for (<loop var init>; <loop var reentry expr>; <loop var update>)
<statement>;

// General purpose loop
interger i;
always @*
for (i = 0 ; i < 7 ; i=i+1)
 memory[i] = 0;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Loop statements (while)

• Loop execute until the expression is not true

always @*

while(delay)

// multiple statement groups with begin-end

begin

 ldlang = oldldlang;

 delay = delay – 1;

end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Loop statements (repeat)

• Repeat statement a specified number of times

• The number is evaluated only at the beginning

always @*

repeat(`BIT-WIDTH)

begin

 if (a[0]) out = b + out;

 a = a << 1;

end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Tasks and Functions

Task:

• Declare with task and
endtask

• May have zero arguments
or more arguments of type
input, output, inout

• Do not return with a value,
can pass values through
output and inout
arguments

Functions:

• Declare with function and
endfunction

• Must have at lease one
input

• Always return a single value
(cannot have output or
inout arguments)

Task and function serve the same purpose on Verilog as
subroutines do in C

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Tasks and Functions - example

module top (input a1, a2, output reg [1:0] b1, b2);

always @ (a1, a2)

begin

 b1 = out (a1, a2); // function calling

 out_task (a1, a2, b2); // task calling

end

function [1:0] out (input in1, in2); // Function Declaration

begin

 if (in1) out = {in2,in1}; else out = {in1,in2};

end

endfunction

task out_task (input in1, in2, output [1:0] out); // Task Declaration

begin

 if (in1) out = {in2,in1}; else out = {in1,in2};

end

endtask

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Task and Functions

• Functions are simpler

• Data Sharing
– Functions and task could be declare as automatic

– A static function retains the value of all it's
internal variables between calls. An automatic
function re-initializes them each call

Function Task

Can call another function Can call another function or task

Can modify only one value Can modify multiple values

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Outline

• Lexical elements

• Data type representation

• Structures and Hierarchy

• Operators

• Assignments

• Control statements

• Task and functions

• Generate blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Generate blocks

• Allow to generate Verilog code dynamically at
elaboration time
– Facilitated the parameterized model generation

– Required the keywords generate – endgenerate

– Generate instantiations can be
• Module instantiations

• Continuous assignments

• initial / always blocks

– Typically used are generate loop and conditional
generate

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Generate loop

module top(input [0:3] in1,

 output [0:3] out1);

// genvar control the loop

genvar I;

generate

for(I = 0; I <= 3; I = I+1)

begin

 sub U1(in1[I], out1[I]);

end

endgenerate

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Conditional generate

module top #(parameter POS=0)

 (input in, clk, output reg out);

generate

if(POS==1)

always @ (posedge clk)

 out = in;

else

always @ (negedge clk)

 out = in;

endgenerate

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

SYNTHESIS CODING GUIDELINES

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Synthesis coding guidelines

• Inferring Three-State Drivers
– Never use high-impedance values in a conditional

expression (Evaluates expressions compared to
high-impedance values as false)

• Sensitivity Lists
– You should completely specify the sensitivity list

for each always block. Incomplete sensitivity lists
can result in simulation mismatches

 always @ (A)
C <= A | B;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Synthesis coding guidelines

• Value Assignments
– The hardware generated by blocking assignments

(=) is dependent on the ordering of the
assignments

– The hardware generated by nonblocking
assignments (<=) is independent of the ordering of
the assignments

– For correct simulation results, Use nonblocking
assignments within sequential Verilog always
blocks

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Synthesis coding guidelines

• Value Assignments

– Do not mix blocking and nonblocking assignments
in the same always block

– Do not make assignments to the same variable
from more than one always block. It is a Verilog
race condition, even when using nonblocking
assignments

• Structures and Hierarchy

– Place one module per file

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Synthesis coding guidelines

• If Statements
– When an if statement used in a Verilog always block as

part of a continuous assignment does not include an
else clause, synthesis tool may creates a latch.

• Case Statements
– If your if statement contains more than three

conditions, consider using the case statement to
improve the parallelism of your design and the clarity
of your code

– An incomplete case statement results in the creation
of a latch

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Synthesis coding guidelines

• Constant Definitions
– Use the Verilog `define statement to define global

constants

– Keep global constant definitions in a separate file.

