Introductions to aberrations OPTI 517

Lecture 11

Spherical aberration

Meridional and sagittal ray fans

Spherical aberration 0.25 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Prof. Jose Sasian

Spherical aberration 0.5 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Prof. Jose Sasian
OPTI 518

Spherical aberration 1 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Prof. Jose Sasian
OPTI 518
College of Optical Sciences

Spherical aberration is uniform over the field of view

$$
W_{040}(\vec{\rho} \cdot \vec{\rho})^{2}
$$

cl

Wavefront

Spots

Interferometric representation

5 waves

Cases of zero spherical aberration from a spherical surface

$$
\begin{gathered}
W_{040}(\vec{\rho} \cdot \vec{\rho})^{2} \quad W_{040}=\frac{1}{8} S_{I} \quad S_{I}=-\sum A^{2} y \Delta\left(\frac{u}{n}\right) \\
y=0 \\
A=0 \\
\Delta(u / n)=u^{\prime} / n^{\prime}-u / n=0
\end{gathered}
$$

$y=0$ the aperture is zero or the surface is at an image
$\mathrm{A}=0$ the surface is concentric with the Gaussian image point on axis
$u^{\prime} / n-u / n=0$ the conjugates are at the aplanatic points
Aplanatic means free from error;
freedom from spherical aberration and coma

Surface at image

$$
y=0
$$

Concentric surface

$A=0$

Prof. Jose Sasian

Aplanatic points of a spherical surface

$$
\begin{aligned}
& -\frac{1}{n^{\prime} s^{\prime}}+\frac{1}{n s}=0 \\
& \frac{n^{\prime}}{s^{\prime}}-\frac{n}{s}=\frac{n^{\prime}-n}{r} \\
& S=r \frac{n^{\prime}+n}{n} \\
& S^{\prime}=r \frac{n^{\prime}+n}{n^{\prime}} \\
& S=2.5 r \\
& S^{\prime}=(5 / 3) r \\
& n=1.5
\end{aligned}
$$

Prof. Jose Sasian

Diffraction images

Two waves of spherical aberration

Coma aberration

Meridional and sagittal ray fans

WAVE ABERRATION

$$
W=W_{13}, H \rho^{3} \cos \phi+\Delta W_{20} \rho^{2}
$$

Transverse Ray aberration

$$
\omega^{\prime} \vec{\epsilon}=\left[W_{131} H \rho^{2}\right] \vec{h}+2\left[\Delta W_{20} \rho+\left(W_{131} H_{\rho}^{2}\right) \cos \phi\right] \vec{g}
$$

FOR $\rho=$ CANST. (ZONAL DIAGRAM), $a=W_{131}+1 p^{2}, b=\exists W_{20} p$.

$$
\begin{aligned}
\omega^{\prime} \vec{\epsilon} & =a \vec{h}+2(b+a \cos \phi) \vec{g} \\
& =a \vec{h}+\Omega \vec{g} \\
n & =2(b+a \cot \phi) \quad \text { LIMAÇON OF PASCAL }
\end{aligned}
$$

FOR $b=0 \quad\left(\Delta w_{20}=0\right), r=2 a \cos \phi$ DOUBLE CIRCLE
FOR $b= \pm a\left(\Delta W_{20}= \pm W_{131} H \rho\right), n=2 a(\pm 1+\cos \phi)$ CARDIOID Roland Shack's notes

Coma zonal diagrams

Spot diagrams through focus

Prof. Jose Sasian
Roland Shack's notes

College of Optical Sciences
the university of Arizona.

