
Introduction to XNA;
Game Loops

Prof. Aaron Lanterman
School of Electrical and Computer Engineering

Georgia Institute of Technology

2

Part 1:
Introduction to XNA

3

Dungeon Quest
•  Developed in 4 days at the 2007 GDC at the XNA

contest
•  By Benjamin Nitschke and Christoph Rienaecker

 Screenshot from
 exdream.no-ip.info/blog/2007/07/31/DungeonQuestUpdatedWithSourceCodeNow.aspx

5

Torpex’s “Schizoid” (on Xbox Live Arcade)

http://www.gametrailers.com/player/28542.html

Screenshot from http://screenshots.teamxbox.com/screen/68599/Schizoid/

6

XNA GS Framework
• Built on Microsoft’s .NET

– Makes MS comfortable with letting
“ordinary folks” program on the Xbox
360

• C# is standard language for XNA
development
– But in theory could use Managed C++,

VB.NET, etc. on the PC

7

Is managed code too slow for games?

•  Vertigo Software ported Quake II to
Managed C++, got 85% performance of the
original C code
– Should expect to do better if you have

the .NET Common Language Runtime in mind
from the beginning

•  Xbox 360
– GPU: 337 million transistors
– CPU: 165 million transistors

8

Xbox 360 uses .NET Compact Framework

•  Some stuff available in .NET on the
PC is missing

•  Garbage collector on 360 isn’t as
smart as on the PC

•  Caused the Schizoid team some
trouble, as well as one semester of
CS4455

9

XNA 4.0 requirements
•  Windows XP/Vista/7

–  I will be running Windows 7
– Windows Phone development only works

under Windows 7 (not relevant for this class)

•  Graphics card supporting at least DirectX
9.0c and Shader Model 2.0
– Docs say Shader Model 1.1, but that’s iffy
– HiDef Profiles & Windows Phone development

“need” a card supporting at least DirectX 10

From msdn.microsoft.com/en-us/library/bb203925.aspx

10

XNA 4.0 graphics profiles (1)
• Profiles specify a common set of

graphics capabilities
• Reach Profile:

– PC, Xbox 360, Phone
– DirectX 9 and Shader Model 2.0

• HiDef Profile:
– PC, Xbox 360
– DirectX 10 and Shader Model 3.0

• Some advanced DX 9 cards may luck out

11

XNA 4.0 graphics profiles (2)
• Reach is a strict subset of HiDef

• Careful: different profiles use
different content pipelines

• Can query to see what profiles the
user’s hardware supports
– Only useful on Windows; you know Xbox 360 can

handle HiDef and phones can only handle Reach

12

XNA GS graphics
•  XNA is built on top of DirectX 9

– Not built on MDX or Managed DirectX
– Specification of DX10 hardware ensures

rich feature set, but DX10 API isn’t used!

•  DirectX 9 has a fixed function pipeline,
but XNA doesn’t!
– Everything done with shaders
– XNA has a BasicEffect to get you started

13

Why no fixed-function pipeline? (1)

•  Programmable pipeline is the future
– Neither Direct3D 10/11 or Xbox 360

have fixed-function pipeline
•  Early adopters and customers said

cross-platform goal more important
than fixed-function pipeline

 From XNA Team Blog, “What is the XNA Framework,” blogs.msdn.com/xna/archive/
2006/08/25/724607.aspx

 In Microsoft’s own words (paraphrased):

14

Why no fixed-function pipeline? (2)

•  Fear is someone would start and
finish their game using the fixed-
function APIs, and then get dozens of
errors when they tried to compile it on
the Xbox 360

•  Better to know your code works on
both right from the beginning

 From XNA Team Blog, “What is the XNA Framework,” blogs.msdn.com/xna/archive/
2006/08/25/724607.aspx

 In Microsoft’s own words (paraphrased):

15

Some convenient things about XNA

•  Don’t need to mess with Win32-ish
boilerplate (opening a window, etc.)

•  Easy interfacing with the Xbox 360
controller (for both Windows and Xbox 360)

•  Storage (“saved games”) unified between
Windows and Xbox 360
– On Xbox 360, have to associate data with a

user profile, put on hard drive or memory card,
etc.

