
Appendix A

Introductory MATLAB

Core Topics

Starting with MATLAB (A.2).

Arrays (A.3).

User-defined functions and function files (A.7).

Anonymous functions (A.8).

Function functions (A.9).

Mathematical operations with arrays (A.4).

Script files (A.5).

Subfunctions (A.10)

Programming in MATLAB (A.11).

Plotting (A.6).

A.1 BACKGROUND

MATLAB is a powerful language for technical computing. The name

MATLAB stands for MATrix LABoratory because its basic data ele­

ment is a matrix (array). MATLAB can be used for mathematical com­

putations, modeling and simulations, data analysis and processing,

visualization and graphics, and algorithm development.

MATLAB is widely used in universities and colleges in introduc­

tory and advanced courses in mathematics, science, and especially in

engineering. In industry the software is used in research, development,

and design. The standard MATLAB program has tools (built-in func­

tions) that can be used to solve common problems. In addition, MAT­

LAB has optional toolboxes that are a collection of specialized

programs designed to solve specific types of problems. Examples

include toolboxes for signal processing, symbolic calculations, and con­

trol systems.

This appendix is a brief introduction to MATLAB. It presents the

most basic features and syntax that will enable the reader to follow the

use of MATLAB in this book. For a more complete introduction, the

reader is referred to MATLAB: An Introduction with Applications,

F ourthrd Edition, by Amos Gilat, Wiley, 2011.

A.2 STARTING WITH MATLAB

It is assumed that the software is installed on the computer and that the

user can start the program. When the program is running, eight win­

dows can be used. A list of the various windows and their purpose is

509

510

Window

Appendix A Introductory MATLAB

given in Table A-1. Four of the windows-the Command Window, the
Figure Window, the Editor Window, and the Help Window-are the
most commonly used.

Table A-1: MATLAB Windows

Purpose

Command Window Main window, enters variables, runs programs.

Figure Window Contains output from graphics commands.

Editor Window Creates and debugs script and function files.

Help Window Provides help information.

Launch Pad Window Provides access to tools, demos, and documentation.

Command History Window Logs commands entered in the Command Window.

Workspace Window Provides information about the variables that are used.

Current Directory Window Shows the files in the current directory.

Command Window: The Command Window is MATLAB 's main win­

dow and opens when MATLAB is started.
• Commands are typed next to the prompt (> >) and are executed when

the Enter key is pressed.

• Once a command is typed and the Enter key is pressed, the command
is executed. However, only the last command is executed. Everything
executed previously is unchanged.

• Output generated by the command is displayed in the Command
Window, unless a semicolon (;) is typed at the end.

• When the symbol % (percent symbol) is typed in the beginning of a
line, the line is designated as a comment and is not executed.

• The clc command (type clc and press Enter) clears the Command
Window. After working in the Command Window for a while, the

display may be very long. Once the clc command is executed, a
clear window is displayed. The command does not change anything
that was done before. For example, variables that have been defined
previously still exist in the memory and can be used. The up-arrow

key (t) can also be used to recall commands that were typed
before.

Figure Window: The Figure Window opens automatically when graph­

ics commands are executed and contains graphs created by these com­
mands.

Editor Window: The Editor Window is used for writing and editing
programs. This window is opened from the File menu in the Command
Window. More details on the Editor Window are given in Section A.5

A.2 Starting with MATLAB 511

Operation

Addition

Subtraction

Multiplication

Symbol

+

-

*

where it is used for creating script files.

Help Window: The Help Window contains help information. This win­

dow can be opened from the Help menu in the toolbar of any MATLAB

window. The Help Window is interactive and can be used to obtain

information on any feature of MATLAB.

Elementary arithmetic operations with scalars

The simplest way to use MATLAB is as a calculator. With scalars, the

symbols of arithmetic operations are:

Example Operation Symbol Example

5+3 Right division I 5/3

5-3 Left division \ 5\3=3/5

5 * 3 Exponentiation /\ 5 "3 (means 53 = 125)

A mathematical expression can be typed in the Command Window.

When the Enter key is pressed, MATLAB calculates the expression and

responds by displaying ans = and the numerical result of the expres­

sion in the next line. Examples are:

>> 7 + 8/2

ans =
11

>> (7+8)/2 + 27A(l/3)

ans =
10.5000

>> a = 12

a =
12

>> B = 4;

Numerical values can also be assigned to variables, which is a name

made of a letter or a combination of several letters (and digits). Variable

names must begin with a letter. Once a variable is assigned a numerical

value, it can be used in mathematical expressions, in functions, and in

any MATLAB statements and commands.

Since a semicolon is typed at the end of the
command, the value of B is not displayed.

>> C = (a - B) + 40 - a/B*lO

c =
18

Elementary math built-in functions

In addition to basic arithmetic operations, expressions in MATLAB can

include functions. MATLAB has a very large library of built-in func­

tions. A function has a name and an argument (or arguments) in paren­

theses. For example, the function that calculates the square root of a

512

Command

sqrt(x)

exp(x)

abs(x)

log(x)

loglO(x)

sin(x)

sind(x)

Appendix A Introductory MATLAB

number is sqrt (x). Its name is sqrt, and the argument is x. When

the function is used, the argument can be a number, a variable, or a

computable expression that can be made up of numbers and/or vari­

ables. Functions can also be included in arguments, as well as in expres­

sions. The following shows examples of using the function

sqrt (x) when MATLAB is used as a calculator with scalars.

>> sqrt(64)

ans =

[Argument is a number. J

8

>> sqrt(50 + 14*3)

ans =

9.5917

>> sqrt(54 + 9*sqrt(100))

ans =

12

>> (15 + 600/4)/sqrt(121)

ans =

15

[Argument is an expression. J

[Argument includes a function.]

[Function is included in an expression.]

Lists of some commonly used elementary MATLAB mathematical

built-in functions are given in Table A-2. A complete list of functions

organized by category can be found in the Help Window.

Table A-2: Built-in elementary math functions.

Description Example

Square root. >> sqrt(81)
ans =

9

Exponential (ex) . >> exp(5)
ans =

148.4132

Absolute value. >> abs(-24)
ans =

24

Natural logarithm. >> log(lOOO)

Base e logarithm (ln). ans =

6.9078

Base 10 logarithm. >> loglO(lOOO)
ans =

3.0000

Sine of angle x (x in radians). >> sin(pi/6) >> sind(30)
ans = ans =

Sine of angle x (x in degrees). 0.5000 0.5000

A.2 Starting with MATLAB 513

Table A-2: Built-in elementary math functions. (Continued)

Command Description Example

The other trigonometric functions are written in the same way. The inverse trigonometric functions are
written by adding the letter "a" in front, for example, as in (x).

round(x)

fix(x)

ceil(x)

floor(x)

Command

format short

format long

format short e

format long e

format short g

Round to the nearest integer. >> round(17/5)
ans =

3

Round toward zero. >> fix(9/4) >> fix(-9/4)
ans = ans =

2 -2

Round up toward infinity. >> ceil(ll/5)
ans =

3

Round down toward minus infinity. >> floor(-9/4)
ans =

-3

Display formats

The format in which MATLAB displays output on the screen can be
changed by the user. The default output format is fixed point with four
decimal digits (called short). The format can be changed with the

format command. Once the format command is entered, all the
output that follows will be displayed in the specified format. Several of

the available formats are listed and described in Table A-3.

