Introduction to VLSI
 Interconnect Design

Course Objective

- We will focus on challenges facing Interconnect scaling and will seek solutions and new opportunities
- There will be no design project, while some simulations will be needed for homework
-- Spice, FemLab, MATLAB
- There will be a term paper in this course (to be done individually)
- Extra credit for any term paper that contains new idea!
- Most of the material (books, papers) needed for this course will be provided
- Lecture Notes: combination of slides and discussions
-- Slides will be posted on the class webpage
-- http://ee.sharif.edu/~sarvari/

Required Text/Reference Material

- H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley Publishing Company.
- J. A. Davis, J. D. Meindl, Interconnect technology and design for gigascale integration, Kluwer. Academic Publishers.
- Nurmi, J.; Tenhunen, H.; Isoaho, J.; Jantsch, A., InterconnectCentric Design for Advanced SOC and NOC, Springer.
- C.-K. Cheng, J. Lillis, S. Lin, N. Chang, Interconnect Analysis and Synthesis, Wiley Inter-Science.
- Hall, S.H., G. W. Hall and J. McCall, High-Speed Digital System Design, Wiley-Interscience.
- Selected research papers from the literature

Trends in Semiconductor/CMOS Market

Semiconductors have become increasingly more important part of world economy

CMOS has become the pervasive technology

```
In 2000: 0.7% of GWP
```

In 2000: 0.7% of GWP
Today: 5% of GWP

```
    Today: 5% of GWP
```


Intriguing ... but Challenging

Challenges:

- The NRE cost of IC manufacturing (about $2 M \$$ for mask)
- Deep-submicron effects
- Complexity (100 million transistors)
- Power and Energy
- Reliability and Robustness
- Beyond Silicon!

Interconnect?!

2 Major problems facing Moore's law:

- Power dissipation
- Interconnects

IBM Cu technology

Connectivity and Complexity

Challenge of System Complexity

NoC Network-on-a-Chip

Traditional communication techniques:
point-to-point connection, busses
The wires occupy much of the area of the chip, and in nanometer CMOS technology, interconnects dominate both performance and dynamic power dissipation, as signal propagation in wires across the chip requires multiple clock cycles

NoC is similar to a modern telecommunications network, using digital bit-packet switching over multiplexed links. An NoC is constructed from multiple point-to-point data links interconnected by switches (a.k.a. routers).
NoC links can reduce the complexity of designing wires for predictable speed, power, noise, reliability, etc

Moore's Law

Moore's Law, the empirical observation that the transistor density of integrated circuits doubles every 2 years.

Moore: Moore's law has been the name given to everything that changes exponentially. I say, if Gore invented the Internet, I invented the exponential.

Moore's Law in Perspective

The number of transistors shipped in 2003 had reached about 10^{18}. That's about 100 times the number of ants estimated to be in the world.

A chip-making tool levitated images within a tolerance of $1 / 10,000$ the thickness of a human hair - a feat equivalent to driving a car straight for 1000 km while deviating less than one 3.8 cm .

It would take you about 25,000 years to turn a light switch on and off 1.5 trillion times, but Intel has developed transistors that can switch on and off that many times each second..

Moore's Law in Perspective

, to such n. als connected to e or automobiles, a uipment. Tb elec
he feasible todo

- in the pr

In 1978, a flight between New York and Paris cost around $\$ 900$ and took 7 hours. If the principles of Moore's Law had been applied to the airline industry the way they have to the semiconductor industry, that flight would now cost about a penny and take less than 1 sec .

The price of a transistor is now about the same as that of one printed newspaper character.

Intel has developed transistors so small that about 200 million of them could fit on the head of each of these pins.

