
INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

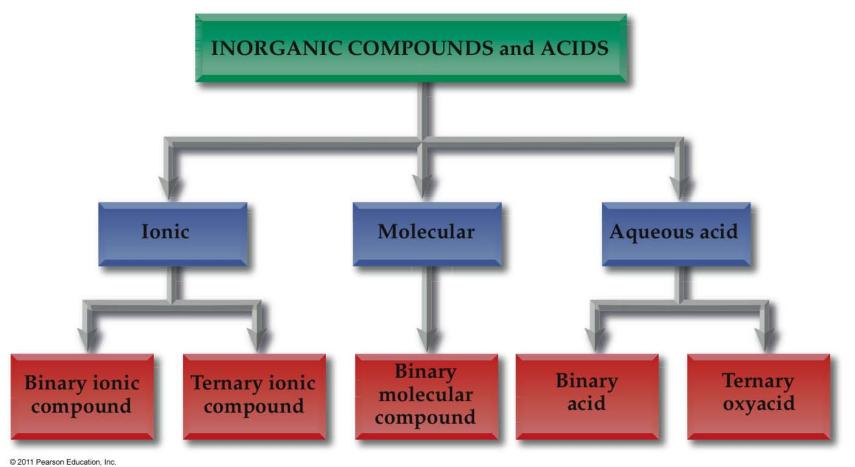
Sixth Edition by Charles H. Corwin

Chapter 7

Language of Chemistry

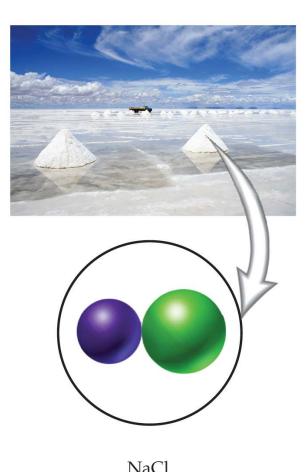
by Christopher Hamaker

IUPAC

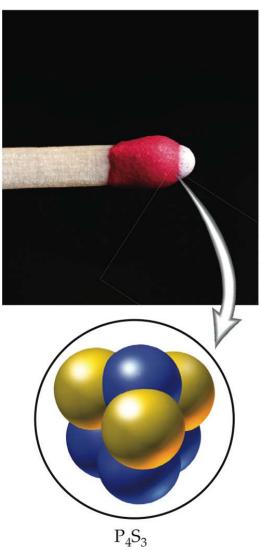

- The <u>International Union of Pure and Applied</u> <u>Chemistry, IUPAC, has set rules for naming</u> compounds.
- IUPAC set the rules for the naming and classification of inorganic compounds in 1940.
- These rules, referred to as *IUPAC nomenclature*, are still in use today.

Classification of Compounds

- Most inorganic compounds do not contain the element carbon.
- The exceptions are carbon dioxide, CO_2 , and carbonates, which contain the ion CO_3^{2-} .
- There are five common classes of inorganic compounds:
 - 1. Binary ionic
 - 2. Ternary ionic
 - 3. Binary molecular
 - 4. Binary acid
 - 5. Ternary oxyacid


Classification of Compounds, Continued

• Below is a flow chart for the classification of inorganic compounds.


Ionic Compounds

- *Binary ionic compounds* contain two elements: one metal and one nonmetal.
 - NaCl and AlCl₃ are binary ionic compounds.
- *Ternary ionic compounds* contain three elements, at least one metal and one nonmetal.
 - KNO_3 and $Al(NO_3)_3$ are ternary ionic compounds.

Molecular Compounds

- *Binary molecular compounds* contain two elements and *both* are nonmetals.
 - Some examples of binary molecular compounds are ammonia, NH₃; methane, CH₄; carbon dioxide, CO₂; and tetraphosphorous trisulfide, P₄S₃.

Aqueous Acids

- An *aqueous solution* is produced when a compound dissolves in water. It is indicated by the symbol (*aq*).
- A *binary acid* is an aqueous solution of a compound containing hydrogen and one other nonmetal. HF (*aq*) is a binary acid.
- A *ternary oxyacid* is an aqueous solution of a compound containing hydrogen, oxygen, and one other nonmetal. HNO₃(*aq*) is a ternary oxyacid.

Classification of lons

- Recall, an *ion* is an atom or group of atoms with a charge.
- A positively charged ion is called a *cation*.
- A negatively charged ion is called an *anion*.
- A group of atoms bound together that has an overall charge is called a *polyatomic anion*.

Classification of Ions, Continued

• Below is a flow chart for the classification of ions.