Table A-3: Display format

Description Example

Fixed point with four decimal digits for: >> 290/7

0.001 ::::; number::::; 1000 ans =

Otherwise display format short e. 41.4286

Fixed point with 14 decimal digits for: >> 290/7

0.001 ::::; number::::; 100 ans =

Otherwise display format long e. 41.42857142857143

Scientific notation with four decimal >> 290/7

digits. ans =

4.1429e+001

Scientific notation with 15 decimal dig- >> 290/7

its. ans =

4.142857142857143e+001

Best of 5-digit fixed or floating point. >> 290/7
ans =

41. 429

514

Command

format long g

format bank

Appendix A Introductory MATLAB

Table A-3: Display format (Continued)

Description Example

Best of 15-digit fixed or floating point. >> 290/7
ans =

41.4285714285714

Two decimal digits. >> 290/7
ans =

41. 43

A.3 ARRAYS

The array is a fundamental form that MATLAB uses to store and

manipulate data. An array is a list of numbers arranged in rows and/or

columns. The simplest array (one-dimensional) is a row, or a column of

numbers, which in science and engineering is commonly called a vec­

tor. A more complex array (two-dimensional) is a collection of numbers

arranged in rows and columns, which in science and engineering is

called a matrix. Each number in a vector or a matrix is called an ele­

ment. This section shows how to construct vectors and matrices. Sec­

tion A.4 shows how to carry out mathematical operations with arrays.

Creating a vector

In MATLAB, a vector is created by assigning the elements of the vector

to a variable. This can be done in several ways depending on the source

of the information that is used for the elements of the vector. When a

vector contains specific numbers that are known, the value of each ele­

ment is entered directly by typing the values of the elements inside

square brackets:

[variable_name = [number number ... number]

For a row vector, the numbers are typed with a space or a comma

between the elements. For a column vector the numbers are typed with

a semicolon between them. Each element can also be a mathematical

expression that can include predefined variables, numbers, and func­

tions. Often, the elements of a row vector are a series of numbers with

constant spacing. In such cases the vector can be created by typing:

(variable_name = m:q:n)
where m is the first element, q is the spacing, and n is the last element.

Another option is to use the linspace command:

(variable_ name = linspace (xi, xf, n)

Several examples of constructing vectors are:

>> yr= [1984 1986 1988 1990 1992 1994 1996] [Row vector by typing elements.)

A.3 Arrays

yr =

1984 1986

>> pnt = [2; 4;

pnt =

2
4
5

>> x = [1:2:13]

x =

1 3 5

1988 1990

5]

7 9 11 13

1992 1994 1996

515

[Column vector by typing elements. J

[Row vector with constant spacing.

>> va = linspace (0, 8, 6)

va =

[Row vector with 6 elements, first element 0, last element 8. J

0 1.6000 3.2000 4.8000 6.4000 8.0000

Creating a two-dimensional array (matrix)

A two-dimensional array, also called a matrix, has numbers in rows and

columns. A matrix is created by assigning the elements of the matrix to

a variable. This is done by typing the elements, row by row, inside

square brackets []. Within each row the elements are separated with

spaces or commas. Between rows type ; or the press Enter.

variable_name= [1st row elements; 2nd row ele­
ments; ; last row elements]

The elements that are entered can be numbers or mathematical expres­

sions that may include numbers, predefined variables, and functions.

All the rows must have the same number of elements. If an element is

zero, it has to be entered as such. MATLAB displays an error message if

an attempt is made to define an incomplete matrix. Examples of matri­

ces created in different ways are:

>>a= [5 35 43; 4 76 81; 21 32 40] [Semicolons are typed between rows. J
a =

5
4

21

35
76
32

43
81
40

>> cd = 6; e = 3; h = 4; [Variables are defined.]
>>Mat= [e, cd*h, cos(pi/3); h"'2, sqrt(h*h/cd), 14] Elements are

Mat = entered as mathe-
3. 0000 24. 0000 0. 5000 matical expres-

16.0000 1.6330 14.0000 sions.

• All variables in MATLAB are arrays. A scalar is an array with one

element; a vector is an array with one row, or one column, of ele­

ments; and a matrix is an array with elements in rows and columns.

516 Appendix A Introductory MATLAB

• The variable (scalar, vector, or matrix) is defined by the input when
the variable is assigned. There is no need to define the size of the
array (single element for a scalar, a row or a column of elements for
a vector, or a two-dimensional array of elements for a matrix) before
the elements are assigned.

• Once a variable exists as a scalar, a vector, or a matrix, it can be
changed to be any other size, or type, of variable. For example, a

scalar can be changed to a vector or a matrix, a vector can be
changed to a scalar, a vector of different length, or a matrix, and a
matrix can be changed to have a different size, or to be reduced to a
vector or a scalar. These changes are made by adding or deleting ele­
ments.

Array addressing

Elements in an array (either vector or matrix) can be addressed individ­
ually or in subgroups. This is useful when there is a need to redefine
only some of the elements, or to use specific elements in calculations,
or when a subgroup of the elements is used to define a new variable.

The address of an element in a vector is its position in the row (or
column). For a vector named ve, ve (k) refers to the element in posi­
tion k. The first position is 1. For example, if the vector ve has nine ele­
ments:

ve=35 46 78 23 5 14 81 3 55

then

ve(4) = 23, ve(7) = 81, and ve(l) = 35.
The address of an element in a matrix is its position, defined by

the row number and the column number where it is located. For a
matrix assigned to a variable ma, ma(k,p) refers to the element in row k

and columnp.

For example, if the matrix is: ma = [! \1 to �l
13 9 0 �J

then, ma(l,l) = 3, and ma(2,3) = 10.

It is possible to change the value of one element by reassigning a
new value to the specific element. Single elements can also be used like
variables in mathematical expressions.

>> VCT = [35 46 78 23 5 14 81 3 55]

VCT =

[Define a vector. J

35 46 78 23 5 14 81 3 55

>> VCT (4) =- 2; VCT (6) = 273

VCT =

[Assign new values to the fourth and sixth elements. J

35 46 78 - 2 5 273

>> VCT (5) "VCT (8) +sqrt (VCT (7))

81 3
Use vector elements in a
mathematical expression.

A.3 Arrays 517

ans =
134

>>MAT= [3 11 6 5; 4 7 10 2; 13 9 0 8] [Define a matrix. J
MAT =

3 11 6 5
4 7 10 2

13 9 0 8

>> MAT(3,1) =20

MAT =

Assign a new value to the (3,1) element. J

3
4

20

11
7
9

6 5
10 2

0 8

>> MAT(2,4) -MAT(l,2) Use matrix elements in a
mathematical expression.

ans =
-9

Using a colon : in addressing arrays

A colon can be used to address a range of elements in a vector or a

matrix. If va is a vector, va(m:n) refers to elements m through n of the

vectorva.

If A is a matrix, A(:,n)refers to the elements in all the rows of column n.

A(n,:)refers to the elements in all the columns of row n. A(:,m:n) refers

to the elements in all the rows between columns m and n. A(m:n,:) refers

to the elements in all the columns between rows m and n. A(m:n,p:q)

refers to the elements in rows m through n and columns p through q.

>> v= [4 15 8 12 34 2 50 23 11] [Define a vector.

v =
4 15 8 12 34 2 50 23 11

>>u=v(3:7) [Vector u is created from the elements 3 through 7 of vector v.

u =
8 12 34 2 50

>>A= [l 3 5 7 9 11; 2 4 6 8 10 12; 3 6 9 12 15 18; 4 8 12 16 20
24; 5 10 15 20 25 30] [Define a matrix.]

A =
1 3 5 7 9 11
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30

c =A(2,:) [Vector C is created from the second row of matrix A.

c =
2 4 6 8 10 12

>> F = A(1:3,2:4) Matrix F is created from the elements in rows 1
through 3 and columns 2 through 4 of matrix A.

518

Command

length(A)

size(A)

zeros(m,n)

ones (m, n)

eye(n)

F =
3

4
6

5
6
9

7

8

12

Appendix A Introductory MATLAB

MATLAB has many built-in functions for managmg and handling

arrays. Several are listed in Table A-4.

Table A-4: Built-in functions for handling arrays.

