
Introduction to Vibrations
 Free Response Part 1: Spring-mass systems

Vibration is a sub-discipline of dynamics that deals with repetitive motions. Some familiar 

examples are the vibrations of automobiles, guitar strings, cell phones and pendulums. 

Vibrations can be unwanted or wanted. For example, vibrations in automobiles and aircrafts 

are undesired because they can result in discomfort to the passengers and structural damage 

due to fatigue. However, in the case of music and communication, vibrations are extremely 

useful. Vibrations are modeled mathematically using fundamental principles and analyzed 

using results from calculus and differential equations. In this module, we will only consider 

single-degree-of-freedom models where there is only one displacement coordinate. We begin 

by studying the motion of a spring-mass system and, in the next module, continue by 

discussing a spring-mass system with damping. 

Spring-Mass Model

Consider a mass attached to a massless spring on a frictionless surface, as shown below. 

Fig. 1: Spring-mass system

Here,  is the is the stiffness of the spring (also known as the spring constant) and  is the 

mass of the object. The force    applied by the spring, which "tries" to restore the spring to 



an unstretched state, is given by 

... Eq. (1)

where  is the displacement measured from the unstretched position of the spring. Summing

the forces on the mass in the -direction yields

or     

... Eq. (2)

where  is the acceleration. This equation is a second order linear homogeneous 

ordinary differential equation with constant coefficients and can be solved by assuming that 

the solution is of the form

 
... Eq. (3)

where  and  are two unknown non-zero constants. Differentiating  twice yields

... Eq. (4)
and 

... Eq. (5)

Substituting Eqs. (4) and (5) into Eq. (2) yields

... Eq. (6)

Since  and  are non-zero constants, this equation reduces to

... Eq. (7)

This equation is also known as the characteristic equation. Solving for  gives



... Eq. (8)

where . This shows that there are two solutions for the differential equation

     and     
... Eqs. (9a) and (9b)

Since Eq. (2) is linear, the solution of the equation can be written as a linear combination of 

these two solutions:

... Eq. (10)

Using Euler's identity ( ), we can rewrite this as

... Eq. (11)

where  and  are constants that can be determined using the initial conditions of the mass. 

This equation shows that the solution to the differential equation that describes the motion 

of the mass is sinusoidal with a frequency (in rad/s) equal to . This frequency is called

the natural frequency of the system and is represented by . It is important to note that this 

frequency is independent of the initial conditions as long as  and  are constant. Eq. (11) 

can now be rewritten as

... Eq. (12)

The constants  and  are dependant on the initial conditions. With the following equations 

for the initial displacement and velocity

... Eq. (13)



and

... Eq. (14)

we can obtain the following equations for the two unknowns  and 

... Eq. (15)
and

... Eq. (16)

While using Eq. (12) it is important to ensure that the phase angle calculated using Eq. (16) 

corresponds to the correct quadrant. For example if  is positive and  is negative, then  

lies in the second quadrant. However, most software and calculators will return a value that 

lies between - /2 and /2, so it may be required to correct the angle or use a function that 

takes the signs of the numerator and denominator into account. 

By differentiating Eq. (12) we get the following equation for the velocity:

... Eq. (17)

And by differentiating it again we get the following equation for the acceleration:

... Eq. (18)

Eq. (17) shows that the velocity, , is 90  or /2 radians out of phase with the position 

[using the identity ] and Eq. (18) shows that the acceleration, , is 



180 degrees out of phase with the position. 

Example 1: Overlay of position, velocity and acceleration for a spring-
mass system

The mass of a spring-mass system is 1 kg and the stiffness of the spring is 2 N/m. If the 

mass is displaced such that the spring is extended by 0.1m (positive x-direction) and is 

given an initial velocity of 0.1m/s towards its equilibrium position (negative x-direction), 

plot the displacement, velocity and acceleration of the mass for 10 seconds. 

[kg]

[N/m
]

[m]

[m/s
]

 = 
[rad
/s]

Using Eqs. (15) and (16) we get

and

 = 
at 5 digits

Since the numerator of the argument of the inverse tan function is positive and the 

denominator is negative, the required angle should be in the second quadrant. Hence Pi 

rad must be added to this angle. 



 = 
at 5 digits

2.1863

The following are the three functions for the displacement, velocity and acceleration of 
the mass. 

The following plot shows an overlay of the displacement, velocity and acceleration of the 

mass. No unit has been specified on the y-axis because all three curves have different 

units as shown in the legend. 



This plot allows us to observe the phase differences between the three curves. When the

displacement reaches its peak, the velocity is zero and the acceleration is minimum (that 

is, of maximum magnitude in the negative direction). 

Example 2: Amplitude Surface-Plot

Make a three-dimensional surface plot of the amplitude of an undamped oscillator versus

the initial conditions,  and  < 0.2 m and -2 <  < 2 

m/s, for a system with natural frequency of 10 rad/s.

[rad/s
]

Using Eq. (15)



This plot allows us to see the resulting amplitude of the displacement for different 

combinations of initial conditions. 

For the following plot, the initial conditions and parameters of a spring-mass system can be 

varied using the gauges to see the effect on the displacement, velocity and acceleration of 

the mass. 



Spring-mass analogs

Any other system that results in a differential equation of motion in the same form as Eq. 

(2)  will show a response similar to the response of a spring-mass system. The following 

are a few examples of such single degree of freedom systems.

Table 1: Examples of systems analogous to a spring-mass system

Fig. 2: Shaft and disk system Fig. 3: Simple pendulum

Spring and Mass Shaft and disk Simple pendulum



There are also many other such cases. For example, if an ideal charged capacitor is 

connected in parallel with an ideal inductor, the charge will oscillate with a natural 

frequency  (where  is the inductance and  is the capacitance). This is why

the spring-mass system model is a very commonly used system to study vibrations and 

also why many systems are simplified and modeled using equivalent springs and 

masses. 

