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INTRODUCTION TO FINITEDIFFERENCE METHODS

FOR NUMERICAL FLUID DYNAMICS

by

Evan Scannapieco and Fkancis H. Harlow

ABSTRACT

This work is intended to be a beginner’s exercise book for the study of basic finite-

difference techniques in computational fluid dynamics. It is written for a student level

ranging from high-school senior to university senior. Equations are derived from basic

principles using algebra. Some discussion of partial-differential equations is included, but

knowledge of calculus is not essential. The student is expected, however, to have some

familiarity with the FORTRAN computer language, as the syntax of the computer codes

themselves is not discussed. Topics examined in this work include: one-dimensional heat

flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and

two-dimensional incompressible fluid flow with additions of the equations of heat flow and

the K – e model for turbulence transport. Emphasis is placed on numerical instabilities

and methods by which they can be avoided, techniques that can be used to evaluate the

accuracy of finite-difference approximations, and the writing of the finite-difference codes

themselves. Concepts introduced in this work include: flux and conservation, implicit and

explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell

and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq

approximation for heat flow, cartesian tensor notation, the Boussinesq approximation for

the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided

which defines these and other terms.
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I. INTRODUCTION

One of the most important techniques used in the

systems, finite differencing represents an essential part

computer modeling of

of modern theoretical

physical

physics.

Able to generate solutions to systems that are far too intricate to be solved analytically,

this technique has given physicists the ability to model, examine, and better understand

complex physical situations. From the study of microscopic systems to the modeling of

the world’s climate, finite-difference programs have opened up an entire field of research

that has only been possible within the the past 40 years.

In the following paper we will examine a series of finite-difference programs, gaining a

clearer understanding of their underlying physical principles and the techniques by which

these are implemented. It is our intention to represent these physical systems so that they

will be easily understood both by those who are dealing with them for the first time and

those familiar with their partial-differential representations. Partial differential equations

will be used but only as a result of a discussion of the basic principles from which they are

derived. The mathematics will follow, as it should, fi-om a clear set of physically meaningful

observations.

It will be essential, however, for the reader to have a clear

FORTRAN computer language in which all programs will be written.

understanding of the

While there are many

finite difference simulations that are written in other languages, FORTRAN has proved to

be an efficient, easily understood, and widely accepted language for scientific computing.

For these reasons we will limit our discussion to simulations written in this language, and

for reasons of scope we will not discuss the meanings of each of its commands. We assume

that the reader is already familiar with computers and desires to apply this knowledge

to the study of physical systems. It is our intention to apply physical principles to the

crest ion of computer simulations, not to discuss the syntax of the simulations themselves.

There are two ways to approach this work. It can be interpreted as a guide to writing

one’s own finite difference simulations, a type of handbook for creating one’s own codes, or
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it can be read as a textbook, omitting actual programming by the reader. We hope that

the reader will adopt the former approach. While it will take more time for the reader to

create his own simulations, the extra time will prove to be time well spent.

The reasons for writing one’s own code are twofold. First, the reader who is able to

structure his own code will be sure to have a full understanding of the concepts involved.

There is only so much that can be explained about the process; true understanding will

result only from experience. Secondly, by writing his own programs, the reader gains the

advantage of being able to examine the results obtained from various initial parameters.

Only a limited number of results will be presented in this work, thereby leaving the reader

with a vast set of cases which can be independently investigated.

As we move through this series of programs, we will examine a broad spectrum of

physical systems. We will begin with the simulation of heat transfer in one dimension,

examining various forms of numerical instabilities and explicit and implicit solution

techniques. Our discussion will then move to compressible fluid flow in one dimension,

examining both Eulerian and Lagrangian methods of simulation of a number of different

systems. We will show a method for determining the accuracy of our finitedifference

representations and use it to examine numerical instabilities. We will discuss the

simulation of incompressible fluid flow in two dimensions, calculate incompressible fluid

flow in conjunction with heat, discuss two-dimensional compressible fluid flow, and finally

implement the equations of turbulence transport in an incompressible code.

Likewise, our discussion will cover an equally broad set of topics in a range of technical

fields. We will discuss various physical equations and the systems that they represent, the

mathematical properties of these equations and how these relate to solving them with a— —

computer, and the structuring of the programs themselves. Although we will be dealing

with these varying subjects, a single underlying thrust must remain clear in our minds.

We must remember that what we are doing is taking observable physical phenomena and

4



translating them into terms which can be dealt with by the computer. The form will be

greatly changed, but the basic physical principles will always be faithfully represented.

In as much as we can simulate reality, we can use the computer to make predictions

about what will occur in a certain set of circumstances.

can create an artificial laboratory for examining situations

Finite-difference techniques

which would be impossible

to observe otherwise, but we must always remain critical of our results. Finite-differencing

can be an extremely powerful tool, but only when it is firmly set in a basis of physical

meaning. In order for a finite-difference code to be successful, we must start from the

beginning, dealing with simple cases and examining our logic each step of the way. Building

further insights on what we have done in the past, we will start with the simplest case

possible: heat transfer in a single dimension. The rest will follow logically.

5



II. ONEDIMENSIONAL HEAT FLOW

A. Flux and Conservation

The first system that will be examined in this series of studies is that of heat conduction

in a single dimension. In this chapter, we will write a program that numerically solves

a single equation of heat transfer over a one-dimensional array. This program can most

easily be pictured as the simulation of a metal rod that is initially at an even temperature

and is insulated along its sides. _As the program progresses, the simulated rod is heated

horn one end, and the resulting change in temperature along the rod is recorded ss output.

A diagram of this system appears in Fig. II-1.

a 1insulation

+
~ heat sourCe

Fig. II-1

Each section of this rod is represented by an element in an array that corresponds

to its position. These elements, called ZONES, record the temperature at finite distances

along the rod and at finite time intervals, hence the name finite difference. This type of

representation can be thought of as similar to a motion picture, where each frame exists for

a small but finite time step. Motion is not fluid as in reality but is instead approximated

by a series of small changes frorg one “frame” to the next.

Our simulation of heat flow in this manner will introduce two basic concepts that are

essential to the understanding of the underlying principles on which many finite-difference
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codes are based: FLUX and CONSERVATION. Flux is the amount of something passing

through a unit area in a unit time. In our current example, the flux that is of interest is

HEAT FLUX, the transport of heat from one zone to another. But flux is by no means

limited to only heat. It can represent the movement of mass, momentum, energy, or any

other value that describes the amount of something that is present in a zone. No matter

what is being fluxed, the concept remains essentially the same. Flux represents motion

from one place to another, the rate at which something moves through a given area.

Conservation means that the total amount of something never changes regardless of

its motion from one region to another. If this same concept is viewed in terms of the

amount of something that exists in a finite region, conservation means that in any region

of space the change in something equals the amount that goes in minus the amount that

comes out plus the change of that amount within the region. Once again, this principle

holds true for many diflerent quantities. Mass, momentum, and energy, while different

physically, are identical in the fact that they are conserved.

These two concepts of flux and conservation are critical to the way that our finite

difference codes are structured. Their implementation and a simple equation obtained

from experimental observation are all that is necessary to represent the transfer of heat

numerically.

B. Numerical Representation

In order to represent this system in a manner that can be solved computationally,

we must first examine the structure represented by each zone in our simulated metal rod.

Looking at an individual zone (also called a CELL), we find a physical system as in Fig. II-2.

7



Y
T-left

X
T-tight

Fig. II-2

Here T-left and T-right represent the temperature along either edge of the zone, and d

represents the thickness. The heat flux of this system is defined by an equation known as

Fick’s Law. A result of direct experimental observations, Fick’s Law is as follows:

flux of heat =
k (T1.ft – ~right )

d“
(H-1)

In this equation, k is called THE COEFFICIENT OF HEAT CONDUCTIVITY and

is proportional to the rate at which a given material conducts heat across a temperature

gradient. k is an intrinsic property of the material being represented and must be

chosen based on the conductive properties of that material. For example, silver, a very

conductive metal, is represented by a high value of k, around 4 J/s”cm” 0C. Wood on the

other hand, is a poor heat conductor and is consequently associated with a low k value,

1.3 x 10–3 J/s.cm. ‘C. The conductivity of iron is somewhere between these two materials,

yielding an intermediate value for k, 0.67

Taking this equation as it applies to

as to how it can be implemented over an

J/s”cm” “C.

a single cell, we can now make a generalization

array. Given a rod of length D, this length can

be divided into an array of size ~. Each zone will now have a length dz, which is defined

as D/~. Such a system is shown in Fig H-3.

8
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I
D

I
T1 T2 ~ dx

r
,.

I
T
[A

1- – 1-
0123

!

j-1 j
A

j +1 J–+ 1

j+l12

j-1/2

Fig. II-3

Each zone in this array cannow be indexed with acounter.j, with zonesj– 1 and

j+l being the zonesat the left and right respectively. Note that the

will occur at the walls and will therefore occur at points such as j +

the diagram. Note also that the diagram contains both a zone Oand a

flux between zones

1/2 and j – 1/2 in

zone ~ + 1, existing

beyond the normal bounds of the rod. These zones are used to implement BOUNDARY

CONDITIONS, equations that represent the external conditions that affect the values of

the real zones. The heating source at the left of the pipe is represented by one such

boundary condition. Temperatures for each cell are defined at the center of the cell,

exist ing at positions 1, 2, 3, etc. Density of cells and cross-sectional area between cells are

defined as p and A respectively.

These definitions can be used to write an expression

any given cell:

Volume = Adz

for the heat energy contained in

(11-2)

Heat energy of cell j = Mass b Tj , (II-3)

where b = the specific heat of the material. As

Mass = Volume density = A dx p , (II-4)

the heat energy can also be written as

9



I

Heat energy of cell j = A dx p b 7“ . (II-5)

We now apply our conservation of energy principle to derive an equation for the

change in energy. The letter n will be used as a TIME CYCLE COUNTER, an integer

that represents the number of time cycles that have been calculated. These cycles, also

called time steps,

picture. The time

can be thought of as individual frames in our analogy of the motion

at a cycle n is represented by tn, which is computed as follows:

tn=ndt. (H-6)

In this equation dt is equal to the time increment per cycle, i.e., the change in time between

each “frame.” The superscript n in tn notates that the value being expressed occurs at time

cycle n. It does not indicate t raised to the power n. We will continue to use superscripts

in this manner, combining them with the subscripts used earlier to_represent position. Tjn

will therefore be defined as the temperature in cell j at time step n, and similarly, ~+ 1

will represent the temperature in cell -j at the time step n + 1.

By using this notation and assuming that our heat source is always placed at the left,

energy conservation can be expressed as

[Heat Energy]~+l - [Heat Energy]; =

[Amount in]~_l/z – [Amount out]~+llz .

Referring now to our principle of flux:

[Amount in]~_l/2 = [FIux]~_llz A dt

(II-7)

(II-8)

and

[Amount out]~+l,, = [FhM]~+liZ A dt (II-9)

10



Using Fick’s law to determine flux at j + 1/2 and j – 1/2, and using the

energy of a cell (II-5), we can express Eq. (II-7) as follows:

(g-l - !77 ~ ~t_ Jq – ~T+l)A p dx b T~+l –Apdxb T;=k dz
dx

This equation can be algebraically manipulated to obtain

T;+l . --=#q?l –T; –~+T;+J .–T~–

$ is often called the THERMOMETRIC CONDUCTIVITY of a

equation for heat

Adt. (11-10)

(11-11)

material and is

represented by the Greek letter a. Thus, our conservation equation in final form appears

as follows:

This equation expresses heat flow in a manner that

+ g+l) (11-12)

can be computationally solved.

Based upon our knowledge of the previous time step, this equation allows us to calculate the

new temperatures for every zone along the rod. By carrying out this equation repeatedly,

the overall flow of heat can be observed.

Based on our discussion so far, it is now possible to begin writing the finite-difference

code itse~ but before this process is begun, let us first examine the nature of our equation.