Description Example

Returns the number of elements in vec- >> A= [5 9 2 4] ;

tor A. >> length (A)
ans =

4

Returns a row vector [m, n] , where m >>A= [6 1 4 0 12; 5 19 6 8

and n are the size m x n of the array A. 2]

(mis number of rows. n is number of A=

columns.) 6 1 4 0 12
5 19 6 8 2

>>size (A)
ans=

2 5

Creates a matrix with m rows and n col- >> zr =zeros (3, 4)

umns, in which all the elements are the zr=

number 0. 0 0 0 0
0 0 0 0
0 0 0 0

Creates a matrix with m rows and n col- > > ne = ones (4 , 3)

umns, in which all the elements are the ne=

number 1. 1 1 1
1 1 1
1 1 1
1 1 1

Creates a square matrix with n rows and >> idn =eye (3)

n columns in which the diagonal ele- idn=

ments are equal to 1 (identity matrix). 1 0 0
0 1 0
0 0 1

Strings

• A string is an array of characters. It is created by typing the charac­

ters within single quotes.

• Strings can include letters, digits, other symbols, and spaces.

• Examples ofstrings: 'adef','3%fr2','{edcba:21!'.

A.4 Mathematical Operations with Arrays 519

• When a string is being typed in, the color of the text on the screen
changes to maroon when the first single quote is typed. When the
single quote at the end of the string is typed the color of the string

changes to purple.

Strings have several different uses in MATLAB. They are used in
output commands to display text messages, in formatting commands of
plots, and as input arguments of some functions. Strings can also be

assigned to variables by simply typing the string on the right side of the
assignment operator, as shown in the next example.

>> a= 'FRty 8'

a =
FRty 8

>> B = 'My name is John Smith'

B =
My name is John Smith

A.4 MATHEMATICAL OPERATIONS WITH ARRAYS

Once variables are created in MATLAB, they can be used in a wide
variety of mathematical operations. Mathematical operations in MAT­
LAB can be divided into three categories:

1. Operations with scalars ((1x1) arrays) and with single elements of

arrays.

2. Operations with arrays following the rules oflinear algebra.

3. Element-by-element operations with arrays.

Operations with scalars and single elements of arrays are done by
using the standard symbols as in a calculator. So far, all the mathemati­
cal operations in the appendix have been done in this way.

Addition and subtraction of arrays

With arrays, the addition, subtraction, and multiplication operations fol­
low the rules of linear algebra (see Chapter 2). The operations+ (addi­
tion) and - (subtraction) can only be carried out with arrays of identical
size (the same number of rows and columns). The sum, or the differ­

ence of two arrays, is obtained by adding, or subtracting, their corre­

sponding elements. For example, if A and B are two (2 x 3) matrices,

A = [A11 A12 A131 and B = [Bu B12 B131
A11 A12 A13j B21 B12 B13J

then, the matrix that is obtained by adding A and B is:

ICA11 +Bu) (A12 + B12) (A13 + B13)l .

l(A21 + B21) (A22 + B21) (A23 + B13)j
In MATLAB, when a scalar (number) is added to, or subtracted from,

520 Appendix A Introductory MATLAB

an array, the number is added to, or subtracted from, all the elements of

the array. Examples are:

>>VA= [8 5 4]; VB= [10 2 7];
>> VC=VA+VB

[Define two vectors VA and VB. J
Define a vector VC that is equal to VA+ VB. J

VC=

18 7
>>A= [5 -3

A=

5 -3

9 2
B=

10 7
-11 15

>>C=A+B

c =

11

8; 9 2 10] I B= [10 7 4; -11 15 1] [Define two matrices A and B. J

8

10

4
1

Define a matrix c that is equal to A+ B.

15 4 12
-2 17 11

>>C- 8

ans=

7
-10

-4
9

4
3

Subtract 8 from the matrix C.

8 is subtracted from each element of C.

Multiplication of arrays

The multiplication operation * is executed by MATLAB according to
the rules oflinear algebra (see Section 2.4.1). This means that if A andB
are two matrices, the operation A* B can be carried out only if the num­
ber of columns in matrix A is equal to the number of rows in matrix B.
The result is a matrix that has the same number of rows as A and the
same number of columns as B. For example, if Eis a (3 x 2) matrix and

G is a (2 x 4) matrix, then the operation C=A*B gives a (3 x 4) matrix:

>>A= [2 -1; 8 3; 6 7], B= [4 9 1 -3; -5 2 4[Define two matricesAandB.J
A=

2 -1
8 3

6 7
B=

4 9

-5 2

>>C=A*B

C=

13 16
17 78

-11 68

1 -3

4 6

[Multiply A *B.

c is a (3 x 4) matrix.)
-2 -12
20 -6

34 24

Two vectors can be multiplied only if both have the same number of

elements, and one is a row vector and the other is a column vector. The

A.4 Mathematical Operations with Arrays 521

multiplication of a row vector times a column vector gives a (1 x 1)

matrix, which is a scalar. This is the dot product of two vectors.
(MATLAB also has a built-in function, named dot (a, b) , that com­
putes the dot product of two vectors.) When using the dot function, the
vectors a and b can each be a row or a column vector. The multiplica­
tion of a column vector times a row vector, both with n elements, gives

an (n x n) matrix.

>>AV= [2 5 l]

AV=

[Define three-element row vector AV. J

2 5 1

>>BV= [3; 1; 4)

BV=

Define three-element column vector BV. J

3
1

4

>>AV*BV

ans=

15

>>BV*AV

ans=

6
2
8

15

5

20

Multiply AV by BV. The answer is a scalar. (Dot product of two vectors.) J

3
1

4

Array division

Multiply BV by AV. The answer is a (3 x 3)
matrix. (Cross product of two vectors.)

The division operation in MATLAB is associated with the solution of a
system of linear equations. MATLAB has two types of array division,
which are the left division and the right division. The two operations are
explained in Section 4.8.1. Note that division is not a defined operation
in linear algebra (see Section 2.4.1). The division operation in MAT­

LAB performs the equivalent of multiplying a matrix by the inverse of
another matrix (or vice versa).

Element-by-element operations

Element-by-element operations are carried out on each element of the
array (or arrays). Addition and subtraction are already by definition ele­
ment-by-element operations because when two arrays are added (or
subtracted) the operation is executed with the elements that are in the
same position in the arrays. In the same way, multiplication, division,

and exponentiation can be carried out on each element of the array.

When two or more arrays are involved in the same expression, element­
by-element operations can only be done with arrays of the same size.

Element-by-element multiplication, division, and exponentiation of
two vectors or matrices are entered in MATLAB by typing a period in

522 Appendix A Introductory MATLAB

front of the arithmetic operator.

Symbol Description Symbol Description

* Multiplication ./ Right division

/\ Exponentiation .\ Left Division

If two vectors a and b are a = [a1 a2 a3 a� and

b = [b1 b2 b3 bJ, then element-by-element multiplication, division,

and exponentiation of the two vectors are:

a .* b = [a1b1 a2b2 a3b3 a4b�

a .I b = [a1/b1 a2/b2 a3/b3 a4/b�
/\ b

� bi b2 b3 b�
a . = L(a1) (a2) (a3) (a4)

J
If two matrices A and B are: [A11 A12 Anj [B11 B12 Bn

:

A = A21 A21 A13 and B = B21 B22 B23
A31 A32 A33 B31 B32 B33

then element-by-element multiplication and division of the two matri­

ces give:

Examples of element-by-element operations with MATLAB are:

>>A= [2 6 3; 5 8 4]
A=

[Define a (2 x 3) matrix A.]

2 6 3

5 8 4
>>B= [1 4 10; 3 2 7]

B=
1
3

4
2

>>A.* B
ans=

2
15

24
16

>> C=A ./B

10
7

30
28

Define a (2 x 3) matrix B.]