– XNA “emulates” this on Windows
 From XNA Team Blog, “What is the XNA Framework,” blogs.msdn.com/xna/archive/
2006/08/25/724607.aspx

16

Hello bluescreen
public class SampleGame : Game {!
 private GraphicsComponent graphics;!
 !
 public SampleGame() {!
 this.graphics = new GraphicsComponent();!
 this.GameComponents.Add(graphics);!
 }!
 !
 protected override void Update() { }!
 !
 protected override void Draw() {!
 this.graphics.GraphicsDevice.Clear(Color.Blue);!
 this.graphics.GraphicsDevice.Present();!
 }!
 !
 static void Main(string[] args) {!
 using (SampleGame game = new SampleGame()) {!
 game.Run();!
 }!
 }!

 From XNA Team Blog, “What is the XNA
Framework,” blogs.msdn.com/xna/archive/
2006/08/25/724607.aspx

17

Careful if you’re on Windows x64

•  XNA normally targets “AnyCPU”

•  Will break when you try to run on x64
machines, since x64 versions XNA
framework dlls don’t exist (and
probably never will)

•  Workaround: Change target to x86

18

Caveats about Xbox 360 development

• Many TVs cutoff 5-10% of the
pixels around the edge
– Keep text & important info away from

there
• Xbox 360 handles post processing

and render targets a little
differently than the PC

 Info from Alistair Wallis, “Microsoft XNA: A Primer,” interview with Benjamin Nitschke
www.gamecareerguide.com/features/328/microsofts_xna_a_.php?page=4

19

Contests
•  See http://www.dreambuildplay.com
 and http://www.imaginecup.com

•  2012’s contests are already over…

• …but keep on the lookout for the 2013

Dream Build Play & Imagine Cup
contests!

20

XNA Indie Games
•  See http://create.msdn.com
•  Join the XNA App Hub (formerly Creator’s Club)

–  The XNA App Hub memberships students get free from
DreamSpark will let you run games on the 360, but may
not let you take part in Indie Games

•  Upload your game, rate content (violence, etc.)
•  Peer review: confirm content ratings, check quality
•  Can sell your game to Xbox 360 users!

–  150 MB limit
–  80, 240, or 400 Microsoft Points ($1, $3, or $5)

•  Can sell XNA PC Windows games on Steam…
– …if Valve gives it a thumbs up

21

Example: A Fading Melody

XNA CG sales (March 31, 2009)

22

 From from http://www.gamasutra.com/php-bin/news_index.php?story=22970

Part 2:
Game Loops

23

Credit to where it is due

•  Koen Witters
– Thinking about game loops

•  Shawn Hargreaves
– Details about XNA’s game loop

•  Side note: next few slides on game
loops contain rough pseudocode

24

Simplest game loop (1)

running = true;

while(running) {

 update();

 draw();

}

http://dewitters.koonsolo.com/gameloop.html

•  What could possibly go wrong?
bad_guy.x += 1; •  Draw() has things like

Simplest game loop (2)

http://dewitters.koonsolo.com/gameloop.html

•  Game runs faster on faster hardware, slower on
slower hardware

•  Less of a problem if hardware is well-defined;
Apple II+, Commodore 64, game console

•  Try an original Mac game on a Mac II: too fast!
•  Big problem on PCs/Macs with varying speed
•  Can still be a problem if update time varies from

iteration to iteration (i.e. varying number of bad
guys)
–  See Defender and Robotron: 2084

FPS dependent on constant GS (1)

http://dewitters.koonsolo.com/gameloop.html

running = true;
seconds_per_frame = 1/60;

while(running) {
 update();
 draw();
 if (seconds_per_frame_not_elapsed_yet)
 wait(remaining_time);
 else {
 oooops! We are running behind!
 }
}

•  What could possibly go wrong?

FPS dependent on constant GS (2)

http://dewitters.koonsolo.com/gameloop.html

• Slow hardware:
– If fast enough to keep up with
FPS no problem

– If not: game will run slower
– Worst case: some times runs
normally, sometimes slower –
can make unplayable

FPS dependent on constant GS (3)

http://dewitters.koonsolo.com/gameloop.html

•  Fast hardware:
– Wasting cycles on desktops - higher

FPS gives smoother experience,
why not give that to the user?

– Maybe not so bad philosophy on
mobile devices – save battery life!