Monoatomic Cations

- Metal atoms can lose valence electrons and become positively charged cations.
- Cations are named for the parent atom followed by the word "ion."
 - Na⁺ is named "sodium ion."
 - Al^{3+} is named "aluminum ion."
- This rule applies for metals that usually form one ion. This includes the main group metals except tin and lead, along with Ag⁺, Zn²⁺, and Cd²⁺.

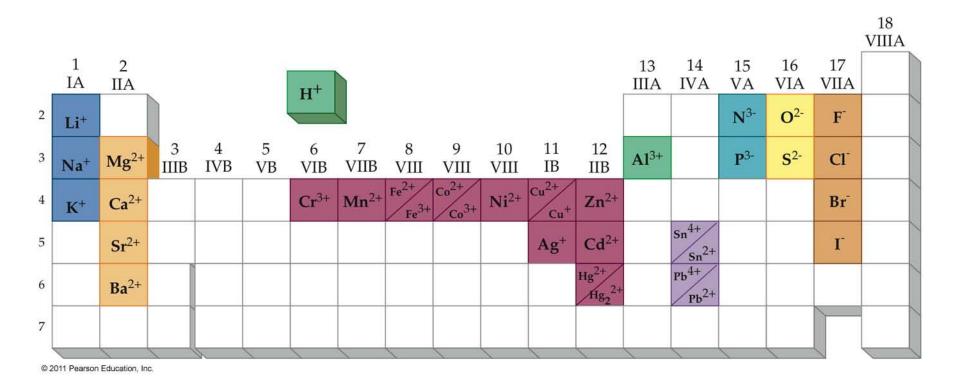
Metals that Form Multiple Ions

- If a metal can form more than one cation, it is named for the parent, followed by the charge in Roman numerals in parentheses, followed by the word "ion."
 - Fe^{2+} is the iron(II) ion.
 - Fe^{3+} is the iron(III) ion.
- This is called the *Stock system* of naming cations.

Monoatomic Anions

- Nonmetals can gain valence electrons and become negatively charged anions.
- Monoatomic anions are named by dropping the end of the element name and adding the suffix *-ide*.
 - $-Br^{-}$ is the bromide ion.
 - O^{2-} is the oxide ion.
 - N^{3-} is the nitride ion.

Predicting Cation Charges


- Recall that Group 1 metals always form +1 ions and Group 2 ions always form +2 ions.
- We can predict that Group 13 ions will form +3 ions.
- Not all metal ion charges are predictable: tin and lead in Group 14 form both +2 and +4 ions.
- Most transition metals form +2 ions from the loss of their two *s* electrons.

Predicting Anion Charges

- Nonmetals gain electrons to form anions in a predictable fashion.
- Group 17 atoms gain one electron to form –1 ions:
 F⁻, Cl⁻, Br⁻, and I⁻.
- Group VIA/16 atoms gain two electrons to form 2 ions: O²⁻, S²⁻, Se²⁻, and Te²⁻.
- Group VIA/15 atoms gain three electrons to form -3 ions: N³⁻, P³⁻, and As³⁻.

Ion Charges

• Shown are the elements on the periodic table and their common charges.

Polyatomic Anions

- Polyatomic anions generally contain one or more elements combined with oxygen. These anions are called *oxyanions*.
- Most oxyanions have names that end in the suffix *-ate*.
 - $-SO_4^{2-}$ is the sulfate ion.
 - $-NO_3^-$ is the nitrate ion.

Naming Oxyanions

- Some oxyanions end in the suffix *-ite*.
 - NO_2^- is the nitrite ion.
 - $-SO_3^{2-}$ is the sulfite ion.
- Notice that these oxyanions have one less oxygen: sulfate (SO₄²⁻) and nitrate (NO₃⁻).
- The oxyanions that end in *-ite* each have one less oxygen than the oxyanions that end in *-ate*.

More Polyatomic Anions

- The formula for the chlorate ion is ClO_3^- . What is the formula for the chlorite ion?
 - The suffix has changed from *-ate* to *-ite*. Chlorite must have one less oxygen then chlorate, so its formula is ClO_2^{-} .
- Notice that the charge does not change as the number of oxygen atoms changes.
- There are two common polyatomic ions that end in *-ide*:
 - 1. Hydroxide, OH-
 - 2. Cyanide, CN⁻