Although this equation has been generated from basic principles, it is obtained more

often through the manipulation of partial differential equations. While not necessary to

the writing of simple finite-difference codes, these partial-differential equations (P.D.E.’s)

give scientists greater insight into simple systems and allow for analysis of much more

complicated physical phenomena. Because these equations are continually being applied

to finite-difference codes, it is important that they be examined and related to the problem

at hand.

c. Partial-Differential Equations

For those familiar with partial-differential equations and their use, the following

discussion of heat flow in analytical terms will serve to provide a different viewpoint into

11



the construction of our finite-difference codes. However, this section is not essential to

the writing of this code and should, therefore, not deter the reader who is unfamiliar

with these expressions. Such a reader should try to work through these concepts without

intimidation; they are merely provided as an alternate method to examining this problem.

Going back to Eq. (II-11) and distributing the dZ2 term among the temperatures, we

obtain the following equation:

q+l –Ty _

[

T3”+~– TJn _ T? –TJn_ ~

dx dz 1 (11-13)
dt ‘0 dx

By changing our nomenclature to more clearly represent T as a function of position and

time, we can rewrite T: as ~(~j, ~n), T.~+1 as ~(~j + d~> tn)~ and ‘~p+* = ‘(zj~ ‘n + ‘~)o

Our equation now takes the form

Using the definition of the derivative of f(z), namely

df
— = hno

J(z + dz) - f(z)
dx dx

9

we take the limit as dt and dx ~ O and obtain the following terms:

()T(zj + dz, t”) – T(zj, t”) = ~
hlo

dx ax j+l/2

lim (. )
Z’(Zj + t’) – ~(X.j – dx, t”) = ~ .

Thus Eq. (11-14) can be rewritten:

dx [ox] j-1/2

(%),+ 1,2 - (%),+ 1,2

dx 1

. (11-14)

(H-15)

(11-16)

(H-17)

(11-18)
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Once again taking the limit as dx + O:

(11-19)

This is the heat-flow equation for a single direction. Starting with this equation, one

would have been able to work backwards, choosing “finite differences” for each derivative

and eventually generating Eq. (H-12). Derived from the same principles as our finite-

difference equations, partial-differential equations provide a different outlook from which

to approach computation.

D. Computational Implementation of Equations

Having derived an expression for heat flow in finite-difference form, the question still

remains of how it will be computationally implemented. To complete this final stage

in the writing of our code, three major issues must be examined: boundary conditions,

redefinition of variables, and the structure of the program itself.

Our first major issue is the construction of boundary conditions. As was previously

discussed, boundary conditions represent the external conditions that act to change a

system. This representation is accomplished by the placing of zones beyond the normal

boundaries of the array. The values of these FICTITIOUS ZONES or GHOST ZONES are

chosen in such a way that they accurately express the external environment of the system

in question. In this chapter, the conditions to be simulated will be a

left and an uninsulated area at the right of the rod.

While the temperature in each true zone withh the rod will

heat source at the

be determined by

successive calculations of Eq. (11-12), the values at the fictitious zones will be calculated to

represent fixed temperatures at either end of the array. In order to determine these values,

consider the situation at either end of the array as represented in Fig. II-4.

13
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I

I ~ q 7j .
I

. .

I——— ——

Fig. II-4

In this diagram, T~ represents the temperature along the left end of the rod, the

value that should remain constant throughout the simulation. Although not present in

the actual array, this constant temperature can be thought of as T112, the average of the

temperatures at zone T’l and ghost zone To. Therefore TL can be expressed as follows:

To + T1
TL= ~ . (11-20)

Solving this equation for To,

TO=2TL– T1. (11-21)

Similarly, if TR is defined as the temperature along the right end of the rod, T~+l can be

expressed as follows:

Tj+l =2TR– Tj. (II-22)

By implementing these two equations, boundary conditions can be expressed for both

the left and right of the system. Expressions for the other surfaces of the rod will not be

needed, as they are assumed to be completely insulated, thus reducing the problem to one

dimension.

The second major issue in solving of Eq. (11-12) computationally is the redefinition of

variables. Thus far in this chapter, our equations have been represented in a manner that

is not accepted by the FORTRAN programming language. Therefore certain modifications

14



must be made in the way that various variables are represented; they must be redefined

in terms of computationally accepted symbols:

~ ~ jba

0- sig

T;, the temperature at zone j at time cycle n, will now be defined as T(j), an element in

an array T defined from T(0) to T(jbar +1). Likewise, ~+1 will be defined as Tnew (j),

an element in an array defined fkom Tnew (1) to Tnew (jbar).

The following new variables will also be defined:

TO a the intial temperature of the rod

stime = the time at which the program ceases to run

ptime - the time between successive displaying of the

values of the zones in the array

pt - a counter for ptime

st = a counter for stime

Our finite-difference code will be divided into five sections, each with a clearly defined

task. The first of these sections is the initialization procedure that dimensions the arrays

and assigns initial values to all variables. This initialization is done in a subroutine that

is called only once at the beginning of the program.

The second section of our code sets up a loop that repeats each time cycle. This section

determines if the time counters pt and st have reached ptime and stime respectively and

then increments the counters. If pt has reached ptime, it is reset to zero, and the current

array of zones is sent to the output subroutine. If st reaches stime, the program terminates.

The third major section is the definition of boundary conditions, which occurs after

the test for ptime and stime and before the actual computation of the next time cycle. In

our particular program, this section should carry out Eq. (11-21) and Eq. (II-22) on the

array T, updating values for the ghost zones at each time cycle.
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The fourth section is the portion of the program that implements Eq. (11-12), which

also occurs within the time-counting loop. This implementation is made up of two loops,

the first of which assigns Tnew according to this equation, and the second of which transfers

the values of Tnew back into T. The code for this section is as follows:

do 100 j =1, jbar

Tnew(j) = T(j) + sig*dt/dx**2 * (T(j+l) + T(j-1)-2*T(j))

100 continue

do 200 j=l, jbar

T(j) = Tnew(j)

200 continue

This two-loop structure is essential to the successful computation of T at the new

time step. If one were to forego the computation of Tnew and directly compute T, the

temperature terms at the right hand of the equation would not exist at the same time cycle.

While T(j+l ) and T(j) would still be at time n, T(j-1), having already been computed in

the previous iteration of this do loop, would exist at time n + 1. By creating a second

array and moving these values into T after they are all computed, we are able to avoid

this problem.

The final section in our code is the output subroutine, which occurs when pt=ptime.

This procedure could contain various graphics routines, write results to an output file, or

simply display the various array values on the screen. A diagram of these sections and

their interactions appears in Fig. 11-5.
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I1. Initial Conditions I
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I st = stime

3. Boundary Conditions I

+
I

/ 4. Temperature Computation f’

Fig. II-5

E. Programming and Results

We have now reached a point where the reader should be able to write his own finite-

difference code for heat transfer. In this work a limited series of examples are examined in

order to demonstrate the output of our code.

Figures II-6 through 11-10 below show the results of a simulation of an insulated

rod that is originally at 0° C, with a fixed temperature at the left (TL) of 400° C, fixed

temperature at the right (T~) of O“C, a thermometric conductivity (a) of 1.0 m2 per see,

a zone length (dz) of one meter, a ~ of 50, and a time step (dt) of 0.1 seconds. Results are

shown at 10, 50, 100, 250, and 1000 seconds.
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Figure II-10

Notice how the zone temperatures approach a straight line as the simulation progresses.

Such a line is the final steady-state solution of this system, regardless of thermometric

conductivity. Solutions at earlier time steps can be approximated using Eq. (III-55), which

is derived at the end of Chapter III.



In the next three graphs, the effects of changes in time step are shown in relation to a

simulation which is otherwise identical to the one above. Figure II-11 shows a temperature

curve for a system at a time of 100 seconds with a time step of 0.495, just under 1/2.

.

. Temperatures along rod%

h sigma = 1.0 oh= 1.0 dt = 0.495 time = 100

b.o Ia. s :5 a ‘wfl m-)

Distance along rod (m)

Figure II-1 1

This figure is almost identical to Fig. II-8, indicating that there is Iittle difference

between the results obtained with a time step of 0.1 and the results obtained with a time

step of 0.495. Results are quite different, however, when a time step of 0.5 is used, as in

Fig. 11-12.

~ Temperatures along rod
sigma = 1.0 ck= 1.0 dt =

g 2-

ga
32?

&
a 0.a?

&

0.5 time = 100

Distance along rod (m)

Figure 11-12
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The stair-step type temperatures that can be seen in this graph are a result of a

numerical instability. This instability becomes even more violent when the time step is

further increased to 0.505, as in Fig. 11-13.

a

:1

Temperatures along rod
sigma = 1.0 oh= 1.0 d = 0.505 time = 100

G;
w.

!28
s.
Id
&.
a“
ls~

;
a .n lx Zn Zl,l U h

Distance along rod (m)

Figure 11-13

Notice that in this figure the highest temperatures are much greater than

the

the

crdt
p

400”C, whereas

lowest temperatures are below –250”C. Obviously, this does not accurately represent

transfer of heat down the rod.

The numerical instability seen in Figs. 11-12 and 11-13 arises whenever the quantity

is greater than 1/2. The presence of this instability means that the more accurately

one wishes to resolve a set of circumstances, the shorter the time step that must be chosen.

This problem highly limits the sorts of cases that can be simulated, yet there is a method

by which it can be overcome. The following chapter examines this numerical instability

and discusses the use of an implicit method of solution—a method that increases the speed,

accuracy, and applicability of our finit~difference codes.
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III. NUMERICAL INSTABILITY AND IMPLICIT CALCULATIONS

A. A Graphical Explanation of the Diffusional Stability Condition

In the cases presented at the end of the last chapter, we discovered that our finite-

difference code is numerically unstable when the value of ~ exceeds 1/2. This constraint

is known as the diffusional stability condition, and it is one of two important conditions

that we will examine in our series of finit~difference codes.

Consider the simplest case possible for our simulation: that of a rod at a constant

temperature, To, with this same temperature at either end. Now consider the case in which

this system of constant temperatures is pert w-bed by slightly increasing the temperatures

of the odd-numbered zones by an amount e and slightly decreasing the temperatures of

the even-numbered zones by the same amount. The result is a system such as depicted in

Fig. III-1.

12 34 5 . . .

Zone

Fig. HI-1

Let us now chose an odd numbered zone, j, and examine the calculation of its

temperature at each time step. We begin with

(11-12)
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and substitute our new definition of T to obtain

TJ?+ 1 ~[To–c+TO –e–2(To+e)] ,
‘To+ C+&2

which can be reduced to

or

Tj?+l

[1

4~dt
=To+e 1–— .

dx2

(III-1)

(III-2)

(III-3)

If a constant ( is defined such that

our equation becomes

(III-4)~+l=TO+e[l– C].

Note that ~ in this equation is made up of all

(1 – f) <1 in all circumstances.

These constraints leave us with four cases

0< ~ <1. In this case, 1 – & is a fraction between O and 1. T~+l is therefore computed

as To + c (fraction), yielding a value closer to To than the previous time step. Subsequent

iterations of this equation generate a series of temperatures such as shown in Fig. III-2.

positive components; therefore, & >0 and

to examine, the first of which occurs when

~ ●

I●

& ●

●
● .

% ● ●

1 I I I 1 I I

1’2’3’4’5’6 ’7’...

Time Step

Fig. III-2
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In this case, the temperature converges towards To, moving towards the array of constant

temperatures that defines a correct solution.

In our second case ~ = 1, leaving us with the equation ~+1 = To. The graph of this

case converges immediately, as illustrated in Fig. III-3.

Our third curve is

I I I 1 I

1 2 3 4 ““”

Time Step

Fig. HI-3

similar to. the first and occurs when 1 < & < 2. When this is true,

I – ~ is again a fraction, but this time it is a number between O and – 1. The result is a

set of values which alternate above and below To but converge toward that value as shown

in Fig. III-4.

q ●

IE
●

T)
● ●

●

●
I I 1 I I I

1 2 3 4 5 . . .

