Introduction to the Electromagnetic Theory

Andrea Latina（CERN）
andrea．latina＠cern．ch

Basics of Accelerator Physics and Technology
7－11 October 2019，Archamps，France

Table of contents

- Introduction
- Electrostatics
- E.g. Space-charge forces
- Magnetostatics
- E.g. Accelerator magnets
- Non-static case
- E.g. RF acceleration and wave guides

Part 1.

Introduction:

Maxwell's Equations

Motivation: control of charged particle beams

To control a charged particle beam we use electromagnetic fields. Recall the Lorentz force:

$$
\vec{F}=q \cdot(\vec{E}+\vec{v} \times \vec{B})
$$

where, in high energy machines, $|\vec{v}| \approx c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$. In particle accelerators, transverse deflection is usually given by magnetic fields, whereas acceleration can only be given by electric fields.

Comparison of electric and magnetic force:

$$
\begin{aligned}
|\vec{E}| & =1 \mathrm{MV} / \mathrm{m} \\
|\vec{B}| & =1 \mathrm{~T} \\
\frac{F_{\text {magnetic }}}{F_{\text {electric }}} & =\frac{e v B}{e E}=\frac{\beta c B}{E} \simeq \beta \frac{3 \cdot 10^{8}}{10^{6}}=300 \beta
\end{aligned}
$$

\Rightarrow the magnetic force is much stronger then the electric one: in an accelerator, use magnetic fields whenever possible.

Some references

1. Richard P. Feynman, Lectures on Physics, 1963, on-line
2. J. D. Jackson, Classical Electrodynamics, Wiley, 1998
3. David J. Griffiths, Introduction to Electrodynamics, Cambridge University Press, 2017
4. Thomas P. Wangler, RF Linear Accelerators, Wiley, 2008

Variables and units

$\begin{gathered}\epsilon_{0} \\ \mu_{0} \\ c\end{gathered}=\frac{1}{\epsilon_{0} c^{2}}$

q
ρ
\mathbf{j}

$$
\begin{gathered}
\text { electric field }[\mathrm{V} / \mathrm{m}] \\
\text { magnetic field }[\mathrm{T}] \\
\text { electric displacement }\left[\mathrm{C} / \mathrm{m}^{2}\right] \\
\text { magnetizing field }[\mathrm{A} / \mathrm{m}] \\
\text { electric charge }[\mathrm{C}] \\
\text { electric charge density }\left[\mathrm{C} / \mathrm{m}^{3}\right] \\
\text { current density }\left[\mathrm{A} / \mathrm{m}^{2}\right]
\end{gathered}
$$

permittivity of vacuum, $8.854 \cdot 10^{-12}[\mathrm{~F} / \mathrm{m}]$
permeability of vacuum, $4 \pi \cdot 10^{-7}\left[\mathrm{H} / \mathrm{m}\right.$ or $\left.\mathrm{N} / \mathrm{A}^{2}\right]$ speed of light in vacuum, $2.99792458 \cdot 10^{8}[\mathrm{~m} / \mathrm{s}]$

Differentiation with vectors

- We define the operator "nabla":

$$
\nabla \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\frac{\partial}{\partial x}, & \frac{\partial}{\partial y},
\end{array} \frac{\partial}{\partial z}\right)
$$

which we treat as a special vector.

- Examples:

$$
\begin{aligned}
\nabla \cdot \mathbf{F} & =\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z} & & \text { divergence } \\
\nabla \times \mathbf{F} & =\left(\begin{array}{lll}
\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}, & \frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}, & \frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}
\end{array}\right) & & \text { curl } \\
\nabla \phi & =\left(\begin{array}{ll}
\frac{\partial \phi}{\partial x}, \quad \frac{\partial \phi}{\partial y}, & \frac{\partial \phi}{\partial z}
\end{array}\right) & & \text { gradient }
\end{aligned}
$$

