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What is HDL? 

• Hard & Difficult Language? 
– No, means Hardware Description Language 

• High Level Language 
– To describe the circuits by syntax and sentences 

– As oppose to circuit described by schematics 

• Widely used HDLs 
– Verilog – Similar to C 

– SystemVerilog – Similar to C++ 

– VHDL – Similar to PASCAL 
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Verilog 

• Verilog was developed by Gateway Design 
Automation as a proprietary language for logic 
simulation in 1984.  

• Gateway was acquired by Cadence in 1989  

• Verilog was made an open standard in 1990 
under the control of Open Verilog International.  

• The language became an IEEE standard in 1995 
(IEEE STD 1364) and was updated in 2001 and 
2005. 
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SystemVerilog 

• SystemVerilog is the industry's first unified 
hardware description and verification language 

• Started with Superlog language to Accellera  in 
2002 

• Verification functionality (base on OpenVera 
language) came from Synopsys  

• In 2005 SystemVerilog was adopted as IEEE 
Standard (1800-2005). The current version is 
1800-2009 



Synopsys University Courseware 
Copyright © 2011 Synopsys, Inc. All rights reserved. 

Developed by: Jorge Ramirez 

IEEE-1364 / IEEE-1800 
Verilog 2005 (IEEE Standard 
1364-2005) consists of minor 
corrections, spec clarifications, 
and a few new language 
features 

SystemVerilog is a superset of 
Verilog-2005, with many new 
features and capabilities to aid 
design-verification and design-
modeling 
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Types of modeling 

• Behavioral  
– Models describe what a module 

does.  
– Use of assignment statements, 

loops, if, else kind of statements 

• Structural  
– Describes the structure of the 

hardware components 
– Interconnections of primitive gates 

(AND, OR, NAND, NOR, etc.) and 
other modules 

Counter 
If (rst) 
cnt = 0; 
else 
cnt = cnt+1; 

cnt [0:3] 
clk 

rst 
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Behavioral - Structural 

Behavioral 
module cter ( 

       input  rst, clock,  

       output reg  [1:0] count 

             ); 

always@(posedge clock) 

begin 

 if (rst) count = 0; 

 else     count = count +1; 

end 

endmodule 

 

Structural 
module cter ( rst, clock, count ); 

  output [1:0] count; 

  input rst, clock; 

  wire   N5, n1, n4, n5, n6; 

  FFD U0  (.D(N5), .CP(clock),   
        .Q(count[0]), .QN(n6)); 

  FFD U1  (.D(n1), .CP(clock), 
        .Q(count[1]), .QN(n5)); 

  MUX21 U2 (.A(N5), .B(n4),   
         .S(n5), .Z(n1) ); 

  NR U3 (.A(n6), .B(rst), .Z(n4)); 

  NR U4 (.A(count[0]), .B(rst),  
       .Z(N5)); 

endmodule 
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Simulation and Synthesis 

• The two major purposes of HDLs are logic 
simulation and synthesis 
– During simulation, inputs are applied to a module, and 

the outputs are checked to verify that the module 
operates correctly 

– During synthesis, the textual description of a module 
is transformed into logic gates 

• Circuit descriptions in HDL resemble code in a 
programming language. But  the code is intended 
to represent hardware 
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Simulation and Synthesis 

• Not all of the Verilog commands can be 
synthesized into hardware 

• Our primary interest is to build hardware, we will 
emphasize a synthesizable subset of the language 

• Will divide HDL code into synthesizable modules 
and a test bench (simulation). 
– The synthesizable modules describe the hardware.  

– The test bench checks whether the output results are 
correct (only for simulation and cannot be 
synthesized) 
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Lexical elements 

• Case sensitive - keywords are lower case   

• Semicolons(;) are line terminators 

• Comments: 

– One line comments start with // ... 

– Multi-line comments start with /*and end 
with*/ 

• System tasks and functions start with a dollar 
sign, ex $display, $signed 
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Lexical elements 

• Variable names have to start with an alphabetic 
character or underscore (_) followed by 
alphanumeric or underscore characters 

• Escaped identifiers (\)  

– Permit non alphanumeric characters in Verilog name 

– The escaped name includes all the characters 
following the backslash until the first white space 
character 

  

 
wire \fo+o=a ;  // Declare the varaible fo+o=a=a 
wire \fo+o =a ; // Assign a to wire fo+o 



Synopsys University Courseware 
Copyright © 2011 Synopsys, Inc. All rights reserved. 

Developed by: Jorge Ramirez 

Compiler directives 

• The directives start with 
a grave accent ( ` ) 
followed by some 
keyword 

 `define 
 Text-macro substitution 

`ifdef, `ifndef, `else, 
`endif   
Conditional compilation 

 `include  
File inclusion 

 

`include “file1.v” 

// Used as `WORD_SIZE in code 

`define WORD_SIZE 32 

 

module test (); 

`ifdef TEST 

// A implementation 

`else 

// B implementation 

`endif 

assign out = `WORD_SIZE{1’b1}; 

endmodule 
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Reserved keywords 

and always assign attribute begin buf bufif0 bufif1 

case cmos deassign default defparam disable else endattribute 

end endcase endfunction endprimitive endmodule endtable endtask event 

for force forever fork function highz0 highz1 if 

initial inout input integer join large medium module 

nand negedge nor not notif0 notif1 nmos or 

output parameter pmos posedge primitive pulldown pullup pull0 

pull1 rcmos reg release repeat rnmos rpmos rtran 

rtranif0 rtranif1 scalared small specify specparam strong0 strong1 

supply0 supply1 table task tran tranif0 tranif1 time 

tri triand trior trireg tri0 tri1 vectored wait 

wand weak0 weak1 while wire wor     
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Logical values 

• A bit can have any of these values 

– 0 representing logic low (false) 

– 1 representing logic high (true) 

– X representing either 0, 1, or Z 

– Z representing high impedance for tri-state 
(unconnected inputs are set to Z) 
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Logical values 

• Logic with multilevel (0,1,X,Z) logic values 

– Nand anything with 0 is 1 

– Nand two get an X 

• True tables define the how outputs are 
compute 

 & 0 1 X Z 
0 0 0 0 0 

1 0 1 X X 
X 0 X X X 

Z 0 X X X 

| 0 1 X Z 
0 0 1 X X 

1 1 1 1 1 
X X 1 X X 

Z X 1 X X 
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Number representation 

<size>'<base format><number> 
 

•  <size>:  
– number of bits (optional) 

•  <base format>:  
– It is a single character ' followed by one of the following 

characters b, d, o and h, which stand for binary, decimal, 
octal and hex, respectively. 

•  <number> 
–  Contains digits which are legal for the <base format> 
– ‘_’ underscore can be use for readability 

 



Synopsys University Courseware 
Copyright © 2011 Synopsys, Inc. All rights reserved. 