– Also may not be bad if user is wants
to run other processes

GS dependent on variable FPS (1)

http://dewitters.koonsolo.com/gameloop.html

running = true;

while(running) {
 update(time_elapsed);
 draw();
}

•  Use time_elapsed in your state update
computations:
bad_guy.x += time_elapsed * bad_guy.velocity_x;

•  What could possibly go wrong?

GS dependent on variable FPS (2)

http://dewitters.koonsolo.com/gameloop.html

• Slow hardware:
– Game sometimes bogs down, i.e.

when lots of stuff is on the screen
• Slows down player and AI reaction time

– If time step is too big:
• Physics simulations may become

unstable
• “Tunneling” (need “swept collision

detection”)

GS dependent on variable FPS (3)

http://dewitters.koonsolo.com/gameloop.html

• Fast hardware:
– Shouldn’t be a problem, right?
– What could possibly go wrong?

GS dependent on variable FPS (4)

http://dewitters.koonsolo.com/gameloop.html

•  Fast hardware:
– More calculations per second for some

quantity, more round off errors can
accumulate

– Multiplayer game: players with systems with
different speeds will have game states
drifting apart

– Good example:
•  www.nuclex.org/articles/xna-game-loop-basics

Balancing act

http://dewitters.koonsolo.com/gameloop.html

•  Want fast update rate…
•  …but still be able to run on slow hardware
•  Many more possibilities

Photo by Aaron Sneddon; under the Creative Commons Attribution 3.0 Unported license

Tasks with different granularity
•  Run often:

–  Physics engine location & orientation updates
–  3-D character display

•  Run less often:
–  Collision detection
–  Player input
–  Head-up display

•  Run even less often:
–  “immediate A.I.”, networking

•  Careful: A.I. might be unstable with larger time
steps – not just physics!

Example: MotoGP
•  Main game logic: 60 updates per second

– “input, sound, user interface logic,
camera movement, rider animations, AI,
and graphical effects”

•  Physics: 120 updates per second
•  Networking: 4 to 30 updates per second,

depending on number of players – more
players results in less often updates to
conserve bandwidth

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

XNA game loop: fixed step

 http://blogs.msdn.com/shawnhar/archive/2007/11/23/
game-timing-in-xna-game-studio-2-0.aspx

•  Game.IsFixedTimeStep = true; (default)
•  XNA calls Update() every “TargetElapsedTime” (defaults

to 1/60 seconds)
•  Repeat call as many times as needed to catch up with

current frame (in XNA >= 2.0)
•  XNA hopefully calls Draw(), then waits for next update
•  If Update+Draw time < TargetElapsedTime, we get

–  Update
–  Draw
–  Hang out for rest of time (nice on Windows so other processes

can run)

XNA may get behind (1)

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

•  Why would
 Update+Draw time > TargetElapsedTime?

– Computer slightly too slow
– Computer way too slow
– Computer mostly fast enough, but may have

too much stuff on screen, big texture load, or
garbage collection

– Paused program in debugger

XNA may get behind (2)

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

•  What happens if Update+Draw time >

TargetElapsedTime?
– Set GameTime.IsRunningSlowly = true;
– Keep calling Update (without Draw) until

caught up
– Makes sure game is in right state with

Draw finally happens
– If too far behind… punt

When XNA gets behind (1)

•  If computer slightly too slow: If can’t handle
Update+Draw in one frame, can probably handle
Update+Update+Draw in two frames
–  May look jerky but should play OK

•  If computer way too slow (i.e. Update alone
doesn’t fit in a single frame): we are doomed

•  In both above cases, a clever program could see
that GameTime.IsRunningSlowly == true and
reduce level of detail
–  Most games don’t bother

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

When XNA gets behind (2)

•  If particular frame took too long: call
update extra times to catch up, then
continue as normal
– Player may notice slight glitch

•  If paused in debugger: XNA will get way
behind and give up, but will continue
running OK when debugger resumed

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

“Heisenberg Uncertainty Principle”

•  If you put in breakpoints, may notice
Update being called more often than
Draw, since the breakpoint makes you
late

•  Examining the timing of a system
changes the timing!

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

XNA game loop: Variable Step
•  Game.IsFixedTimeStep = false;

– Update
– Draw
– Repeat
–  (more or less)

•  Update should use elapsed time
information

 http://blogs.msdn.com/shawnhar/archive/2007/
07/25/understanding-gametime.aspx