Time Step
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A corollary to this case occurs when~ = 2. For this value thegraph oscillates but

does not converge, asin Fig. IH-5. This case, while nonconvergent, is still consideredto

represent the bounds of numerical instability.

q

To —

g= 2.0
● ●

T
●

E

~
12 34 5 . . .

Time Step

Fig. III-5

Our fourth and final case occurs as soon as this bound is crossed, when ~ >2. In this

set of circumstances 1– ( < – 1, yielding values of Tn+ 1 that not only oscillate but diverge

from the correct solution. The graph of temperatures appears as in Fig. III-6, with values

diverging until the program is terminated.

●

●
I ! I ! I

i

12 3’4 5 . . .

Time Step

Fig. III-6
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In order to avoid this condition, as well as the stable but nonconverging state pictured

in Fig. III-5, we must choose ( such that ~ <2. Referring to our definition of ~ as ~,

we obtain
4crdt. —<2,
dx2

which is the diffusional stability condition

(111-5)

crdt 1

S<5”
(111-6)

We have therefore demonstrated graphically that this condition must be met for a solution

to converge.

B.

has

A Mathematical Derivation of the Diffusional Stability Condition

Once again, we will turn to a mathematical explanation to reinforce an argument that

been made graphically. This section, like section II-C, is not essential to the writing

of our codes; it is simply another method of arriving at the dlffusional stability condition

and better explaining the manner in which it can be overcome. Again, one should follow

as closely as possible, gaining familiarity with the application of various mathematical

methods towards this problem.

We will begin with the heat-flow equation as expressed in Eq. (11-12), this time

substituting our definition for ~:

(III-7)

Let us examine the behavior of T; with the following trial solution:

T; = Aeikjdxezwndt . (III-8)

Here T~ represents T at a time step n and zone j, whereas ei k~‘_ and ei ‘“ n ~~represent e.—

raised to i k j dz and i w n d respectively, where i is the imaginary number. If r is defined

as

~ ~ ezwdt
1
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Eq. III-8 becomes

TJF= &i k j dxrn (III-9)

From this equation, we see that r must be between 1 and – 1 for T? to converge.

If r > 1, the solution will diverge monotonically, moving farther and farther towards

either positive or negative infinity. If r < – 1, the solution will diverge in an oscillatory

manner, alternating between positive and negative values but always moving away horn

convergence.

Keeping these restrictions on ~ in mind, let us now use our test definition of T~ to

substitute for temperature terms in Eq. (III-7):

[
Aeikjd~p+l = Aeikj~r~ + < Aeik(j+l)rn + Aeik (j–l)rn

4 -2Aeik@] o (111-10)

Dividing both sides by Aei ‘j ‘Xrn gives

r=l+$[eikdz +e-zkdz_2]
4

Using the identity eio = cos O+ i sin Owe can rewrite this equation as

r=l+ :[2coskdx-2]

(111-11)

(111-12)

or

[
r=l —z[l —coskdz]. (111-13)

Consider the extreme cases for the cos kdz term, namely cos k dz = +1 and – 1. If

cos k dx = +1, then Eq. (HI-13) reduces to r = 1, a valid statement according to the

restrictions that we have placed on r. This case poses no problems.

Taking the other extreme, cos kdx = – 1, we are left with

T=l –<. (111-14)
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Because & is always

than – 1, a problem

positive, r can never exceed 1 in this exe. It can, however, be leSS

which places the following condition on <:

–1<1–~ (111-15)

or

<<2. (111-16)

Using our definition of ~, we find that Eq. (111-16) is simply another statement of the

diffusional stability condition:

crdt 1
(111-17)

G<5”

Our analytical method arrives at precisely the same result as the pictorial analysis; the

diffusional stability condition must be met in order to ensure numerical stability.

C. Implicit Calculations

We have now derived the diffusional stability condition mathematically as well as

graphically and have demonstrated that it is essential to the numerical solving of Eq. (H-

12). It is possible, however, to solve the heat-flow equation numerically without meeting

this condition, by expressing the & terms of the heat-flow equation at time n + 1 rather

than at time n. In this method, heat flow is not represented by Eq. (11-12), but instead

by the following:

(111-18)

Let us now examine this equation mathematically as we did in Section B. Inserting a

similar trial solution and dividing by Ae2 k j ‘*rn, we obtain

or

28

[e ‘kdxT + e‘kd% – 27’] . (111-19)

[2~COS kdx - 2r] , (111-20)



which can be algebraically manipulated to obtain

or

1
l-=

1+$(1 –coskdz) ‘

Examining the upper and lower limits for cos kdx, we find that

r=l

1

‘=1+<”

(111-21)

(III-22)

(III-23)

Because ~ is always positive, r will be between O and 1 in all cases, indicating that

our solution will be numerically stable regardless of the value of ~. Equation (111-18)

will therefore remain stable at any resolution and time step; all that remains is to solve it

numerically.

Equation (111-18) represents an IMPLICIT METHOD of calculation. In this method,

values at the new time cycle are not directly calculated from old values as they were in

the EXPLICIT METHOD used in the previous chapter. They are instead calculated using

an iterative process that begins with a trial solution and modifies that solution with each

iteration until it has converged to within a specified value. In our program this iteration

will be done using Newton’s Method.

Newton’s Method is an iterative process that uses successive approximations to solve

an equation in the form ~(z) = O. In Newton’s method a trial value for Z1 is first chosen,

then the following equation is applied iteratively:

f(xn)

()‘“+l=X’– g “
(III-24)

Xn

This equation generates successive approximations for x, each more accurate than the one

before it. When z has converged to within a speciiled range, z. is then taken as the final

solution.
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We can better understand how this method arrives at a solution by examining an

example equation, f(z) = X2– 2. Choosing z 1 = 2 as a trial value, we will let the solution

converge to within three decimal places.

X:-2
Zn+l = Zn —

2xn

Z1 = 2.000

X2 = 1,500

X3 = 1.466

X4 = 1.414

Z5 = 1.414

A plot of these values along the graph of the equation appears in Fig. 111-7.

f(x)

)

x,

(III-25)

x

Fig. HI-7

This figure illustrates how one solution is used to obtain the next. The tangent is

used to approximate the graph of .f(xn) at the value Zn, and Zm+1 is given the value of
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x for which the tangent crosses the x-axis. This value is then substituted for z and the

process is repeated until it has converged.

Let us now apply this process to Eq. (III-18). Expressing this equation as a function

of T“?+1, we obtain

x [~’-:+ 7’?’? - 2T’+’] .f (T’’+l) = T;+l –T; – ~z~

Taking now the derivative with respect to T“?+1, we find that

f’(q+l)=l+%.

(III-26)

(III-27)

Using both of these definitions in Eq. (III-24), we are left with the final formula:

~+1 (new guess) = T~+l (old guess) –
(’(~:=’))) ~

(III-28)

By using this formula iteratively, we can now compute values for T’?+l for any values of

D. Computational Implementation of the Implicit Method

Now that we have developed an implicit method for use in solving the heat-transfer

equation, we can implement this method on the computer. We will do this by making

small modifications to the heat-transfer code that has already been written.

We begin by defining a constant beta that is set during the initialization procedure.

Beta is defined as

p= 1
1+S

and is used to avoid successive calculation of the denominator in Eq. (HI-28) during

iterations of Newton’s method. Also in this procedure, we define a constant ftest that

is equal to the margin of error to which our iterative procedure will converge. Typically

ftest has a value of approximately 0.001 times some maximum value of T in the problem.

Besides these two definitions in the initialization procedure, most of the major

modifications to the program occur in the computation section (referred to as Section 4

31



in the previous chapter). This section in its explicit form should be removed and replaced

with an implicit section of code.

This implicit section should consist of a loop that makes the initial guesses for the

temperatures at time n + 1 and a loop that iterates until the values of ‘Tn+1 have converged

to within ftest. The first loop is simply a do loop that defines the initial guesses for the

new temperatures as the temperatures at the old time step. Thus,

Tnew(j) = T(j) . (III-29)

This loop is then followed by an until loop that is constructed in the following manner.

At the beginning of each iteration, a value fmax is set at zero. After this statement, the.-

program moves into another loop that calculates j(T) along every point along the rod

and uses these values to calculate the next guess for the new temperatures. Also in this

100p, the largest absolute value for ~(T) is stored in the variable fmax. After this loop,

the program makes a check to see if fmax is less than ftest. If ftest is larger, the until loop

ends; if fmax is larger, the loop is repeated. The code for this loop should be similar to

the following:

100 fmax = O.

do 200 j= l,jmax

f = Tnew(j) - T(j) - (sig*dt/(dx*dx)) * (Tnew(j+l)+ T (j-1) - 2*T(j))

fmax = amaxl (abs(f),fmax)

Tnew(j) = Tnew(j) - f * beta

200 continue

if (fmax.gt.ftest) then goto 100

Notice that all the T terms on the right of the equation that sets f are actually

temperature values at the present implicit iteration. T’s and Tnew’s are mixed due to the

structure of the loop. Optionally, a counter for the number of iterations of the until loop

can be added, terminating this iterative process when a maximum number of iterations is

reached, regardless of the values of fmax.
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When this loop has finally terminated, the T array is redefined with the values from

the Tnew array, and the progam moves on to the next time step. All other sections

remain in the same form

to create a fully-implicit

as in our original program. No other modifications are necessary

version of our onedimensional heat-transfer

F
+

1. Initial Conditions

code.

d st = stime

5. output ~pthe 2. Tests “k
1 1

I

I 3. Boundary Conditions I

4. Implicit solver
f>

max — ftad

L

f < ftestmax

Fig. III-8
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By using the implicit code with the same set of parameters as were present in Fig. II-

12 (T. = O“C, T1 = 400”C, T, = O°C, a = 1 m2/see, dx = 1 m, ~ = 50, dt = 0.5 see, time

= 100 see, ~ = 0.5), the results shown in Fig. III-9 are obtained.

Temperatures along rod

\.

sigma = 1.0 G?X=1.0 dt = 0.5 time = 100

Distance along rod (m)

Fig. III-9

This figure helps to illustrate the numerical stability of this method. The system

remains stable at a time step of 0.505 (~ = 0.505), as indicated in Fig. 111-10.

. Temperatures along rod!5
h sigma = 1.0 dx = 1.0 d = 0.505 time = 100

Q ;.
cd
k
3.

~R
a)

# ~

&=
n
0+

1

cm Ku s. o Zflz Ka)

Distance along rod (m)

Fig. 111-10

Even at a time step of 10 see, where ~ is equal to 10 and only 10 time CYCkSare

computed up to time 100, the system remains numerically stable. The results in Fig. 111-11
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below appear almost identical to those calculated explicitly in Fig. II-11, yet the time step

used is over twenty times as large.

0
u Temperatures along rodJ,

sigma = 1.0 dx= 0.1 d?= 10 time = 100

Q ~-

$!~:
Es
a)
$:,.
B

m
-1. , 1 1 I I

Ia.c s .a ml Cob

Distance along rod (m)

Fig. III-1 1

We see through example that implicit methods are able to generate results for sets of

parameters that are numerically unstable when calculated explicitly. This technique will

prove essential in later simulations, preventing the first of two major numerical instabilities

that we will examine in our series of exercises.

E. Analytic Solution of the Heat-Flow Equation

In this section, we will be manipulating the heat-flow equation in order to generate

an analytic solution that can be used to check the validity of our computational results.

Once again, following the manipulation of this partial-differential equation is not

to making use of the derived solution.

We begin with Eq. (11-19), the onedimensional heat-flow equation in

differential form

~T 32T

z= ~~

essential

partial-

(11-19)

and make the assumption that T is a function of the single dimensionless quantity that

includes C, z, and t:

T = T(t) (111-30)
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By making this definition, we are assuming that the rod is of infinite length, so that the

length of the rod does not enter into these parameters. This assumption is made because

the derivation of a solution for a finite rod is a much more involved process than a solution

for the infinite case. For our purposes an analytic solution to the infinite rod case will

prove to be sufficient.