Coma zonal diagrams

$$
\rho=1, \Delta W_{20}=0 \quad \text { (ZONAL DIAGRAM) }
$$

Roland Shack's notes

Positive coma over the field of view

Caustic sheets

Prof. Jose Sasian OPTI 518

Coma aberration 0.25 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Prof. Jose Sasian
OPTI 518

Coma aberration 0.5 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Prof. Jose Sasian
OPTI 518

Coma aberration 1.0 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Coma varies linearly over the field of view

Interferometric representation

5 waves

Cases of zero coma aberration

 from a spherical surface$$
\begin{aligned}
W_{131}(\vec{H} \cdot \vec{\rho})(\vec{\rho} \cdot \vec{\rho}) \quad & W_{131}=\frac{1}{2} S_{I I} \quad S_{I I}=-\sum A \bar{A} y \Delta\left(\frac{u}{n}\right) \\
y & =0 \\
A & =0 \\
\bar{A} & =0 \\
\Delta & (u / n)=u^{\prime} / n^{\prime}-u / n=0
\end{aligned}
$$

$y=0$ the aperture is zero or the surface is at an image
$A=0$ the surface is concentric with the Gaussian image point on axis
Abar=0 surface is concentric with stop or pupils
$u^{\prime} / n-u / n=0$ the conjugates are at the aplanatic points
Aplanatic means free from error;
freedom from spherical aberration and coma

Concentric surface with stop or pupils $\bar{A}=0$

Prof. Jose Sasian
OPTI 518

Sine condition

- In the absence of spherical aberration there are no linear phase errors that depend on the field of view if the sine condition is met:

$$
\frac{\sin (U)}{\sin \left(U^{\prime}\right)}=\frac{u}{u^{\prime}}
$$

The first-order magnification is equal to the real marginal ray magnification

Imaging a grating

$$
d \cdot \sin (U)=m \cdot \lambda=d^{\prime} \sin \left(U^{\prime}\right)
$$

Diffraction images

Geometrical and diffraction

Prof. Jose Sasian
OPTI 518

Coma

Two waves of coma through focus

Astigmatism aberration

Meridional and sagittal ray fans

Astigmatism
WAVE AbERRATION

$$
W=W_{222} H^{2} \rho^{2} \cos ^{2} \phi+W_{220} H^{2} \rho^{2}+\Delta W_{20} \rho^{2}
$$

TRANSVERSE RAY ABERRATION

$$
\begin{aligned}
& \omega^{\prime} \vec{\epsilon}=2\left[\left(W_{222}+W_{220}\right) H^{2}+\Delta W_{20}\right] \rho \cos \phi \vec{h}+2\left[W_{220} H^{2}+\Delta W_{20}\right] \rho \sin \phi \vec{i} \\
& \omega^{\prime} \vec{\epsilon}=a \cos \phi \vec{k}+b \sin \phi \vec{i} \quad \text { ELLIPSE }
\end{aligned}
$$

SAGITTAL FOCUS $(b=0)$

$$
\begin{aligned}
& \Delta W_{20}=-W_{220} H^{2} \\
& \omega^{\prime} \vec{\epsilon}=2 W_{222} H^{2} \rho \cos \phi \vec{h}
\end{aligned}
$$

MERIDIONAL LINE SEGMENT

Astigmatism

TANGENTIAL FOCUS $(a=0)$

$$
\begin{aligned}
& \Delta W_{20}=-\left(W_{220}+W_{22 z}\right) H^{2} \\
& w^{\prime} \vec{\epsilon}=-2 W_{222} H^{2} \rho \sin \phi \vec{i}
\end{aligned}
$$

Transverse line segment

MEDIAL FOCUS $(b=-a)$

$$
\begin{aligned}
& \Delta W_{20}=-\left(W_{220}+\frac{1}{2} W_{222}\right) H^{2} \\
& \omega^{\prime} \vec{\epsilon}=W_{222} H^{2} \rho[\cos \phi \vec{h}-\sin \phi \vec{i}] \quad \text { CIRCLE (COUNTER-ROTATING) }
\end{aligned}
$$

Spots through focus

Prof. Jose Sasian OPTI 518

Roland Shack's notes

College of Optical Sciences

Quadratic (radial) Astigmatism

Theoretical behavior

Medial focus

Roland Shack's notes

Prof. Jose Sasian OPTI 518

Astigmatism aberration 0.25 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Prof. Jose Sasian
OPTI 518