Intel μ P Trends

Intel 4004: first single-chip microprocessor

November 15, 1971
Clock rate 740 kHz

- Bus Width 4 bits (multiplexed
address/data due to limited pins)
PMOS
2,300 Transistors at $10 \mu \mathrm{~m}$
Addressable Memory 640
bytes
Program Memory 4 KB (4 KB)

Moore's Law \& Die Size

Moore was not always accurate
Projected Wafer in 2000, circa 1975
Die size has grown by 14% to satisfy Moor's law, BUT the growth is almost stopped because of manufacturing and cost issues

The die size of the processor refers to its physical surface area size on the wafer, the first generation Pentium used a 0.8 micron circuit size, and required $296 \mathrm{~mm}^{2}$ per chip. The second generation chip had the circuit size reduced to 0.6 microns, and the die size dropped by a full 50% to $148 \mathrm{~mm}^{2}!!!$

Trends in Clock Frequency

Lead microprocessors frequency doubles every 2 year, BUT the growth is slower because of power dissipation issue

MOS in 65 nm

Distance between Si atoms $=5.43{ }^{\circ} \mathrm{A}$
\# of atoms in channel = $35 \mathrm{~nm} / 0.543 \mathrm{~nm}=64$ Atoms!

Problem: Uncertainty in transistor behavior and difficult to control variation! Randomly placed dopants in channel

Gate Insulator Thickness in 65nm

Problem: Electrons can easily jump over
the 5 atomic layers!
This is known as leakage current

Power Density Problem

Power density too high to keep junction at low temperature.
Power reaching limits of air cooling.

Power Density Problem

Power = 115 Watts
Supply Voltage $=1.2 \mathrm{~V}$
Supply Current $=115 \mathrm{~W} / 1.2 \mathrm{~V}$

$$
=96 \text { Amps! }
$$

Note:
Fuses used for household appliances $=15$ to 40 Amps

Problem:
Current density becomes a
serious problem!
This is known as
electromigration

Power = 115 Watts
Chip Area $=2.2 \mathrm{~cm}^{2}$
Heat Flux $=115 \mathrm{~W} / 2.2 \mathrm{~cm}^{2}$

$$
=50 \mathrm{~W} / \mathrm{cm}^{2}!
$$

Notes:
Heat flux in iron $=0.2 \mathrm{~W} / \mathrm{cm}^{2}$
Heat flux in frying pan $=10 \mathrm{~W} / \mathrm{cm}^{2}$
Problem:
Heat flux is another serious issue!

ITRS

The International Technology Roadmap for Semiconductors is sponsored by the five leading chip manufacturing regions in the world: Europe, Japan, Korea, Taiwan, and the United States

http://www.itrs.net/reports.htm

Wire Geometry

- Pitch = w + s
- Aspect ratio: AR = t/w

Old processes had AR << 1
Modern processes have AR ≈ 2
Pack in many skinny wires

ITRS Interconnect Technology Requirement

Short Term									
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM $1 / 2$ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 1/2 Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13
Number of metal levels	11	11	11	12	12	12	12	12	13
Number of optional levels - ground planes/capacitors	4	4	4	4	4	4	4	4	4
Total interconnect length $\left(\mathbf{m} / \mathrm{cm}^{2}\right)$ Metal 1 and five intermediate levels, active wiring only [1]	1019	1212	1439	1712	2000	2222	2500	2857	3125
FITs/m length $/ \mathrm{cm}^{2} \times 10^{-3}$ excluding global levels [2]	4.9	4.1	3.5	2.9	2.5	2.3	2	1.8	1.6
$\mathrm{J}_{\max }\left(\mathrm{A} / \mathrm{cm}^{2}\right)$-intermediate wire (at $105^{\circ} \mathrm{C}$)	$8.91 \mathrm{E}+05$	1.37E+06	$2.08 \mathrm{E}+06$	$3.08 \mathrm{E}+06$	3.88E+06	5.15E+06	6.18E+06	6.46E+06	8.08E+06
Metal 1 wiring pitch (nm)	180	156	136	118	104	90	80	72	64
Metal 1 A/R (for Cu)	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.9
Manufacturable solutions exist, and are being optimized Manufacturable solutions are known Interim solutions are known Manufacturable solutions are NOT known									
								22	