Using Eq. (111-30), we can obtain expressions for its partial-derivatives. Differentiating

with respect to t we obtain

Differentiating to obtain the second derivative with respect to z gives us

and

(111-31)

(III-32)

t32T d2T

==&F”
(III-33)

Equations (111-31) and (III-33) are substituted into Eq. (11-19) to obtain

x–( )dT o d2T_t3/2 _ _

2/6 C& d Cl&

or

If we define a variable y such that

#!,
W

Eq. (III-35) becomes

< dy–iy . —
d~

(III-34)

(III-35)

(HI-36)
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or

(III-37)

which can be integrated to obtain

<2
.—= lny+C,

4

where C is a constant.

Exponentiating both sides of this equation gives us:

(III-38)

(III-39)

or

*
e4 = yK1 , (111-40)

where K1 is a constant. We then use our definition of y and multiply both sides of the

equation by ~ to obtain

e~cL$ = KldT . (111-41)

This can be integrated to obtain

I
e~d<=KIT+Kz ~ (III-42)

<1

where K2 is another constant. If we choose cl to represent < at a distance of zero from the

end of the rod this equation becomes

which can be simplified by defining a variable z such that

(III-43)

t
27–.

2
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Equation (III-43) then becomes

%%

I
2 e-z’ dz=KITi-K2. (HI-44)

o

To determine the values K1 and K2, we examine two test cases. In the case where x

is O, the temperature is equal to that of the wall at the left end of the rod. We then have:

o

J
2 e-z’dz = KITL + K2 (III-45)

o

or

K2 = –(KITL) . (III-46)

In the case where we are at an infinite distance f.i-omthe heat source at one end of the rod,

the temperature is equal to the initial temperature specified for the rod:

m

J
z e-z’d~ = KITO + Kz ,

0

(III-47)

which reduces to

or

Setting Eqs. (111-46) and (111-49)

Zfi()— = KITO + K2
2

fi-K1To=K2.

equal to each other, we obtain

–KITL = K – KITO

or

+
‘1 = (T. ‘TL) “

(III-48)

(III-49)

(111-50)

(111-51)

Kz can then be obtain by substituting into Eq. (111-46):

TL &

‘2=-(TO-TL) “

38

(III-52)



or

Substituting both of these values into Eq. (111-44) we obtain

~
2=

2
J

e-zzdz = (T – T“)

o ((ToTTd)

5?%7

()/‘T= TL+(TO-TL) —
;e

‘Z’dz .

0

(III-53)

(III-54)

[+~e-Z2&)in this equation is a form of the PROBABILITY INTEGRAL, also

called the ERROR FUNCTION. This term is not integrable in terms of simple polynomials,

but it can be “solved” by defining

a

-[“f(a)=: e‘Z’dz ,

0

where er~ (a) can be determined as in the following table.

0.0;
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

erj(a)
0.0000

0.0564
0.1125
0.1680
0.2227
0.2763
0.3286
0.3794
0.4283
0.4755
0.5205
0.5633
0.6039
0.6420
0.6778
0.7112
0.7421

erf(a)

0.;
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

erf(a)
0.7969
0.8427
0.8801
0.9103
0.9340
0.9523
0.9661
0.9764
0.9838
0.9891
0.9928
0.9953
0.9970
0.9981
0.9987
0.9994
0.9996
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Our final solution to the heat-flow equation is then

(III-55)

This equation can be used to check the accuracy of our numerical results. It represents

the infinite rod case in which the temperature wave is not affected by the conditions at

the right end of the rod. At early time steps, the temperatures in our finite-rod simulation

should approximate those generated by this equation. Solutions at late time steps, as we

saw in Chapter II, should approach a straight line. By examining the results generated

by our code in both these circumstances, we can verify the validity of our finite-difference

calculations.
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N. LAGRANGIAN FLUID DYNAMICS

A. Fluid Flow and Lagrangian Methods

Up to this point our finite-difference codes have dealt strictly with the equation of heat

transfer [Eq. (11-19)], but heat flow is only one of many phenomena that can be modeled

using the finite-difference method. In the following several chapters, we will be looking

at another physical phenomenon that can be simulated in this manner: the motion of

FLUIDS.

For our purposes, we will define a fluid as anything that is infinitely deformable or

malleable. This means that, while a fluid may resist moving from one shape to another,

it resists the same amount in all directions and in all shapes. Fluids can be either

COMPRESSIBLE or INCOMPRESSIBLE. An incompressible fluid is one that does not

change its density much when pressure is applied to it, meaning that the fluid is moving

at a velocity much less than its sound speed, A compressible fluid is one that undergoes a

large change in its density as pressure is applied to it, meaning that the fluid is moving at

a speed that is comparable to its sound speed. We will be dealing with compressible fluids

in this chapter.

Our simulation will be of a system that can be reduced to one dimension: a piston

moving in a long cylinder that is filled with gas. The compression of gas in this manner

can by dealt with in one of two ways: through LAGRANGIAN or EULERIAN methods.

In an Eulerian code, zones remain fixed in space throughout the simulation. Fluids

move in and out of the zone at various rates, causing the mass contained in a particular

zone to change as the simulation progresses. All physical quantities are fluxed between

cells, but the position of the cells at all time steps remains the same. We will examine this

method in Chapter V.

Another method for simulating this situation is the Lagrangian technique. In a

Lagrangian code the positions of zones vary between each time step. As fluids are

compressed and decompressed, the zones move accordingly, maintaining an equal mass
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throughout the simulation. In a Lagrangian calculation, the energy, momentum, and

position of a given zone vary from time step to time step; only the mass contained by the

zone is held fied. The Lagrangian technique is the one that is used in this chapter.

B. Description of Equations Used in Lagrangian Fluid Flow

In order to derive the equations that are used in a one-dimensional Lagrangian code,

we must first define a group of variables and coordinates similar to those used in our first

two simulations. We again have a onedimensional system of zones, each zone representing

a certain section of the system being simulated. The system appears as in Fig. II-3, with

a series of ~ true zones and ghost zones appearing at O and ~ + 1

r “ I

I I

1- 1
012 j-l j j+l 7 [+1

Figure IV-1

The variables that will be applied to this system, however, are quite different from

those of the heat-transfer problem. In the fluid-flow case there is no longer a single array

of temperatures, but instead a group of arrays that represent position, pressure, velocity,

density, internal energy, and viscous pressure. The definition of these variables over a zone

j is shown in Fig. IV-2.

In this figure:
Zj+ 1i2 a position of cell wall to the right of zone j

Uj+112= velocity at cell wall to the right of zone j

pj ~ pressure of zone j

.Jj s internal energy per unit mass of zone j

qj S viscous pressure of zone j

p = density of zone j
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‘j - 1/2 ‘j+ 1/2

‘j – 112 ‘j+ 1/2

j–1 j–U2 j j+l12 j+l

Figure IV-2

Note that u and x are located at the walls of the cells while the rest of the variables are

located at the centers. These positions will be important in determining the relationship

among these various quantities.

With our variables defined as in Fig. IV-2, the equations that relate them to one

another can be derived. Consider the relationship between x and u: z is the array of wall

positions and u is the array of the time rate of change of those wall positions, i.e., velocity.

From these definitions, we see that

Finite-differencing

ax

%=u”
this equation gives us

(IV-1)

n+l
‘j+l/2 — q+l/2

dt = 7.$+1/2 >

which can be rewritten as an equation for position in terms of velocity:

n+l
‘j+l/2 = q-1/2 + u7+l/2dt “

This is the first important equation of our Lagrangian fluid flow code.

The next equation follows from Newton’s second law of motion, (Force = Mass x

Acceleration), and the definition of pressure, (pressure - =). In our code we define a
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momentum
c cell F
‘j +Yj+l

—
i j+l

Figure IV-3

two normal cells and define F“momentum cell whose center lies at the boundary between

and Fj+l as the force at the right and the left of the j momentum cell. A momentum cell

is depicted in Fig. IV-3.

By the definition of pressure, F“ and F“+l are rewritten in terms of variables defined

in Fig. IV-2:

J“ = (pj +qj)A (IV-4)

Fj+l = (Pj+l + qj+l)A 1 (Iv-5)

where A is the surface area of a cell wall. Note that here we use the sum of the physical

pressure and the viscous pressure, an additional pressure that is necessary to achieve

numerical stability. The viscous pressure will be discussed in more detail in section C.

Using Newton’s second law and noting that acceleration is the time rate of change of

velocity, we obtain

(Iv-6)

where F“+112 is equal to the net force at the cell wall j + 1/2. In the case where there are

no outside forces such as gravity in the x-direction, the net force at j + 1/2 is equal to the
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force pushing the momentum cell from the left (F’) minus the force by which it pushes the

next momentum cell on the right (Fj+l ):

~j+l/2 = q – q+l . (IV-7)

Combining Eq. (IV-6) and Eq. (IV-7) gives us

(
~:+1

Fj – Fj+l = m
J+l/2 — q+l/2

(it
)

1

or, by substituting for Fj and Fj+ 1,

(
n+l

)(qj‘Pj – qj+l – Pj+l) A = m ‘j+l/2~“?+I/2 .

(IV-8)

(IV-9)

Defining the quantity M as ~ and solving for u~~/,2, we are left with the expression

(IV-1O)

which gives change in u in terms of variables used in Fig. IV-2.

An expression for p can be obtained by again using our definition of M. Because

density is equal to M divided by the width of a zone, it follows that

which is the Lagrangian density

M
P?= ~ 9

‘j+l/2 – ‘7–1/2

equation.

(IV-II)

An expression for 1, the internal energy per unit mass of a cell, can be derived by

appealing to the definition of internal energy. 1 can be defined as the difference between

the total energy per unit mass and the kinetic energy per unit mass contained in a cell,

which is the same

thermodynamics,

as the heat energy per unit mass. We can therefore use the first law of

AI= AE=Q–pAV, (IV-12)

where AE is the change in heat energy, Q is the heat received from both conduction from

an outside source (which will not be important in this simulation) and dissipation of mean

flow kinetic energy, p is the pressure, and AV is the change in volume.
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We now make use of the variable g, which we called the viscous pressure earlier in

this chapter. One way of thinking of this pressure is as –Q/AV, or the increase in heat

energy over the compressive (or negative) change in volume. Using q, Eq. (IV-12) can be

written as

AI= –(q+p)AV . (IV-13)

Because the total internal energy is equal to m x 1, this equation can be rewritten in the

following differential form:
81

- -(q+P)# .
‘% –

In finite-difference form, Eq. (IV-14) becomes

()

~;+l – In
m j

dt [
= -(q+ PM az~t””

(IV-14)

8Xj-~/2 1a -
(IV-15)

Using our definition of M as ~ and ~j+l/2 as ax-’.J2’2,we solve for ~+ 1 and obtain the

Lagrangian internal energy equation in finite-difference form:

(IV-16)

To obtain an equation for pressure (p), we employ the ideal gas law, namely

pV = nRT , (IV-17)

where p is the pressure, V is volume, n the number of moles, T the temperature, and R is

the universal gas constant. In S1 units R = 8.3145 J/°K mol

In an ideal gas it can be shown that when CP and CV are the molar heat capacities at

constant pressure and constant volume,

CP– CV=R.

Combining this equation with Eq. (IV-17) and solving for p gives—

P=; (CP– CV)T,

(IV-18)

(IV-19)
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which can be rewritten as

()1 Cp ~ ~cT

‘=F c. v. (IV-20)

Because Cv is the molar specific heat and 1 is the internal energy per unit mass,

nCvT = mI . (IV-21)

By use of this equation, Eq. (IV-20) becomes

()lcplml
‘=F Cv

(IV-22)

We now define a constant ~ such that

This variable is called the POLYTROPIC GAS CONSTANT. This constant is always

greater than one and represents the ratio of specific heats and is a property of the gas

being simulated. Some typical values of ~ are

air, -y= 1.4

helium, ~ = 1.66

co~, ‘y= 1.34

SF6, -y= 1.08

-y and p are used in Eq. (IV-22) to obtain the Lagrangian finite-difference equation for

pressure:

P; = (7 – Wy~~ “ (IV-23)
.