Maxwell's equations: integral form

1. Maxwell's equations can be written in integral or in differential form (SI units convention):

$$
\begin{aligned}
& \int_{A} \vec{E} \cdot d \vec{A}=\frac{Q}{\epsilon_{0}} \\
& \int_{A}^{A} \vec{B} \cdot d \vec{A}=0 \\
& \oint_{C} \vec{E} \cdot d \vec{r}=-\int_{A}\left(\frac{d \vec{B}}{d t}\right) \cdot d \vec{A} \\
& \oint_{C} \vec{B} \cdot d \vec{r}=\int_{A}\left(\mu_{0} \vec{j}+\mu_{0} \epsilon_{0} \frac{d \vec{E}}{d t}\right) \cdot d \vec{A}
\end{aligned}
$$

(1) Gauss' law;
(2) Gauss' law for magnetism;
(3) Maxwell-Faraday equation (Faraday's law of induction);
(4) Ampère's circuital law

Maxwell's equations: differential form

1. Maxwell's equations can be written in integral or in differential form (SI units convention):

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}=-\frac{d \vec{B}}{d t} \\
& \nabla \times \vec{B}=\mu_{0} \vec{j}+\mu_{0} \epsilon_{0} \frac{d \vec{E}}{d t}
\end{aligned}
$$

(1) Gauss' law;
(2) Gauss' law for magnetism;
(3) Maxwell-Faraday equation (Faraday's law of induction);
(4) Ampère's circuital law

Part 2.

Electromagnetism:

Static case

Static case

- We will consider relatively simple situations.
- The easiest circumstance is one in which nothing depends on the time-this is called the static case:
- All charges are permanently fixed in space, or if they do move, they move as a steady flow in a circuit (so ρ and \mathbf{j} are constant in time).
- In these circumstances, all of the terms in the Maxwell equations which are time derivatives of the field are zero. In this case, the Maxwell equations become:

Electrostatics:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{E} & =\frac{\rho}{\epsilon_{0}} \\
\boldsymbol{\nabla} \times \boldsymbol{E} & =0
\end{aligned}
$$

Magnetostatics:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{B} & =\frac{\boldsymbol{j}}{\epsilon_{0} c^{2}}, \\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0
\end{aligned}
$$

Electrostatics: principle of superposition

- Coulomb's Law: Electric field due to a stationary point charge q, located in \mathbf{r}_{1} :

$$
\mathbf{E}(\mathbf{r})=\frac{q}{4 \pi \epsilon_{0}} \frac{\mathbf{r}-\mathbf{r}_{1}}{\left|\mathbf{r}-\mathbf{r}_{1}\right|^{3}}
$$

- Principle of superposition, tells that a distribution of charges q_{i} generates an electric field:

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \sum q_{i} \frac{\mathbf{r}-\mathbf{r}_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|^{3}}
$$

- Continuous distribution of charges, $\rho(\mathbf{r})$

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \iiint_{V} \rho\left(\mathbf{r}^{\prime}\right) \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d \mathbf{r}
$$

with $Q=\iiint_{V} \rho\left(\mathbf{r}^{\prime}\right) d \mathbf{r}$ as the total charge, and where ρ is the charge density.

Recall: Gauss' theorem

Used in the following: Gauss' theorem to evaluate flux integral:

$$
\begin{aligned}
& \iint_{A} \vec{E} \cdot d \vec{A}=\iiint_{V} \nabla \cdot \vec{E} \cdot d V \quad \text { or } \\
& \iint_{A} \vec{E} \cdot d \vec{A}=\iiint_{V} \operatorname{div} \vec{E} \cdot d V \\
& \text { Integral through closed surface } \\
& \text { (flux) is integral of divergence } \\
& \text { in the enclosed volume }
\end{aligned}
$$

Surface integral related to the divergence from the enclosed volume

Electrostatics: Gauss' law

Gauss' law states that the flux of \vec{E} is:

$$
\iint_{A} \vec{E} \cdot \mathrm{~d} \vec{A}=\int_{\substack{\text { any closed } \\ \text { surface } A}} E_{n} \text { da= } \frac{\text { sum of charges inside } A}{\epsilon_{0}}
$$

We know that

$$
\mathbf{E}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \iiint_{V} \rho\left(\mathbf{r}^{\prime}\right) \frac{\mathbf{r}-\mathbf{r}^{\prime}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d \mathbf{r}
$$

In differential form, using the Gauss' theorem (divergence theorem):

$$
\iint \vec{E} \cdot d \vec{A}=\iiint \nabla \cdot \vec{E} d \mathbf{r}
$$

which gives the first Maxwell's equation in differential form:

$$
\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}}
$$

Example: case of a single point charge

$$
\iint \vec{E} \cdot d \vec{A}= \begin{cases}\frac{q}{\epsilon_{0}} & \text { if } q \text { lies inside } A \\ 0 & \text { if } q \text { lies outside } A\end{cases}
$$

Electrostatics: Gauss' law

The flux of \mathbf{E} out of the surface S is zero.

