Introduction to Wastewater Treatment

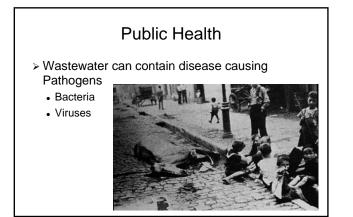
Bruce J. Lesikar Professor Texas AgriLife Extension Service

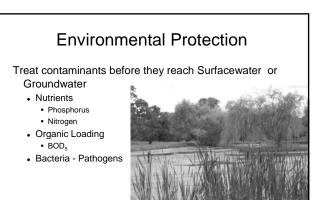
Overview

- > What is wastewater?
- > Why are we concerned about wastewater?
- The big picture.
- > Goals for wastewater treatment are evolving
- > How do we implement our infrastructure?
- Wastewater Treatment Processes The end result is based upon your design
- Existing systems need upgrades to meet new requirements: onsite and centralized options

Wastewater Infrastructure

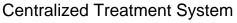
- All facilities serving people generate wastewater
- How to meet these needs in an economical manner?


- On-site
- Clustered
- Centralized collection and treatment

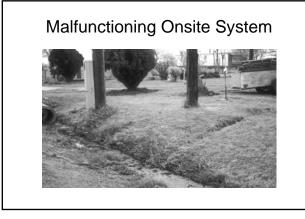


Wastewater Constituents

- Organic matter Biochemical Oxygen Demand – indicator
- Solids TSS
- FOG Fats, Oil & Grease
- Nutrients Nitrogen,
- Phosphorous
- Pathogens
- > Medications
- > Chemicals
- Metals


The Big Picture

- In order to be an effective, long-term sustainable part of the wastewater infrastructure, onsite, cluster or centralized wastewater treatment systems must be properly sited, designed, installed, operated and maintained.
- We must have professionals who can provide system management services
- > Trained professionals for all scales of infrastructure: onsite, cluster, & centralized.


Permitting Dispersal Systems

- > TCEQ, Chapter 285, 5000 gallons per day or less
 - On-site sewage facility, OSSF TCEQ
 - Septic system Public
 - On-site wastewater treatment system, OWTS National
- > TCEQ, Chapter 317, Greater than 5000 gallons per day.
- > Additional requirements for 317 Permits
 - · Potential groundwater impact due to water quality and
 - mounding potentialDetailed soil analysis
 - Detailed soil analysis
 Location of water wells within ½ mile
 - Uniformity of effluent distribution

Malfunction

Malfunctioning OSSF – An on-site sewage facility that is causing a nuisance or is not operating in compliance with the 285 OSSF regulations.

Hard Malfunction

SOFT MALFUNCTION

Nuisance

- sewage, human excreta, or other organic waste discharged or exposed in a manner that makes it a potential instrument or medium in the transmission of disease to or between persons
- an overflow from a septic tank or similar device, including surface discharge from or groundwater contamination by a component of an on-site sewage facility; or
- > a blatant discharge from an OSSF.

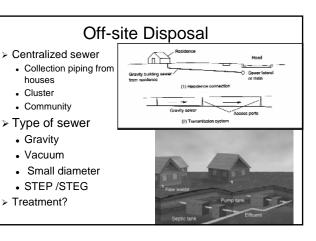
Evolution of Wastewater Management

Evolution of wastewater treatment goals

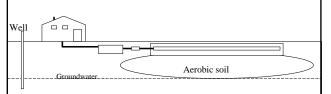
> From outdoor plumbing to water reuse

Outdoor plumbing: the pit privy

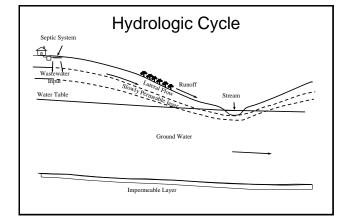
- Goal: designated place
- No carrier needed to convey waste
- Waste applied directly to the soil
- Public health concerns addressed
- Management: relocate



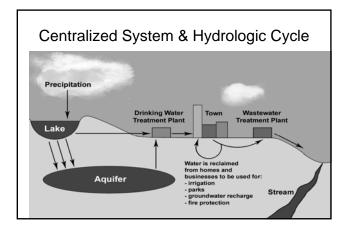
Indoor plumbing Convenience Water carrier to convey waste out of facility 'Collection system' Public health and pathogens Management: keep pipe flowing Where does it go? Onsite Sewer