Astigmatism aberration 0.5 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Astigmatism aberration 1.0 wave $\mathrm{f} / 10 ; \mathrm{f}=100 \mathrm{~mm}$; wave $=0.0005 \mathrm{~mm}$

Astigmatism varies as the square of the field of view

$$
W_{222}(\vec{H} \cdot \vec{\rho})^{2}
$$

Astigmatism

Prof. Jose Sasian OPTI 518

College of Optical Sciences
the University of Arizonae

Interferometric representation

5 waves

Cases of zero astigmatism aberration from a spherical surface

$$
\begin{aligned}
& W_{222}(\vec{H} \cdot \vec{\rho})^{2} W_{222}=\frac{1}{2} S_{I I I} \quad S_{I I I}=-\sum \bar{A}^{2} y\left(\frac{u}{n}\right) \\
& y=0 \\
& \bar{A}=0 \\
& \Delta(u / n)=u^{\prime} / n^{\prime}-u / n=0
\end{aligned}
$$

$\mathrm{y}=0$ the aperture is zero or the surface is at an image
Abar=0 surface is concentric with stop or pupils
$u^{\prime} / n-u / n=0$ the conjugates are at the aplanatic points
Aplanatic means free from error;
freedom from spherical aberration and coma.
Aplanatic spherical surface is also anastigmatic
Anastigmatic: free from spherical, coma and astigmatism

Two waves of astigmatism

The field curves

$$
\begin{aligned}
W_{222} & =-\frac{1}{2} \sum \bar{A}^{2} y \Delta\left(\frac{u}{n}\right) \\
W_{220} & =-\frac{1}{4} \sum\left\{\oiint^{2} P+\bar{A}^{2} y \Delta\left(\frac{u}{n}\right)\right\}
\end{aligned}
$$

Prof. Jose Sasian
OPTI 518

Field curves by an optical design program

Eye astigmatism

Prof. Jose Sasian OPTI 518

College of Optical Sciences

Diffraction images

Field curvature

$$
W_{220}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho})
$$

Field curvature varies as the square of the field of view

$$
W_{220}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho})
$$

OPTI 518

Meridional and sagittal ray fans

Field curvature

$$
W_{220}=-\frac{1}{4} \sum\left(\oiint^{2} P+\bar{A}^{2} \Delta\left\{\frac{u}{n}\right\} y\right) \quad P=C \cdot \Delta\left(\frac{1}{n}\right)
$$

Petzval sum: $\quad \frac{1}{n^{\prime}{ }_{k} \rho^{\prime}{ }_{k}}-\frac{1}{n_{1} \rho_{1}}=-\sum_{i=1}^{k} \frac{n^{\prime}-n}{n^{\prime} n r}$
$\begin{aligned} & \text { For a system of thin lenses } \\ & \text { In air: }\end{aligned} \frac{1}{\rho^{\prime}{ }_{k}}=-\sum_{i=1}^{k} \frac{\phi_{i}}{n_{i}}$

Petzval field curvature interpretation

For a single lens $\quad-\frac{1}{\rho_{\text {Petzval }}}=\sum_{i=1}^{2} \frac{n^{\prime}-n}{n^{\prime} n r}=\frac{n^{\prime}-1}{n^{\prime} r_{1}}-\frac{n^{\prime}-1}{n^{\prime} r_{2}}=\frac{n^{\prime}-1}{n^{\prime}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$

$$
\text { Multiply by } \quad \frac{h^{2}}{2} \quad \text { or } \quad-\frac{h^{2}}{2 \rho_{\text {Petzval }}}=\frac{n^{\prime}-1}{n^{\prime}}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \frac{h^{2}}{2}=\frac{n^{\prime}-1}{n^{\prime}} t
$$

h is a given height; t is the lens sag or thickness at height h
Then $\frac{h^{2}}{2 \rho_{\text {Petzval }}}$ Is the sag of the Petzval field curvature and $\frac{n^{\prime}-1}{n^{\prime}} t$
is the image displacement by a parallel plate of thickness t .
Thus Petzval field curvature can be interpreted as the image shift due to a "parallel plate" of varying thickness t.