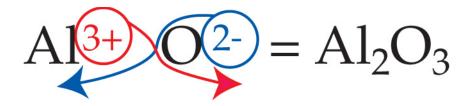
Some Common Polyatomic Ions

TABLE 7.3 COMMON POLYATOMIC IONS

CATION		IUPAC NAME	
$\mathrm{NH_4}^+$		ammonium ion	
ANION	IUPAC NAME	ANION	IUPAC NAME
$C_2H_3O_2^-$	acetate ion	OH ⁻	hydroxide ion*
CO3 ²⁻	carbonate ion	ClO-	hypochlorite ion
ClO_3^-	chlorate ion	NO_3^-	nitrate ion
ClO_2^-	chlorite ion	NO_2^-	nitrite ion
$\mathrm{CrO_4}^{2^-}$	chromate ion	ClO_4^-	perchlorate ion
CN ⁻	cyanide ion*	MnO_4^-	permanganate ion
$Cr_2O_7^{2-}$	dichromate ion	PO_{4}^{3-}	phosphate ion
HCO_3^-	hydrogen carbonate ion	SO_4^{2-}	sulfate ion
HSO_4^-	hydrogen sulfate ion	SO ₃ ²⁻	sulfite ion

*Note that the suffix -*ide* is an exception to the general -*ate* and -*ite* rule.

Writing Ionic Formulas


- An ionic compound is composed of positive and negative ions.
- A *formula unit* is the simplest representative particle of an ionic compound.
- A formula unit is neutral, so the total positive charge must equal the total negative charge in the formula unit.
- When writing chemical formulas, the cation (metal) goes first and the anion (nonmetal) goes second.

Formulas of Ionic Compounds

- If the ions in the ionic compound have the same charge, the formula unit contains one of each ion.
 - Na⁺ and Cl⁻ combine to form NaCl.
 - Mg²⁺ and S²⁻ combine to form MgS.
- If the charges are not equal, we must balance the positive and negative charges.
 - Ca^{2+} and Cl⁻ combine to form CaCl₂.
 - Na⁺ and O²⁻ combine to form Na₂O.

Crossover Rule

• You can quickly verify that the chemical formula is written correctly by crossing over the charge on each ion.

• The charge on the aluminum ion becomes the subscript for the oxygen, and the charge on the oxide ion becomes the subscript for the aluminum ion.

Formulas with Polyatomic Ions

- Follow the same rules as binary ionic compounds; if the charges are equal, the formula has one of each ion.
 - Mg²⁺ and SO₄²⁻ combine to form MgSO₄.
 - K^+ and ClO_3^- combine to form $KClO_3$.
- If the charges are not equal, total charge must equal zero. If you have more than one polyatomic ion, it is placed in parentheses.

- Al³⁺ and CO₃²⁻ combine to form Al₂(CO₃)₂.

Determining Ionic Charges

- If an ionic compound contains a metal that can have more than one ionic charge, we must determine the charge on the ion. The sum total charge of an ionic compound must equal zero.
- What is the charge on the chromium ion in Cr_3N_2 ?
 - The charge on a nitride ion is always -3, so we have a total of six negative charges (2 N³⁻ = 6 negative).
 - The sum of the charges on the chromium ions must be six positive.

 $-Cr^{x+}+Cr^{x+}+Cr^{x+}=6$ positive \Rightarrow Each Cr is 2+.

Critical Thinking: Potassium

- Potassium is an extremely reactive element (its violent reaction with water is pictured below).
- How can such a reactive element (with water) be essential for human life?
- The potassium ion (K⁺) is essential, not the free element.
- Good sources of potassium include fish, meat, fruit, dark vegetables, and nuts.

Naming Binary Ionic Compounds

- When naming ionic compounds, we combine the cation and anion name (drop the word "ion"), with the cation first and the anion second.
- MgO is composed of one magnesium ion and one oxide ion, therefore the name is magnesium oxide.
- What is the name of cinnabar, HgS?
- Hg²⁺ is the mercury(II) ion and S²⁻ is the sulfide ion, so the name is mercury(II) sulfide.

Formulas for Binary Ionic Compounds

- We can determine formula of a binary ionic compound from its name.
- What is the formula of iron(III) fluoride?
 Iron(III) has a +3 charge, Fe³⁺; and fluoride has a -1 charge, F⁻.
- Since the total charge must equal zero, the formula for iron(III) fluoride is FeF_3 .

+3 + 3(-1) =zero

Naming Ternary Ionic Compounds

- We name ternary ionic compounds like binary ionic compounds: the cation name followed by the anion name.
- K_2CO_3 is named potassium carbonate.
- If we have a metal that can have than one oxidation state, we have to determine the charge on the metal.
- $Co(ClO_3)_3$ is composed of cobalt(III) and chlorate ions, so its name is cobalt(III) chlorate.

