Workshop 118 on Wavelet Application in Transportation Engineering, Sunday, January 09, 2005

Introduction to Wavelet — A Tutorial

Fengxiang Qiao, Ph.D. Texas Southern University

TABLE OF CONTENT

- Overview
- Historical Development
- Time vs Frequency Domain Analysis
- Fourier Analysis
- Fourier vs Wavelet Transforms
- Wavelet Analysis
- Tools and Software
- Typical Applications
- Summary
- References

OVER VIEW

a12

MAMMMAMMAMMAMMAMMAMMA

Wavelet

♥ A small wave

Wavelet Transforms

- Convert a signal into a series of wavelets
- Provide a way for analyzing waveforms, bounded in both frequency and duration
- Allow signals to be stored more efficiently than by Fourier transform
- **v** Be able to better approximate real-world signals
- **v** Well-suited for approximating data with sharp discontinuities

"The Forest & the Trees"

- **v** Notice gross features with a large "window"
- **v** Notice small features with a small "window"

DEVELOPMENT IN HISTORY

Pre-1930

 Joseph Fourier (1807) with his theories of frequency analysis

The 1930^s

 Using scale-varying basis functions; computing the energy of a function

1960-1980

v Guido Weiss and Ronald R. Coifman; Grossman and Morlet

Post-1980

 Stephane Mallat; Y. Meyer; Ingrid Daubechies; wavelet applications today

PRE-1930

Fourier Synthesis

- Main branch leading to wavelets
- By Joseph Fourier (born in France, 1768-1830) with frequency analysis theories (1807)
- From the Notion of Frequency Analysis to Scale Analysis
 - Analyzing f(x) by creating mathematical structures that vary in scale
 - Ø Construct a function, shift it by some amount, change its scale, apply that structure in approximating a signal
 - Ø Repeat the procedure. Take that basic structure, shift it, and scale it again. Apply it to the same signal to get a new approximation

Haar Wavelet

- The first mention of wavelets appeared in an appendix to the thesis of A. Haar (1909)
- With compact support, vanishes outside of a finite interval
- Not continuously differentiable

For any 2π periodical function f(x):

$$f(x) = a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$u_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$$

$$u_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx$$

Jean-Baptiste-Joseph Fourier (1768-1830)

THE 1930s

Finding by the 1930s Physicist Paul Levy

- Haar basis function is superior to the Fourier basis functions for studying small complicated details in the <u>Brownian motion</u>
- Energy of a Function by Littlewood, Paley, and Stein
 - Different results were produced if the energy was concentrated around a few points or distributed over a larger interval

$$Energy = \frac{1}{2} \int_0^{2\pi} |f(x)|^2 dx$$

1960-1980

- Created a Simplest Elements of a Function Space, Called Atoms
 - By the mathematicians Guido Weiss and Ronald R. Coifman
 - **v** With the goal of finding the atoms for a common function
- Using Wavelets for Numerical Image Processing
 - David Marr developed an effective algorithm using a function varying in scale in the early 1980s
- Defined Wavelets in the Context of Quantum Physics
 - By Grossman and Morlet in 1980

POST-1980

An Additional Jump-start By Mallat

 In 1985, Stephane Mallat discovered some relationships between quadrature mirror filters, pyramid algorithms, and orthonormal wavelet bases

Y. Meyer's First Non-trivial Wavelets

- ♥ Be continuously differentiable
- Do not have compact support

Ingrid Daubechies' Orthonormal Basis Functions

- Based on Mallat's work
- Perhaps the most elegant, and the cornerstone of wavelet applications today

MATHEMATICAL TRANSFORMATION

Why

To obtain a further information from the signal that is not readily available in the raw signal.

Raw Signal

Normally the time-domain signal

Processed Signal

A signal that has been "transformed" by any of the available mathematical transformations

Fourier Transformation

The most popular transformation

FREQUENCY TRANSFORMS

Why Frequency Information is Needed
 Be able to see any information that is not obvious in time-domain

Types of Frequency Transformation

Fourier Transform, Hilbert Transform, Shorttime Fourier Transform, Wigner Distributions, the Radon Transform, the Wavelet Transform ...

FREQUENCY ANALYSIS

Frequency Spectrum

- Be basically the frequency components (spectral components) of that signal
- **v** Show what frequencies exists in the signal

Fourier Transform (FT)

- One way to find the frequency content
- Tells how much of each frequency exists in a signal

$$X (k + 1) = \sum_{n=0}^{N-1} x (n + 1) \cdot W_N^{kn}$$
$$x(n+1) = \frac{1}{N} \sum_{k=0}^{N-1} X (k + 1) \cdot W_N^{-kn}$$
$$w_N = e^{-j \left(\frac{2\pi}{N}\right)}$$

$$X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-2j\pi f t} dt$$
$$x(t) = \int_{-\infty}^{\infty} X(f) \cdot e^{2j\pi f t} df$$

STATIONARITY OF SIGNAL (1)

Stationary Signal

- Signals with frequency content unchanged in time
- **v**All frequency components exist at all times
- Non-stationary Signal
 Frequency changes in time
 One example: the "Chirp Signal"

Same in Frequency Domain

At what time the frequency components occur? FT can not tell!