• Using Verilog Macro Definitions
– In Verilog, macros are implemented using the `define

statement

– Keep `define statements in a separate file.

– Do not use nested `define statements (difficult to
read)

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Synthesis coding guidelines

• Guidelines for Identifiers
– Ensure that the signal name conveys the meaning of

the signal or the value of a variable without being
verbose

– Use a consistent naming style for capitalization and to
distinguish separate words in the name.

– Examples:
• C style uses lowercase names and separates words with an

underscore, for example, packet_addr, data_in, and
first_grant_enable

• Pascal style capitalizes the first letter of the name and first
letter of each word, for example, PacketAddr, DataIn, and
FirstGrantEnable

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

JUST FOR FUN

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Question 1

input [7:0] data;

output [7:0] data_reversed;

Can the bit reversal be done by applying the next assignment?

data_reversed = data[0:7];

data_reversed = {data_8[0], data_8[1], data_8[2], data_8[3],
 data_8[4], data_8[5], data_8[6], data_8[7]};

input [127:0] data;
output [127:0] data_reversed;
for (i = 127; i >= 0; i = i - 1)
 data_deversed[i] = data[127 - i];

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Question 2

parameter WIDTH = 4;

output [WIDTH - 1 : 0] data;

How we can assign to each bit a 1'b1?

assign data= {WIDTH{1'b1}};

assign data= (1 << WIDTH) – 1;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Question 3

Which is the correct macro usage?

`define TEST
`define SIZE 32

module test ();
`ifdef TEST
assign out = `SIZE{1’b1};
`else
assign out = `SIZE{1’b0};
`endif
endmodule

`define TEST
`define SIZE 32

module test ();
`ifdef TEST
assign out = SIZE{1’b1};
`else
assign out = SIZE{1’b0};
`endif
endmodule

`define TEST
`define SIZE 32

module test ();
`ifdef `TEST
assign out = `SIZE{1’b1};
`else
assign out = `SIZE{1’b0};
`endif
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Question 4

• Which code infer a asynchronous reset FF?

module FFD (input Clk, R, D,
 output reg Q);
always @ (posedge Clk, negedge R)
begin
 if (!R)
 Q = 1'b0;
 else
 Q = D;
 end
endmodule

module FFD (input Clk, R, D,
 output reg Q);
always @ (posedge Clk, negedge R)
begin
 if (R)
 Q = 1'b0;
 else
 Q = D;
 end
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Question 5

Is the next module header correct?
module Adder(input [N-1:0]A, B,
 input Cin,
 input Clk,
 output reg [N-1:0] S,
 output reg Cout);
parameter N=8;
//module internals
endmodule module Adder #(parameter N=8)

 (input [N-1:0]A, B,
 input Cin,
 input Clk,
 output reg [N-1:0] S,
 output reg Cout
);
//module internals
endmodule

NO!
Parameter is used

before it is declared !

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Question 6

What does X means in synthesis and simulation?

Synthesis Simulation

Unknown value

Don’t care

Assigning “X” to a wire or reg is
highly encouraged for synthesis:

it specifies a don’t care
condition, letting the synthesis
tool do further optimization

Be aware, when
assigning X’s they may
propagate throughout
your design under
simulation

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

VERILOG TEST BENCH

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Writing Test Bench

• A test bench specifies a sequence of inputs to be
applied by the simulator to an Verilog-based
design.

• The test bench uses an initial block and delay
statements and procedural statement.

• Verilog has advanced “behavioral” commands to
facilitate this:
– Delay for n units of time
– Full high-level constructs: if, while, sequential

assignment.
– Input/output: file I/O, output to display, etc.