This equation, also known as the POLYTROPIC EQUATION OF STATE, is used to

calculate values of p at each time step.

With pressure defined, let us take a closer look at q, called the viscous pressure. This

variable accounts for loss of kinetic energy in addition to what is used to compress the
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gas. It serves as a means by which kinetic energy is dissipated in irreversible processes in

the fluid such as the creation of heat through friction. The equation for artificial viscous

pressure appears in the following form:

9; = 90P:C (74–1/2 — q+l/2 )
if positive

or if negative q: =(), (IV-24)

where go is a constant between 0.1 and 0.25, and c is a characteristic velocity of the system.

This equation will not be derived in this work, but it is important to understand why

it appears in this form. The irreversible processes that are modeled through the use of the q

equation occur when there is a rapid change in the volume occupied by a gas in a system. In

our system this change occurs when there is a large differential between the velocities at the

left and right of a given cell. Hence we make q proportional to u~_li2 – U~+1i2, indicating

a large amount of kinetic energy dissipated when there is a large velocity differential and a

small amount dissipated when there is a lesser difference in velocities. Because dissipated

kinetic energy is never returned to the system, this term is

when its computed value is negative.

In order to be dimensionally correct u~_1,2 – u;+ 1,2 is

said to have a value of zero

multiplied by the density of

the zone and by c, which is called the characteristic velocity. As c’s purpose is simply to

make our equation dimensionally correct, we have some leeway in choosing this velocity.

Typically it is chosen in one of three ways. The simple& method is to define c as equal to

the value of some other major velocity in the simulation. In our simulation

the velocity of the piston that compresses the gas in the cylinder. Another

velocity can be defined is by using the sound speed of the fluid in question.

c d7P= —7
P

which can be rewritten using our equation for pressure as

this would be

way that this

Namely

(IV-25)

(Iv-26)



The third way in which c can be determined is by combining these two approaches

adding the sound speed to a prevalent velocity in the problem. In this case

by

c = piston speed + ~~(-y – 1)1 . (IV-27)

This third method is the one used in the model presented in this work.

In this section transport equations for position, velocity, density, internal energy,

pressure, and viscous pressure were derived—all the equations necessary to construct a one-

dimensional compressible fluid-flow simulation. The equations of fluid flow, particularly

those of density (or continuity), internal energy, and velocity (or momentum), are often

called the NAVIER-STOKES EQUATIONS. This is a general term that can be used

to represent any set of fluid-flow equations in 1, 2, or 3 dimensions. Having derived

these equations, we are ready to move our discussion to the construction of the computer

code itsel~ but before we take this step, let us first take a closer look at the artificial

viscous pressure. Its relationship with the diffusion equation will help us derive a stability

requirement that will be important in this simulation.

C. Viscous Pressure and Diffusion

Let us examine the effect of q on the momentum equation [Eq. (IV- 1O)]. Substituting

our definition of q [Eq. (IV-24)] into the momentum equation, while dropping the p’s and

the subscripts on p, gives us

which can be rewritten

n+l
(

q. Pc ‘t u;_1,2 + u~+3/2
‘j+l/2 = u7+l/2 i- ~

)
– 2U:+1,2 .

This equation is in the form of a diffusion equation [Eq. (111-18)] where

(IV-29)
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(IV-31)

to rewrite Eq. (IV-30) as

u=qocdx. (IV-32)

Using the diffusional stability condition on o [Eq. (III-6)],

(111-6)

we find that
qocdt 1

dx ‘z”
(IV-33)

This important stability requirement arises from the parallelism between the effect

of q on the momentum equation and the equation of heat diffusion. It is the first of two

major stability conditions that are found in this code.

The second condition, the COURANT STABILITY CONDITION, is a stability

condition that occurs as a result of a numerical instability that will be discussed in

Chapter VI. Its presence in a Lagrangian simulation can be explained by using a simple

example.

Consider the Fig. IV-4, where the fluid at the left wall of a zone of length dx is moving

to the right with velocity v, while the fluid at the right wall is stationary.

t-

V

t d.%

Figure IV-4

In this case, we see that for a given time step (dt), the left wall will move toward

the right wall a distance v dt. In order for our Lagrangian simulation to remain valid, the
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left wall cannot be allowed to move past the right wall, Mathematically

satisfy the following equation:

vdt<dx.

Because dx is always positive, this equation can also be written as

Jt<l
dx “

the system must

(Iv-34)

(IV-35)

Since cross-overs can also occur when a right wall moves leftward past a left wall, our final

stability condition is

In our code, v is equal to the maximum velocity

(IV-36)

in the system Iu] + c. Equation (IV-36)

is the Courant stability condition. It will be discussed in greater detail later on in this

work. In this chapter, we need only note its restrictions when we represent our system of

equations computationally.

D. Computational Lagrangian Fluid Flow

Using the equations derived in Section B, we can begin writing our one-dimensional

Lagrangian compressible fluid-flow code. As was true in the heat code, we must define our

variables in FORTRAN terms before we discuss their use in the code itself. Our variable

names appear in code form as follows: pj ~ p(j), qj G 40, ~j s W), Pj ~ rhdj),

uj+l/2 ~ u (j)) ~j+l/2 ~ x(j), uj–1/2 ~ U(j-1), and xj–1/2 = x(j-1). Note that z and u,

while still defined at j + 1/2 and j – 1/2, are written as x(j), u(j), x(j-1), and u(j-1). For

both of these variables an array index of j indicates a value at position j + 1/2, the wall

directly to the right of cell j.

Our program is structured similarly to the heat flow problem illustrated in Fig. II-5.

The code exists in five main sections: an initialization routine, a section for time checks

and incrementation

variable values, and

of counters, the definition of boundary conditions, the updating of

an output procedure.
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First, let us examine our initialization procedure, which defines allthe initial values

necessary for the problem. Just as in the last simulation, this procedure is used to initialize

time counters and define the length of the system being simulated, but this procedure must

also set values which were not

It defines the constants:

qo

gamma

M

U1

ur

present in our last case.

as occurs in Eq. (IV-24)

the ratio of specific heats

mass/area

the velocity at the left end of the cylinder

the velocity at the right end of the cylinder

Also initial values must be assigned to the constants:

rhoO the initial zone density

sieO the initial zone internal energy

Uo the initial zone velocity

A loop such as the one that assigned temperatures in the previous problem must be

constructed to initialize all the real elements of arrays rho as rhoO, sie as sieO, and u as

uO, and to compute initial values for x, p, and q using Eqs. (IV-3), (IV-23), and (IV-24),

respectively.

After the initialization procedure, the program moves into the same sort of loop as

did the heat program: making checks, incrementing time counters, updating boundary

conditions, and updating the arrays. The time check portion of the loop is exactly the

same as in our last two codes and can be written by repeating what was discussed in

Chapter II. The boundary conditions and array assignments are also quite similar to those

of our first program but must now be modified to deal with a group of arrays as opposed

to a single array of temperatures.

The boundary conditions must be defined for each variable that is referenced at the

j = 0 or j = jbar+l positions. We can determine which variables are referenced in these
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positions by referring to the equations that define our variable values: Eqs. (IV-3), (IV-1 O),

(IV-11), (IV-16), (IV-23), and (IV-24).

From Eq. (N-l 1), which appears in code form as

we see that x(0) will be

system to be prescribed

rho(j) = M/(x(j) – x(j – 1)) , (IV-37)

referenced, indicating the need for the position at the left of the

in our boundary conditions. By similar analysis of Eqs. @V-16)

and (IV-24), we see that there is also a need for values to be determined for u–.1f2 and

Uj+~/2, and for this reason boundary conditions must be assigned to u(0) and u(jbar),

representing u_l/2 and Uj+ 1)2, respectively.

An examination of Eq. (IV-1O) might lead the reader to believe that boundary

conditions are also required for p and q at position jbar+ 1. This requirement would

be true if the wall at the right of the cell were not prescribed, indicating a u(jbar) that is

determined independently of p and q. The only three variables that must be modified to

establish our boundary conditions are x(0), u(0), and u(jbar).

These variables should be assigned according to the system we wish to represent. For

the piston problem, the wall at the right is stationary, indicating that u(jbar) = ur. The

velocity at the leftmost cell wall in this problem is equal to the velocity of our simulated

piston, u(0) = u1. The position of the leftmost cell wall is equal to its position at the old

time step plus the distance that it moves to the right during the new time step, x(0) =

x(O) + dt * u1.

In our boundary conditions, we set a value of u(jbar) and not u(jbar+l ). This value

may seem strange to the student, as it does not make use of a ghost zone but rather

modifies a real value in the array. It is allowed because u(jbar) itself exists at a boundary,

representing the velocity at the wall directly to the left of zone jbar. In effect, a ghost zone

is being modified in which u(jbar) defines the rightmost wall.

With the boundary conditions updated, the code then moves into the updating portion

of the program. This is an explicit procedure, which does not use the nested loop structure
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that was employed in the previous chapter. We are once again dealing with a single loop

that assigns new array values based on the values at the previous time step. However, this

time we are not dealing with a single array of temperatures but a series of interdependent

arrays.

This change presents a problem that was not present in the previous simulation,

namely that of updating the values of the variables in an order such that all terms defined

at time n in an equation exist at the same time step. This problem is a more complicated

version of the one that caused us to create a Tnew array in Chapter II. Now we are not

only concerned that the terms of a single array exist at the same time step, but that the

values of a group of arrays be updated in an order such that each variable is calculated

using values from appropriate time steps.

To understand how this order is determined, let us first list our six equations in

pseudo-code format. All variables are expressed as they would be in FORTRAN with the

exception of the superscripts which are used to remind the reader of the time step at which

each of these terms exists. In this form, Eq. (IV-3) becomes

(IV-38)xn+l(j) = xn(j) + un(j) dt.

Equation (IV-1O) becomes

un+l(j) = urn(j) + (dt/M) * (pn(j) + qn(j) -pn (j+l)-qn(j+l)).

Equation (IV-1 1), written at the new time step, is

rhon+l (j) = M (xn+l(j) - xn+l(j-l) ).

Equation (IV-16) becomes

sien+l = sien(j) + (dt/M) * (qn(j)+pm(j)) * (um(j-l) - un(j)).

Equation (IV-23) at the new time step is

Pm+l(j) =(gamma - 1) * rhon+l (j) * sien~l(j).

Equation (IV-24) also at the new time step is

(Iv-39)

(IV-40)

(IV-41)

(IV-42)
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qn+’(j)= C@ * rhon+’(j) * Cn+’ * (Un+l (j -1) - un+’(j))

if (qn+l(j) . It. O) qn+l (j)= 0.0,

where Cn+l is computed at cell j as in Eq. (IV-27).

(IV-43)

The equations are placed in an order such that each variable exists at an appropriate

time step when it is used. For example, both x and u must exist at time step n when

Eq. (IV-38) is implemented, so this equation must appear before Eq. [IV-39). By similar

argument, Eq. (IV-39), which includes a p term at time n, must appear before Eq. (IV-

42), which updates p. Further examination of equations in this manner leaves us with

a final order in which these equations must be placed, namely, Eq. (IV-38), Eq. (IV-

41), Eq. (IV-39), Eq. (IV-40), Eq. (IV-42), and Eq. (IV-43), where the third and fourth

are interchangeable, as well as the fifth and sixth. The variable updating portion of the

program is a loop that implements these transport equations in an appropriate order.
.

I Start I

+
Setup

&
! Initial B.C. !

[
output Tests

L=stime

1 1 ,CEcI

+

* , L

Figure IV-5
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With these four sections completed, all that remains is to construct an output

procedure desirable to the user, and the on~dimensional Lagrangia.g fluid code is complete.

A graphical representation of this code appears in Figure IV-5.

E. Shocks and Shock Tubes

The following five figures are plots of the density of the fluid in the cylinder as the

piston moves in from the left. The parameters chosen for this simulation are: length

= 10.(cm), U1= 0,5(cm/s), ur = 0.0( cm/s), gamma = 5/3, jbar=20, rhoO = 1.0 (g/cm3),

sieO = O (cm2/s2), qO= 0.3, and dt = 0.05(s). Plots appear at times of 2, 4, 6, 8, and 10

seconds respectively.