NOTHING MORE, NOTHING LESS

- FT Only Gives what Frequency Components Exist in the Signal
- The Time and Frequency Information can not be Seen at the Same Time
- Time-frequency Representation of the Signal is Needed

J

Most of Transportation Signals are Non-stationary.

(We need to know whether and also When an incident was happened.)

ONE EARLIER SOLUTION: SHORT-TIME FOURIER TRANSFORM (STFT)

- Dennis Gabor (1946) Used STFT
 - To analyze only a small section of the signal at a time -- a technique called Windowing the Signal.
- The Segment of Signal is Assumed Stationary
 A 3D transform

DRAWBACKS OF STIFT

- Unchanged Window
- Dilemma of Resolution
 - Narrow window -> poor frequency resolution
 - Wide window -> poor time resolution
- Heisenberg Uncertainty Principle
 - ♥ Cannot know what frequency exists at what time intervals

MULTIRESOLUTION ANALYSIS (MIRA)

Wavelet Transform

- An alternative approach to the short time Fourier transform to overcome the resolution problem
- **v** Similar to STFT: signal is multiplied with a function

Multiresolution Analysis

- Analyze the signal at different frequencies with different resolutions
- Good time resolution and poor frequency resolution at high frequencies
- Good frequency resolution and poor time resolution at low frequencies
- More suitable for short duration of higher frequency; and longer duration of lower frequency components

ADVANTAGES OF WT OVER STFT

 Width of the Window is Changed as the Transform is Computed for Every Spectral Components
 Altered Resolutions are Placed

PRINCIPLES OF WALLET TRANSFORM

- Split Up the Signal into a Bunch of Signals
- Representing the Same Signal, but all Corresponding to Different Frequency Bands
- Only Providing What Frequency Bands Exists at What Time Intervals

DEFINITION OF CONTINUOUS WAVELET TRANSFORM

$$\operatorname{CWT}_{x}^{\Psi}(\tau, s) = \Psi_{x}^{\Psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \bullet \psi^{*}\left(\frac{t-\tau}{s}\right) dt$$

Translation

(The location of Scale the window)

Wavelet

the window,

Mother Wavelet

v Means the window function is of finite length

Mother Wavelet

v Small wave

- A prototype for generating the other window functions
- All the used windows are its dilated or compressed and shifted versions

Scale

- ♥ S>1: dilate the signal
- ▼ S<1: compress the signal
- Low Frequency -> High Scale -> Nondetailed Global View of Signal -> Span Entire Signal
- High Frequency -> Low Scale -> Detailed View Last in Short Time
- Only Limited Interval of Scales is Necessary

COMPUTEATRION OF CWT $\operatorname{CWT}_{x}^{\Psi}(\tau, s) = \Psi_{x}^{\Psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \bullet \psi^{*}\left(\frac{t-\tau}{s}\right) dt$ Step 1: The wavelet is placed at the beginning of the signal, and set s=1 (the most compressed wavelet); Step 2: The wavelet function at scale "1" is multiplied by the signal, and integrated over all times; then multiplied by $1/\sqrt{s}$; • Step 3: Shift the wavelet to $t = \tau$, and get the transform value at $t = \tau$ and s = 1: **Step 4:** Repeat the procedure until the wavelet reaches the end of the signal;

- Step 5: Scale s is increased by a sufficiently small value, the above procedure is repeated for all s;
- Step 6: Each computation for a given s fills the single row of the time-scale plane;
- Step 7: CWT is obtained if all s are calculated.

COMPARSION OF TRANSFORMATIONS

MATHEMATICAL DESPRIMATION

$$\operatorname{CWT}_{x}^{\Psi}(\tau, s) = \Psi_{x}^{\Psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \bullet \psi^{*}\left(\frac{t-\tau}{s}\right) dt$$
$$= \int X(T) \bullet \psi^{*}_{\tau,s}(t) dt$$

$$\psi_{\tau,s}^*(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-\tau}{s}\right)$$

CWT can be regarded as the inner product of the signal with a basis function $\Psi^*_{\tau,s}(t)$

DISCRETIZATION OF CWT

- It is Necessary to Sample the Time-Frequency (scale) Plane.
- At High Scale s (Lower Frequency f), the Sampling Rate N can be Decreased.
- The Scale Parameter s is Normally Discretized on a Logarithmic Grid.
- The most Common Value is 2.