ITRS Interconnect Technology Requirement

Long Term

Year of Production	2014	2015	2016	2017	2018	2019	2020
DRAM 1/2 Pitch (nm) (contacted)	28	25	22	20	18	16	14
MPU/ASIC Metal 1 1/2 Pitch (nm)(contacted)	28	25	22	20	18	16	14
MPU Physical Gate Length (nm)	11	10	9	8	7	6	6
Number of metal levels	13	13	13	14	14	14	14
Number of optional levels - ground planes/capacitors	4	4	4	4	4	4	4
Total interconnect length (m/cm ${ }^{2}$) - Metal 1 and five intermediate levels, active wiring only [1]	3571	4000	4545	5000	5555	6250	7143
FITs/m length/cm ${ }^{2} \times 10^{-3}$ excluding global levels [2]	1.4	1.3	1.1	1	0.9	0.8	0.7
$\mathrm{~J}_{\text {max }}\left(\mathrm{A} / \mathrm{cm}^{2}\right.$)- intermediate wire (at 105${ }^{\circ} \mathrm{C}$)	$1.06 \mathrm{E}+07$	$1.14 \mathrm{E}+07$	$1.47 \mathrm{E}+07$	$1.54 \mathrm{E}+07$	$1.80 \mathrm{E}+07$	$2.23 \mathrm{E}+07$	$2.74 \mathrm{E}+07$
Metal 1 wiring pitch (nm)	56	50	44	40	36	32	28
Metal 1 A/R (for Cu)	1.9	1.9	2	2	2	2	2

NTRS Roadmap

Year	2003	2004	2005	2008	2011	2014
Technology(nm)	120	110	100	70	50	35
\# of Transistors	95.2 M	145 M	190 M	539 M	1523 M	4308 M
Clock Frequency	1724 MHz	1857 MHz	2000 MHz	2500 MHz	3000 MHz	3600 MHz
Chip Area (mm²)	372	372	408	468	536	615
Wiring Levels	8	8	$8-9$	9	$9-10$	10
Pitch(L///G)(nm)	$330 / 420 / 690$	$295 / 375 / 620$	$265 / 340 / 560$	$185 / 240 / 390$	$130 / 165 / 275$	$95 / 115 / 190$
A/R (L//G)	$1.6 / 2.2 / 2.8$	$1.6 / 2.3 / 2.8$	$1.7 / 2.4 / 2.8$	$1.9 / 2.5 / 2.9$	$2.1 / 2.7 / 3.0$	$2.3 / 2.9 / 3.1$
Dielectric Const.	$2.2-2.7$	$2.2-2.7$	$1.6-2.2$	1.5	<1.5	<1.5

MOS Device Scaling

- Decreasing device sizes reduce parasitic loads making for faster transitions
- Increase variations between devices and across the die
- Shrinking supply voltages increase noise sensitivity and reduce margins
- System performance is limited by noise and clock skew

MOS Device Scaling

- Scaling induces increase in magnitude of device to device variations
- Note particularly large increase in
Leff => MOS current

Vdd and Vt changes

Interconnect Architecture

Metal stack over Silicon
Reverse-scaled global interconnects:

- Growing interconnect complexity
- Performance critical global interconnects

Interconnect Architecture ${ }_{\text {（mnol } 130 \mathrm{~mm})}$

Intel 6LM 130nm process with
vias shown（connecting layers）

TATGTM			
Tनmeve	Phatifimil	Thifler inmil	Aตmrentanti
feolbinm	ร¢ㅐ	44^{2}	
Pety－silisex	586	國	
MEx｜［	55^{50}	25000	1］$\sqrt{6}$
Tistin ${ }^{2}$	448	365	1］${ }^{6}$
	路通	578	1 1念
Sexmis	1920	900	$1{ }^{1}$
Mexin	12004．	［900	900