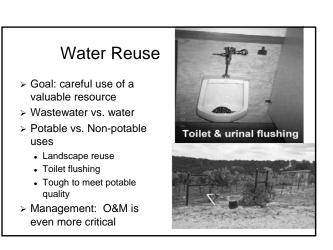

On-site Disposal

- > Goal: limit human contact
- Keep wastewater below ground
- Disposal options
- Public health
 - "Disposing" of pathogens Treatment or dilution?
- Environment: groundwater contamination
- Management: install, flush and forget



Septic tank and soil treatment area Evolving goal: Disposal: effluent goes away versus treatment Dispersal: TREATMENT Public health AND environmental issues addressed Management: Disposal: often none at all; Dispersal: System management is critical




Goal: TREATMENT AND DISPERSAL

- Starting to address both environmental concerns in addition to public health concerns
- > Technological advancements now allow removal of:
 Pathogens
 - Solids
 - Nutrients
- > System management is vital to treatment
- > Goal is now DISPERSAL
 - Hydrologic cycle

Evolution of Wastewater Goals

- > Outdoor plumbing
- > Indoor plumbing Remove wastewater from the home.
- > Disposal On-site Prevent wastewater from surfacing in the yard.
- Disposal Off-site Prevent contact at facility and convey to stream.
- > Treatment / Dispersal On-site Provide effective treatment before effluent reaches surface or groundwater resources.
- > Treatment / Dispersal Off-site Provide effective treatment before discharging to stream.
- > Reuse Reclaim the water.

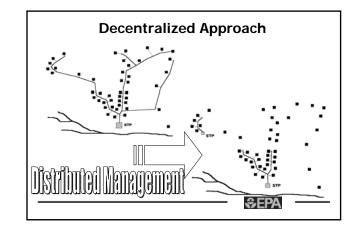
Varying rates of evolution

- > Vary across the country
- > Driving forces for change
 - Limited water resources
 - Environmental concerns
 - TMDL program
 - CZMP program
 - Source water protection
 - Watershed Protection Plans

TMDL Defined

TMDL = PS-LA + NPS-LA + MOS

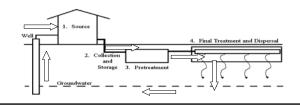
- TMDL = Total Maximum Daily Load
- **PS-LA** = Waste Load Allocation (**PS**)
- **NPS-LA** = Load Allocation
 - (Anthropogenic NPS + Natural Sources)
- MOS = Margin of Safety (plus Margin for Growth?)

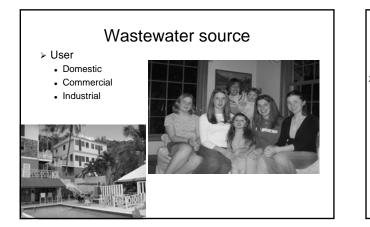

Changes in Goals means:

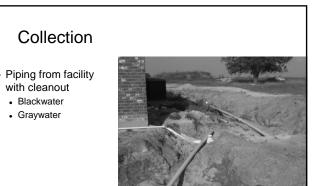
- > Approach must also change
 - Siting requirements
 - Choice of treatment components and systems
 - System O&M
 - Management program
 - Industry needs

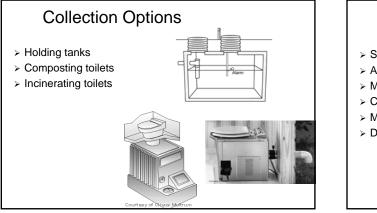
Decentralized wastewater treatment system:

- Collection, treatment, and dispersal/reuse of wastewater from individual homes, clusters of homes, isolated communities, industries, or institutional facilities, at or near the point of waste generation.
- Onsite, cluster and centralized. Most cost effective for the site conditions.