Developed by: Jorge Ramirez 

Number representation 

• Negative numbers are store as 2’s 
complement 

• Extended number 
– If MSB is 0, X or Z number is extended to fill MSBs 

with 0, X, Z respectively 

  
 

– If MSB is 1 number is extend to fill MSBs with 0/1, 
depending on the sign 

  

 

 

 

3’b01=3’b001  3’bx1=3’bxx1  3’bz=3’bzz   

3’b1=3’b001  -3’b1=-3’b01=3’b111 
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Number representation 

Unsized numbers (at least 32 bit) 
549    // decimal number 
'h8F_F  // hex number 
'o765   // octal number 
 
Size numbers 
4'b11   // 4-bit binary number 0011 
3'b10x  // 3-bit binary number with LSM bit unknown 
8'hz    // 8-bit binary high-impedance number 
4'hz1   // 4’bzzz1 
5'd3    // 5-bit decimal number 
 
Signed numbers 
-8'd6   // 8-bit two's complement of 6 (-6) 
 4'shF  // 4-bit number ‘1111’ to be interpreted as 
     // 2’s complement number 
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Data types (reg) 

• A  reg (reg) stores its value from one 
assignment to the next (model data storage 
elements) 
– Don’t confuse reg with register 

– Default value is X 

– Default range is one bit 

– By default are unsigned, but can be declare 
signed, using keyword signed 

  



Synopsys University Courseware 
Copyright © 2011 Synopsys, Inc. All rights reserved. 

Developed by: Jorge Ramirez 

Data types (Nets) 

• Nets (wire) correspond to physical wires that 
connect instances 
– Nets do not store values  

– Have to be continuously driven 

– The default range is one bit 

– By default are unsigned 

• The wire declaration is used most frequently, 
other net types are wand, wor, tri, triand, 
trior, etc. 
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Other data types 

• Integer (integer) 

– Convenient to counting purposes 

– At least 32-bit wide 

– Useful for loop  

• Real (real) simulation only 

– Can be specified in decimal and scientific notation 
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Verilog vectors 

Know as BUS in hardware 

• Declare by a range following the type 
 <data type> [left range : right range] <Variable name>  

• Single element that is n-bits wide 
reg  [0:7] A, B; //Two 8-bit reg with MSB as the 0th bit 

wire [3:0] Data; //4-bit wide wire MSB as the 4th bit 

• Vector part select (access) 
A[5]      // bit # 5 of vector A 

Data[2:0] // Three LSB of vector Data  
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Verilog arrays 

• Array: range follows the name 

<datatype> <array name> [<array indices>] 

reg B [15:0]; // array of 16 reg elements 

• Array of vectors 

<data type> [<vector indices>]<array 
name>[<array indices>] 

 reg [15:0] C [1023:0]; // array of vectors 

• Memory access 

<var name>[<array indices>] [<vector indices>]  
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Data storage and Verilog arrays 

module RAM (output [7:0] Obus, 
            input  [7:0] Ibus, 
            input  [3:0] Adr, 
            input        Clk, Read 
           ); 
reg [7:0] Storage[15:0]; 
reg [7:0] ObusReg; 
 
assign Obus = ObusReg; 
 
always @(posedge Clk) 
  if (Read==1’b0) Storage[Adr]  = Ibus; 
  else            ObusReg  = Storage[Adr]; 
 
endmodule 

Simple RAM Model 
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Data storage and Verilog arrays 

Counter 

module cter (input  rst, clock, jmp, 
             input  [7:0] jump, 
             output reg  [7:0] count 
             ); 
always@(posedge clock) 
begin 
 if      (rst) count = 8’h00; 
 else if (jmp) count = jump + count; 
 else          count = count + 8’h1; 
end 
endmodule 
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Structures and Hierarchy 

• Hierarchical HDL structures are achieved by 
defining modules and instantiating modules 

TOP 

COMP 

M
U

X
 

top.v 

comp.v 

mux.v 
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Module  declaration 

module <module name> #(<param list>) (<port list>); 

  <Declarations> 

  <Instantiations> 

  <Data flow statements> 

  <Behavioral blocks> 

  <task and functions> 

endmodule 
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Module header 

• Start with module keyword, contains the I/O ports 

• Port declarations begins with output, input or 
inout follow by bus indices 

• Each directions are followed by one or more I/O  
names 

• Each declaration is separated by comma (,) 

 

 
module ALU (output [31:0] z,  
      input [15:0] A, B,  
      input clock, ena); 
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Port declaration 

• input and inout are declared as wires 

• outputs port can be declared as reg (holds a 
value) 

• 2 flavors for port declaration: 

module S1 (a, b, c, d, e); 
input [1:0] a, b; 
input c; 
output reg [1:0] d; 
output  e; 
//Verilog 1995 Style 
endmodule 

module S2 (input [1:0] a, b,  
           input c,  
           output reg [1:0] d, 
           output e); 
 
//ANSI C Style 
endmodule 
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Parameters 

• Parameters are means of giving names to 
constant values 

• The values can be overridden when the design 
is compiled 

• Parameters cannot be used as variables 

• Syntax: 

parameter <name> = <constant expression>; 
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Parameter declaration 
• Default value need to be set at declaration time 

• 32 bit wide by default, but may be declared of 
any width 

  

• 2 declaration flavors: 
Inside a module   In module header 

 
module test (...  I/O’s ...) 
parameter ASIZE = 32, BSIZE =16; 
//… 
reg  [ASIZE -1:0] Abus, Zbus; 
wire [BSIZE-1:0]  Bwire; 
//… 
endmodule  
 

module test  
       #(parameter ASIZE = 32, BSIZE =16) 
        (...  I/O’s ...); 
//… 
reg  [ASIZE -1:0] Abus, Zbus; 
wire [BSIZE-1:0]  Bwire; 
//… 
endmodule  

parameter [2:0] IDLE = 3’d0; 
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Example 

Adder 
N-bits 

(8 by default) 
reg-ouputs 

 

A[N-1:0] 

B[N-1:0] 
S[N-1:0] 

Cout Cin 

Clk 

ANSI C style 

module Adder (A, B, Cin, S, 
Cout, Clk); 
parameter N=8; 
input [N-1:0]A, B; 
input Cin; 
input Clk; 
output [N-1:0] S; 
output Cout; 
reg [N-1:0] S; 
reg Cout; 
//module internals 
endmodule 

module Adder #(parameter N=8) 
              (input [N-1:0]A, B, 
               input Cin, 
               input Clk, 
               output reg [N-1:0] S, 
               output reg Cout 
               ); 
//module internals 
endmodule 
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Structures and Hierarchy 

• Instance of a module 
– Instantiation is the process of “calling” a module 

– Create objects from a module template 
 <module name> #(<param list>) 

        <instance name> (<port list>); 

Where: 

 <module name> Module to be instantiated 

 <param list> Parameters values passed to the instance 

<instance name> Identifies the instance of the module 

 <port list> Port list connection 
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Port list  connections 

• Ports 

– Provide the interface by which a module can 
communicate with the environment 

– Port declarations (input, output, inout) 

 

net 

net 

net reg o net net reg o net 

input output 
inout 
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Port connections/Parameter overwrite 

• Named connection 

– Explicitly linking the 2 names for each side of the 
connection 

my_mod #(.W(1), .N(4)) U1 (.in1(a), .in2(b), 
.out(c)); 

• Order connection 

– Expression shall be listed in the same order as the 
port declaration 

my_mod #(1,4) U2 (a, b, c); 
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Hierarchy example  

module TOP (…port_list…); 

ALU U1 (…port connection…); 