Real wiring cross section photograph

Choice of Metal

- Until 180 nm generation, most wires were aluminum
- Modern processes often use copper

Cu atoms diffuse into silicon and damage FETs Must be surrounded by a diffusion barrier

Metal	Bulk resistivity $\left(\mathrm{m} \Omega^{*} \mathrm{~cm}\right)$
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

Interconnects vs. Gate Delay

Delay for Metal 1 and global wiring vs feature size

Interconnect Scaling Scenario

Problem with Interconnects?

	Technology generation		
	14	100nin	35 nm
MOSFEL swiching delay (ps)	20	5	2.5
Interconnect RCO response time $=$ L=mm (ps)	-	-30	-200
MOSFEr swithinc eneroy (4)	-30	2	0.1
Interconnect swichino eneroy (t)	40	10	-3

Calculations made by considering bulk resistivity of Cu

Copper Resistivity

Resistivity of Cu increases with scaling

Interconnect Resistance

TiN

Barrier/Liner is usually another metal preventing Copper to diffuse into Si or SiO_{2}

- Diffusion barrier reduces wire's cross-section
- Cu over polish (dishing) reduces it's thickness

Capacitance Extraction

- Extraction of interconnect capacitance in modern VLSI technology is complicated because of

Non-homogenous dielectric (etch stop, barrier liner, etc.)
Complex pattern of neighboring interconnects (need 3D modeling)

- Sometimes, the overhead layers increases the effective K value

Overhead layers are hard to scale but needs to be controlled

Inductance Figure of Merit

- Should we model wires as full transmission line? (no)
Unless we intentionally make inductance important: very wide wires
Or we are designing the clock grid
- Transmission line effects can be ignored if the wire is:
Very short, when signal transition is slower than the roundtrip delay

Very long, when it becomes too lossy (resistance is more than 2Zo)

Problems of Inductance Modeling

Extraction of on-chip inductance is very challenging

- Hard to define return path (unless we use partial inductance technique)
- Require a huge amount of netlist data (10 x more than $R C$ netlist data size)

Simulation of on-chip inductance is also challenging

- Requires a lot more computation for delay calculation
- Available techniques have limited accuracy for large circuit structures

Fortunately, it is not required to include inductance for whole chip analysis

Rent's Rule

Rent's Rule: Underlying assumption for system-level modeling

$$
\mathrm{T}=\mathrm{kN} \mathrm{~N}^{\mathrm{p}}
$$

k and p are empirical constants such that:
k = average \# of pins
$p=$ connectivity factor

Rent's Rule

$$
P=4
$$

$$
p \sqsupset 0
$$

	3	0	
¢		0	
	4	0	
3	\%	-	N

il	3	0
		0
9	4	8

 ($11=$ k k
 (III=1

Delay Estimation Techniques

SPICE Simulation

- Very slow - not practical for chip level analysis
- Good for specific nets such as clocks or critical path

Asymptotic Waveform Evaluation (AWE)

- Is an industry standard for delay estimation
- uses moment matching to determine a set of low frequency dominant poles that approximate the transient response

Elmore Delay Analysis

- Uses only the first moment (dominant pole)
- Can be used for first order approximation in a complicated $R C$ tree

Elmore Delay in RC Ladder

Delay of Long Interconnect

- Delay of gate driving a long wire governed by RC time constants

- Queduade ir tuta wie lergit
- For long wires, this delay quickly becomes untenable In a 65 nm process, wire delay looks like $2-3^{*}$ (gate delay)/mm2

Delay Reduction in Long Wires

- For slow long wires we use repeaters

Gain stages that break up the wire and "refresh" the signal Inverters are the simplest gain stage

- Delay of a repeated line is linear in total length, not quadratic Delay is the geometric mean of the wire delay and the gate delay $\mathrm{D}=$ constant * sqrt(gate_delay * Rw Cw)