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Test Bench
`timescale 10ns/1ps
module test_bench;
// Interface to communicate with the DUT
reg a, b, clk;
wire c;
// Device under test instantiation
DUT U1 (.in1(a), .in2(b), .clk(clk), .out1(c));
initial
begin // Test program
 test1 ();
 $finish;
end
initial
begin
 clk = 0;
 forever #5 clk = ~clk;
end
initial
begin // Monitor the simulation
 $dumpvars;
 $display ("clk | in1| in2 | out1 |");
 $monitor (" %b| %b | %b | %b |",clk, a, b, c);
end
endmodule

task test1 ();
begin
 a = 0; b = 0;
 #10 a = 0; b = 1;
 #10 a = 1; b = 1;
 #10 a = 1; b = 0;
end
endtask

module DUT (in1, in2, clk, out1);
input in1, in2;
input clk;
output reg out1;
always @(posedge clk)
 out1 = in1^in2;
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Simulation results

Chronologic VCS simulator copyright 1991-2008

clk | in1| in2 | out1 |
 0| 0 | 0 | x |
 1| 0 | 0 | 0 |
 0| 0 | 1 | 0 |
 1| 0 | 1 | 1 |
 0| 1 | 1 | 1 |
 1| 1 | 1 | 0 |
V C S S i m u l a t i o n R e p o r t
Time: 300000 ps
CPU Time: 0.010 seconds; Data structure size: 0.0Mb

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Precision macro

• `timescale

– Defines the time units and simulation precision
(smallest increment)
`timescale Time_Unit/Precision_Unit

– Time : 1 10 100

– Units: ms us ns ps fs

– The precision unit must be less than or equal to
the time unit

– Example:

`timescale 10ns/1ps

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Initial block

• initial block

– Contains a statement or block of statement which
is executed only once, stating at the beginning of
the simulation

– Each block is executed concurrently before
simulation time 0 (ignore by synthesis)

– No sensitivity list
initial
 begin
 X = 1’b0;
 end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Forever block

• forever block

– Cause one or more statements to be executed in
an infinite loop.

– Example: clock signal generation

initial
begin
 clk = 0;
 forever #5 clk = ~clk;
end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Delay

• Delay (#)
– Specifies the delay time units before a statement is

executed during simulation
– Regular delay control

#<num> y = 1;

• Regular delay control is used when a non-zero value is
specified

– Zero delay control
#0;

• Ensure that statements are executed
at the end of time 0

– Intra-assignment delay control
y = #<num> x+z;

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Delay example

parameter sim_cycle = 6;
initial
begin
 x=0;
 #10 y=1; //assignment is delayed 10 time units
 #(sim_cycle/3) x=2; //delay number can came from a parameter
end
initial
begin
 p = 0; q = 0;
 r = #5 p+q; //Take the value of p and q at time 0, evaluate
 // p+q and wait 5 time units to assign value to r
end
initial
begin
 #0 x =1; //x=0,p=0;q=0,x=1 are executed a time 0 but x=1 is
 //executed at the end
end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Task

• Task helps to simplify the test bench

• Can include timing control

– Inputs

– Delays (#) and regular event control (@)

task reset;
begin
 rst_n = 1'b0;
 repeat(3)
 @(negedge clk);
 rst_n = 1'b1;
end
endtask

task load (input [7:0] data,
 input enable);
begin
 #2 rst_n = 1’b0;
 #10 data_in=data;
 #2 read_ena=enab;
end
endtask

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Hierarchical names
• Hierarchical name references allows us to denote

every identifier in the design with a unique name
• Hierarchical name is a list of identifier separated

by dots (“.”)

TB

SUB1

SUB2.1
reg mem;

SUB2.2
wire data;

(U1)

(U1)

(U2)

module TB ();
//...
$monitor (“%b”, TB.U1.U1.mem);
$monitor (“%b”, TB.U1.U2.data);

endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

System tasks and functions

• System task are tool specific tasks and functions.
 $display, $write // utility to display information

 $monitor // monitor, display

 $time, $realtime // current simulation time

 $finish // exit the simulator

 $stop // stop the simulator

 $timeformat // format for printing simulation

 $random // random number generation

 $dumpvars // dump signals to file

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

$display - $strobe - $monitor

• Print message to a simulator (similar to C printf)

• $display (format, args)
– Display information before RHS evaluation (before

nonblocking assignments)

• $strobe (format, args)
– Display information after RHS evaluation (after

nonblocking assignments)

• $monitor (format, args)
– Print-on-change after RHS and nonblocking

assignments whenever one argument change

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Verilog string and messages

%h hex integer
%d decimal integer
%b binary
%c single ASCII character
%s character string