Element-by-element multiplication of arrays A and B. J

Element-by-element division of array A by array B. J

A.4 Mathematical Operations with Arrays 523

Command

mean(A)

sum(A)

sort(A)

C=
2.0000 1.5000 0.3000
1.6667 4.0000 0.5714

>> B " 3
ans=

1 64
27 8

Element-by-element exponentiation of array B. J

1000
343

Element-by-element calculations are very useful for calculating the

value of a function at many values of its argument. This is done by first

defining a vector that contains values of the independent variable and

then by using this vector in element-by-element computations to create

a vector in which each element is the corresponding value of the func-

3
tion. For example, calculating y =

z
2+ 52 for eight values of z,

4z -10
z = 1, 3, 5, ... , 15, is accomplished as follows:

>>z= [1:2:15] [Define a vector z with eight elements. J
z=

1 3 5 7 9 11 13 15
>>y= (z. "3 + S*z) . I (4*z. "2 - 10)

y=
Vector z is used in element-by-element
calculation of the elements of vector y.

-1.0000 1.6154 1.6667 2.0323 2.4650 2.9241 3.3964 3.8764

In the last example element-by-element operations are used three times;

to calculate z3 and z2 and to divide the numerator by the denominator.

MATLAB has many built-in functions for operations with arrays.

Several of these functions are listed in Table A-5.

Table A-5: Built-in functions for handling arrays.

Description Example

If A is a vector, the function returns the >>A= [5 9 2 4] ;
mean value of the elements of the vec- >>mean (A)
tor. ans =

5

If A is a vector, the function returns the >>A= [5 9 2 4] ;
sum of the elements of the vector. >>sum(A)

ans=
20

If A is a vector, the function arranges the >>A= [5 9 2 4] ;
elements of the vector in ascending >>sort(A)
order. ans=

2 4 5 9

524

Command

det(A)

Appendix A Introductory MATLAB

Table A-5: Built-in functions for handling arrays. (Continued)

Description Example

The function returns the determinant of >>A= [2 4; 3 5] ;

a square matrix A. >>det(A)
ans=

-2

A.5 SCRIPT FILES

A script file is a file that contains a sequence of MATLAB commands,

which is also called a program. When a script file is run, MATLAB exe­

cutes the commands in the order they are written just as if they were

typed in the Command Window. When a command generates output

(e.g., assignment of a value to a variable without semicolon at the end),

the output is displayed in the Command Window. Using a script file is

convenient because it can be stored, edited later (corrected and/or

changed), and executed many times. Script files can be typed and edited

in any text editor and then pasted into the MATLAB editor. Script files

are also called M-files because the extension .m is used when they are

saved.

Creating and saving a script file

Script files are created and edited in the Editor/Debugger Window. This

window is opened from the Command Window. In the File menu,

select New and then select M-file. Once the window is open, the com­

mands of the script file are typed line by line. MATLAB automatically

numbers a new line every time the Enter key is pressed. The commands

can also be typed in any text editor or word processor program and then

copied and pasted in the Editor/Debugger Window.

Before a script file can be executed, it has to be saved. This is done

by choosing Save As ... from the File menu, selecting a location (folder),

and entering a name for the file. The rules for naming a script file fol­

low the rules of naming a variable (must begin with a letter, can include

digits and underscore, and be up to 63 characters long). The names of

user-defined variables, predefined variables, MATLAB commands, or

functions should not be used to name script files.

A script file can be executed either by typing its name in the Com­

mand Window and then pressing the Enter key, or directly from the

Editor Window by clicking on the Run icon. Before this can be done,

however, the user has to make sure that MATLAB can find the file (i.e.,

that MATLAB knows where the file is saved). In order to be able to run

a file, the file must be in either the current directory or the search path.

The current directory is shown in the "Current Directory" field in

the desktop toolbar of the Command Window. The current directory

can be changed in the Current Directory Window.

When MATLAB is asked to run a script file or to execute a func-

A.5 Script Files 525

tion, it searches for the file in directories listed in the search path. The

directories included in the search path are displayed in the Set Path

Window that can be opened by selecting Set Path in the File menu.

Once the Set Path Window is open, new folders can be added to, or

removed from, the search path.

Input to a script file

When a script file is executed, the variables used in the calculations

within the file must have assigned values. The assignment of a value to

a variable can be done in three ways, depending on where and how the

variable is defined. One option is to define the variable and assign it a

value in the script file. In this case the assignment of value to the vari­

able is part of the script file. If the user wants to run the file with a dif­

ferent variable value, the file must be edited and the assignment of the

variable changed. Then, after the file is saved, it can be executed again.

A second option is to define the variable and assign it a value in the

Command Window. In this case, if the user wants to run the script file

with a different value for the variable, the new value is assigned in the

Command Window and the file is executed again.

The third option is to define the variable in the script file but assign

a specific value in the Command Window when the script file is exe­

cuted. This is done by using the input command.

Output from a script file

As discussed earlier, MATLAB automatically generates a display when

some commands are executed. For example, when a variable is

assigned a value, or the name of a previously assigned variable is typed

and the Enter key is pressed, MATLAB displays the variable and its

value. In addition, MATLAB has several commands that can be used to

generate displays. The displays can be messages that provide informa­

tion, numerical data, and plots. Two commands frequently used to gen­

erate output are disp and fprintf. The disp command displays the

output on the screen, while the fprintf command can be used to dis­

play the output on the screen or to save the output to a file.

The di sp command is used to display the elements of a variable

without displaying the name of the variable and to display text. The for­

mat of the disp command is:

disp(name of a variable) or disp('text as string')

Every time the disp command is executed, the display it generates

appears in a new line.
The fprintf command can be used to display output (text and

data) on the screen or to save it to a file. With this command the output

can be formatted. For example, text and numerical values of variables

can be intermixed and displayed in the same line. In addition, the for­

mat of the numbers can be controlled. To display a mix of text and a

526

6

4

Appendix A Introductory MATLAB

number (value of a variable), the fprintf command has the form:

fprintf('text as string %-5.2£ additional text' ,variable_name)

The % sign marks the
spot where the number is
inserted within the text.

>>x= [1

>>y= [2

Formatting elements
(define the format of
the number).

A.6 PLOTTING

The name of the
variable whose
value is displayed.

MATLAB has many commands that can be used for creating different
types of plots. These include standard plots with linear axes, plots with

logarithmic axes, bar and stairs plots, polar plots, and many more. The
plots can be formatted to have a desired appearance.

Two-dimensional plots can be created with the plot command.
The simplest form of the command is:

(plot (x, y))
The arguments x and y are each a vector (one-dimensional array). Both
vectors must have the same number of elements. When the plot com­
mand is executed, a figure is appears in the Figure Window, which
opens automatically. The figure has a single curve with the x values on

the abscissa (horizontal axis) and the y values on the ordinate (vertical
axis). The curve is constructed of straight line segments that connect the

points whose coordinates are defined by the elements of the vectors x

and y. The vectors, of course, can have any name. The vector that is
typed first in the plot command is used for the horizontal axis, and the
vector that is typed second is used for the vertical axis. The figure that
is displayed has axes with linear scale and default range. For example,

if a vector x has the elements 1, 2, 3, 5, 7, 7.5, 8, 10, and a vector y has
the elements 2, 6.5, 7, 7, 5.5, 4, 6, 8, a simple plot of y versus x can be
produced by typing the following in the Command Window:

2 3 5 7 7.5 8 10];

6.5 7 7 5.5 4 6 8];

>>plot(x,y)

2 4 6 8 10

Once the plot command is executed, the plot that is shown in Fig. A-5
is displayed in the Figure Window.

The plot command has additional optional arguments that can

be used to specify the color and style of the line and the color and type
of markers, if any are desired. With these options the command has the

Figure A-1: A plot of data points.

A.6 Plotting 527

form:

plot(x,y, 'line specifiers')

Line specifiers can be used to define the style and color of the line and

the type of markers (if markers are desired). The line style specifiers

are:

Line Style Specifier Line Style Specifier

solid (default) - dotted

dashed -- dash-dot -

The line color specifiers are:

Line Color Specifier Line Style Specifier Line Color Specifier Line Color Specifier

red r blue b magenta m black k

green g cyan c yellow y white w

The marker type specifiers are:

Marker Specifier Marker Specifier Marker Specifier

plus sign + asterisk * square s

circle

� 25 ·�
� 20 ,,"
� /
� 15 "
� 10

;� ...

i'988 1989 1990 1991 1992 1993 1994
YEAR

Figure A-2: Formatted plot.