Noise: Power Supply

Resistive Voltage Drop and Simultaneous Switching Noise
Common Mode Supply Noise and Differential-Mode Supply Noise $\Delta \mathrm{V}_{\mathrm{L}}=\mathrm{L}(\mathrm{di} / \mathrm{dt}) \rightarrow$ Switching Noise (Dominant at Package Level)
$\mathrm{V}=\mathrm{IR} \rightarrow$ Very Dominant Noise for on chip power networks
Ground Bounce \rightarrow Ground noise
Power Bounce \rightarrow Noise Glitch on Power Line
When Ground Bounce and Power Bounce are in Phase (Common Mode Noise) they will not effect the local logical cells but will degrade the signaling between distant Tx and Rx .
When Ground Bounce and Power Bounce are out of phase (Differential Mode Noise), they adversely effect the local logical cells causing jitter in timing circuits.

Noise: Cross-Talk

Noise Caused by one signal, A, being coupled into another signal, B, is called Crosstalk.

Crosstalk may occur over many paths,
a) Inductive Crosstalk and Capacitive crosstalk

When the interconnects are routed close to each other, signals on the line crosstalk to each other via near field electromagnetic coupling.
b) Substrate Crosstalk

Common substrate will serve as a channel for signal coupling when Interconnects are placed far a apart. Such a noise source is called Substrate Crosstalk.
c) Power/Ground Crosstalk

Signals can effect one another via a shared power supply and ground
d) Return Signal Crosstalk

When a pair of signals share a return path that has a finite impedance, a transition on one signal induces a voltage across the shared return impedance that appears as a noise on the other signal.

Interconnect Noise

\square Wires are skinny and tall and have lots of sidewall capacitance
Aspect ratios at 2.2 now and are projected to scale up to 3-3.5 We will have to live with some coupled noise

Traditional estimates use a simple capacitive divider

But this is pessimistic, because the "victim" is usually driven, too
In reality, you must account for both victim and attacker drivers

Solution ?

To avoid cross talk noise
Prevent parallel lines
Shielding

Electromigration

Electromigration: Electrons smack into lattice, displacing atoms
Caused by unidirectional current flow
Wires with bidirectional current is "selfhealing"
Copper's MTTF is $5 x$ better than Aluminum's
$\square \quad$ Highest at vias, where the current crowds from the vias
\square Calculate max DC current, which depends on total capacitance Rule is "max current per wire cross section" (e.g., $1 \mathrm{~mA} / \mu \mathrm{m}^{2}$)

Replacing Wires?

OPTIGAL INTEREONNEGTONS FOR DICHIAL SYSTEMS

Optical interconnect

- Bandwidth
- Power
- Delay

CNT properties

Electrical:

- Ballistic conduction over distances of order 1 micron ($\sim 10^{-4} \Omega \cdot \mathrm{~cm}$).
'Metals' with low resistivities, Semiconductors with high mobilities
- Conductivity a strong function of adsorbates or reactants.

Mechanical:

- High elastic modulus (high stiffness) (~ 1 to 5 TPa vs. ~ 0.2 for steel).
- Very high tensile strength (~ 10 to 100 GPa vs. ~ 1 for steel).

Thermal:

- High room temperature thermal conductivity ($\sim 2000 \mathrm{~W} / \mathrm{mK}$ vs.
$\sim 400 \mathrm{~W} / \mathrm{mK}$ for copper).
Electrical Stability:
- Maximum current density ($10^{9} \mathrm{~A} / \mathrm{cm}^{2} \mathrm{vs} .<10^{7} \mathrm{~A} / \mathrm{cm}^{2}$ for Cu).

Chemical Stability:

- C binding energy in graphene $\sim 12 \mathrm{eV}$ vs. Cu at a Cu surface $\sim 4 \mathrm{eV}$