%t simulation time
%u 2-value data
%z 4-value data
%m module instance name

initial
begin
$display (“Results\n”);
$monitor (“\n Time=%t X=%b”, $time , X);
end

Useful format specifiers:

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

$random

• Random number generation

• Returns as 32-bit signed integer

reg [31:0] rand1, rand2, rand3;
rand1 = $random; // generates random numbers
rand2 = $random % 60; // random numbers between -59 and 59
rand3 = {$random} % 60;// random positive values
 // between 0 and 59

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

$dumpvars

• The Verilog $dumpvars command is used to
generate a value change dump (VCD)

• VCD is an ASCII file that contains information
about simulation, time, scope and signal
definition, and signal value changes

• VCD files can be read on graphical wave from
displays

initial
begin // Monitor the simulation
 $dumpfile ("myfile.dump");
 $dumpvars;
end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Test Bench
`timescale 10ns/1ps
module test_bench;
// Interface to communicate with the DUT
reg a, b, clk;
wire c;
// Device under test instantiation
DUT U1 (.in1(a), .in2(b), .clk(clk), .out1(c));
initial
begin // Test program
 test1 ();
 $finish;
end
initial
begin
 clk = 0;
 forever #5 clk = ~clk;
end
initial
begin // Monitor the simulation
 $dumpvars;
 $display ("clk | in1| in2 | out1 |");
 $monitor (" %b| %b | %b | %b |",clk, a, b, c);
end
endmodule

task test1 ();
begin
 a = 0; b = 0;
 #10 a = 0; b = 1;
 #10 a = 1; b = 1;
 #10 a = 1; b = 0;
end
endtask

module DUT (in1, in2, clk, out1);
input in1, in2;
input clk;
output reg out1;
always @(posedge clk)
 out1 = in1^in2;
endmodule

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

FINITE STATE MACHINE

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Finite-State machine
Abstraction

Present State: S
n

Clocked Storage

Elements

Clock

Next State S
n+1

S
n+1

 = f (S
n
, X)

Outputs (Y)

Y=Y(X, S
n
)

Inputs (X)

Combinational

Logic

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Finite-State machine
Abstraction

• Clocked Storage Elements: Flip-Flops and
Latches should be viewed as synchronization
elements, not merely as storage elements !

• Their main purpose is to synchronize fast and
slow paths:

– Prevent the fast path from corrupting the state

• Function of clock signals is to provide a
reference point in time when the FSM changes
states

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Finite State machine
Mealy and More

• Mealy and More FSM
– A Moore FSM is a state machine where the outputs

are only a function of the present state.
– A Mealy FSM is a state machine where one or more of

the outputs is a function of the present state and one
or more of the inputs.

114 Jorge Ramírez

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Finite-State machine
State Changes

Clock

X
t

X
t+1

Y
t

Y
t+1

Y = S
n-1

S
n

S
n+1

S
n+1

S
n

U

D
CQ

Combinational

Logic

Combinational

Logic

U

D
CQ

Time

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Finite-State machine
Critical Path

Present State: S
n

Clocked Storage

Elements

Clock

Next State S
n+1

S
n+1

 = f (S
n
, X)

Outputs (Y)

Y=Y(X, S
n
)

Inputs (X)

Combinational

Logic

Critical path is
defined as the
chain of gates in
the longest
(slowed) path
thought the logic

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

FSM Implementation
Design example

• A level-to-pulse converter produces a single-
cycle pulse each time its input goes high.

• In other words, it’s a synchronous rising-edge
detector.

• Sample uses:
– Buttons and switches pressed by humans for

arbitrary periods of time
– Single-cycle enable signals for counters

Whenever input L goes from low to high... ...output P produces a single pulse, one clock period wide.