Densities at Time 2 (s)

/

a
““

=.
v

Y
-.

b.O .?.!~ 51 7s 1D.a

Figure IV-6

Densities at Time 4 (s)

Figure IV-7
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Figure IV-8

Densities at Time 8 (s)

DO 2. s 5,8 7 .s 10.0

Figure IV-9

Densities at Time 10 (s)

/

57



The phenomenon that we are exarnining in these plots is known as a SHOCK, a rapid

transition between two states that moves relative to the fluid. Weak shocks occur when

fluid is moved at low speeds, but the effects of shocks are most notable when a fluid is

moved at a velocity that is near to or greater than the sound speed of the fluid. A shock

can be visualized by using the analogy of an evenly spaced line of billiard balls.

Consider the case in which a narrow channel has a piston at one end and is filled with

evenly spaced billiard balls, as depicted in Fig. IV-11.

Figure W-11

The leftmost ball is pushed to the right by the piston and begins to pile up balls in fi-ont

of it as it moves down the passage. This movement creates a re@on in which billiard balls

exist at a much higher density than in the rest of the passage, because the billiard balk

that are moving are touching each other whereas the stationary ones are stilI evenly spread

apart. The front of this compressed region (called the shock or SHOCK FRONT) moves

forward faster than the piston itself because b~ard balls are constantly piIing up in front

of the piston as it moves to the right. This system is illustrated in Fig. IV-12. Note that

in this figure the transition from the compressed region to the undisturbed surroundings

is virtually instantaneous, and that the shock front is not a gradual change in density but

rather takes place over a very narrow span.

Our Lagrangian plots demonstrate this sharp contrast between compressed and

uncompressed fluid that occurs in a shock. In these plots we can also see the compressed

region expanding and the shock front moving at a velocity that is greater than that of

the piston. The velocity of the shock front can be predicted, as can other properties,
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compressed region

shock front
(moves faster than the piston)

Figure IV-12

byappealing totheequatiom that describe the theory of shocks. In particular, we will

be using the equations of INFINITE STRENGTH SHOCKS, shocks that occur when the

shock speed is large compared to the sound speed ahead.

These equations will not be derived in this work, but such derivations are available in

various textbooks and monographs, specifically in “Fluid Dynamics-A LASL Monograph”

by Flancis Harlow and Anthony Amsden, LA-4700. In an infinite strength shock, these

equations are

~~_y+l
— —up ,

2
(Iv-44)

where us is the velocity of the shock, and UPis the velocity of the piston, and

~~_7+l_—
‘Y-lpo’

(I-V-45)

where p~ the density behind the shock, and p. is the initial density of the fluid.

Applying these equations to the parameters used in our simulation, we predict that

the shock will move forward at a speed of 0.66 (cm/s), and produce a compressed region

of density 4 (g/cm3). These two values can be used to verify the results presented in

Figs. IV-6 through IV-10.
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The next two graphs illustrate the effect of qO on the accuracy of our numerical

simulations. If qO is chosen too low, the answer becomes numerically unstabIe, M is

illustrated in Fig. IV-13.

-1 Densities at Time 10 (s), qO = 0.1

‘1

m
a

0. D 2.3 SOB 7.% ma

Figure IV-13

If qOis too high, on the other hand, the answer is stable but inaccurate, losing the degree

of clarity that was present in the gO= 0.3 graphs.

Densities at Time 10 (s), qO = 0.75

-.7

a
n--

0~_

-,
.-,

~

-0.0
1

2.3 sol

Figure IV-1’4

At even higher qO values, the difEusional stability condition is violated, resulting in the

program being terminated by errors.
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A second problem that can be modeled using a one-dimensional Lagrangian code

is that of a SHOCK TUBE, a tube that contains two fluids, usually gases, of different

densities. Computationally, this problem is set up by setting all velocities to zero and

creating an array that is made up of one set of zones at a density plefi and another set

of zones at a different density ~~ight. Because our equations assume a constant M, these

zones must be MASS MATCHED such that the mass of every zone is a constant. This

matching is done by decreasing the initial length of the denser zones relative to the initial

length of the less dense zones such that dx p is a constant.

In the example presented in this work, pl,~ is chosen to be 1 (g/cm3) w~e pright is

4 (g/cm3). Mass matching is achieved by multiplying the length of the left zones by 8/5

and multiplying the length of the right zones by 2/5 so that 8/5 x 1 = 8/5 = 2/5 x 4. The

resulting code appears as the following:

do 100 j = l,jbar/2

rho(j) = rhoO

x(j) = x(j–1)+(8./5.)( length/float(jbar))

100 continue

do 200 j = (jbar/2)+l,jbar+l

rho(j) = rhoO*4

x(j) = x(j–1)+(2./5.)* (length/float(jbar))

200 continue

For the results shown in this simulation, the following parameters are used: length =

10.0 (cm), ul = 0.0 (cm/s), ur = 0.0 (cm/s), jbar = 20, rhol = 1.0 (g/cm3), rhor = 4.0

(g/cm3), sieO = 1.0(cm2/s2), qO= 0.3, gamma = 5/3, and dt = 0.05 (s). Note that sieO

is not equal to zero in this simulation; there wo~d be no motion of fluids in the shock

tube without some initial internal energy being present. Figures IV-15 through IV-20 are

graphs of this system at times of O, 1, 2, 3, 4, and 5 seconds respectively.
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Densities at Time 3 (s)
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In these graphs we see three major features: a shock wave moving to the left, a

CONTACT DISCONTINUITY between the two fluids that is also moving to the left, and

a RAREFACTION WAVE that is moving to the right and bouncing off of the wall. Each

of these elements has been labeled in Fig. lV-21, below.

rarefaction wave
A-

contad discontinuity

\

\
Q.

shock front

s-

~
=

Figure IV-21

The equations that describe the properties of each of these three features of the shock

tube problem will not be included in this work. Once again, the reader interested in these

equations should refer to LA-4700 or a similar work.

The same sort of instabilities that were present in the piston problem can also be

induced in the shock tube problem, as is ilhstrated by the following plots of density at a

time of 2 seconds, each generated by the same parameters as the previous graphs except

for qO, which is 0.1 in the first graph and 0.75 in the second.

.
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Y Densities at Time 2 (s), qO = 0.75
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Figure IV-23

Again, if qOis increased to an even higher level, the code will become numerically unstable.

In this chapter we have seen a number of simulations that can be created using the

Lagrangiam equations for onexiirnensional compressible fluid flow. In the following chapter,
.

we will solve the same sorts of problems using an Eulerian method, learning a different

technique that can be used to solve the equations of fluid motion computationally.
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V. EULERIAN FLUID DYNAMICS

A. Eulerian Methods and Advective FIUX

In the previous chapter we examined the use of Lagrangian methods in solving the

equations of one-dimensional compressible fluid flow. We are now going to approach the

same problem from a d.iEerentperspective, using an Eulerian technique. In this method the

zone positions are held completely tied, while all quantities are allowed to move between

zones. Cell masses are not constant in time, but instead fluid moves between cells; while

only the spatial coordinates of the zones remain constant.

This constancy of spatial coordinates is maintained by the calculation of ADVECTIVE

FLUXES, fluxes that occur as a result of the motion of fluid from one region to another.

An example of this type of flux is the transfer of heat by convection, where heat energy

is moved from one region to another by the transfer of the material that contains that

energy. The new region is heated not because the material in that region has absorbed

the energy from another region, but because a new, hotter material has been moved in to

replace the old.

This type of flux is in contrast to the NONADVECTIYE

in our Lagrangian calculations. Those fluxes occur when the

FLUXES that were present

quantities themselves move

from one region to another

flux is heat conduction.

without any motion of material. An example of a nonadvective

While our previous simulation dealt only with nonadvective fluxes, our Euleria.n one

dimensional fluid code will include both advective and nonadvective fluxes. In order to

accomplish this, we must return to our six equations that describe the interaction of the

various physical quantities and add to each a term that describes the advective fluxes that

are intrinsic to the Eulerian method.
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B. The Equations of Eulerian Fluid Flow

In order to understand the manner that advective flux can be mathematically

represented, we must first take a closer look at the situation that it represents. Consider a

system such as in Fig. V-1, in which a portion of the material in one zone is being moved

into the zone that is adjacent to the right.

, udt ,

~

u = velocity

Figure V-1

In this picture we see that when the material in a zone is moving at a velocity u, the

material contained in a length u dt will be moved into the adjacent cell. Because each zone

ha.5an area A, the volume moved horn one cell to another is Au dt.

This transfer of volume can be multiplied by p, the mass per unit volume, to obtain

the following equation for total mass crossing the cell boundary in a given time step:

Total Mass Crossing Boundary in a Time Step (dt) = A p u dt (v-1)

This equation can be used to find the mass flux, the total mass crossing per unit time per

unit area:

Mass Flux = ‘~:d’ = ~u (v-2)

Equation (V-2) is a statement of the advective mass flux between two cells. It illustrates
.

a much more general principle that can be shown by replacing p by a value Q, the density

of any quanti~ that is being advected. In this general case

Advective Flux = Qu . (v-3)
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The density of each of the various physical variables is computed by simply dividing

the desired quantity by the volume of a cell. Consider the case of momentum, for example.

As was stated in the previous chapter, momentum is mass times velocity:

m u = momentum .

Dividing both sides by the volume of a cell, we obtain

(v-4)

Because m/volume

can be rewritten:

mu moment um
= (v-5)

volume volume “

is p and momentum/volume is the momentum density, this equation

(v-7)

and

p u = momentum density . (V-6)

By a similar process, we find that

p I = internal energy density ,

p U2
— = kinetic energy density .

2
(V-8)

Note that I in Eq. (V-7) is internal energy per unit mass.

Substituting these three density terms into Eq. (V-3), we obtain the following

equations of advective flux:

Advective flux of mass = p u (v-9)

Advective flux of momentum= p U2 (v-lo)

Advective flux of internal-energy = p I u (V-n)

Advective flux of kinetic energy= $U (V-12)

We will use these expressions in deriving the equations of EuIerian fluid flow.
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We begin with the expression

calculations as

for density, which

M=
~n — ~n

was described in our Lagrangian

. (I-V-11)
‘j+l/2 ‘j–l/2

This expression needs to be modified to reflect the fact that mass is no longer a constant

and that distance between cell walls is no longer a variable. To modi~ this equation, we

first substitute eke,the fixed distance between the cell walls, for Z~+l,2 – Z~_l,2:

M

‘=Z”
(V-13)

We must now derive an expression for changes in M, the mass of a cell divided by the

area. This derivation is similar to that of the expression for heat in Chapter II. From mass

conservation,

mass~+l – mass; = amount in - amount out . (V-14)

Because amount in and amount out are simply flux x area x time step, and flux has been

defined by Eq. (V-2), numerical expressions for both these terms can be calculated

By substituting these

amount in = fluxl,ft A dt = (P U)j-1/2 Ad~ (V-15)

amo~t out = fl~~@t A dt = (PU)j+l/2 A dt (V-16)

two values into Eq. (V-14) the change in mass, mass~+l – msss~,

can be expressed as follows:

A msss = (pU)j_l/Q A dt – (p U)j+l/QAdt . (V-17)

Using our defm.ition of M as mass divided by area and factoring out like terms, we obtain

an equation for change in M:

AM= dt ((pu)j-1/2 –-(PU)j+l/2) . (V-18)

Combining this equation with Eq. (V-13), we find the following:

Ap =
()

dt
~ ((Pw-1/2 - (Pw+l/2) . (V-19)
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Because the new density is equal to the old density plus the change in density, p + Ap, we

are left with a final equation for the updating of densities that is made up of two parts:

an expression for the density at the old time step and an expression for the change due to

advective flux:

()dt
P;+l .p~.+ ~ ((P4j-1/2 - (P@j+l/2) . (V-20)

This analysis leaves us with an equation that expresses density at the new time step, but

also presents us with a problem. Equation (V-20) makes use of the advected ~j_l/2 and

Pj~IIZ de~ities expressed at the left and right wall Of ce~ ~“ These quantiti~ cannot be

referenced directly but instead must be computed using one of two methods: CENTERED

or DONOR CELL.