Formulas for Binary Compounds

- We can predict the formula of an ionic compound based on the formula of a similar compound.
- What is the formula of radium carbonate given that calcium carbonate is CaCO₃?

Radium, Ra, and calcium are both in Group 2 and will have the same ionic charge.

• The formula for radium carbonate is RaCO₃.

Binary Molecular Compounds

- Binary molecular compounds are composed of two *nonmetal* elements.
- A *molecule* is the simplest representative particle of a binary molecular compound.
- IUPAC has set the following order for writing the elements in a binary molecular compound:

– C, P, N, H, S, I, Br, Cl, O, and F

• Notice they are arranged according to increasing electronegativity.

Naming Binary Molecular Compounds

- The first element in the compound is named first and the second element has the suffix *-ide*.
- The number of atoms of each element must be indicated by Greek prefixes.

ATOMS	PREFIX	ATOMS	PREFIX
1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-*
5	penta-	10	deca-

TABLE 7.4GREEK PREFIXES FOR BINARY MOLECULAR COMPOUNDS

*Although the Latin prefix nona- is commonly used, IUPAC prefers the Greek prefix ennea-.

Naming Binary Molecular Compounds, Continued

- The molecular compound P_4S_3 is used on match tips. What is the name of P_4S_3 ?
 - There are 4 P atoms, use *tetra*-.
 - There are 3 S atoms, use tri-.
 - The name for P_4S_3 is tetraphosphorous trisulfide.
- What is the name for N_2O_4 ?
 - Dinitrogen tetraoxide

An Exception

- There is one exception to the use of the Greek prefixes when naming binary molecular compounds.
- If there is only one atom of the first element, the *mono-* is not used. The prefix *mono-* is always used for the second element.
 - CO is carbon monoxide.
 - XeF₆ is xenon hexafluoride.

Binary Acids

- A *binary acid* is an aqueous solution of a compound containing hydrogen and a nonmetal.
- The formula of an acid always begins with H:
 HF (*aq*)
- Binary acids are named by using the prefix *hydro*before the element stem and adding the suffix *-ic acid*.
 - HF (*aq*) is hydrofluoric acid.
 - HI (aq) is hydroiodic acid.

Ternary Oxyacids

- *Ternary oxyacids* are aqueous solutions of a compound containing hydrogen and an oxyanion.
- If the acid is derived from an oxyanion ending in *-ate*, the suffix is changed to *-ic acid*.
 - HNO₃ (*aq*) is nitric acid (from NO₃⁻, nitrate ion).
- If the acid is derived from an oxyanion ending in *-ite*, the suffix is changed to *-ous acid*.

- HNO₂ (*aq*) is nitrous acid (from NO₂⁻, nitrite ion).

Oxyanions and Oxyacids

• Below is an example of ternary oxyacid and ternary compound naming.

Ternary Oxyacid		Te	Ternary Compound	
HClO	hypochlorous acid	NaClO	sodium hypo chlor ite	
HClO ₂	chlor ous acid	NaClO ₂	sodium chlor ite	
HClO ₃	chlor ic acid	NaClO ₃	sodium chlorate	
HClO ₄	perchloric acid	NaClO ₄	sodium per chlor ate	

Chapter Summary

- Most inorganic compounds do not contain carbon.
- Binary ionic compounds are composed of a metal and a nonmetal.
- Ternary ionic compounds are composed of a metal, a nonmetal, and oxygen.
- Binary molecular compounds are composed of two nonmetal elements.
- Acids are composed of hydrogen and a nonmetal atom or an oxyanion.

Chapter Summary, Continued

- Cations are named the element plus the word *ion*.
- Cations with more than one possible charge have their charge indicated with Roman numerals in parentheses.
- Ionic compounds are named using the cation first, anion second. Then anion has the suffix *-ide* added.
- The simplest representative unit for an ionic compound is a *formula unit*.

Chapter Summary, Continued

- The simplest representative unit for a molecular compound is a *molecule*.
- When naming molecular compounds, the elements are written in the order C, P, N, H, S, I, Br, Cl, O, then F.
- The name of the first element is the same; the suffix *-ide* is added to the second element.
- Greek prefixes are used to indicate the number of each atom in the formula.

Chapter Summary, Continued

- An acid is an aqueous solution of a compound containing hydrogen and a nonmetal or an oxyanion.
- Binary acids are named for the nonmetal atom by adding the prefix *-hydro* and the suffix *-ic acid*.
- Ternary oxyacids are named by changing the *-ate* suffix on the oxyanion to *-ic acid*, or the *-ite* suffix on the oxyanion to *-ous acid*.