0 point . diamond d

The specifiers are typed inside the plot command as strings. Within

the string the specifiers can be typed in any order.

The plot command creates bare plots. The plot can be modified

to include axis labels, a title, and other features. Plots can be formatted

by using MATLAB commands that follow the plot command. The

formatting commands for adding axis labels and a title are:

xlabel('text as string')
ylabel('text as string')
title('text as string')

For example, the program listed below produces the plot that is dis­

played in Fig. A-2. The data is plotted with a dashed red line and aster­

isk markers, and the figure includes axis labels and a title.

>>yr= [1988: 1: 1994];

>>sle= [8 12 20 22 18 24 27];

>>plot(yr,sle,'--r*' ,'linewidth' ,2,'markersize' ,12)

>> xlabel ('YEAR')

>> ylabel (' SALES (Millions) ')

>> title (' Sales Records ')

528

The word function

must be the first word

and must be typed in
lower case letters.

Appendix A Introductory MATLAB

Formatting of plots can also be done in the Figure Window using

the insert menu or Plot Editor.

A.7 USER-DEFINED FUNCTIONS AND FUNCTION
FILES

A function in mathematics can be expressed in the form y = f(x),
where f(x) is a mathematical expression in terms of x. A value of y

(output) is obtained when a value of x (input) is substituted in the

expression. A function file in MATLAB is a computer program that is

used like a math function. Data is imported into the program and is used

for calculating the value of the function. Schematically, a function file

can be illustrated by:

Input data
-

Function

File

Output data

The input and output arguments can be one or several variables, and

each can be a scalar, a vector, or an array of any size. Functions can be

used for a math function and as subprograms in large programs. In this

way large computer programs can be made up of smaller "building

blocks" that can be tested independently.

MATLAB has already many built-in functions. Examples are the

standard math functions (i.e. sin (x), cos (x), sqrt (x), and

exp (x)) that are used by typing their name with a value for the input

argument. MATLAB contains also many built-in functions for execut­

ing more complicated operations (e.g., solving a nonlinear equation,

curve fitting).

MATLAB users can write additional (new) user-defined functions

that can be used like the built-in functions. This section describes how

to write, save, and use user-defined functions.

User-defined functions are created and edited, like script files, in

the Editor/Debugger Window. The first executable line in a function file

must be the function definition line that has the form:

function [output arguments] =function_name(input arguments)

A list of output arguments The name of

typed inside brackets and the function.

separated by commas.

A list of input arguments

typed inside parentheses

and separated by commas.

The word "function", typed in lower case letters, must be the first
word in the function definition line. The input and output arguments are

A.7 User-Defined Functions and Function Files 529

used to transfer data into and out of the function. The input arguments

are listed inside parentheses following the function name. Usually, there

is at least one input argument. If there are more than one, the input argu­

ments are separated by commas. The computer code that performs the

calculations within the function file is written in terms of the input argu­

ments and assumes that the arguments have assigned numerical values.

The output arguments, which are listed inside brackets on the left

side of the assignment operator in the function definition line, transfer

the output from the function file. A user-defined function can have one,

several, or no output arguments. If there are more than one, the output

arguments are separated with commas or spaces. If there is only one

output argument, it can be typed without brackets. In order for the user­

defined function to work, the output arguments must be assigned values

within the computer program of the function.

Following the function definition line, there are usually several

lines of comments. They are optional but frequently used to provide

information about the function. Next, the function contains the com­

puter program (code) that actually performs the computations. The code

can use all MATLAB programming features, including calculations,

assignments, any built-in or user-defined functions, and flow control

(conditional statements and loops; see Section A.11).

All the variables in a user-defined function are local. This means

that the variables that are defined within the program of the user­

defined function are recognized only in this program. When a function

file is executed, MATLAB uses an area of memory that is separate from

the workspace (the memory space of the Command Window and the

script files). In a user-defined function the input variables are assigned

values each time the function is called. These variables are then used in

the calculations within the function file. When the function file finishes

its execution, the values of the output arguments are transferred to the

variables that were used when the function was called. Thus, a function

file can have variables with the same name as variables in the Com­

mand Window or in script files. The function file does not recognize

variables with the same name that have been assigned values outside

the function. The assignment of values to these variables in the function

file will not change their assignment elsewhere.

A simple user-defined function, named loan, that calculates the

monthly and total pay of a loan for a given loan amount, interest rate,

and duration is listed next.

function [mpay, tpay] =loan (amount, rate, years) Function definition line.)
%loan calculates monthly and total payment of loan.

%Input arguments:

%amount: loan amount in $.

%rate: annual interest rate in percent.

530

%years:

%Output

%mpay:

%tpay:

number of years.

arguments:

monthly payment.

total payment.

Appendix A Introductory MATLAB

format bank

ratem = rate*O. 01/12;

a= 1 + ratem;

b = (a" (years*l2) - 1) /ratem;

mpay =amount* a" (years*l2) I (a*b);

tpay = mpay*years*l2;
}-1 Assign values to the output arguments. J

The user-defined function loan is next used in the Command Win­

dow for calculating the monthly and total pay of a four-year loan of

$25,000 with interest rate of 4%:

>> [month total] =loan (25000, 7. 5, 4)

month=

600.72

total=

28834.47

A.8 ANONYMOUS FUNCTIONS

An anonymous function is a simple (one-line) user-defined function

that is defined without creating a separate function file (M-file). Anony­

mous functions can be defined in the Command Window, within a

script file, or inside a user-defined function.

An anonymous function is created by typing the following com­

mand:

Yame;/
The name of the anony- The @
mous function. symbol.

(ar�ist) e�
A list of input argu- Mathematical

ments (independent expression.

variables).

A simple example is: cube= @ (x) x/\3, which calculates the cubic

power of the input argument.

• The command creates the anonymous function, and assigns a handle
for the function to the variable name that is on the left-hand side of

the = sign. Function handles provide means for referencing the func­

tion, and passing it to other functions, see Section A.8.

A.8 Anonymous Functions 531

• The expr consists of a single valid mathematical MATLAB expres­

s10n.

• The mathematical expression can have one or several independent

variables. The independent variable(s) is (are) listed in the (arg-
1 is t) . If there are more than one, the independent variables are

separated with commas.

An example of an anonymous function that has two independent

variables is: circle=@ (x, y) 16*x"2+9*y"2

• The mathematical expression can include any built-in or user­

defined functions.

• The operations in the mathematical expression must be written

according to the dimensions of the arguments (element-by-element

or linear algebra calculations).

• The expression can include predefined variables that are already

defined when the anonymous function is defined. For example, if

three variables a, b, and c are defined (they have assigned numeri­

cal values), then they can be used in the expression of the anony­

mous function: parabola= @ (x) a*x"2+b*x+c. Important
note: MATLAB captures the values of the predefined variables

when the anonymous function is defined. This means that if subse­

quently new values are assigned to the predefined variables, the

anonymous function is not changed. The anonymous function has to

be redefined in order for the new values of the predefined variables

to be used in the expression of the anonymous function.

Using an anonymous function
• Once an anonymous function is defined, it can be used by typing its

name and a value for the argument (or arguments) in parentheses

(see examples that follow).

• Anonymous functions can also be used as arguments in other func­

tions (see Section A.8).

Example of an anonymous function with one independent variable:

x2

The function: f(x) = � can be defined (in the Command Win­
x2 + 5

dow) as an anonymous function for x as a scalar by:

>> FA= @ (x) exp(xA2)/sqrt(xA2+5)

FA =

@(x)exp(xA2)/sqrt(xA2+5)

>> FA(2)

If a semicolon is not typed at the end, MATLAB displays the function.

