

• H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley Publishing Company.

o J. A. Davis, J. D. Meindl, Interconnect technology and design for gigascale integration, Kluwer. Academic Publishers.

• Nurmi, J.; Tenhunen, H.; Isoaho, J.; Jantsch, A., Interconnect-Centric Design for Advanced SOC and NOC, Springer.

o C.-K. Cheng, J. Lillis, S. Lin, N. Chang, Interconnect Analysis and Synthesis, Wiley Inter-Science.

o Hall, S.H., G. W. Hall and J. McCall, High-Speed Digital System Design, Wiley-Interscience.

o Selected research papers from the literature

3

		S	hort Te	erm					
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Number of metal levels	11	11	11	12	12	12	12	12	13
Number of optional levels – ground planes/capacitors	4	4	4	4	4	4	4	4	4
Total interconnect length (m/cm ²) – Metal 1 and five intermediate levels, active wiring only [1]	1019	1212	1439	1712	2000	2222	2500	2857	3125
FITs/m length/cm ² × 10^{-3} excluding global levels [2]	4.9	4.1	3.5	2.9	2.5	2.3	2	1.8	1.6
J _{max} (A/cm ²) – intermediate wire (at 105°C)	8.91E+05	1.37E+06	2.08E+06	3.08E+06	3.88E+06	5.15E+06	6.18E+06	6.46E+06	8.08E+06
Metal 1 wiring pitch (nm)	180	156	136	118	104	90	80	72	64
Metal 1 A/R (for Cu)	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.9
			Ma	mufacturabi 1		acturable so Interim so	olutions are olutions are	known known	•

ITRS Interconnect Technology Requirement

	Lo	ng Terr	n				
Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM ½ Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 ½ Pitch (nm)(contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	б	б
Number of metal levels	13	13	13	14	14	14	14
Number of optional levels – ground planes/capacitors	4	4	4	4	4	4	4
Total interconnect length (m/cm ²) – Metal 1 and five intermediate levels, active wiring only [1]	3571	4000	4545	5000	5555	6250	7143
FITs/m length/cm ² × 10^{-3} excluding global levels [2]	1.4	1.3	1.1	1	0.9	0.8	0.7
J _{max} (A/cm ²) – intermediate wire (at 105°C)	1.06E+07	1.14E+07	1.47E+07	1.54E+07	1.80E+07	2.23E+07	2.74E+07
Metal 1 wiring pitch (nm)	56	50	44	40	36	32	28
Metal 1 A/R (for Cu)	1.9	1.9	2	2	2	2	2
		Manufi		utions exist, d Manufactura Inten facturable sc	ble solutions im solutions	are known are known	*
							23

		IIRS	Roa	lmap		
Year	2003	2004	2005	2008	2011	2014
Parameter	2000	2001	2000	2000	2011	2011
Technology(nm)	120	110	100	70	50	35
# of Transistors	95.2M	145M	190M	539M	1523M	4308M
Clock Frequency	1724 MHz	1857 MHz	2000 MHz	2500 MHz	3000 MHz	3600 MHz
Chip Area (mm ²)	372	372	408	468	536	615
Wiring Levels	8	8	8-9	9	9-10	10
Pitch(L/I/G)(nm)	330/420/690	295/375/620	265/340/560	185/240/390	130/165/275	95/115/190
A/R (L/I/G)	1.6/2.2/2.8	1.6/2.3/2.8	1.7/2.4/2.8	1.9/2.5/2.9	2.1/2.7/3.0	2.3/2.9/3.1
Dielectric Const.	2.2-2.7	2.2-2.7	1.6-2.2	1.5	<1.5	<1.5
	•	•	•	•	•	•

Int	ercon	nect A	rchite	CTURE (Intel 130nm)
vias	6LM 130nm shown (conr ലൂണ്ടാം സ്ഥാ ചാന്ടിം സ്ഥാ	necting layer	s) Hect ratio	
Iralsfron Roly-Sifean Mistell 1 Mistell 2, 3 Mistell 4 Mistell 5 Mistell 6	SC4 SSC SSC 44S 7SC 1120 1204	450 160 280 360 570 900 1200	1.6 1.6 1.5 1.6 2.0	P. Bai et al, IEDM 2004
				Real wiring cross section photograph
				29

Modern processes oft Cu atoms diffuse	on, most wires were aluminum ten use copper into silicon and damage FETs led by a diffusion barrier	
Metal	Bulk resistivity (mΩ*cm)	
Silver (Ag)	1.6	
Copper (Cu)	1.7	
Gold (Au)	2.2	
Aluminum (Al)	2.8	
Tungsten (W)	5.3	
Molybdenum (Mo)	5.3	
		-

Interconnect Scaling Scenario						
Problem with Intercon	nects?					
	Tech	inology gener	ation			
	1um	100nm	35nm			
MOSFET switching delay (ps)	~20	~5	~2.5			
Interconnect <i>RC</i> response time, L=1mm (ps)	~1	~30	~250			
MOSFET switching energy (fJ)	~30	~2	~0.1			
Interconnect switching energy (fJ)	~40	~10	~3			
Calculations made by c bulk resistivity of		9				
			33			

Inductance Figure of Merit · Should we model wires as full Length (am) transmission line? (no) 10,00 Unless we intentionally make inductance 1. Industance is not important: very wide wires imperiaridescense of $2\sqrt{2C}$. Heire Koncellan $1 \otimes 2$ Or we are designing the clock grid 1.00 etanet k Transmission line effects can be 1 Ma Inpotenî ignored if the wire is: Very short, when signal transition is slower than 0.10 2. Industance in collimportant Accesses in the large transition firms of the lagst style. the roundtrip delay QØ1 Q.II 0.10 1.0010.00 Very long, when it becomes too lossy ියාන්රික විශ්ය (පත්) (resistance is more than 2Zo) $rL > 2\sqrt{l/c}$ 38

<text><text><text><text><text><text><text><text><text>

CNT properties	
 Electrical: Ballistic conduction over distances of order 1 micron (~10⁻⁴ Ω·cm). 'Metals' with low resistivities, Semiconductors with high mobilities Conductivity a strong function of adsorbates or reactants. 	
Mechanical: • High elastic modulus (high stiffness) (~1 to 5 TPa vs. ~0.2 for steel). • Very high tensile strength (~10 to 100 GPa vs. ~1 for steel).	
Thermal: • High room temperature thermal conductivity (~2000W/mK vs. ~400W/mK for copper).	
Electrical Stability: • Maximum current density (10 ⁹ A/cm ² vs. <10 ⁷ A/cm ² for Cu).	
Chemical Stability: • C binding energy in graphene ~12 eV vs. Cu at a Cu surface ~ 4eV	
54	