MEM U2 (…port connection…); 

endmodule 

module ALU (…port_list…); 

FIFO S1 (…port connection…); 

endmodule 

module FIFO (…port_list…); 

//... 

endmodule 

 

TOP 

ALU 

MEM 

FIFO 

U1 

U2 

S1 
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Relational operators 

• Mainly use in expression (e.g. if sentences) 

• Returns a logical value (1/true 0/false) 

• If there are any X or Z bit returns X (false on a 
expression) 

<  a < b  // is a less than b?  
>  a > b  // is a greater than b? 
>=  a >= b  // is a greater than or equal to b 
<=  a <= b  // is a less than or equal to b 
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Arithmetic operators 

• Binary operators 

– Takes 2 operators 

• Unary operators (+/-) 

– Specify the sign of the operand 

– Negative numbers are represented as 2’s 
complement 

*  c = a * b ;  // multiply a with b 
/  c = a / b ;  // int divide a by b 
+  sum = a + b ;  // add a and b 
-  diff = a - b ;  // subtract b from a 
%  amodb = a % b ;  // a mod(b) 
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Logical operators 
• Logical operators evaluate to a 1-bit value 

 

 

• If an operant is not zero is treat as logical 1 

 

  

• If an operant is Z o X is treat as X (false) 

&& a && b ;  // is a and b true?  returns 1-bit true/false 
||  a || b ;  // is a or b true?  returns 1-bit true/false 
!  if (!a) c = b;  // if a is not true assign b to c 

A=3; B=0; 
A&&B //Evaluates to 0 Equivalent to (logical-1 && logical-0) 
!B   //Evaluates to 1 Equivalent to (!logical-0) 

A=2’b0x; B=2’b10; 
A&&B //Evaluates to x Equivalent to (x && logical-0) 
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Equality and Identity operators 

==  c == a ;  /* is c equal to a returns 1-bit true/false 
applies for 1 or 0, logic equality, using X or 
Z operands returns always false ('hx == 'h5 
returns 0) */ 

!=  c != a ;  // is c not equal to a, returns 1-bit true 

===  a === b ;  // is a identical to b (includes 0, 1, x, z)  

!==  a !== b ;  
/* is a not identical to b returns 1-bit 
true/false*/ 
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Bitwise and Reduction operations 

&  b = &a ;  
/* AND all bits of a 
(reduction) */ 

|  b = |a ;  /*OR all bits (reduction)*/ 

^  b = ^a ;  
/*Exclusive or all bits of 
a (reduction)*/ 

~&, ~|,~^ c = ~& b ;  
/* NAND, NOR, EX-NOR all 
bits together */ 

~,&, |, ^  b = ~a ; e = b | a 
/*bit-wise NOT, AND, OR, 
EX-OR*/ 

~&, ~|, ~^ e = a ~^ b ; 
/*bit-wise NAND, NOR, EX-
NOR*/ 



Synopsys University Courseware 
Copyright © 2011 Synopsys, Inc. All rights reserved. 

Developed by: Jorge Ramirez 

Shift and other operator 

<<  a << 1 ;  // shift left a by 1-bit 

>>  a >> 1 ;  // shift right a by 1 

<<< b <<< 1 ;  // arithmetic shift by 1 

>>> b >>> 1 ;  // arithmetic shift by 1 

?:  c = sel ? a : b ;  
/* if sel is true c = a, else c 
= b , ?: ternary operator */ 

{}  {co, sum} = a + b + ci; 

/* add a, b, ci assign the 
overflow to co and the result to 
sum: operator is called 
concatenation */ 

{{}}  b = {3{a}}  
/* replicate a 3 times, 
equivalent to {a,a,a} */ 
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Operators precedence 

Unary, Multiply, Divide, 
Modulus 

+,-,!,~ Highest 

*, / % 

Add, subtract, shift 
+, -  

<<. >> 

Relational  
Equality 

<, < =, >, >= 

=, ==. != 

===, !== 

Reduction 
Logical 

&, ~& 

^, ^~ 

|, ~| 

&& 

|| 

Conditional ?:  Lowest 

Operator precedence 
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Concurrent blocks 

• Blocks of code with no well-defined order 
relative to one another 

– Module instance is the most important concurrent 
block 

– Continuous assignments, and procedural blocks 
are concurrent within a module 

module AND  (input A, B, output C); 

wire w; 

NAND U1 (A, B, w); 

NAND U2 (w, w, C); 

endmodule 
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Continuous assignments 

• Continuous assignments imply that whenever 
any change on the RHS of the assignment 
occurs, it is evaluated and assigned to the LHS 

• Continuous assignments always implement 
combinational logic 

• Continuous assignments drive wire variables 

 
wire A; 
assign  A = (B|C)&D; 
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Continuous assignments 

• Implicit continuous assignment 

– Continuous assignment can be placed when the 
net is declared 

 

• Implicit net declaration (not recommended) 

– If a signal name is used to the left of a continuous 
assignment, a implicit net declaration will be 
inferred 

wire A = i1 & i2; 

wire i1, i2; 
assign A = i1 & i2; 
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Example 

A 

B 

C 

A 

B 

C 

module NAND (A, B, C); 
input A, B; 
output C; 
// Continuous assignments  
assign C = ~(A&B); 
endmodule 

module AND (A, B, C); 

input A, B; 

output C; 

wire w; 

// 2 NAND instantiations 

NAND U1 (A, B, w); 

NAND U2 (w, w, C); 

endmodule 
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Procedural blocks 

• Each procedural block represent a separate 
activity flow in Verilog 

• Procedural blocks 

– always blocks 

• To model a block of activity that is repeated continuously 

– initial blocks simulation only 

• To model a block of activity that is executed at the beginning 

• Multiple behavioral statements can be grouped 
using keywords begin and end 
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Procedural assignments 

• Procedural assignment changes the state of a reg 

• Used for both combinational and sequential 
logic inference 

• All procedural statements must be within always 
(or inital) block 

 

 
reg A; 
always @ (B or C) 
begin 
  A = ~(B & C); 
end 
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Always block – Event control (@) 

• Always blocks model an activity that is 
repeated continuously  

• @ can control the execution 

– posdege  or negedge make sensitive to edge 

– @* / @(*), are sensitive to any signal that may be 
read in the statement  group 

– Use “,”/or for multiple signals 
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Always block – Event control (@) 

module M1 (input B, C, clk, rst, output reg X, Y,Z); 
// controlled by any value change in B or C 
always @ (B or C)  
  X = B & C; 
 
// Controlled by positive edge of clk 
always @(posedge clk)  
  Y = B & C;  
 
// Controlled by negative edge of clk or rst 
always @(negedge clk, negedge rst)  
  if (!rst) Z = B & C;  
  else      Z = B & C; 
endmodule  
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Example 

G 

D Q 

R 

D Q 

module FFD (input Clk, R, D, 
            output reg Q); 
always @ (posedge Clk) 
begin 
  if (R) 
    Q = 1'b0; 
  else 
    Q = D; 
end 
endmodule 

module LD (G, D, Q); 
input G, D; 
output Q; 
reg Q; 
always @(G or D) 
if (G) 
   Q  = D; 
endmodule 
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Blocking / Non-Blocking assignment 

Blocking assignment 

•  (= operator) acts much like in 
traditional programming 
languages 

• The whole statement is done 
before control passes on to the 
next statement. 