The function can then be used for different values of x:

532 Appendix A Introductory MATLAB

ans =

18.1994

>> z = FA(3)

z =

2.1656e+003

If x is expected to be an array, and the function calculated for each ele­
ment, then the function must be modified for element-by-element calcu­
lations.

>> FA = @ (x) exp(x.A2) ./sqrt(x.A2+5)

FA =

@(x)exp(x.A2) ./sqrt(x.A2+5)

> > FA ([1 0 . 5 2]) [Using a vector as input argument.]
ans =

1.1097 0.5604 18.1994

Example of an anonymous function with several independent vari­
ables:

The function f(x, y) = 2x2-4xy + y2 can be defined as an anonymous
function by:

>> HA = @ (x,y) 2*xA2 - 4*x*y + yA2

HA =

>> HA(2,3)
ans =

-7

Then, the anonymous function can be used for different values of x and

y. For example, typing HA (2, 3) gives:

A.9 FUNCTION FUNCTIONS

There are many situations where a function has to be imported into
another function. For example, MATLAB has a built-in function called

fzero that finds the zero of a math function /(x), i.e., the value of x

where f(x) = 0. The program (code) of the function fzero is written

in such a way that it can find the zero of different functions. When

fzero is used, the specific function to be solved is passed (imported)
into fzero. (The function fzero is described in detail in Chapter 3.)

A function function is a MATLAB function (built-in, or user­

defined) that imports another function as an input argument. A function

function includes in its input arguments a name (a dummy function
name) that represents the imported function. The dummy function name
is used in the operations within the program (code) of the function func­
tion. When the function function is used (called), the specific function

A.9 Function functions 533

that is imported is listed in its input argument by using a function han­
dle.

Function handle

A function handle is a MATLAB value that is associated to a function.

It is a MATLAB data type, and can be passed as an argument into

another function. Once passed, the function handle provides means for

calling (using) the function it is associated with. Function handles can

be used with any kind of MATLAB function. This includes built-in

functions, user-defined functions, and anonymous functions.
• For built-in and user-defined functions, a function handle is created

by typing the symbol @ in front of the function name. For example,

@cos is the function handle of the built-in function cos, and

@loan is the function handle of the user-defined function loan that
was written in Section A. 7.

• The function handle can also be assigned to a variable name. For

example, cosHandle=@cos assigns the handle @cos to

cos Handle. Then, the name cos Handle can be used for passing

the handle.

• For anonymous functions (Section A.8), their name is already a
function handle.

Writing a function function that accepts a function handle as an input

argument

As already mentioned, the input arguments of a function function (a

function that accepts another function) includes a name (dummy func­

tion name) that represents the imported function. This dummy function

name (including a list of input arguments enclosed in parentheses) is
used for the operations in the program within the function function.
• The function that is actually being imported must be consistent with

the way that the dummy function is being used in the program. This

means that both must have the same number and type of input and
output arguments.

The following is an example of a user-defined function function,

named funplot, that makes a plot of a function (any function f(x)

that is imported into it) between the points x = a and x = b. The input

arguments are (Fun, a, b) , where Fun is a dummy name that repre­

sents the imported function, and a and b are the endpoints of the plot.
The function funplot also has a numerical output xyout, which is a

3 x 2 matrix with the values of x and f(x) at the three points: x = a,

x = (a+ b)/2 and x = b. Note that in the program, the dummy func­

tion Fun has one input argument (x) and one output argument y,

which are both vectors.

534 Appendix A Introductory MATLAB

[A name for the function that is imported (dummy function name). J

�
function xyout=funplot(Fun,a,b)

% funplot makes a plot of the function

% when funplot is called in the domain

% Input arguments:

% Fun: Function handle of the function

% a: The first point of the domain.

% b: The last point of the domain.

% Output argument:

Fun which is passed

[a, b] .

to be plotted.

% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b

% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

in

y=Fun (x) ; [Using the imported function to calculatej{x) at 100 points.]
xyout(l,l)=a; xyout(2,l)=(a+b)/2; xyout(3,l)=b;

xyout(l,2)=y(l);

xyout(2,2)=Fun((a+b)/2);

xyout(3,2)=y(l00);

plot(x,y)

Using the imported function to
calculate j{x) at the mi dpoint.

xlabel ('x'), ylabel ('y')

As an example, the function funplot is used for making a plot of the

math function f(x) = e-O.l7xx3 - 2x2 + 0.8x- 3 over the domain [0.5, 4].

This is demonstrated in two ways: first, by writing a user-defined func­

tion for f(x), and then by writing f(x) as an anonymous function.

Passing a user-defined function into a function function:

First, a user-defined function named Fdemo is written for f(x). Fdemo

calculates f(x) for a given value of x and is written using element-by­

element operations.

function y=Fdemo(x)

y=exp(-0.17*x) .*x.A3-2*x.A2+0.8*x-3;

Next, the function Fdemo is passed into the user-defined function func­

tion funplot which is called in the Command Window. Note that a

handle of the user-defined function Fdemo is entered (the handle is

@Fdemo) for the input argument Fun in the user-defined function

funplot.

>> ydemo=funplot(@Fdemo,0.5,4)

ydemo = ��En-t-er _a_h_a _n - dl _e_o _f_th _e_u-se-r�-
0. 5000 -2. 9852 defined function Fdemo.
2.2500

4.0000

-3.5548
0.6235

A.10 Subfunctions 535

When the command is executed the numerical output is displayed in the
Command Window, and the plot shown in the fig. A-3 is displayed in
the Figure Window.

Passing an anonymous function into a function function:

Figure A-3: Plot created by
funplot.

To use an anonymous function, the function

f(x) = e-0.17xx3 - 2x2 + 0.8x- 3 first has to be written as an anonymous

function, and then passed into the user-defined function funplot. The
following shows how both of these steps are done in the Command
Window. Note that the name of the anonymous function FdernoAnony
is entered without the sign @ for the input argument Fun in the user­

defined function funplot (since the name is already the handle of the
anonymous function).

>> FdemoAnony=@(x) exp(-0.17*x) .*x.A3-2*x.A2+0.8*x-3

FdemoAnony = � Create an anonymous
@ (x) exp (-0. l 7*x). *x. A3-2*x. A2+0. 8*x-3 function for f(x).

>> ydemo=funplot(FdemoAnony,0.5,4)

ydemo =

0.5000

2.2500

4.0000

-2.9852

-3.5548

0.6235

Enter the name of the anonymous
function (FdemoAnony).

A.10 SUBFUNCTIONS

A function file can contain more than one user-defined function. The

functions are typed one after the other. Each function begins with a
function definition line. The first function is called the primary function

and the rest of the functions are called subfunctions. The subfunctions
can be typed in any order. The name of the function file that is saved
should correspond to the name of the primary function. Each of the
functions in the file can call any of the other functions in the file. Out­

side functions, or programs (script files), can only call the primary func­
tion. Each of the functions in the file has its own workspace, which
means that in each the variables are local. In other words, the primary

function and the subfunctions cannot access each others variables
(unless variables are declared to be global).

Subfunctions can help writing user-defined functions in an orga­
nized manner. The program in the primary function can be divided into

smaller tasks, where each is carried out in a subfunction. This is demon­
strated in the following user-defined function named SortAveSD. The

input to the function is a vector with numbers (grades). The function

sorts the vector from the smallest element to the largest, and calculates
the average and the standard deviation of the grades. The function con­

tains three subfunctions. The average xave (mean) of a given set of n

numbers X1, Xz, .. ., Xn is given by:

536 Appendix A Introductory MATLAB

Xave = (x, + X2 + ... + xn)/n

The standard deviation is given by:

cr

n-1

The primary function.

function [GrSort GrAve GrSD] = SortAveSD(Grades)

% SortAveSD sorts a vector that contains grades from the small­

est to the

% largest, calculates the average grade ans the standard devia­

tion.

% Input argument:

% Grades A vector with the grades.

% Output arguments:

% GrSort A vector with the grades sorted from the smallest to

the largest.

% GrAve The average grade.