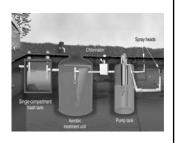


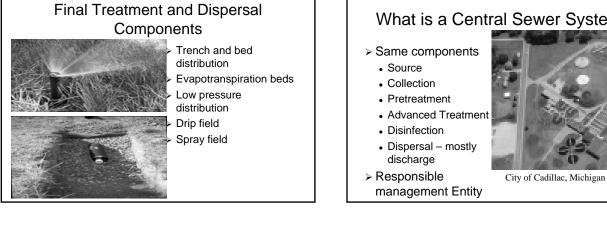

Distributed management:


Method used to manage wastewater infrastructure where a responsible management entity (RME) combines onsite, cluster and centralized treatment in a cost effective and sustainable structure.


What is an Onsite Wastewater Treatment System?

- 1. Wastewater Source
- 2. Collection and Storage
- 3. Pretreatment components
- 4. Final Treatment and Dispersal components





Pretreatment

- > Septic tanks
- > Aerobic treatment units
- > Media filters
- > Constructed wetlands
- > Membrane bioreactors
- > Disinfection

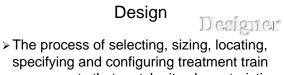
What is a Central Sewer System?

How do we make the on-site wastewater treatment system work?

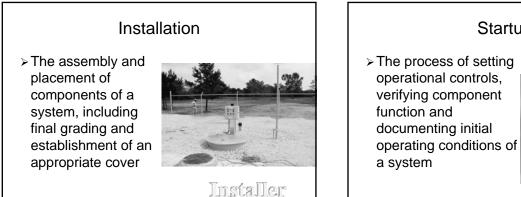
> Evaluate the wastewater source

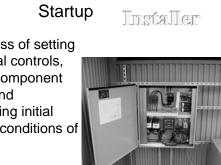
- Evaluate site
- · Wastewater treatment
- Wastewater acceptance
- > Choose a final treatment and dispersal component
- > Choose the appropriate pretreatment system
- > Operation and Maintenance

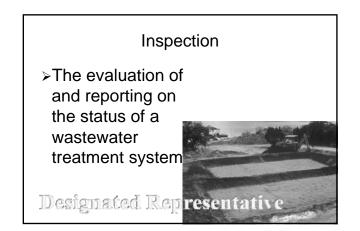
Roles with Septic System Management > Site evaluation > Design Installation

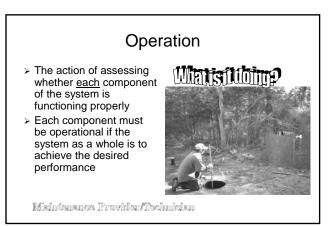

- > Startup
- > Inspection
- > Operation
- > Maintenance
- > Monitoring
- > Pumping
- > Point of Sale Inspection

Site Evaluation

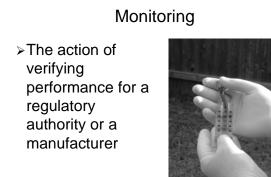

Comprehensive evaluation of soil and site conditions for a given land use.



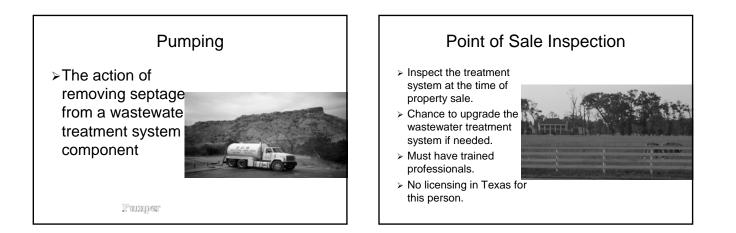

Site Evaluator



- specifying and configuring treatment train components that match site characteristics and facility use as well as creating the associated written documentation.
- A design is also the written documentation of size, location, specification and configuration.



Maintenance

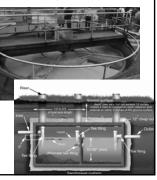

- The action of conducting required or routine planned performance checks, examinations, upkeep, cleaning, or mechanical adjustments to an onsite system.
- Includes Replacement of pumps, filters, aerator lines, valves or electrical components.

Maintenance Frovider/Reclinician

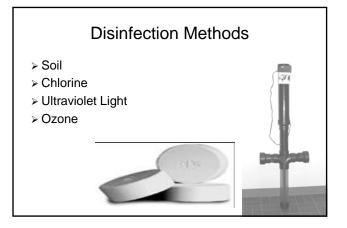
Misintensnee Provider/Technician

Why Perform Operation and Maintenance?