Non-blocking assignment 

• (<= operator) Evaluates all the 
right-hand sides for the current 
time unit and assigns the left-
hand sides at the end of the time 
unit. 

 

always @(posedge Clk)  
begin 
  //blocking procedural assignment 
  C = C + 1; 
  A = C + 1; 
end 
 
always @(posedge Clk)  
begin 
 //non-blocking procedural assignment 
  D <= D + 1; 
  B <= D + 1; 
end 

Example: During every clock cycle 
A is ahead of C by 1 
B is same as D 
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Procedural blocks (summary) 

• Blocks of code within a concurrent block 
which are read (simulated, executed) in order 

• Procedural blocks may contain: 
– Blocking assignments 

– Nonblocking assignments 

– Procedural control statements (if, for, case) 

– function, or task calls 

– Event control (‘@’) 

– Nested procedural blocks enclosed in begin … end 
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Outline 

• Lexical elements 

• Data type representation 

• Structures and Hierarchy 

• Operators 

• Assignments 

• Control statements 

• Task and functions 

• Generate blocks 
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Conditional statements (if … else) 

• The statement occurs if the expressions controlling 
the if statement evaluates to true 

– True: 1 or non-zero value 

– False: 0 or ambiguous (X) 

• Explicit priority 

 

always @ (WRITE or STATUS) 

begin 

  if (!WRITE) 

  begin 

    out = oldvalue; 

  end 

  else if (!STATUS)  

  begin 

    q = newstatus; 

  end 

end 

if  (<expression>)  
// statement1 
else if (<expression>)  
// statement2 
else  
// statement3 
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Conditional statements (case) 

• case, casex, casez: case statements are used for 
switching between multiple selections 
– If there are multiple matches only the first is evaluated 
– Breaks automatically 

• casez treats Z as don’t care  
• casex treats Z and X as don’t care 
  
 
 
 
  

 

case (<expression>) 
  <alternative 1> : <statement 1>; 
  <alternative 2> : <statement 2>; 
   default        : <default statement>; 
endcase 
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Conditional statements (case) 

always @(s, a, b, c, d) 

case (s) 

  2'b00: out = a; 

  2'b01: out = b; 

  2'b10: out = c; 

  2'b11: out = d; 

endcase 

 

always @* 

casex (state) 

/* 

during comparison : 3'b01z, 

3'b01x, 3b'011 ... match case 

3'b01x 

*/ 

3'b01x:  fsm = 0 ; 

3'b0xx:  fsm = 1 ; 

default: fsm = 1 ; 

endcase 

 

always @* 
casez (state) 
// 3'b11z, 3'b1zz,... match 
3'b1?? 
3'b1??: fsm = 0;  
3'b01?: fsm = 1; 
endcase 
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Example 

out 

s[0] 

d 

c 

b 

a 

s[1] 

8-bit  
4-to-1 

 multiplexer 

module mux(a, b, c, d, s, out); 
input  [7:0] a, b, c, d; 
input  [1:0] s; 
output [7:0] out; 
reg    [7:0] out; 
// used in procedural statement 
always @ (s or a or b or c or d) 
  case (s) 
    2'b00: out = a; 
    2'b01: out = b; 
    2'b10: out = c; 
    2'b11: out = d; 
  endcase 
endmodule 
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Latches / Muxes (Comb logic) 

• Assuming only level sensitivity on a always block: 
– A variable or signal when is fully specified (it is 

assigned under all possible conditions) a mux or 
combinational logic. 

– If a variable or signal is not fully specified a latch will 
be inferred 

 

 

 

  

always @ (a,b,sel) 
  if (sel==1’b1) 
    z=a; 
  else 
    z=b; 

always @ (DATA, GATE) 
  if (GATE) 
    Q = DATA; 

always @ (DATA, GATE)     
begin 
  Q = 0; 
  if (GATE) Q = DATA; 
end 

MUX COMB LOGIC LATCH 
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Loop statements (for) 

• Works the same ways as C 

• Unary increment/decrement is not allowed 

 
for (<loop var init>; <loop var reentry expr>; <loop var update>) 
<statement>; 

// General purpose loop 
interger i; 
always @* 
for (i = 0 ; i < 7 ; i=i+1) 
  memory[i] = 0;  
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Loop statements (while) 

• Loop execute until the expression is not true 

always @* 

while(delay)  

// multiple statement groups with begin-end 

begin  

  ldlang = oldldlang; 

  delay  = delay – 1; 

end 
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Loop statements (repeat) 

• Repeat statement a specified number of times 

• The number is evaluated only at the beginning  

always @* 

repeat(`BIT-WIDTH)  

begin 

  if (a[0]) out = b + out; 

  a = a << 1;  

end 
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Outline 

• Lexical elements 

• Data type representation 

• Structures and Hierarchy 

• Operators 

• Assignments 

• Control statements 

• Task and functions 

• Generate blocks 
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Tasks and Functions 

Task: 

• Declare with task and 
endtask 

• May have zero arguments 
or more arguments of type 
input, output, inout 

• Do not return with a value, 
can pass values through 
output and inout 
arguments 

Functions: 

• Declare with function and 
endfunction 

• Must have at lease one 
input 

• Always return a single value 
(cannot have output or 
inout arguments) 

 

Task and function serve the same purpose on Verilog as 
subroutines do in C 
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Tasks and Functions - example 

module top (input a1, a2, output reg  [1:0] b1, b2); 

always @ (a1, a2)  

begin 

  b1 = out (a1, a2);      // function calling 

  out_task (a1, a2, b2);  // task calling 

end 

function [1:0] out (input in1, in2); // Function Declaration 

begin 

  if (in1) out = {in2,in1};  else out = {in1,in2}; 

end 

endfunction 

task out_task (input in1, in2, output [1:0] out); // Task Declaration 

begin 

  if (in1) out = {in2,in1};  else  out = {in1,in2}; 

end 

endtask 

endmodule 
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Task and Functions 

• Functions are simpler 

 

 

 

• Data Sharing 
– Functions and task could be declare as automatic 

– A static function retains the value of all it's 
internal variables between calls.  An automatic 
function re-initializes them each call 

 

Function Task 

Can call another function Can call another function or task 

Can modify only one value Can modify multiple values 
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Outline 

• Lexical elements 

• Data type representation 

• Structures and Hierarchy 

• Operators 

• Assignments 

• Control statements 

• Task and functions 

• Generate blocks 
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Generate blocks 

• Allow to generate Verilog code dynamically at 
elaboration time 
– Facilitated the parameterized model generation 

– Required the keywords generate – endgenerate 

– Generate instantiations can be 
• Module instantiations 

• Continuous assignments 

• initial / always blocks 

– Typically used are generate loop and conditional 
generate  
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Generate loop 

module top( input [0:3] in1, 

            output [0:3] out1); 

// genvar control the loop 

genvar I; 

generate 

for( I = 0; I <= 3; I = I+1 ) 

begin 

  sub U1(in1[I], out1[I]); 

end 

endgenerate 

endmodule 
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Conditional generate 

module top #(parameter POS=0)  