% GrSD The standard deviation.

n= length(Grades);

GrAve=Ave(Grades,n);

GrSort=LowToHigh(Grades,n);

GrSD=StandDiv(Grades,n,GrAve);

The subfunctions are used
in the primary function.

function av = Ave(x,num)

av=sum(x)/num;

A subfunction that calculates the average (mean)
of the elements of a vector.

function xsorted = LowToHigh(x,num)

for i = l:num-1

for j = i+l:num

end

end

if x(j) < x(i)

temp=x(i);

x(i)= x(j);

x(j)= temp;

end

xsorted = x;

function Sdiv = StandDiv(x,num,ave)

xdif2 = (x-ave) .A2;

Sdiv = sqrt(sum(xdif2)/(num-1));

A subfunction that sorts the elements
of a vector from the smallest to the
largest.

A subfunction that calculates the
standard deviation of the elements of
a vector.

Next, The user-defind function SortAveSD 1s used (called) in the

A.11 Programming in MATLAB 537

Command Window:

>> ClassGrades = [80 75 91 60 79 89 65 80 95 50 81];
[Define a vector with a list of grades.]

>> [GAS] = SortAveSD(ClassGrades)

G =

A=

s =

50 60 65 75 79 80

76.8182

80 81 89 91 95
[The grades are sorted. J

[The average grade.)

13.6661 [The standard deviation. J

A.11 PROGRAMMING IN MATLAB

A computer program is a sequence of computer commands. In a simple

program the commands are executed one after the other in the order that

they are typed. Many situations, however, require more sophisticated

programs in which different commands (or groups of commands) are

executed when the program is executed with different input variables.

In other situations there might be a need to repeat a sequence of com­

mands several times within a program. For example, programs that

solve equations numerically repeat a sequence of calculations until the

error in the answer is smaller than some measure.

MATLAB provides several tools that can be used to control the

flow of a program. Conditional statements make it possible to skip com­

mands or to execute specific groups of commands in different situa­

tions. For loops and while loops make it possible to repeat a

sequence of commands several times.

Changing the flow of a program requires some kind of decision­

making process within the program. The computer must decide whether

to execute the next command or to skip one or more commands and

continue at a different line in the program. The program makes these

decisions by comparing values of variables. This is done by using rela­

tional and logical operators.

A. 11. 1 Relational and Logical Operators

Relational and logical operators are used in combination with other

commands in order to make decisions that control the flow of a com­

puter program. A relational operator compares two numbers by deter­

mining whether a comparison statement (e.g., 5 < 8) is true or false. If

the statement is true, it is assigned a value of 1. If the statement if false,

it is assigned a value of 0. Relational operators in MATLAB are given
in the table that follows.

Relational Operator Description Relational Operator Description

< Less than >= Greater than or equal to

538 Appendix A Introductory MATLAB

Relational Operator Description Relational Operator Description

>

<=

Logical operator

&

Example: A&B

I

Example: AIB

�

Example: � A

>>5 >8

ans=
0

Greater than Equal to

Less than or equal to Not equal to

Note that the "equal to" relational operator consists of two= signs (with

no space between them), since one = sign is the assignment operator. In

all relational operators that consist of two characters there is no space

between the characters(<=,>=,�=). Two examples are:

>> 4 == 6

ans =
0

Name

AND

OR

NO T

>> 3 & 7

ans=
1

A logical operator examines true/false statements and produces a

result that is true (1) or false (0) according to the specific operator. Log­

ical operators in MATLAB are:

Description

Operates on two operands (A and B). If both are true, the result is true

(1); otherwise the result is false (0).

Operates on two operands (A and B). If either one, or both are true, the

result is true (1); otherwise (both are false) the result is false (0).

Operates on one operand (A). Gives the opposite of the operand. True (1)

if the operand is false, and false (0) if the operand is true.

Logical operators can have numbers as operands. A nonzero number is

true, and a zero is false. Several examples are:

3 and 7 are both true (nonzero), so the outcome is 1.]

>> a=510

a=
1 is assigned to a since at least one number is true (nonzero).]

1

>>-25

ans=
0

A.11.2 Conditional Statements, if-else Structures

A conditional statement is a command that allows MATLAB to make a

decision of whether to execute a group of commands that follow the

A.11 Programming in MATLAB 539

conditional statement, or to skip these commands. In a conditional

statement, a conditional expression is stated. If the expression is true, a

group of commands that follow the statement is executed. If the expres­

sion is false, the computer skips the group.

The if-end structure

The simplest form of a conditional statement is the if-end structure,

which is shown schematically in Fig. A-4. The figure shows how the

commands are typed in the program and presents a flowchart that sym­

bolically shows the flow, or the sequence, in which the commands are

executed. As the program executes, it reaches the if statement. If the

conditional expression in the if statement is true (1), the program con­

tinues to execute the commands that follow the if statement all the

Flowchart

MATLAB program.

if conditional expression

A group
MATLAB commands.

end

MATLAB program.

Figure A-4: The structure of the if-end conditional statement.

way down to the end statement. If the conditional expression is false

(0), the program skips the group of commands between the if and the

end, and continues with the commands that follow the end statement.

The if-else-end structure

The if-else-end structure provides a means for choosing one

group of commands, out of a possible two groups, for execution (see

Fig. A-5). The first line is an if statement with a conditional expres­

sion. If the conditional expression is true, the program executes the

group 1 commands between the if and the e 1 s e statements, and then

skips to the end. If the conditional expression is false, the program

skips to the e 1 s e statement and executes the group 2 commands

between the else and the end statements.

The if-elseif-else-end structure

The if-elseif-else-end structure is shown in Fig. A-6. This

structure includes two conditional statements (if and e 1 s e if) that

540 Appendix A Introductory MATLAB

Flowchart
MATLAB program.

False

Commands
Group 2

if conditional expression

Group 1
MATLAB commands.

else

Group 2
MATLAB commands.

end

MATLAB program.

Figure A-5: The structure of the if-else-end conditional statement.

False

Commands
Group 3

make it possible to select one out of three groups of commands for exe­

cution. The first line is an if statement with a conditional expression.

If the conditional expression is true, the program executes the group 1
commands between the if and the else if statements and then skips

to the end. If the conditional expression in the if statement is false,

the program skips to the else if statement. If the conditional expres­

sion in the else if statement is true, the program executes the group 2
commands between the else if and the else statements and then

skips to the end. If the conditional expression in the elseif state­

ment is false, the program skips to the else statement and executes the

group 3 commands between the else and the end statements.

Flowchart
MATLAB program.

if conditional expression

J
Group 1

MATLAB commands.

e 1 s e if conditional expression

J
Group 2

MATLAB commands.

else

J
Group 3

MATLAB commands.

end

MATLAB program.

FigureA-6: The structure of the if-elseif-else-end conditional statement.

A.11 Programming in MATLAB 541

Several else if statements and associated groups of commands

can be added. In this way more conditions can be included. Also, the

else statement is optional. This means that in the case of several

else if statements and no else statement, if any of the conditional

statements is true, the associated commands are executed, but otherwise

nothing is executed.

In general, the same task can be accomplished by using several

elseif statements or if-else-end structures. A better program­

ming practice is to use the latter method, which makes the program eas­

ier to understand, modify, and debug.

A.11.3 Loops

A loop is another means to alter the flow of a computer program. In a

loop, the execution of a command, or a group of commands, is repeated

several times consecutively. Each round of execution is called a pass. In

each pass at least one variable (but usually more than one) that is

defined within the loop is assigned a new value.

for-end loops

In for-end loops, the execution of a command or a group of com­

mands is repeated a predetermined number of times. The form of the

loop is shown in Fig. A-7. In the first pass k = f, and the computer exe-

Loop index The value of k in The increment in k
after each pass. �v_a_ri _ab_le_. �

�fir st pass.

for k = f: s: t ---------< The value of kin
the last pass.

end

Figure A-7: The structure of a for-end loop.

cutes the commands between the for and the end commands. Then,

the program goes back to the for command for the second pass. k
obtains a new value equal to k = f + s, and the commands between the

for and the end commands are executed with the new value of k. The

process repeats itself until the last pass where k = t. Then the program

does not go back to the for, but continues with the commands that fol­

low the end command. For example, if k = 1 :2:9, then there are five

loops, and the value of k in the passes is 1, 3, 5, 7, and 9. If the incre­
ment value s is omitted, its value is 1 (default) (i.e., k = 3:7 produces

five passes with k = 3, 4, 5, 6, 7).