- Keep systems functioning properly
- Maintain effluent quality
- Early detection of problems
- > Public Health
- Environmental Protection
- System Reliability
- Customer Satisfaction

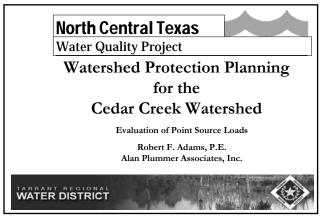

What quality do you desire?

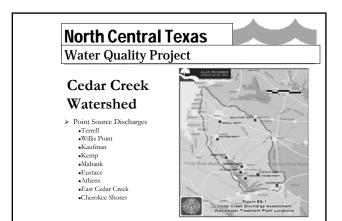
- > Primary treatment · Gross solids removal
- > Secondary treatment BOD & TSS
- > Disinfection
- · Pathogen removal
- > Tertiary treatment
- · Nitrogen and
- phosphorous
- King County Washington, Vashon

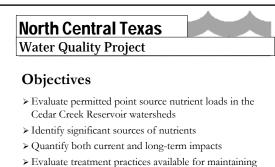

Primary Treatment Components

- > Septic Tank
- ➤ Bar screen
- > Primary clarifier

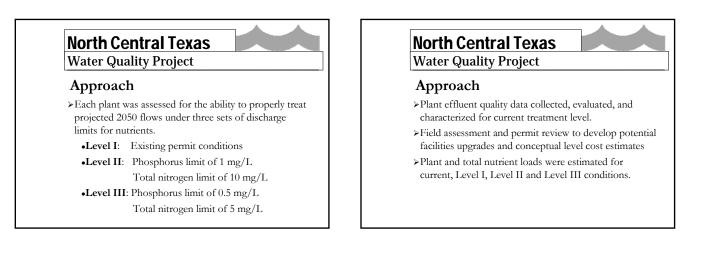
Secondary Treatment Components

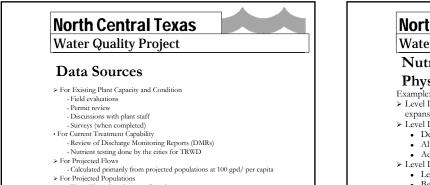

- > Soil
- > Aeration Aerobic treatment
- > Secondary clarifier
- > Sludge return to aeration
- ≻ Membrane bioreactors




Tertiary Treatment Components > Dilution > Soil & Plants > Nitrogen removal Denitrification > Phosphorous removal · Chemical addition

Precipitation





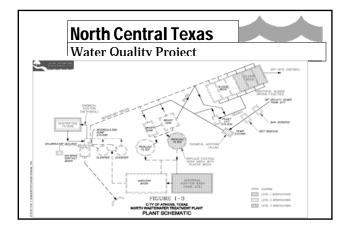
- and improving water quality
- > Address costs of implementing those practices

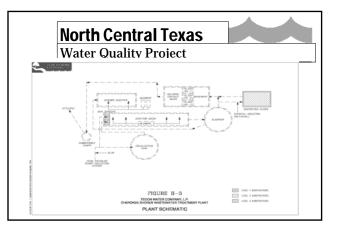
· Texas Water Development Board · Provided by facility

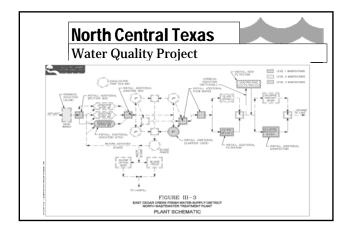
North Central Texas

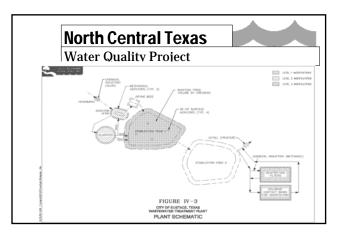
Water Quality Project

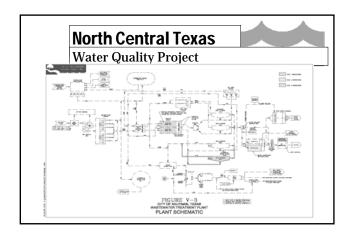
Nutrient Removal Using

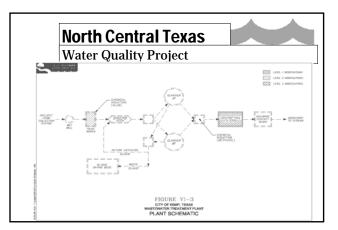

Physical/Chemical Processes

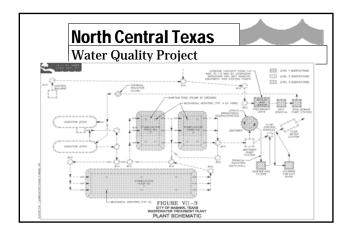

 Level I — Current permit with 2050 flows (no changes or plant expansion)