            (input in, clk, output reg out); 

generate  

if(POS==1)  

always @ (posedge clk)  

  out = in; 

else 

always @ (negedge clk)  

  out = in; 

endgenerate 

endmodule 
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SYNTHESIS CODING GUIDELINES 
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Synthesis coding guidelines 

• Inferring Three-State Drivers 
– Never use high-impedance values in a conditional 

expression (Evaluates expressions compared to 
high-impedance values as false) 

• Sensitivity Lists 
– You should completely specify the sensitivity list 

for each always block. Incomplete sensitivity lists 
can result in simulation mismatches 

 always @ (A) 
C <= A | B; 
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Synthesis coding guidelines 

• Value Assignments 
– The hardware generated by blocking assignments 

(=) is dependent on the ordering of the 
assignments 

– The hardware generated by nonblocking 
assignments (<=) is independent of the ordering of 
the assignments 

– For correct simulation results, Use nonblocking 
assignments within sequential Verilog always 
blocks  
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Synthesis coding guidelines 

• Value Assignments 

– Do not mix blocking and nonblocking assignments 
in the same always block 

– Do not make assignments to the same variable 
from more than one always block. It is a Verilog 
race condition, even when using nonblocking 
assignments 

• Structures and Hierarchy 

– Place one module per file 
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Synthesis coding guidelines 

• If Statements 
– When an if statement used in a Verilog always block as 

part of a continuous assignment does not include an 
else clause, synthesis tool may creates a latch. 

• Case Statements 
– If your if statement contains more than three 

conditions, consider using the case statement to 
improve the parallelism of your design and the clarity 
of your code 

– An incomplete case statement results in the creation 
of a latch 
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Synthesis coding guidelines 

• Constant Definitions 
– Use the Verilog `define statement to define global 

constants  

– Keep global constant definitions in a separate file. 

• Using Verilog Macro Definitions 
– In Verilog, macros are implemented using the `define 

statement 

– Keep `define statements in a separate file. 

– Do not use nested `define statements (difficult to 
read) 
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Synthesis coding guidelines 

• Guidelines for Identifiers 
– Ensure that the signal name conveys the meaning of 

the signal or the value of a variable without being 
verbose 

– Use a consistent naming style for capitalization and to 
distinguish separate words in the name. 

– Examples: 
• C style uses lowercase names and separates words with an 

underscore, for example, packet_addr, data_in, and 
first_grant_enable 

• Pascal style capitalizes the first letter of the name and first 
letter of each word, for example, PacketAddr, DataIn, and 
FirstGrantEnable 
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JUST FOR FUN 
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Question 1 

input  [7:0] data; 

output [7:0] data_reversed; 

Can the bit reversal be done by applying the next assignment? 

data_reversed = data[0:7]; 

data_reversed = {data_8[0], data_8[1], data_8[2], data_8[3], 
                 data_8[4], data_8[5], data_8[6], data_8[7]}; 

input  [127:0] data; 
output [127:0] data_reversed; 
for (i = 127; i >= 0; i = i - 1) 
  data_deversed[i] = data[127 - i]; 



Synopsys University Courseware 
Copyright © 2011 Synopsys, Inc. All rights reserved. 

Developed by: Jorge Ramirez 

Question 2 

parameter WIDTH = 4; 

output [WIDTH - 1 : 0] data; 

 

How we can assign to each bit a 1'b1? 

assign data= {WIDTH{1'b1}};  

assign data= (1 << WIDTH) – 1; 
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Question 3 

Which is the correct macro usage? 

`define TEST 
`define SIZE 32 
 
module test (); 
`ifdef TEST 
assign out = `SIZE{1’b1}; 
`else 
assign out = `SIZE{1’b0}; 
`endif 
endmodule 
 

`define TEST 
`define SIZE 32 
 
module test (); 
`ifdef TEST 
assign out = SIZE{1’b1}; 
`else 
assign out = SIZE{1’b0}; 
`endif 
endmodule 
 

`define TEST 
`define SIZE 32 
 
module test (); 
`ifdef `TEST 
assign out = `SIZE{1’b1}; 
`else 
assign out = `SIZE{1’b0}; 
`endif 
endmodule 
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Question 4 

• Which code infer a asynchronous reset FF? 

module FFD (input Clk, R, D, 
            output reg Q); 
always @ (posedge Clk, negedge R) 
begin 
  if (!R) 
    Q = 1'b0; 
  else 
    Q = D; 
  end 
endmodule 

module FFD (input Clk, R, D, 
            output reg Q); 
always @ (posedge Clk, negedge R) 
begin 
  if (R) 
    Q = 1'b0; 
  else 
    Q = D; 
  end 
endmodule 
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Question 5 

Is the next module header correct? 
module Adder(input [N-1:0]A, B, 
             input Cin, 
             input Clk, 
             output reg [N-1:0] S, 
             output reg Cout); 
parameter N=8; 
//module internals 
endmodule module Adder #(parameter N=8) 

              (input [N-1:0]A, B, 
               input Cin, 
               input Clk, 
               output reg [N-1:0] S, 
               output reg Cout 
               ); 
//module internals 
endmodule 

NO! 
Parameter is used 

before it is declared ! 
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Question 6 

What does X means in synthesis and simulation? 

 
Synthesis Simulation 

Unknown value 

Don’t care 

Assigning “X” to a wire or reg is 
highly encouraged for synthesis: 

it specifies a don’t care 
condition, letting the synthesis 
tool do further optimization 

Be aware, when 
assigning X’s they may 
propagate throughout 
your design under 
simulation 
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VERILOG TEST BENCH 
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Writing Test Bench 

• A test bench specifies a sequence of inputs to be 
applied by the simulator to an Verilog-based 
design. 

• The test bench uses an initial block and delay 
statements and procedural statement. 

• Verilog has advanced “behavioral” commands to 
facilitate this: 
– Delay for n units of time 
– Full high-level constructs: if, while, sequential 

assignment. 
– Input/output: file I/O, output to display, etc. 
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Test Bench 
`timescale 10ns/1ps 
module test_bench; 
// Interface to communicate with the DUT 
reg a, b, clk; 
wire c; 
// Device under test instantiation 
DUT U1 (.in1(a), .in2(b), .clk(clk), .out1(c)); 
initial 
begin  // Test program 
  test1 (); 
  $finish; 
end 
initial 
begin 
  clk = 0; 
  forever #5 clk = ~clk; 
end 
initial 
begin // Monitor the simulation 
  $dumpvars; 
  $display ("clk | in1| in2 | out1 |"); 
  $monitor ("  %b| %b |  %b |   %b |",clk, a, b, c); 
end 
endmodule 

task test1 (); 
begin 
      a = 0;   b = 0; 
  #10 a = 0;   b = 1; 
  #10 a = 1;   b = 1; 
  #10 a = 1;   b = 0; 
end 
endtask 

module DUT (in1, in2, clk, out1); 
input in1, in2; 
input clk; 
output reg out1; 
always @(posedge clk) 
 out1 = in1^in2; 
endmodule 
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Simulation results 

Chronologic VCS simulator copyright 1991-2008 
 
clk | in1| in2 | out1 | 
   0|  0 |   0 |    x | 
   1|  0 |   0 |    0 | 
   0|  0 |   1 |    0 | 
   1|  0 |   1 |    1 | 
   0|  1 |   1 |    1 | 
   1|  1 |   1 |    0 | 
V C S   S i m u l a t i o n   R e p o r t 
Time: 300000 ps 
CPU Time:      0.010 seconds;       Data structure size:   0.0Mb 
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Precision macro 

•  `timescale 

– Defines the time units and simulation precision 
(smallest increment) 
`timescale Time_Unit/Precision_Unit 

– Time : 1 10 100 

– Units: ms us ns ps fs 

– The precision unit must be less than or equal to 
the time unit 

– Example: 

  

 

`timescale 10ns/1ps 
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Initial block 

•  initial block 

– Contains a statement or block of statement which 
is executed only once, stating at the beginning of 
the simulation 

– Each block is executed concurrently before 
simulation time 0 (ignore by synthesis) 

– No sensitivity list 
initial 
  begin 
      X = 1’b0;  
  end  
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Forever block 

•  forever block 

– Cause one or more statements to be executed in 
an infinite loop. 