Level to Pulse
Converter

P L

CLK

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

FSM Implementation
State Diagram (Moore implementation)

Current State In Next State Out

S1 S0 L S1
+ S0

+ P

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 1

1 1 0 0 0 0

1 1 1 1 1 0

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

FSM Implementation
Logic implementation

Flip-Flops
Comb
Logic

Comb
Logic

P L S+

S

L\S1S0 00 01 11 10

0 0 0 0 X

1 0 1 1 X

L\S1S0 00 01 11 10

0 0 0 0 X

1 1 1 1 X

S0\S1 0 1

0 0 X

1 1 0

For S1
+:

For S0
+:

For P:

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

FSM Implementation
Mealy implementation

Pres
State

In Next
State

Out

S L S+ P

0 0 0 0

0 1 1 1

1 0 0 0

1 1 1 0

• Since outputs are
determined by state and
inputs, Mealy FSMs may
need fewer states than
Moore FSM
implementations

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

FSM Implementation
Moore/Mealy trade-off

• Remember that the difference is in the output:
– Moore outputs are based on state only
– Mealy outputs are based on state and input
– Therefore, Mealy outputs generally occur one cycle earlier than a

Moore:

• Compared to a Moore FSM, a Mealy FSM might...
– Be more difficult to conceptualize and design
– Have fewer states

Moore Mealy

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
FSM Coding goals

• The FSM coding style should be easily
modified to change state encodings and FSM
styles

• The coding style should be compact

• The coding style should be easy to code and
understand

• The coding style should facilitate debugging

• The coding style should yield efficient
synthesis results

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Binary Encoding

• Straight encoding of states
S0=“00” S1=“01” S2=“10” S3=“11”

• For n states, there are [log2(n)] flip-flops needed
• This gives the least numbers of flip-flops
• Good for “Area” constrained designs
• Number of possible illegal states = 2[log

2
(n)]–n

• Drawbacks:
– Multiple bits switch at the same time = Increased noise

and power
– Next state logic is multi-level = Increased power and

reduced speed

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Gray-Code Encoding

• Encoding using a gray code where only one bits
switches at a time

S0=“00” S1=“01” S2=“11” S3=“10”

• For n states, there are [log2(n)]flip-flops needed
• This gives low power and noise due to only one bit

switching
• Good for “power/noise” constrained designs
• Number of possible illegal states = 2[log

2
(n)]–n

• Drawbacks:
– The next state logic is multi-level = Increased power and

reduced speed

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
One-Hot Encoding

• Encoding one flip-flop for each state
S0=“0001” S1=“0010” S2=“0100” S3=“1000”

• For n states, there are n flip-flops needed

• The combination logic is one level (i.e., a decoder)

• Good for speed

• Especially good for FPGA due to “Programmable Logic
Block”

• Number of possible illegal states = 2n–n

• Drawbacks:
– Takes more area

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
State Encoding Trade-Offs

• Typically trade off Speed, Area, and Power

One-Hot

Gray Binary

Area

Speed

Power

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation

The Fundamentals of Efficient Synthesizable
Finite State Machine.

Clifford E. Cummings

http://www.sunburst-
design.com/papers/CummingsICU2
002_FSMFundamentals.pdf

http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Two Always Block FSM Style (Good Style)
• One of the best Verilog

coding styles
• Code the FSM design using

two always blocks,
– One for the sequential state

register
– One for the combinational

next-state and
combinational output logic.

parameter [1:0]
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;
reg [1:0] state, next;

always @(posedge clk or negedge rst_n)
if (!rst_n) state <= IDLE;
else state <= next;

always @(state or in1 or in2) begin
next = 2'bx; out1 = 1'b0;
case (state)
 IDLE : if (in1) next = BBUSY;
 else next = IDLE;
 BBUSY: begin
 out1 = 1'b1;
 if (in2) next = BBUSY;
 else next = BFREE;
 end
 //...
endcase
end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Two Always Block FSM Style (Good Style)

1. The sequential always block
is coded using nonblocking
assignments.

2. The combinational always
block sensitivity list is
sensitive to changes on the
state variable and all of the
inputs referenced in the
combinational always block.