The effect of gravity for a hanging spring-mass system

An interesting question that arises while analyzing spring-mass systems is how does 

gravity effect the response of the system if the mass is hanging?

The answer is that it does not effect the equation for the displacement, the velocity and 

the acceleration. It only leads to a change in the mean position about which the vibration 

takes place. For the spring-mass system discussed above, the mean position about 

which the vibration takes place is the unstretched position of the spring. In the case of a 

hanging mass, the vibration takes place about the position of the mass when it is in static

equilibrium. 

Consider the same spring and mass 

described in the previous sections 

suspended vertically, as shown in Fig. 4. If

 measures the vertical displacement with 

respect to the unstretched position, let us 

define another variable  which measures 

the displacement with respect to the 

stretched equilibrium position such that, 

... Eq. (19)



In the stretched equilibrium position, since 

the weight of the mass is supported by the

spring, we get

... Eq. (20)

Next, taking the sum of the forces in the 

vertical direction we get

... Eq. (21)

Using Eq. (20) we can write this as

=0
... Eq. (22)

By combining this equation with Eq. (19) 
we get

 =0
... Eq. (23)

Fig. 4: Hanging spring-mass: Unstretched and 
stretched positions.

and, finally, since  (differentiating both sides of Eq. (19) twice with respect to 

time), we get

... Eq. (24)



which is in the same form as Eq. (2). Hence the vibration about the stretched equilibrium 

position will be identical to the vibration of a horizontal spring-mass about the 

unstretched position (ignoring friction of course). 

An Example with MapleSim

Example 3: Spring-Pendulum 

Problem Statement: A component of a machine 

is modeled as a pendulum connected to a spring 

(as shown in Fig. 5). Derive the equation of 

motion and find the natural frequency of the 

system. Also, find the amplitude of the angular 

velocity if the initial angular displacement is 0.175

rad (approx. 10 ) measured from the vertical and 

if there is no initial angular velocity.  

The mass of the pendulum is 2kg, the length of 

the pendulum is 0.5m and the stiffness of the 

spring is 20 N/m. Assume that the rod of the 

pendulum has no mass. Fig. 5: Spring-pendulum example

Analytical Solution

Data:

[kg]

[m]

[N/m
]



[m/s2

]

[rad]

[rad/
s]

Solution:

Since the angle is small, we will assume that the spring stretches and compresses in 

the horizontal direction only. Therefore, the force due to the spring can be written as

Taking the sum of the moments of force about the pivot we get

 

where  is the moment of inertia of the pendulum. This equation can be rewritten as

or

:

Comparing this equation to the form of Eq. (2) we can conclude that the natural 

frequency of the system is

 = 

Therefore, the natural frequency of the system is 4.70 rad/s.

The amplitude of the angular velocity can be found using Eqs. (14) and (15). Since 

the initial velocity is 0, the amplitude of the angular displacement is the initial angular 

displacement and the amplitude of the angular velocity is



 = 

Therefore, the amplitude of the angular velocity is 0.82 rad/s. 

MapleSim Simulation

Constructing the model

Step1: Insert Components

Drag the following components into the workspace: 

Table 2: Components and locations 

Component Location

(2 required)

Multibody >
Bodies and 

Frames

Multibody >
Joints and 

Motions

(2 required)

Multibody >
Bodies and 

Frames

Multibody >
Bodies and 

Frames



Multibody >
Visualization

Multibody >
Visualization

Multibody >
Visualization

Multibody >
Forces and 

Moments

Multibody >
Visualization

Step 2: Connect the components

Connect the components as shown in the following diagram (the dashed boxes are

not part of the model, they have been drawn on top to help make it clear what the 

different components are for). 



3. 3. 

1. 1. 

1. 1. 

2. 2. 

Fig. 6: Component diagram

Step 3: Set up the Pendulum

Click the Revolute component, enter 0.175 rad for the initial angle ( ) and 

select Strictly Enforce in the drop down menu for the initial conditions ( ).

The axis of rotation ( ) should be left as the default axis [0,0,1]. 

Enter [0,-0.25,0] for the x,y,z offset ( ) of both the Rigid Body Frames.

Enter 2 kg for the mass ( ) of the rigid body frame. 

Step 4: Set up the Spring

Click the Fixed Frame component connected to the TSDA (FF1 in the 



1. 1. 

2. 2. 

2. 2. 

2. 2. 

3. 3. 

1. 1. 

3. 3. 

1. 1. 

diagram) and enter [-0.25,-0.25,0] for the x,y,z offset ( ).

Click the TSDA component and enter 20 N/m for the spring constant ( ). 

Also, enter 0.25 m for the unstretched length ( ) to correspond to the location 

of the Fixed Frame. Leave the damping constant ( ) as 0.

Step 5: Set up the visualization (Inserting the Visualization components is 
optional)

Click the Cylindrical Geometry component and enter a value around 0.01 m 

for the radius.

Click the Spherical Geometry component and enter a value around 0.05 m 

for the radius. 

Click the Spring Geometry component, enter a number around 10 for the 

number of windings, enter a value around 0.02 m for radius1 and enter a 

value around 0.005 m for radius2. 

Step 6: Run the Simulation

Click the Probe attached to the Revolute joint and select Angle, Speed and

Acceleration to obtain plots of the angular position, speed and acceleration 

vs. time. 

In the Settings tab, change the Simulation duration to around 2-4 s to make 

the plots that are generated easier to read. 

Run the simulation. 

The following video shows the visualization of the simulation.



1. 1. 

Video Player

Video 1: Simulation visualization
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