– Example: clock signal generation 

 
initial 
begin 
  clk = 0; 
  forever #5 clk = ~clk; 
end 
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Delay 

• Delay (#) 
– Specifies the delay time units before a statement is 

executed during simulation  
– Regular delay control  

#<num> y = 1; 

• Regular delay control is used when a non-zero value is 
specified 

– Zero delay control  
#0; 

• Ensure that statements are executed  
at the end of time 0 

– Intra-assignment delay control  
y = #<num> x+z; 
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Delay example 

parameter sim_cycle = 6; 
initial  
begin 
  x=0; 
  #10 y=1;            //assignment is delayed 10 time units  
  #(sim_cycle/3) x=2; //delay number can came from a parameter 
end 
initial  
begin 
  p = 0; q = 0; 
  r = #5 p+q;         //Take the value of p and q at time 0, evaluate  
                      // p+q and wait 5 time units to assign value to r 
end 
initial  
begin 
  #0 x =1;            //x=0,p=0;q=0,x=1 are executed a time 0 but x=1 is 
                      //executed at the end 
end 
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Task  

• Task helps to simplify the test bench 

• Can include timing control 

– Inputs 

– Delays (#) and regular event control (@) 

task reset; 
begin 
  rst_n = 1'b0; 
  repeat(3) 
  @(negedge clk); 
  rst_n = 1'b1; 
end 
endtask 

task load (input [7:0] data, 
           input enable); 
begin 
  #2  rst_n = 1’b0; 
  #10 data_in=data; 
  #2  read_ena=enab; 
end 
endtask 
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Hierarchical names 
• Hierarchical name references allows us to denote 

every identifier in the design with a unique name 
• Hierarchical name is a list of identifier separated 

by dots (“.”) 

TB 

SUB1 

SUB2.1 
reg mem; 

SUB2.2 
wire data; 

(U1) 

(U1) 

(U2) 

module TB (); 
//... 
$monitor (“%b”, TB.U1.U1.mem); 
$monitor (“%b”, TB.U1.U2.data); 
 
endmodule 
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System tasks and functions 

• System task are tool specific tasks and functions. 
 $display, $write // utility to display information 

 $monitor   // monitor, display 

 $time, $realtime // current simulation time 

 $finish    // exit the simulator 

 $stop    // stop the simulator 

 $timeformat   // format for printing simulation 

 $random         // random number generation 

 $dumpvars       // dump signals to file 
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$display - $strobe - $monitor 

• Print message to a simulator (similar to C printf) 

• $display (format, args) 
– Display information before RHS evaluation (before 

nonblocking assignments) 

• $strobe (format, args) 
– Display information after RHS evaluation (after 

nonblocking assignments) 

• $monitor (format, args) 
– Print-on-change after RHS and nonblocking 

assignments whenever one argument change 
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Verilog string and messages 

%h hex integer 
%d decimal integer 
%b binary 
%c single ASCII character 
%s character string 

%t simulation time 
%u 2-value data 
%z 4-value data 
%m module instance name 

initial 
begin 
$display (“Results\n”); 
$monitor (“\n Time=%t  X=%b”, $time , X); 
end 

Useful format specifiers: 
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$random 

• Random number generation 

• Returns as 32-bit signed integer 

reg [31:0] rand1, rand2, rand3; 
rand1 = $random;   // generates random numbers 
rand2 = $random % 60;  // random numbers between -59 and 59 
rand3 = {$random} % 60;// random positive values  
    // between 0 and 59 
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$dumpvars 

• The Verilog $dumpvars command is used to 
generate a value change dump (VCD)  

• VCD is an ASCII file that contains information 
about simulation, time, scope and signal 
definition, and signal value changes 

• VCD files can be read on graphical wave from 
displays 

  
  
  

initial 
begin  // Monitor the simulation 
  $dumpfile ("myfile.dump"); 
  $dumpvars; 
end 
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Test Bench 
`timescale 10ns/1ps 
module test_bench; 
// Interface to communicate with the DUT 
reg a, b, clk; 
wire c; 
// Device under test instantiation 
DUT U1 (.in1(a), .in2(b), .clk(clk), .out1(c)); 
initial 
begin  // Test program 
  test1 (); 
  $finish; 
end 
initial 
begin 
  clk = 0; 
  forever #5 clk = ~clk; 
end 
initial 
begin // Monitor the simulation 
  $dumpvars; 
  $display ("clk | in1| in2 | out1 |"); 
  $monitor ("  %b| %b |  %b |   %b |",clk, a, b, c); 
end 
endmodule 

task test1 (); 
begin 
      a = 0;   b = 0; 
  #10 a = 0;   b = 1; 
  #10 a = 1;   b = 1; 
  #10 a = 1;   b = 0; 
end 
endtask 

module DUT (in1, in2, clk, out1); 
input in1, in2; 
input clk; 
output reg out1; 
always @(posedge clk) 
 out1 = in1^in2; 
endmodule 
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FINITE STATE MACHINE 
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Finite-State machine  
Abstraction 

Present State: S
n

Clocked Storage

Elements

Clock

Next State S
n+1

S
n+1

 = f (S
n
, X)

Outputs (Y)

Y=Y(X, S
n
)

Inputs (X)

Combinational

Logic
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Finite-State machine  
Abstraction 

• Clocked Storage Elements: Flip-Flops and 
Latches should be viewed as synchronization 
elements, not merely as storage elements !  

• Their main purpose is to synchronize fast and 
slow paths: 

– Prevent the fast path from corrupting the state 

• Function of clock signals is to provide a 
reference point in time when the FSM changes 
states 
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Finite State machine  
Mealy and More 

• Mealy and More FSM 
– A Moore FSM is a state machine where the outputs 

are only a function of the present state.  
– A Mealy FSM is a state machine where one or more of 

the outputs is a function of the present state and one 
or more of the inputs. 