3. Assignments within the
combinational always block
are made using Verilog
blocking assignments.

parameter [1:0]
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;
reg [1:0] state, next;

always @(posedge clk or negedge rst_n)
if (!rst_n) state <= IDLE;
else state <= next;

always @(state or in1 or in2) begin
next = 2'bx; out1 = 1'b0;
case (state)
 IDLE : if (in1) next = BBUSY;
 else next = IDLE;
 BBUSY: begin
 out1 = 1'b1;
 if (in2) next = BBUSY;
 else next = BFREE;
 end
 //...
endcase
end

1

2

3

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Two Always Block FSM Style (Good Style)

4. Default output
assignments are made
before coding the case
statement (this
eliminates latches and
reduces the amount of
code required to code
the rest of the)

5. Placing a default next
state assignment on the
line immediately
following the always
block sensitivity list is a
very efficient coding style

parameter [1:0]
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;
reg [1:0] state, next;

always @(posedge clk or negedge rst_n)
if (!rst_n) state <= IDLE;
else state <= next;

always @(state or in1 or in2) begin
next = 2'bx; out1 = 1'b0;
case (state)
 IDLE : if (in1) next = BBUSY;
 else next = IDLE;
 BBUSY: begin
 out1 = 1'b1;
 if (in2) next = BBUSY;
 else next = BFREE;
 end
 //...
endcase
end

4 5

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
One Always Block FSM Style (Avoid This Style!)
• One of the most common

FSM coding styles in use
today
– It is more verbose

– It is more confusing

– It is more error prone

(comparable two always block
coding style)

parameter [1:0]
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;
reg [1:0] state;
always @(posedge clk or negedge rst_n)
if (!rst_n) begin
 state <= IDLE;
 out1 <= 1'b0;
end
else begin
 state <= 2'bx; out1 <= 1'b0;
 case (state)
 IDLE : if (in1) begin
 state <= BBUSY;
 out1 <= 1'b1;
 end
 else state <= IDLE;
 BBUSY: if (in2) begin
 state <= BBUSY;
 out1 <= 1'b1;
 end
 else state <= BFREE;
endcase
end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
One Always Block FSM Style (Avoid This Style!)

1. A declaration is made
for state. Not for next.

2. The state assignments
do not correspond to
the current state of the
case statement, but
the state that case
statement is
transitioning to.
This is error prone (but
it does work if coded
correctly).

parameter [1:0]
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;
reg [1:0] state;
always @(posedge clk or negedge rst_n)
if (!rst_n) begin
 state <= IDLE;
 out1 <= 1'b0;
end
else begin
 state <= 2'bx; out1 <= 1'b0;
 case (state)
 IDLE : if (in1) begin
 state <= BBUSY;
 out1 <= 1'b1;
 end
 else state <= IDLE;
 BBUSY: if (in2) begin
 state <= BBUSY;
 out1 <= 1'b1;
 end
 else state <= BFREE;
endcase
end

1

2

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
One Always Block FSM Style (Avoid This Style!)

3. There is just one sequential
always block, coded using
nonblocking assignments.

4. All outputs will be
registered (unless the
outputs are placed into a
separate combinational
always block or assigned
using continuous
assignments).
No asynchronous Mealy
outputs can be generated
from a single synchronous
always block.

parameter [1:0]
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;
reg [1:0] state;
always @(posedge clk or negedge rst_n)
if (!rst_n) begin
 state <= IDLE;
 out1 <= 1'b0;
end
else begin
 state <= 2'bx; out1 <= 1'b0;
 case (state)
 IDLE : if (in1) begin
 state <= BBUSY;
 out1 <= 1'b1;
 end
 else state <= IDLE;
 BBUSY: if (in2) begin
 state <= BBUSY;
 out1 <= 1'b1;
 end
 else state <= BFREE;
endcase
end

3

4

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Onehot FSM Coding Style (Good Style)

parameter [1:0] IDLE=0, BBUSY=1,BFREE=2;
reg [2:0] state, next;

always @(posedge clk or negedge rst_n)
if (!rst_n) state <= 3’b001;
else state <= next;

always @(state or in1 or in2) begin
next = 3’b000; out1 = 1'b0;
case (1’b1) //ambit synthesis case full, parallel
 state[IDLE] : if (in1) next[BBUSY] = 1’b1;
 else next[IDLE] = 1’b1;
 state[BBUSY]: begin
 out1 = 1'b1;
 if (in2) next[BBUSY] = 1’b1;
 else next[BFREE] = 1’b1;
 end
 //...
endcase
end