Electrostatics: scalar potential and Poisson equation

The equations for electrostatics are:

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{\rho}{\epsilon_{0}} \\
\nabla \times \vec{E} & =0
\end{aligned}
$$

The two can be combined into a single equation:

$$
\vec{E}=-\nabla \phi
$$

which leads to the Poisson's equation:

$$
\nabla \cdot \nabla \phi=\nabla^{2} \phi=-\frac{\rho}{\epsilon_{0}}
$$

Where the operator ∇^{2} is called Laplacian:

$$
\nabla \cdot \nabla=\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

The Poisson's equation allows to compute the electric field generated by arbitrary charge distributions.

Electrostatics: Poisson's equation

$$
\begin{gathered}
\nabla^{2} \phi=-\frac{\rho}{\epsilon_{0}} \\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \phi=-\frac{\rho}{\epsilon_{0}}
\end{gathered}
$$

Recall: Stokes' theorem

Used in the following: Stoke's theorem

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot d \vec{r}=\iint_{A} \nabla \times \vec{F} \cdot d \vec{A} \text { or } \\
& \oint_{C} \vec{F} \cdot d \vec{r}=\iint_{A} \operatorname{curl} \vec{F} \cdot d \vec{A}
\end{aligned}
$$

obviously: $\operatorname{div} \vec{F}=0$

Magnetostatics: Ampère's and Biot-Savart laws

The equations for electrostatics are:

$$
\begin{gathered}
\nabla \cdot \vec{B}=0 \\
\nabla \times \vec{B}=\frac{\vec{j}}{\epsilon_{0} C^{2}}
\end{gathered}
$$

The Stokes' theorem tells that:

$$
\oint_{C} \vec{B} \cdot d \vec{r}=\iint_{A}(\nabla \times \vec{B}) \cdot d \vec{A}
$$

This equation gives the Ampère's law:

$$
\oint_{C} \vec{B} \cdot d \vec{r}=\frac{1}{\epsilon_{0} C^{2}} \iint_{A} \vec{j} \cdot \vec{n} d A
$$

From which one can derive the Biot-Savart law, stating that, along a current j :

$$
\vec{B}(\vec{r})=\frac{1}{4 \pi \epsilon_{0} c^{2}}=\oint_{C} \frac{j d \vec{r}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}
$$

This provides a practical way to compute \vec{B} from current distributions.

Magnetostatics: vector potential

The equations for electrostatics are:

$$
\begin{gathered}
\nabla \cdot \vec{B}=0 \\
\nabla \times \vec{B}=\frac{\vec{j}}{\epsilon_{0} C^{2}}
\end{gathered}
$$

They can be unified into one, introducing the vector potential \vec{A} :

$$
\vec{B}=\nabla \times \vec{A}
$$

Using the Stokes' theorem

$$
\vec{B}(\vec{r})=\frac{1}{4 \pi \epsilon_{0} c^{2}}=\oint_{C} \frac{j d \vec{r}^{\prime} \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}
$$

one can derive the expression of the vector potential \vec{A} from of the current \vec{j} :

$$
\vec{A}(r)=\frac{\mu_{0}}{4 \pi} \iiint \frac{\vec{j}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}
$$

Summary of electro- and magneto- statics

One can compute the electric and the magnetic fields from the scalar and the vector potentials

$$
\begin{aligned}
& \vec{E}=-\nabla \phi \\
& \vec{B}=\nabla \times \vec{A}
\end{aligned}
$$

with

$$
\begin{aligned}
& \phi(r)=\frac{1}{4 \pi \epsilon_{0}} \iiint \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} \\
& \vec{A}(r)=\frac{\mu_{0}}{4 \pi} \iiint \frac{\vec{j}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}
\end{aligned}
$$

being ρ the charge density, and \vec{j} the current density.