$$N_2 = s_1 / s_2 \cdot N_1 = f_1 / f_2 \cdot N_1$$

DFFICTIVE & FAST DWT

- The Discretized CWT is not a True Discrete Transform
- Discrete Wavelet Transform (DWT)
 - Provides sufficient information both for analysis and synthesis
 - **v** Reduce the computation time sufficiently
 - v Easier to implement
 - Analyze the signal at different frequency bar with different resolutions

 D_1

 D_2

D₃

 A_3

Decompose the signal into a coarse approximation and detail information

SUBBABD CODING ALGORITHM

Halves the Time Resolution

 Only half number of samples resulted

 Doubles the Frequency Resolution

 The spanned frequency band halved

RECONSTRUCTION (1)

What

- v How those components can be assembled back into the original signal without loss of information?
- **•** A Process After decomposition or analysis.
- ♥ Also called synthesis
- How
 - Reconstruct the signal from the wavelet coefficients
 - Where wavelet analysis involves filtering and downsampling, the wavelet reconstruction process consists of upsampling and filtering

RECONSTRUCTION (2)

Lengthening a signal component by inserting zeros between samples (upsampling)
 MATLAB Commands: <u>idwt</u> and <u>waverec</u>; idwt2 and waverec2.

WAVELET BASES

WAVELET FAMILY PROPERTIES

Property	morl	mexh	meyr	haar	dbN	symN	coifN	biorNr.Nd	rbioNr.Nd	gaus	dmey	cgau	cmor	fbsp	shan
Crude	٠	•								٠		٠	٠	٠	٠
Infinitely regular	٠	٠	٠							٠		٠	٠	٠	•
Arbitrary regularity					•	٠	٠	•	•						
Compactly supported orthogonal				•	•	•	٠								
Compactly supported biothogonal								•	•						
Symmetry	٠	•	•	٠				٠	٠	٠	•	٠	٠	٠	٠
Asymmetry					•										
Near symmetry						٠	٠								
Arbitrary number of vanishing moments					•	٠	٠	•	•						
Vanishing moments for 🌵							٠								
Existence of 🌢			٠	٠	•	٠	٠	•	•						
Orthogonal analysis			٠	٠	•	٠	٠								
Biorthogonal analysis			•	٠	•	٠	٠	•	•						
Exact reconstruction	8	٠	•	٠	•	٠	٠	•	•	٠	×	٠	٠	٠	٠
FIR filters				٠	•	٠	٠	•	•		٠				
Continuous transform	٠	•	•	٠	•	٠	٠	٠	٠	٠					
Discrete transform			•	٠	•	•	٠	•	•		•				
Fast algorithm				٠	•	٠	٠	٠	٠		٠				
Explicit expression	٠	•		•				For splines	For splines	٠		٠	٠	٠	•
Complex valued												٠	٠	٠	٠
Complex continuous transform												٠	٠	٠	٠
FIR-based approximation											٠				

WAVELET SOPTWARE

A Lot of Toolboxes and Software have been Developed

One of the Most Popular Ones is the MATLAB Wavelet Toolbox

http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html

Wavelet Toolbox - Microsoft Internet Explorer
File Edit View Favorites Tools Help
😋 Back 🔹 🕥 🕣 🔝 🛃 🌈 Search 👷 Favorites 🧭 🍰 🖉 🖕 🎬 🗧 🚭 🧩 🎇 ዿ 🚳
Address 🕘 http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html
🝸 🔹 🅼 🐨 🐨 🖓 Shopping 👻 🖓 Personals 🔹 🛛 🖂 Mail 👻 🧐 My Yahoo! 💽 Games 🔹 👘 Shopping 👻 🌮 Personals 🔹
Google 🗸 and Associated Properties" 🛨 💏 Search Web 🔹 🚿 🗗 26 blocked 📳 AutoFill 🛛 Options 🔗 👸 Wavelet Families and Associated Properties
home store contact us site help
Products & Services Industries Academia Support User Community Company
Contents Index Wavelet Toolbox
Getting Started

GUI VERSION IN MATLAB

- Graphical User Interfaces
- From the MATLAB prompt, type <u>wavemenu</u>, the Wavelet Toolbox Main Menu appears