Centered expressions for advected qumtities are computed by averaging the values at

the cell centers to the right and left of the wall across which fluid is being advected. In

our cssej centering would lead to an expression for density in the form of Eq. (V-15):

Pj-1/2 = ;(% + Pj-1) “ (V-21)

This value is not acceptable for pj– l/z, however, because it is UNCONDITIONALLY

UNSTABLE, meaning unstable no matter how small we choose our time step. The reason

for this instability will be discussed in Chapter VI.

A better method is the donor-cell technique, which uses the upstream value as the

value at the advection cell wall. In this technique, the value of a quantity at the cell wall

is equal to the value at the left ceil center if the flow is from the left or equal to the value

at the right ceLIcenter if the flow is from the right. This choice of values is mathematically

expressed as
(W)j-1/2 = pj-l~j-1/2 .if uj_l\2 >0

or (v-22)

(“P)j-1/2 = Pjuj-1/2 if uj-1/2 <0

and is illustrated visually in Fig. V-2.
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j– 1
j

j-112

Figure V-2

The donor technique should be employed wherever a quantity is being advected across a

cell wall, as is the case with internal energy.

The Eulerian internal energy equation can be calculated beginning with the Lagran-

gian equation:

“ ~+l=~y+~~
(~ (~;+ P;) ‘q-l/2 - 7$+1/2 )

(IV-16)

This transport equation for I is made up of two major terms: the internal energy

at the last time step (1$) and the change because of nonadvective flux # (q~ + p?)

(
Un3–1/2 )

– U7+1,2 . To write this equation in an Eulerian manner, we must add a third

term to represent the advective flux. Before this term is added, however, this equation

must first be modified. Multiplying by M, we obtain

)
(M 1)~+1 = (M 1)7+ dt(p + q)$ (u7-1/2 – u;+l/2 o (V-23)

This equation represents the total change in MI due to the nonadvective pressure terms.

We saw in Eq. (V-20) that the transport equation for a variable whose value is changed

only by advective flux appears in the form

(9;1=(a;+(dt/dz) ((flux of Q)j–I/2 – @UX ofQ)j+l/z) , (V-24)

.
where Q is any variable property of the cells and V is the volume of a single zone. Using

this equation to express change due to advective flux in terms of energy density, we obtain

( )(M?I);+l = (MI); – d-t (pu~)7+1/2 – (PU07-1/2 “ (V-25)
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Combining this equation with Eq. (V-23) gives us an expression for change in internal

energy that accounts for both advective and nonadvective fluxes:

[
(MI);+l = (Ml); – dt (puI)j+l/2 – (pZLI);_l/2 + (p + q);(u;+l,z -u;-,,,)] o (V-26)

Because zones are stationary in an Eulerian simulation, M = p dz. Therefore, this equation

can be rewritten as

This equation is computed using the donor-cell technique for the puI terms:

(P4j-1/2 = Uj.-1/2(d)j-1 if uj–1/2 >0

or (V-28)

(P’q-l/2 = 74-1/2(POj if uj-1/2 <0.

By a process similar to the derivation of Eq. (V-26), Eq. (IW1O) is rewritten as

(W;32 = (~u);+l/2 – d~ ((P + !?);+1 – (P + !?);) . (V-29)

This equation is combined with an advective equation in the form of Eq. (V-25), namely

(J@~:;,2= (J@;+,/2 + ~~((@J2);- (PU2);+J, (V-30)

to obtain an equation that accounts for both the advective and nonadvective fluxes that

affect momentum:

(~u);::/2 = (~47+1/2 – d ((PU2);+1 – (PZL2); + (P + q)~+I – (P + d~) . (V-31)

Once again referring to our equation for M given a’fixed distance between celk (M = p dz)

we obtain

(%4;:;/2= (P4;+l/2 – + ((PU2);+1 – (PU2); + (P + !?);+1 – (P + !?)y) o (V-32)
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In this equation, values for u at the cell centers must be computed using the donor-cell
,

technique. These appear in the form

(W’2)j = ‘j(W)j-l/2 if Uj >0

or

(Pu2)j= ‘j(PU)j+l/2 if ‘j <0, (v-33)

where uj, ~j-1/2, and ~j+l/2 are computed as averages of the values half a cell to the left

and half a cell to the right of the point at which these quantities are defined:

(‘j–l/2 + ‘j+l/2
Uj =

2 )

‘j-’’2=(p1Jp9p9
Pj+l/2

‘(p’+~+l) ~

(v-34)

(v-35)

(V-36)

The student may pose the question of why these averages are used in donor-cell calculations,

as they seem to indicate a centered approach that is unconditionally unstable. To explain

why these averages are employed, we return to our momentum cell diagram, noting where

these vsrious variables are located. In the following figure, the letters in bold indicate

quantities at positions where their values are not specified.

momentumcell

r-. .

massccll

Figure V-3
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The terms that employ the donor cell technique are made up of two portions, the

donoring velocity andthe quantity that is donored. Inouroriginal case of density flux,

these quantities are uj– 112and ~j– 1f2, respectively. The donoring velocity is always taken

at the position at which the flux is taking place, whereas the donored quantity is taken at

the center of the cell to the upstream side of the cell wall at which a flux is taking place.

For density flux and internal ener~ flux, all of these values can be taken from positions at

which these quantities were directly defined: density and internal energy at the cell centers

and velocity at the cell walls. For momentum flux, however, the situation is different.

From Fig. V-3, we see that the donoring velocity at the wall of the momentum cell is

uj, whereas the donored quantities at the center of the momentum cell exist at positions

j – 1/2 or j + 1/2. This configuration forces us to use values that are not directly present

in our arrays. These values: uj, ~j–1/2, and pj+1i2, are obtained by averaging as in

Eqs. (V-34) through (V-36).

We have now derived Eulerian equations for density (p), internal energy (1), and

momentum (mass x u). Values for pressure and viscous pressure (p and g) are determined

directly from the values of the other three quantities at each new time step. Thus, the

equations for p and q from Chapter IV can be used in our Eulerian simulation. We have

completed all the derivation necessary to obtain a set of equations for the simulation of

one-dimensional fluid flow in an Eulerian manner and can now begin to implement these

equations on the computer. Before we begin this implementation, however, let us first take

a look at how our equations appear in partial-differential form and make some observations

as to the way that Lagrangian and EuIerian calculations are related.

C. The Partial-Differential Equations of Fluid Flow

Once again, we are going to exarnine the partial-differential equations that relate

to our finite-diiTerence equatio~. As was the case when we previously examined these

equations, this section is not necessary in the writing of our finite-difference code. It is

provided only as an additional method of looking at this system.
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By a process similar to that used in Section C of Chapter 2, we can rewrite

our equations of fluid flow by taking the limits as dx and dt approach zero and

generating equations in partial-differential form. In this form Eqs. (V-20) (mass), (V-27)

(momentum), and (V-31) (heat energy) appear as follows:

6yYu~ 8(2U2——
at ax

@I ~ 8/YuI——
at ax

These equations represent the Eulerian

momentum, and heat energy respectively,

Equations.

=-(P+q)&

form of the transport

They are another form

(v-37)

(V-38)

(v-39)

equations for mass,

of the Navier-Stokes

We are going to take a look at these Eulerian equations and relate them to the

equations used in the Lagrangian code, trying to gain a better understanding of why

these two seemingly dissimilar methods yield computationally similar results.

We will begin with the mass equation, Eq. (V-37). By the chain rule, the second term

can be expanded to obtain
@ ap &L
~+u~+p~=o. (V-40)

We now employ the mathematical identity for the total differential of a function of

two variables, ~(x, t):

df = ~dt + ~dx . (V-41)

This equation states that for arbitrarily slight &&ges in t and x (denoted by dt and dx)

the function f changes by an amount df, as given by the formula. Dividing by dt gives us

df af af dz—= —— .
dt z+axdt

(V-42)
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In the special case when ~ follows the motion of a fluid, ss in a La~angian calc~ation,

then ~ = u and
df ~f 8f

at +u~.—=—
dt

(V-43)

This is an expression for the rate of change of f along the motion of a fluid, also known

as the LAGRANGIAN DERIVATIVE. It will be denoted in this work as $ as opposed

to ~. Elsewhere in the literature, the notation ~ is often used to further emphasize

the difference between the partial and Lagrangian derivatives. The meaning, however, is

equivalent.

Using the Lagrangian derivative to rewrite Eq. (V-40), we obtain

dp~+pg’o. (v-44)

This equation is the Lagrangian partial-differential equation for fluid flow; its finite-

difference approximation is equivalent Eq. (IV-11). To show this equivalence, we begin

with Eq. (V-44) and divide by p2 to obtain

1 dp 1 au
+——. — o

pax=
(v-45)

/)2dt

or

d~ 1 au–~+– —=o. (V-46)
pax

Finite difFerencing the second term gives us

d; ~
.— — (“j+l/2 - Uj-1/2) = 00dt + pdx

(v-47)

Note that in this equation dz is no longer part of a partial derivative but a finite distance

between zones.

From Eq. (V-13) we have M = p dz, and from Eq. (IV-1) we have u = dz/dt, so we

can write this equation as

d$ 1 (dxj+l/2 d~j–1/z = o——
dt )‘~ dt – dt “

(V-48)
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In this equation, alldt terms are Lagrangian derivatives and canthus retreated in the

same manner. We can therefore integrate this equation with respect to dt to obtain

1 (~j+l/2 — ~j–1/2—=
P )M“

(v-49)

This equation is equivalent to our Lagrangian density equation,

M
P?= ~ (rv-11)

‘j+l/2 — x”;–1/2

We see then, through the use of partial-differential equations, that the Eulerian and the

Lagrangian mass equations are equivalent in the properties that they represent.

This equivalence is also true fm the momentum equation,

form as Eq. (V-38). This equation can be expanded to obtain

au ap apu 8P
~+u— –—P~+u@Pu~z &J = &

which appears in Eulerian

9 (V-50)

where P signifies the total pressure (P = p + q).

Returning to the mass equation (V-37), we see that the sum of the second and fourth

terms of Eq. (V-50) is equal to zero; this gives us

8P
%Pu~=-–

p & ax

or

Employing the Lagyangian derivative, we obtain

du 8P

‘z=–-%”

(V-51)

(V-52)

(v-53)

This equation is the Lagrangian partial-diflerential”equation for momentum. Dividing both

sides by p and iinite-differencing it gives us

uy+l —u; 1
dt ( )–— q!+l/2 – qE1/2 ~

= pdx
(v-54)
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which, with a shift of indices, is equal to Eq. (IV-1 O):

n+l
‘j+l/2 %’ )= ‘7+1/2 + M PJ + q: – ?-$+1 – q;+l - (Iv-1o)

For internal energy, the process is similar. Eq. (IV-39) is expanded

the second and fourth terms are dropped using the mass equation

(V-56)

and finally the Lagrangian derivative is used to get the Lagrangian equation for change in

internal energy:
dI ~ 8U

‘z=– z“
(v-57)

Through finite differencing, this equation can be shown to be a partial-difFerential

representation of Eq. (IV-16):

So we see that for an Eulerian simulation, our equations appear as

(IV-16)

(v-37)

apu ~ apuz #lP o——
at ax %= ‘

(V-58)

apI ~ 8PUI ~ P6+.L—— —
at ax ax ‘o;

[V-59)

whereas, in a Lagrangian simulation, our equations are

dp &L~+’~=o, (v-44)

du 8P “
‘Z+z=o’

(V-60)

P:+ Pg=o. (V-61)
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These partial-differential equations provide another way of looking at our one-dimensional

fluid-flow equations. They help to explain the Lagrangian and Eulerian finite-difference

equations and demonstrate that, although these are seemingly difFerent, their underlying

principles are the same.