114 Jorge Ramírez 
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Finite-State machine 
State Changes 

Clock

X
t

X
t+1

Y
t

Y
t+1

Y = S
n-1

S
n

S
n+1

S
n+1

S
n

U

D
CQ

Combinational

Logic

Combinational

Logic

U

D
CQ

Time
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Finite-State machine  
Critical Path 

Present State: S
n

Clocked Storage

Elements

Clock

Next State S
n+1

S
n+1

 = f (S
n
, X)

Outputs (Y)

Y=Y(X, S
n
)

Inputs (X)

Combinational

Logic

Critical path is 
defined as the 
chain of gates in 
the longest 
(slowed) path 
thought the logic 
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FSM Implementation 
Design example 

• A level-to-pulse converter produces a single-
cycle pulse each time its input goes high. 

• In other words, it’s a synchronous rising-edge 
detector. 

• Sample uses:  
– Buttons and switches pressed by humans for 

arbitrary periods of time 
– Single-cycle enable signals for counters 

 
 
 

Whenever input L goes from low to high... ...output P produces a single pulse, one clock period wide. 

Level to Pulse 
Converter 

P L 

CLK 
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FSM Implementation  
State Diagram (Moore implementation) 

Current State In Next  State Out 

S1 S0 L S1
+ S0

+ P 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 1 0 0 0 1 

0 1 1 1 1 1 

1 1 0 0 0 0 

1 1 1 1 1 0 
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FSM Implementation  
Logic implementation 

Flip-Flops 
Comb 
Logic 

Comb 
Logic 

P L S+ 

S 

L\S1S0 00 01 11 10 

0 0 0 0 X 

1 0 1 1 X 

L\S1S0 00 01 11 10 

0 0 0 0 X 

1 1 1 1 X 

S0\S1 0 1 

0 0 X 

1 1 0 

For S1
+: 

 

 

 

For S0
+: 

 

 

 

For P: 
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FSM Implementation  
Mealy implementation 

Pres 
State 

In Next  
State 

Out 

S L S+ P 

0 0 0 0 

0 1 1 1 

1 0 0 0 

1 1 1 0 

• Since outputs are 
determined by state and 
inputs, Mealy FSMs may 
need fewer states than 
Moore FSM 
implementations 
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FSM Implementation  
Moore/Mealy trade-off 

• Remember that the difference is in the output: 
– Moore outputs are based on state only 
– Mealy outputs are based on state and input 
– Therefore, Mealy outputs generally occur one cycle earlier than a 

Moore: 

 
 
 
 
 
 

• Compared to a Moore FSM, a Mealy FSM might... 
– Be more difficult to conceptualize and design 
– Have fewer states 

Moore Mealy 
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HDL FSM Implementation 
FSM Coding goals 

• The FSM coding style should be easily 
modified to change state encodings and FSM 
styles 

• The coding style should be compact 

• The coding style should be easy to code and 
understand 

• The coding style should facilitate debugging 

• The coding style should yield efficient 
synthesis results 
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HDL FSM Implementation  
Binary Encoding 

• Straight encoding of states 
S0=“00” S1=“01” S2=“10” S3=“11” 

• For n states, there are [log2(n)] flip-flops needed 
• This gives the least numbers of flip-flops 
• Good for “Area” constrained designs 
• Number of possible illegal states = 2[log

2
(n)]–n 

• Drawbacks: 
– Multiple bits switch at the same time = Increased noise 

and power 
– Next state logic is multi-level = Increased power and 

reduced speed 
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HDL FSM Implementation  
Gray-Code Encoding 

• Encoding using a gray code where only one bits 
switches at a time 

S0=“00” S1=“01” S2=“11” S3=“10” 

• For n states, there are [log2(n)]flip-flops needed 
• This gives low power and noise due to only one bit 

switching 
• Good for “power/noise” constrained designs 
• Number of possible illegal states = 2[log

2
(n)]–n  

• Drawbacks: 
– The next state logic is multi-level = Increased power and 

reduced speed 
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HDL FSM Implementation  
One-Hot Encoding 

• Encoding one flip-flop for each state 
S0=“0001” S1=“0010” S2=“0100” S3=“1000” 

• For n states, there are n flip-flops needed 

• The combination logic is one level (i.e., a decoder) 

• Good for speed 

• Especially good for FPGA due to “Programmable Logic 
Block” 

• Number of possible illegal states = 2n–n  

• Drawbacks: 
– Takes more area 
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HDL FSM Implementation  
State Encoding Trade-Offs 

•  Typically trade off Speed, Area, and Power 

One-Hot 

Gray Binary 

Area 

Speed 

Power 
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HDL FSM Implementation 

The Fundamentals of Efficient Synthesizable 
Finite State Machine.  

Clifford E. Cummings 

 

http://www.sunburst-
design.com/papers/CummingsICU2
002_FSMFundamentals.pdf 
 

http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
http://www.sunburst-design.com/papers/CummingsICU2002_FSMFundamentals.pdf
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HDL FSM Implementation  
Two Always Block FSM Style (Good Style) 
• One of the best Verilog 

coding styles  
• Code the FSM design using 

two always blocks,  
– One for the sequential state 

register  
– One for the combinational 

next-state and 
combinational output logic. 

 

parameter [1:0]  
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 
reg [1:0] state, next; 
 
always @(posedge clk or negedge rst_n) 
if (!rst_n) state <= IDLE; 
else        state <= next; 
 
always @(state or in1 or in2) begin 
next = 2'bx;  out1 = 1'b0; 
case (state) 
  IDLE : if (in1) next = BBUSY; 
         else     next = IDLE; 
  BBUSY: begin 
         out1 = 1'b1; 
         if (in2) next = BBUSY; 
         else     next = BFREE; 
         end 
  //... 
endcase 
end 
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HDL FSM Implementation  
Two Always Block FSM Style (Good Style) 

1. The sequential always block 
is coded using nonblocking 
assignments.  

2. The combinational always 
block sensitivity list is 
sensitive to changes on the 
state variable and all of the 
inputs referenced in the 
combinational always block. 

3. Assignments within the 
combinational always block 
are made using Verilog 
blocking assignments.  

parameter [1:0]  
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 
reg [1:0] state, next; 
 
always @(posedge clk or negedge rst_n) 
if (!rst_n) state <= IDLE; 
else        state <= next; 
 
always @(state or in1 or in2) begin 
next = 2'bx;  out1 = 1'b0; 
case (state) 
  IDLE : if (in1) next = BBUSY; 
         else     next = IDLE; 
  BBUSY: begin 
         out1 = 1'b1; 
         if (in2) next = BBUSY; 
         else     next = BFREE; 
         end 
  //... 
endcase 
end 
 

1 

2 

3 
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HDL FSM Implementation  
Two Always Block FSM Style (Good Style) 

4. Default output 
assignments are made 
before coding the case 
statement (this 
eliminates latches and 
reduces the amount of 
code required to code 
the rest of the) 

5. Placing a default next 
state assignment on the 
line immediately 
following the always 
block sensitivity list is a 
very efficient coding style 

parameter [1:0]  
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 
reg [1:0] state, next; 
 
always @(posedge clk or negedge rst_n) 
if (!rst_n) state <= IDLE; 
else        state <= next; 
 
always @(state or in1 or in2) begin 
next = 2'bx;  out1 = 1'b0; 
case (state) 
  IDLE : if (in1) next = BBUSY; 
         else     next = IDLE; 
  BBUSY: begin 
         out1 = 1'b1; 
         if (in2) next = BBUSY; 
         else     next = BFREE; 
         end 
  //... 
endcase 
end 
 

4 5 
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HDL FSM Implementation  
One Always Block FSM Style (Avoid This Style!) 
• One of the most common 

FSM coding styles in use 
today 
– It is more verbose 

– It is more confusing  

– It is more error prone  

(comparable two always block 
coding style) 

 

parameter [1:0]  
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 
reg [1:0] state; 
always @(posedge clk or negedge rst_n) 
if (!rst_n) begin  
  state <= IDLE; 
  out1  <= 1'b0; 
end  
else begin  
  state <= 2'bx;  out1 <= 1'b0; 
  case (state) 
    IDLE : if (in1) begin  
             state <= BBUSY; 
             out1  <= 1'b1; 
           end 
           else     state <= IDLE; 
    BBUSY: if (in2) begin 
             state <= BBUSY; 
             out1 <= 1'b1; 
           end 
           else     state <= BFREE; 
endcase 
end 
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HDL FSM Implementation  
One Always Block FSM Style (Avoid This Style!) 