Motion of a charged particle in an electric field

$$
\vec{F}=q \cdot(\vec{E}+\vec{v} \times \vec{B})
$$

$\vec{v} \perp \vec{E}$

$\vec{v} \| \vec{E}$

Assume no magnetic field:

$$
\frac{d}{d t}(m \vec{v})=\vec{f}=q \cdot \vec{E}
$$

Force always in direction of field \vec{E}, also for particles at rest.

Motion of a charged particle in a magnetic field

$$
\vec{F}=q \cdot(\vec{Z}+\vec{v} \times \vec{B})
$$

Without electric field: $\quad \frac{d}{d t}(m \vec{v})=\vec{f}=q \cdot \vec{v} \times \vec{B}$
Force is perpendicular to both, \vec{v} and \vec{B}

Part 3.

Electromagnetism:

Non-static case

Magnetostatics: Faraday's law of induction

"The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path."

$$
\text { static flux : } \Omega=\int_{A} \vec{B} \cdot \mathrm{~d} \vec{A} \quad \text { changing flux : } \frac{\partial \Omega}{\partial t}=\int_{A} \frac{\partial(\vec{B})}{\partial t} \cdot \mathrm{~d} \vec{A}
$$

Moving the magnet changes the flux (density or number of lines) through the area \Longrightarrow

Induces a circulating (curling) electric field \vec{E} in the coil which "pushes" charges around the coil \qquad

Non-static case: electromagnetic waves

Electromagnetic wave equation:

$$
\begin{aligned}
& \vec{E}(\vec{r}, t)=\vec{E}_{0} e^{i(\omega t-\vec{k} \cdot \vec{r})} \\
& \vec{B}(\vec{r}, t)=\vec{B}_{0} e^{i(\omega t-\vec{k} \cdot \vec{r})}
\end{aligned}
$$

Important quantities:

Magnetic and electric fields are transverse to direction of propagation:

$$
\vec{E} \perp \vec{B} \perp \vec{k}
$$

Short wave length \rightarrow high frequency \rightarrow high energy

Spectrum of electromagnetic waves

Examples:

- yellow light $\approx 5 \cdot 10^{14} \mathrm{~Hz}$ (i.e. $\approx 2 \mathrm{eV}$!)
- LEP $(\mathrm{SR}) \leq 2 \cdot 10^{20} \mathrm{~Hz}$ (i.e. $\approx 0.8 \mathrm{MeV}$!)
- gamma rays $\leq 3 \cdot 10^{21} \mathrm{~Hz}$ (i.e. $\leq 12 \mathrm{MeV}$!)
(For estimates using temperature: $3 \mathrm{~K} \approx 0.00025 \mathrm{eV}$)

Electromagnetic waves impacting highly conductive materials

Highly conductive materials: RF cavities, wave guides.

- In an ideal conductor:

$$
\vec{E}_{\|}=0, \quad \vec{B}_{\perp}=0
$$

- This implies:
- All energy of an electromagnetic wave is reflected from the surface of an ideal conductor.
- Fields at any point in the ideal conductor are zero.
- Only some field patterns are allowed in waveguides and RF cavities.

Example: RF cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic) with dimensions $a \times b \times c$ and $a \times b$:

RF cavity, fields can persist and be stored (reflection !)
Plane waves can propagate along wave guides, here in z-direction

Example: Fields in RF cavities

Assume a rectangular RF cavity (a, b, c), ideal conductor.

Without derivations, the components of the fields are:

$$
\begin{gathered}
E_{x}=E_{x 0} \cdot \cos \left(k_{x} x\right) \cdot \sin \left(k_{y} y\right) \cdot \sin \left(k_{z} z\right) \cdot e^{-i \omega t} \\
E_{y}=E_{y 0} \cdot \sin \left(k_{x} x\right) \cdot \cos \left(k_{y} y\right) \cdot \sin \left(k_{z} z\right) \cdot e^{-i \omega t} \\
E_{z}=E_{z 0} \cdot \sin \left(k_{x} x\right) \cdot \sin \left(k_{y} y\right) \cdot \cos \left(k_{z} z\right) \cdot e^{-i \omega t} \\
B_{x}=\frac{i}{\omega}\left(E_{y 0} k_{z}-E_{z 0} k_{y}\right) \cdot \sin \left(k_{x} x\right) \cdot \cos \left(k_{y} y\right) \cdot \cos \left(k_{z} z\right) \cdot e^{-i \omega t} \\
B_{y}=\frac{i}{\omega}\left(E_{z 0} k_{x}-E_{x 0} k_{z}\right) \cdot \cos \left(k_{x} x\right) \cdot \sin \left(k_{y} y\right) \cdot \cos \left(k_{z} z\right) \cdot e^{-i \omega t} \\
B_{z}=\frac{i}{\omega}\left(E_{x 0} k_{y}-E_{y 0} k_{x}\right) \cdot \cos \left(k_{x} x\right) \cdot \cos \left(k_{y} y\right) \cdot \sin \left(k_{z} z\right) \cdot e^{-i \omega t}
\end{gathered}
$$

No electric field at boundaries, wave must have "nodes" = zero fields at the boundaries

Only modes which 'fit' into the cavity are allowed In the example: $\frac{\lambda}{2}=\frac{a}{4}, \quad \frac{\lambda}{2}=\frac{a}{1}, \quad \frac{\lambda}{2}=\frac{a}{0.8}$
(then either "sin" or "cos" is 0)

Example: Consequences for RF cavities

Field must be zero at conductor boundary, only possible if:

$$
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{\omega^{2}}{c^{2}}
$$

and for k_{x}, k_{y}, k_{z} we can write, (then they all fit):

$$
k_{x}=\frac{m_{x} \pi}{a}, \quad k_{y}=\frac{m_{y} \pi}{b}, \quad k_{z}=\frac{m_{z} \pi}{c}
$$

The integer numbers m_{x}, m_{y}, m_{z} are called mode numbers, important for design of cavity !
\rightarrow half wave length $\lambda / 2$ must always fit exactly the size of the cavity.
(For cylindrical cavities: use cylindrical coordinates)

Example: Consequences for wave guides

Similar considerations as for cavities, no field at boundary.
We must satisfy again the condition:

$$
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{\omega^{2}}{c^{2}}
$$

This leads to modes like (no boundaries in direction of propagation z):

$$
k_{x}=\frac{m_{x} \pi}{a}, \quad k_{y}=\frac{m_{y} \pi}{b}
$$

The numbers m_{x}, m_{y} are called mode numbers for planar waves in wave guides!

In z direction: No Boundary - No Boundary Condition ...

Re-writing the condition as:

$$
k_{z}^{2}=\frac{\omega^{2}}{c^{2}}-k_{x}^{2}-k_{y}^{2} \quad \rightarrow \quad k_{z}=\sqrt{\frac{\omega^{2}}{c^{2}}-k_{x}^{2}-k_{y}^{2}}
$$

Propagation without losses requires k_{z} to be real, i.e.:

$$
\frac{\omega^{2}}{c^{2}}>k_{x}^{2}+k_{y}^{2}=\left(\frac{m_{x} \pi}{a}\right)^{2}+\left(\frac{m_{y} \pi}{b}\right)^{2}
$$

which defines a cut-off frequency ω_{c}. For lowest order mode:

$$
\omega_{c}=\frac{\pi \cdot c}{a}
$$

\Rightarrow Above cut-off frequency: propagation without loss
\Rightarrow At cut-off frequency: standing wave
\Rightarrow Below cut-off frequency: attenuated wave (it does not "fit in").

There is a very easy way to show that very high frequencies easily propagate

Classification of modes

Transverse electric modes (TE): $E_{z}=0 \quad H_{z} \neq 0$
Transverse magnetic modes (TM): $E_{z} \neq 0 \quad H_{z}=0$
Transverse electric-magnetic modes (TEM): $E_{z}=0 \quad H_{z}=0$
(Not all of them can be used for acceleration ... !)

Note (here a TE mode) :
Electric field lines end at boundaries Magnetic field lines appear as "loops"

Classification of modes

Magnetic flux lines appear as continuous loops
Electric flux lines appear with beginning and end points

...The End!

Thank you

for your attention!