Petzval field curvature interpretation

Petzval field curvature: Stop at center of curvature

Petzval radius for a lens

$$
\frac{1}{\rho_{k}^{\prime}}=-\sum_{n}^{\phi}
$$

$R=t=51.852239$
$\mathrm{F}=100 \mathrm{~mm}$
Petzval radius=151.852239=nf Bk7 glass

Prof. Jose Sasian

Interferometric representation

5 waves

Field curves vertex curvature

$$
\begin{aligned}
& \Delta z=-2 \frac{W_{020}}{n^{\prime} u^{\prime 2}}=-2 n^{\prime} \frac{\bar{y}_{I}^{2}}{\mathscr{K}^{2}} W_{020} \\
& \frac{2 \Delta z}{\bar{y}_{I}^{2}}=-4 n^{\prime} \frac{1}{\mathcal{K}^{2}} W_{020} \\
& C_{t}=-4 \frac{n^{\prime}}{\mathcal{K}^{2}}\left(W_{220 P}+\frac{3}{2} W_{222}\right) \\
& C_{m}=-4 \frac{n^{\prime}}{\mathcal{K}^{2}}\left(W_{220 P}+W_{222}\right) \\
& C_{s}=-4 \frac{n^{\prime}}{\mathcal{K}^{2}}\left(W_{220 P}+\frac{1}{2} W_{222}\right) \\
& C_{P}=-4 \frac{n^{\prime}}{\mathcal{K}^{2}} W_{220 P}
\end{aligned}
$$

Distortion

$$
\begin{gathered}
W_{311}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho}) \\
W_{311}=\frac{1}{2} S_{V} \quad S_{V}=-\sum \frac{\bar{A}}{A}\left[\oiint^{2} P+\bar{A}^{2} y \Delta\left(\frac{u}{n}\right)\right] \\
S_{V}=-\sum \bar{A}\left[\bar{A}^{2} \Delta\left(\frac{1}{n^{2}}\right) y-(\nVdash+\bar{A} y) \bar{y} P\right]
\end{gathered}
$$

Distortion

$2.5 \%, 5 \%$ and 10%

Distortion

Interferometric representation

Geometrical imaging with aberrations

Spot diagram concept applied to an extended object

Parity of the aberrations

The aberrations can be classified as even and odd aberrations. Spherical aberration, astigmatism, field curvature, and longitudinal color are even aberrations.
Coma, distortion, and transverse color are odd aberrations. The parity is found by observation of the algebraic power's parity of the field and aperture vectors in the aberration coefficients.

The odd aberrations have the important property that in a symmetrical system they Cancel (fourth-order), each half contributes the same amount of aberration but with opposite algebraic sign. The symmetry is about the aperture stop.
In comparison in a symmetrical system the even aberrations from each half of the system add, rather than cancel

Aberrations and symmetry

$$
\begin{aligned}
& W(H, \rho, \theta)=W_{200} H^{2}+W_{020} \rho^{2}+W_{111} H \rho \cos \theta+ \\
& +W_{040} \rho^{4}+W_{131} H \rho^{3} \cos \theta+W_{222} H^{2} \rho^{2} \cos ^{2} \theta+ \\
& +W_{220} H^{2} \rho^{2}+W_{311} H^{3} \rho \cos \theta+W_{400} H^{4}+ \\
& +\ldots
\end{aligned}
$$

-Coma is an odd aberration with respect to the stop -Natural stop position to cancel coma by symmetry

Summary

- Discussion of the primary aberrations
- Use of several types of plots
- Main point is to gain understanding and familiarity
- Must be able to recognize the aberrations under a variety of representations.
- Must be able to appreciate how the ideal image degrades in the presence of aberration