D. Computational Implementation of Equations

The structure of our Eulerian on~dimensional fluid code is similar to that of the

Lagrangian code: it contains the same five sections, its variable declarations are almost

the same, and the output procedure is of the same type.

There are, however, some major differences between these two codes. These differences

are found in the initialization procedure, in the boundary conditions, and in the equations

that are used to update the variable values.

The order in which our variables are given new values is again rho, u, I, p, and q; but

rho, u, and I must now be calculated using quantities calculated before the program enters

the loop that assigns new values to these arrays. This loop must generate values for rho,

u, and I; but the transport equations that were derived in Section B are written in terms

‘f Pj ) (W)j+l/2> and (pI’)~. We have to obtain array values for the following quantities

before calculating the other physical variables:

rhon(j)—p~+l

rhoun(j )—P~~~l/2

rhoin(j)-pl~+l .

Each of these arrays is calculated using the Eulerian equations of transport. The

calculations are done for all array values before any updating of rho, u, 1, p, or q is

done.

Density is computed by simply setting the rho array equal to the rhon array:

rho(j) = rhon(j)

Velocity, u is computed

at position j+l/2:

by dividing the density times velocity array by the density array
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u(j) = rhou(j)/(.5 * (rhon(j) + rhon(j+l))) .

Internal energy is computed by dividing the internal energy times density array by the

density array:

sic(j) = rhoin(j)/rhon(j)

The p and q equations remain unchanged from the Lagrangian case. This situation leaves

us with a loop that assigns values for rho, u, I, p, and q that appears in the following form

do 300 j =I,jbar

rho(j) = rhoun(j)

u(j) = rhoun(j)/(.5*(rhon(j) +rhon(j+l))

sic(j) = rhoi.n(j) / rhon(j)

P(.0 = (g~a-1) * rho(j) * sic(j)

asie = gamma * (gamma-1) * abs(sie(j))

c = abs(ul) + sqrt (asie)

q(j) = qo * rho(.0 * c * (u(j-l)-u(j))

if (q(j) .lt.(0.0)) q(j) = 0.0

300 continue

This loop is preceeded by another loop that computes rhon, rhoun, and rhoin arrays

using the Eulerian equations for the transport of mass, energy, and momentum:

dt
PJ?+~=p; +z ((P@-1/2 - (P4j+l/2) (V-20)

(pq~+l = (pI)$ – : [( ) 1PUI ;+1/2 – (P@;-1/2 + (P + L?)7(~7+l/2– q-1/2) (v-m

(P@;::,, = (P@&+l/2 – : ((W2);+1 – (P~2)? + (P + !?);+1 – (P + !?)$) (V-32)

Each of these equations requires the use of the donor-cell technique, meaning that donor-

cell values must be computed for .

Pj-1/2 and Pj+I/2

(PU ~)j–1/2 ad (P u ~)j+I/z

(~u2)j ~d (w2)j+l -
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The problem of having to write our equations in a manner that allows the computation of

donor-cell for each of these terms can be approached in at least two ways: with a series of

if/then checks or with a double look-up technique.

The fist of these methods involves writing a separate if/then check for each of these six

terms. This approach uses six different variables, each with values determined according

to the direction of the motion of the fluid, with six separate checks being made for the

direction of fluid motion at every loop iteration. This method is viable, but it triples the

number of if/then checks, calls for the use of additional scalar variables, and unnecessarily

complicates our code.

A much easier technique is to carry out all the flow direction checks before any of the

arrays are computed. To do this, we create two arrays of variables: idnr and jdnr. In a

loop at the beginning of the variable updating portion of the program, all the elements in

these arrays are assigned values of either O, if the flow is from the left to the right, or 1, if

the flow is from the right to the left. idnr represents the motion of fluid at the cell walls

(j -1-1/2), while jdnr represents the flow of the fluid at the cell centers (j). The loop in

which they are computed is the following:

do 100 j =l,jbar

idnr(j) = O

jdnr(j) = O

if (u(j) .lt.O.0) idnr(j)=l

if ((u(j-l)+u(j)).lt.O.0) jdnr(j)=l

100 continue ..

We can use these integer arrays to determine the positions at which the donor-cell terms
I

are computed. By indexing our variables with j plus an appropriate value of idnr or jdnr,
I

we can rewrite the donor cell terms in the following manner:
I
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(p~)j-lj~–rho(j-l+iti(j-l)) * u(j-1)

(p~)j+lfz–rho(j+idnr(j)) * u(j)

(p~~)j--~l~-rho(j-l+idnr(j-l)) * u(j-1) * sie(j-l+idnr(j-1))

(pu~)i+~f~–rho(j+idnr(j)) * u(j) * sie(j+id@))

(pu’)~–(u(j-l)+u(j)) *.5 * u(j-l+jdnr(j-1))

(rho(j-l+jdnr(j-l) )+rho(j+jdnr(j))) * .5

(p~2)j+l–(4j)+4.i+ l)) *.5 * UO+W40) *

(rho(j+jdnr(j)) +rho(j+l+jdnr(j+ l))) * .5

The terms on the right of this table are simply computational translations of Eqs. (V-22),

(V-28), and (V-33), using a double look-up technique rather than carrying out an if/then

statement for each of the equations.

We can compute rhon(j), rhoun(j), and rhoin(j) by constructing a loop that follows

the computation of the donor-cell arrays but comes before the computation of the rho-u-sic

loop. This loop should appear similar to the following, with the values from the above

table being used whenever one of the bold (donor-cell) terms is used.

do 200 j = 1Jbar

c.. density

rhon(j) = rho(j) + ((dt/ti) * ( (rho u)j–1/2 – (rhou)j+l/2))

c.. internal energy

rhoin(j) = (rho(j) * sic(j)) — ((dt/dx) * ( (rho u sie)j+l/2—

&(rho u sie)j-~tz + (p(j) +q(j)) * (u(j) –~(j–l))))

c .. momentum ..

rhoun(j) = (((rho(j) +rho(j+l)) * .5) * u(j)) – ( (dt/dx) *

&((rho U2)j+1 - (rho U’)j) * (p(j+l)+q(j+l)-p(j) -q(j)))

200 continue
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To summarize, the variable updating portion of our program consists of first a donor-cell

loop; then a loop to compute the mass, momentum, and internal energy densities; and

finally a loop that changes the values of the rho, sic, u, p, and q arrays. The return

designations of these loops have been numbered in this order.

Returning to the issue of the boundary conditions: An analysis of our equations

indicates a need for specified values of rho(0) and sic(O) in addition to u(0) and u(jbar) as

in the Lagrangian case. Positions need no longer be updated because they remain fked

throughout the simulatio~ instead, the conditions must be added that sie at position Ois

equal to a variable siel, and rho at position O is equal to a variable rhol. These boundary

conditions are of a different nature than those in the heat-transfer problem. There, a

constant temperature was maintained at the wall by the recalculation of the value of T(O)

at every time step. The equation was

To = 2TL – TL . (11-21)

T@ averaging is not necessary in the present code, because the value used at the wall is

computed using the donor-cell technique. If flow is from the left to the right, as is the case

with our piston, the values sssigned to sie and rho at position j = O will effectively exist

at the rightmost wall, j = 1/2. We are now faced with the question of what values should

be assigned to the variables at these positions.

In the Eulerian case, we do not represent the piston itself but rather a shock that

is created by the motion of a piston somewhere upstream. We can therefore appeal to

the equations for the fluid dynamics of shocks to determine our boundary conditions at

‘ipo, and ~ = $Po.the left: p = ~_l By substituting our “gamma” and “ul” for the ~’s

and u’s in these equations, we can generate quantities for rhol and siel that will help

to maintain a shock wave. Finally, these two variables are added to the initialization

procedure, completing our Eulerian code. A graphical representation of this code appears

in Figure V-4.

83



[ output
“;’ 1-) E“’

1

*
Boundary Conditions

XL

Y
Figure V-4

E. Eulerian Results and Comparison of Eulerian and Lagrangian Simulations

The following five figures are plots of the density of the fluid in the cylinder as the

shock moves in from the left. The parameters chosen for this simulation are: length = 10.0

(cm), ul = 0.5 (cm/s), ur = 0.0 (cm/s), jbar=20, rhoO = 1.0 (g/cm3), sieO= O (cm2/s2), qO

= 0.25, gamma = 5/3, and dt = 0.05 (s). Note that these parameters are precisely those

used to run the Lagrangian piston problem, with the exception of qO, which is lowered

horn 0.3 to 0.25 for the Eu.lerian simulation. Plots appear at times of 2, 4, 6, 8, and 10

seconds respectively.

.
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Densities at Time 2 (s)
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Figure V-7
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Densities at Time 8 (s)
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Densities at Time 10 (s)
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Figure V-9

Note that the Eulerian shock is not as sharp as the Lagrangian shock, even at this

lower value of qO. This difference is due to an artificial diffusion that results as an effect

of the donor-cell technique. This effect will be discussed in Chapter VI.

Once again applying the equations of shocks [Eqs. (IV-44) and (IV-45)] to the

parameters used in our simulation, we predict that our shock will move forward at a

speed of 0.66 (cm/s) and produce a compressed region with a density of 4 (g/m2s) . These

values verify the results presented in Figs. V-5 through V-9.

The next set of plots demonstrate the results that can be obtained by applying an

Eulerian code to the shock tube problem. The following psmu-neters are used: length =

10. (cm), ul = 0.0 (cm/s), ur = 0.0 (cm/s), jbar=20, rhol = 1.0 (g/cm3), rhor = 4.0
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(g/cm3), sieO = 1.0 (m2/s2), qO=0.3anddt = 0.025 (s). Oursimulation is set up such

that 0.8 of the tube is filled with the less dense fluid and 0.2 is filled with the denser

fluid. This set up is necessary to parallel the situation simulated in Chapter IV. Unlike

the Lagrangian simulation, however, no mass matching is necessary in the Eulerian case.

As was previously stated, masses of zones in an Eulerian simulation are variabl~ only the

positions of zones are constant. Figures V-10 through V-15 are graphs of density within

the shock tube system at times of O, 1, 2, 3, 4, and 5 seconds respectively.

Q
Densities at Time O (s)
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Figure V-10

Figure V-n
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Densities at Time 2 (s)
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Densities at Time 3 (s)

~
ml 1.5

,
5.1

1

7$ Un

Figure V-13

Densities at Time 4 (s)
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Densities at Time 5 (s)
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Figure V-15

graphs contain the same features as the Lagrangian graphs: a shock wave

the left, a contact discontinuity between the two fluids that is also moving

and a rarefaction wave that is moving to the right. These features have the

same properties w those of the Lagrangian graph and are described by the same set of

fluid-dynamics equations.

Lagmmgian and Eulerian simulations are also subject to the same stability conditions.

At-low qO values, the Cou.rant condition is violated, as illustrated in Fig. V-16.

‘1 Densities at Time 2, qO = .05
I

.

Figure V-16

At high qO values, the features are smeared out:
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1 Densities at Time 2, qO = .75
I

I
A

,,. ,

Figure V-17

If qO is raised even higher, the d.ifksional stability condition is violated and the program

terminates.

Although the Lagrangian and Eulerian simulations share the same stability conditions,

they are quite different in the sharpness with which they resolve features at a given set of

parameters. We see this by comparing graphs of both these simulations at a time step of

2 (s) and a qO of 0.3.

Lagrangian

Densities at Time 2 (s)
?

.
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Figure V-18
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In this figure, we see that the features of the Lagrangian graph are much sharper than

those of the Eulerian simulation. The difference in sharpness is particularly noticeable for

the contact discontinuity, which is clear in the Lagrangian simulation but smeared out over

several zones in the Eulerian simulation.

The smearing of features in the Eulerian case is a result of the artificial difEusion

that is intrinsic to the donor-cell technique. In order to understand why the donor-cell

technique causes difFusion in this manner, as well as to understand why the Courant

condition is present in an Eulerian simulation, we will have to make use of a method

known as truncation error analysis. This method will be discussed in Chapter VI.
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