OTHER SOFTWARE SOURCES

- WaveLib [http://www-sim.int-evry.fr/~bourges/WaveLib.html]
- EPIC [http://www.cis.upenn.edu/~eero/epic.html]
- Imager Wavelet Library [http://www.cs.ubc.ca/nest/imager/contributions/bobl/wvlt/download /]
- Mathematica wavelet programs [http://timna.Mines.EDU/wavelets/]
- Morletpackage [ftp://ftp.nosc.mil/pub/Shensa/]
- <u>p-wavelets</u> [ftp://pandemonium.physics.missouri.edu/pub/wavelets/]
- WaveLab [http://playfair.Stanford.EDU/~wavelab/]
- Rice Wavelet Tools [http://jazz.rice.edu/RWT/]
- Uvi_Wave Software [http://www.tsc.uvigo.es/~wavelets/uvi_wave.html]
- WAVBOX [ftp://simplicity.stanford.edu/pub/taswell/]
- Wavecompress [ftp://ftp.nosc.mil/pub/Shensa/]
- WaveThresh[http://www.stats.bris.ac.uk/pub/software/wavethresh/Wa veThresh.html]
- WPLIB [ftp://pascal.math.yale.edu/pub/wavelets/software/wplib/]
- W-Transform Matlab Toolbox [ftp://info.mcs.anl.gov/pub/W-transform/]
- <u>XWPL</u> [ftp://pascal.math.yale.edu/pub/wavelets/software/xwpl/]
 - •

WAVELET APPLICATIONS

Typical Application Fields

Astronomy, acoustics, nuclear engineering, subband coding, signal and image processing, neurophysiology, music, magnetic resonance imaging, speech discrimination, optics, fractals, turbulence, earthquake-prediction, radar, human vision, and pure mathematics applications

Sample Applications

- Identifying pure frequencies
- ♥ De-noising signals
- **v** Detecting discontinuities and breakdown points
- Detecting self-similarity
- Compressing images

DE-NOISING SIGNALS

- Highest Frequencies Appear at the Start of The Original Signal
- Approximations Appear Less and Less Noisy
- Also Lose Progressively More High-frequency Information.
- In A₅, About the First 20% of the Signal is Truncated_{a1}

Original and de-noised signals

400 600 800

ANOTHER DE-NOISING

Original Image

Noisy Image

De-noised Image

% Use wdencmp for image de-noising.

% find default values (see ddencmp). [thr.sorh.keepapp] = ddencmp('den', 'wv',x);

% denoise image using global thresholding option. xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);

DETECTING DISCONTINUITIES AND BREAKDOWN POINTS

- The Discontinuous Signal Consists of a Slow Sine Wave Abruptly Followed by a Medium Sine Wave.
- The 1st and 2nd Level Details (D₁ and D₂) Show the Discontinuity Most Clearly

Things to be Detected

- The site of the change
- The type of change (a rupture of the signal, or an abrupt change in its first or second derivative)
- The amplitude of the change

DDDDDCCCCNCGSDCDSINICARCHY

Purpose

- How analysis by wavelets can detect a self-similar, or fractal, signal.
- The signal here is the Koch curve -- a synthetic signal that is built recursively

Analysis

- If a signal is similar to itself at different scales, then the "resemblance index" or wavelet coefficients also will be similar at different scales.
- In the coefficients plot, which shows scale on the vertical axis, this selfsimilarity generates a characteristic pattern.

COMPRESSING IMAGES

Fingerprints

- FBI maintains a large database of fingerprints — about 30 million sets of them.
- The cost of storing all this data runs to hundreds of millions of dollars.

Results

- Values under the threshold are forced to zero, achieving about 42% zeros while retaining almost all (99.96%) the energy of the original image.
- By turning to wavelets, the FBI has achieved a 15:1 compression ratio
- better than the more traditional JPEG compression

IDENTIFYING PURE FREQUENCIES

Purpose

- Resolving a signal into constituent sinusoids of different frequencies
- The signal is a sum of three pure sine waves

Analysis

- ♥D1 contains signal components whose period is between 1 and 2.
- Zooming in on detail D1 reveals that each "belly" is composed of 10 oscillations.
- D3 and D4 contain the medium sine frequencies.
- There is a breakdown between approximations A3 and A4 -> The medium frequency been subtracted.^a₂
- Approximations A1 to A3 be used to estimate the medium sine.
- Zooming in on A1 reveals a period of around 20.

SUMMARY

- Historical Background Introduced
- Frequency Domain Analysis Help to See any Information that is not Obvious in Time-domain
- Traditional Fourier Transform (FT) cannot Tell where a Frequency Starts and Ends
- Short-Term Fourier Transform (STFT) Uses Unchanged Windows, cannot Solve the Resolution Problem
- Continuous Wavelet Transform (CWT), Uses Wavelets as Windows with Altered Frequency and Time Resolutions
- **Discrete Wavelet Transform (DWT) is more Effective and Faster**
- Many Wavelet Families have been Developed with Different Properties
- A lot of Software are available, which Enable more Developments and Applications of Wavelet
- Wavelet Transform can be used in many Fields including Mathematics, Science, Engineering, Astronomy, ...
- This Tutorial does not Cover all the Areas of Wavelet
- The theories and applications of wavelet is still in developing