1. A declaration is made 
for state. Not for next. 

2. The state assignments 
do not correspond to 
the current state of the 
case statement, but 
the state that case 
statement is 
transitioning to.  
This is error prone (but 
it does work if coded 
correctly). 

parameter [1:0]  
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 
reg [1:0] state; 
always @(posedge clk or negedge rst_n) 
if (!rst_n) begin  
  state <= IDLE; 
  out1  <= 1'b0; 
end  
else begin  
  state <= 2'bx;  out1 <= 1'b0; 
  case (state) 
    IDLE : if (in1) begin  
             state <= BBUSY; 
             out1  <= 1'b1; 
           end 
           else     state <= IDLE; 
    BBUSY: if (in2) begin 
             state <= BBUSY; 
             out1 <= 1'b1; 
           end 
           else     state <= BFREE; 
endcase 
end 
 

1 

2 
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HDL FSM Implementation  
One Always Block FSM Style (Avoid This Style!) 

3. There is just one sequential 
always block, coded using 
nonblocking assignments. 

4. All outputs will be 
registered (unless the 
outputs are placed into a 
separate combinational 
always block or assigned 
using continuous 
assignments).  
No asynchronous Mealy 
outputs can be generated 
from a single synchronous 
always block. 

parameter [1:0]  
IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 
reg [1:0] state; 
always @(posedge clk or negedge rst_n) 
if (!rst_n) begin  
  state <= IDLE; 
  out1  <= 1'b0; 
end  
else begin  
  state <= 2'bx;  out1 <= 1'b0; 
  case (state) 
    IDLE : if (in1) begin  
             state <= BBUSY; 
             out1  <= 1'b1; 
           end 
           else     state <= IDLE; 
    BBUSY: if (in2) begin 
             state <= BBUSY; 
             out1 <= 1'b1; 
           end 
           else     state <= BFREE; 
endcase 
end 
 

3 

4 
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HDL FSM Implementation  
Onehot FSM Coding Style (Good Style) 

parameter [1:0]  IDLE=0, BBUSY=1,BFREE=2; 
reg [2:0] state, next; 
 
always @(posedge clk or negedge rst_n) 
if (!rst_n) state <= 3’b001; 
else        state <= next; 
 
always @(state or in1 or in2) begin 
next = 3’b000;  out1 = 1'b0; 
case (1’b1) //ambit synthesis case full, parallel 
  state[IDLE] : if (in1) next[BBUSY] = 1’b1; 
                else     next[IDLE]  = 1’b1; 
  state[BBUSY]: begin 
                  out1 = 1'b1; 
                  if (in2) next[BBUSY] = 1’b1; 
                  else     next[BFREE] = 1’b1; 
                end 
  //... 
endcase 
end 

Efficient (small and 
fast) Onehot state 
machines can be coded 
using an inverse case 
statement 
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HDL FSM Implementation  
Onehot FSM Coding Style (Good Style) 

parameter [1:0]  IDLE=0, BBUSY=1, BFREE=2; 

reg [2:0] state, next; 

 

always @(posedge clk or negedge rst_n) 

if (!rst_n) state <= 3’b001; 

else        state <= next; 

 

always @(state or in1 or in2) begin 

next = 3’b000;  out1 = 1'b0; 

case (1’b1) //ambit synthesis case full, parallel 

  state[IDLE] : if (in1) next[BBUSY] = 1’b1; 

                else     next[IDLE]  = 1’b1; 

  state[BBUSY]: begin 

                  out1 = 1'b1; 

                  if (in2) next[BBUSY] = 1’b1; 

                  else     next[BFREE] = 1’b1; 

                end 

  //... 

endcase 

end 

1. Index into the 
state register, not 
state encodings 

2. Onehot requires 
larger declarations 

3. State reset, set to 
1 the IDLE bit 

4. Next state 
assignment must 
make all-0's 

 

1 
2 

3 

4 
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HDL FSM Implementation  
Onehot FSM Coding Style (Good Style) 

parameter [1:0]  IDLE=0, BBUSY=1, BFREE=2; 

reg [2:0] state, next; 

 

always @(posedge clk or negedge rst_n) 

if (!rst_n) state <= 3’b001; 

else        state <= next; 

 

always @(state or in1 or in2) begin 

next = 3’b000;  out1 = 1'b0; 

case (1’b1) //ambit synthesis case full, parallel 

  state[IDLE] : if (in1) next[BBUSY] = 1’b1; 

                else     next[IDLE]  = 1’b1; 

  state[BBUSY]: begin 

                  out1 = 1'b1; 

                  if (in2) next[BBUSY] = 1’b1; 

                  else     next[BFREE] = 1’b1; 

                end 

  //... 

endcase 

end 

1. Inverse case 
statement usage 

2. Case branch check 
state values 

3. Added “full” and 
parallel case 
pragmas 

4. Only the next 
state bit 

 

1 

2 

3 
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Full-Parallel Case 

From: 

Verilog: Frequently Asked 
Questions: Language, 
Applications and Extensions 

Shivakumar S. Chonnad, 
Needamangalam B. 
Balachander  

ISBN: 1441919864 
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HDL FSM Implementation  
Registered FSM Outputs (Good Style) 

• Registering the outputs of an 
FSM design 

– Insures that the outputs are 
glitch-free and frequently  

– Improves synthesis results by 
standardizing the output and 
input delay constraints of 
synthesized modules  

output reg out1;  

parameter [1:0] IDLE=2'b00, BBUSY=2'b01,BFREE=2'b10; 

reg [1:0] state, next; 

always @(posedge clk or negedge rst_n) 

if (!rst_n) state <= IDLE; 

else        state <= next; 

always @(state or in1 or in2) begin 

next = 2'bx;  

case (state) 

  IDLE : if (in1) next = BBUSY; 

         else     next = IDLE; 

  BBUSY: if (in2) next = BBUSY; 

         else     next = BFREE; 

endcase 

end 

always @(posedge clk or negedge rst_n) 

if (!rst_n) out1  <= 1'b0; 

else begin 

  out1  <= 1'b0; 

  case (next) 

    IDLE, BFREE: ; // default outputs 

    BBUSY, BWAIT: out1 <= 1'b1; 

  endcase 

end 
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