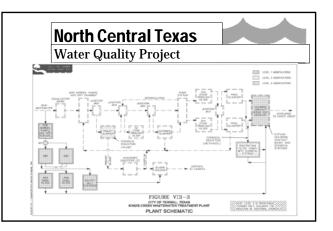

- ≻ Level II
 - · Denitrifying filters
 - · Alum addition for phosphorous removal
- Additional solids handling capacity
 Level III
 - Level II
 - · Begin feeding a carbon source (methanol) for denitrificaton
 - · Increase alum feed rate

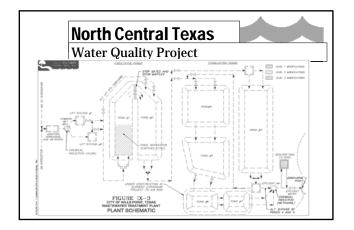

North Central Texas					
Water Quality Project					
Nutrient Loads* Associa	ated wit	h Ea	ch		
Level Upgrade (2050 Lo				(dav)	
City or Facility	Current Permitted	2050 Flows			
Athens	Flow 116	Level I 129	Level II 95	Level I 48	
Cherokee Shores	47	57	15	40	
East Cedar Creek	122	312	133	67	
Eustace	25	25	11	5	
Kaufman	135	186	138	69	
Kemp	24	14	9	5	
Mabank	39	51	43	22	
Terrell	740	947	480	240	
Wills Point	80	51	43	21	
Total Loads	1,328	1,771	967	484	
Increase or (Decrease) from Current Load		443	(361)	(844)	
lb/day tons/vr					


North Central Texas					
Water Quality Project					
Nutrient Loads* Associ	ated wit	th Ea	ch		
Level Upgrade (2050 Lo	ads vs.	Curre	nt)		
	Total Phosphorous Load (Ibs/day				
City or Facility	Current	2050 Flows			
	Flow	Level	Level II	Level	
Athens	24	27	10	5	
Cherokee Shores	5	6	2	0.8	
East Cedar Creek	11	29	13	7	
Eustace	5	5	1	0.5	
Kaufman	29	39	14	7	
Kemp	5	3	0.9	0.5	
Mabank	13	17	4	2	
Terrell	151	194	48	24	
Wills Point	18	11	4	2	
Total Loads	261	332	97	48	
Increase or (Decrease) from Current Load		70	(164)	(212)	
		13	(30)	(39)	









Vater Quality Project						
City or Facility	Costs Associated with Upgrades					
city of 1 denity	Level I	Level II	Level III			
Athens	\$3,428,914	\$893,743	\$76,50			
Cherokee Shores	\$0	\$592,351	\$64,91			
East Cedar Creek	\$4,915,008	\$127,512	\$912,29			
Eustace	\$217,930	\$51,005	\$549,46			
Kaufman	\$2,088,878	\$1,659,974	\$92,730			
Kemp	\$0	\$51,005	\$537,869			
Mabank	\$635,242	\$127,512	\$835,783			
Terrell	\$7,416,562	\$3,192,437	\$146,05			
Wills Point	\$0	\$231,840	\$835,78			
Total Costs	\$18,702,534	\$6,927,379	\$4.051.403			

Summary

- Wastewater management will play a vital role in our future infrastructure needs.
- > Technologies are available for removing the constituents of concern.
- Environmental regulations will continue to be more stringent.
- Environmental health is ultimate form of public health protection.

Summary

- > A site evaluation is critical to determining the potential for a site to treat wastewater.
- Advanced pretreatment and final treatment and dispersal technologies are available for most situations.
- Select the most appropriate technology and scale of system for your site.
- Operation and maintenance is critical for long-term function