Efficient (small and
fast) Onehot state
machines can be coded
using an inverse case
statement

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Onehot FSM Coding Style (Good Style)

parameter [1:0] IDLE=0, BBUSY=1, BFREE=2;

reg [2:0] state, next;

always @(posedge clk or negedge rst_n)

if (!rst_n) state <= 3’b001;

else state <= next;

always @(state or in1 or in2) begin

next = 3’b000; out1 = 1'b0;

case (1’b1) //ambit synthesis case full, parallel

 state[IDLE] : if (in1) next[BBUSY] = 1’b1;

 else next[IDLE] = 1’b1;

 state[BBUSY]: begin

 out1 = 1'b1;

 if (in2) next[BBUSY] = 1’b1;

 else next[BFREE] = 1’b1;

 end

 //...

endcase

end

1. Index into the
state register, not
state encodings

2. Onehot requires
larger declarations

3. State reset, set to
1 the IDLE bit

4. Next state
assignment must
make all-0's

1
2

3

4

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Onehot FSM Coding Style (Good Style)

parameter [1:0] IDLE=0, BBUSY=1, BFREE=2;

reg [2:0] state, next;

always @(posedge clk or negedge rst_n)

if (!rst_n) state <= 3’b001;

else state <= next;

always @(state or in1 or in2) begin

next = 3’b000; out1 = 1'b0;

case (1’b1) //ambit synthesis case full, parallel

 state[IDLE] : if (in1) next[BBUSY] = 1’b1;

 else next[IDLE] = 1’b1;

 state[BBUSY]: begin

 out1 = 1'b1;

 if (in2) next[BBUSY] = 1’b1;

 else next[BFREE] = 1’b1;

 end

 //...

endcase

end

1. Inverse case
statement usage

2. Case branch check
state values

3. Added “full” and
parallel case
pragmas

4. Only the next
state bit

1

2

3

4

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

Full-Parallel Case

From:

Verilog: Frequently Asked
Questions: Language,
Applications and Extensions

Shivakumar S. Chonnad,
Needamangalam B.
Balachander

ISBN: 1441919864

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

HDL FSM Implementation
Registered FSM Outputs (Good Style)

• Registering the outputs of an
FSM design

– Insures that the outputs are
glitch-free and frequently

– Improves synthesis results by
standardizing the output and
input delay constraints of
synthesized modules

output reg out1;

parameter [1:0] IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10;

reg [1:0] state, next;

always @(posedge clk or negedge rst_n)

if (!rst_n) state <= IDLE;

else state <= next;

always @(state or in1 or in2) begin

next = 2'bx;

case (state)

 IDLE : if (in1) next = BBUSY;

 else next = IDLE;

 BBUSY: if (in2) next = BBUSY;

 else next = BFREE;

endcase

end

always @(posedge clk or negedge rst_n)

if (!rst_n) out1 <= 1'b0;

else begin

 out1 <= 1'b0;

 case (next)

 IDLE, BFREE: ; // default outputs

 BBUSY, BWAIT: out1 <= 1'b1;

 endcase

end

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

REFERENCES

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

References

• Verilog HDL – Samir Palnitkar

• The Fundamentals of Efficient Synthesizable
Finite State Machine Design using NC-Verilog
and Build Gates – Clifford E. Cummings

• Verilog: Frequently Asked Questions, Springer
Science

Synopsys University Courseware
Copyright © 2011 Synopsys, Inc. All rights reserved.

Developed by: Jorge Ramirez

References

• Verilog: Frequently Asked Questions: Language,
Applications and Extensions - Shivakumar S.
Chonnad, Needamangalam B. Balachander

• ECE 369 - Fundamentals of Computer
Architecture.
http://www2.engr.arizona.edu/~ece372_spr04/e
ce369_spr05

• Madhavan, R., Quick Reference for Verilog HDL
http://www.stanford.edu/class/ee183/handouts.
shtml

http://www2.engr.arizona.edu/~ece372_spr04/ece369_spr05
http://www2.engr.arizona.edu/~ece372_spr04/ece369_spr05
http://www.stanford.edu/class/ee183/handouts.shtml
http://www.stanford.edu/class/ee183/handouts.shtml