A program that illustrates the use of conditional statements and

loops is shown next (script file). The program changes the elements of a

542 Appendix A Introductory MATLAB

given vector such that elements that are positive and are divisible by 3

and/or by 5 are doubled. Elements that are negative but greater than -5

are raised to the power of 3, and all the other elements are unchanged.

V = [5, 17, -3, 8, 0, -7, 12, 15, 20 -6, 6, 4, -2, 16];

n = length (V) ;

for k = 1: n [In the kth pass of the loop the kth element is checked and changed, if needed.

end

v

V =

if V(k) >0 & (rem(V(k) , 3) = = O I rem(V(k) , 5) = = 0)

V(k) = 2*V(k) ;

elseif V(k) < 0 & V(k) >-5

V(k) = V(k) "3;

end

When the program is executed, the following new vector V is displayed

in the Command Window:

10 17 -27 8 0 -7 24 30 40 -6 12 4 -8 16

A.12 PROBLEMS
A.1 Define the variables x and z as x = 5.3, and z = 7.8, then evaluate:

(a) � + 14x2-0 8z2 2 •

(xlz)
(x) 2 (2) 112 (b) x2z-z2x+ � - �

A.2 Define two variables: alpha= 35°, beta= 23°. Using these variables, show that the following trigo­

nometric identity is correct by calculating the value of the left and right sides of the equation:

cosacosp = �[cos(a-p)+cos(a+p)]
A.3 Two trigonometric identities are given by:

(a) tan4x = 4tanx-4tan3x (b) tan� = 1 -cosx
1 -6tan2x + tan4 x 2 sinx

For each part, verify that the identity is correct by calculating the values of the left and right sides of

the equation, substituting x = 17 °.

A.4 Create a row vector with 15 equally spaced elements in which the first element is 9 and the last ele­

ment is 44.

A.5 Create a column vector in which the first element is 14, the elements decrease with increments of-3,

and the last element is -10. (A column vector can be created by the transpose of a row vector.)

A.12 Problems

A.6 Given: J sin2 xdx = lx _ l sin2x . Use MATLAB to calculate the following definite integral: 2 4
3it

J!! 4 sin2xdx
3

543

A. 7 Create the matrix shown by using the vector notation for creating vectors with constant spacing
when entering the rows (i.e., do not type individual elements).

A=
2.5000

42.0000
15.0000

3.0000

3.5000
38.6000
14.6000

2.0000

4.5000
35.2000
14.2000

1.0000

5.5000
31.8000
13.8000

0

6.5000
28.4000
13.4000
-1.0000

7.5000
25.0000
13.0000
-2.0000

A.8 Create the matrix A in Problem A.7, and then use colons to address a range of elements to create the
following vectors:
(a) Create a four-element row vector named va that contains the third through sixth elements of the sec­

ond row of A.
(b) Create a three-element column vector named vb that contains the second through fourth elements of

the fifth column of A.

A.9 Create the matrix A in Problem A. 7, and then use colons to address a range of elements to create the
following matrices:

(a) Create a 3 x 4 matrix B from the first, second, and fourth rows, and the first, second, fourth, and sixth
columns of the matrix A.

(b) Create a 2 x 3 matrix C from the second and fourth rows, and the second, fifth, and sixth columns of
the matrix A.

A.10 For the function y =

(2x2 - 16x + 4)2 , calculate the value of y for the following values of x: -1.2, x+ 15
-0.4, 0.4, 1.2, 2, 2.8, 3.6. Solve the problem by first creating a vector x, and then creating a vector y, using
element-by-element calculations. Make a plot of the points using asterisk markers for the points and a
black line connecting the points. Label the axes.

A.11 Define a and b as scalars a = 3 and b = -4, and x as the vector x = -3, -2.8, -2.6, ... , 1.6, 1.8, 2.
a2/b3 Then use these variables to calculate y by: y = 8 . Plot y versus x.

x2 + b2/a3

A.12 For the function y = 61(113) _

(t + 3)2 + 2, calculate the value of y for the following values oft: 2(!+4)
0, 2, 4, 6, 8, 10, 12, 14, 16, using element-by-element operations.

A.13 Use MATLAB to show that the sum of the infinite series
n
t (-1)n

(2n
1
+ 1)

converges to n/ 4 . Do

it by computing the sum for:

544 Appendix A Introductory MATLAB

(a) n = 100
(b) n = 1,000
(c) n = 5,000

In each part create a vector n in which the first element is 0, the increment is 1, and the last term is
either 100, 1,000, or 5,000. Then, use element-by-element calculation to create a vector in which the ele-

ments are (-1)n 1 . Finally, use the function sum to add the terms of the series. Compare the values
(2n + 1)

7t
obtained in parts a, b, and c with the value of 4 . (Do not forget to type semicolons at the end of commands

that otherwise will display large vectors.)

A.14 A cantilever beam is loaded by a force P = 850 N and

a moment M = 3600N-m as shown. The deflection y at a
point x along the beam is given by the equation:

y = - -(x3 -3Lx2) + -x2 1 [p M J EI 6 2

where E is the elastic modulus, I is the moment of inertia,
and L is the length of the beam. For the beam shown in the

I L .1
figure L = 6 m, E = 70 x 109Pa (aluminum), and I = 9.19 x 1 0-6 m4.

Plot the deflection of the beam y as a function of x.

A.15 The Gateway Arch in St. Louis is shaped according to the equation:

y = 693.8 - 68.8 cosh(__..!__) ft.
99.7

Make a plot of the Arch for -299.25:::; x:::; 299.25 ft.

y

x
-299.25 299.25

A.16 Plot the function f(x) =
o
�
5x3-x2

for -15::;x ::; 15. Notice that the function has two vertical
x - x- 20

asymptotes. Plot the function by dividing the domain of x into three parts: one from -15 to near the left
asymptote, one between the two asymptotes, and one from near the right asymptote to 15. Set the range of
the y-axis from-20 to 20.

A.17 Write an anonymous MATLAB function for the following math function:

y(x) = xe-0.7xJ2x2 + 1
The input to the function is x and the output is y. Write the function such that x can be a vector.
(a) Use the function to calculate y(3), andy(8).

(b) Use the function to make a plot of the function y(x) for 0:::; x:::; 10.

A.18 The fuel efficiency of automobiles is measured in mi/Gal (miles per gallon) or in km/L (kilometers

per liter). Write a MATLAB user-defined function that converts fuel efficiency values from mi/Gal (U.S.
Gallons) to km/L. For the function name and arguments use kmL=mgTOkm (mpg). The input argument

A.12 Problems 545

mpg is the efficiency in mi/Gal, and the output argument kmL is the efficiency in km/L . Use the function in
the Command Window to:
(a) Determine the fuel efficiency in km/L of a car that consumes 23 mi/Gal.

(b) Determine the fuel efficiency in km/L of a car that consumes 50 mi/Gal.

A.19 Write a user-defined MATLAB function that determines the cross-sec­
tional area, A, the location of the centroid (the distance ye), and moments of

inertia I xx and I
YY

of an "T" beam. For the function name and arguments use

[A, yC, Ixx, Iyy] = Mofiner (b, h, tf, tw). The input arguments are

the width, b, height, h, flange thickness, t 1, and web thickness, tw, of the

beam, in millimeters, as shown in the figure. The output arguments are the

cross-sectional area (in mm2), the location of the centroid (in mm), and the

moments of inertia (in mm4). Use the function in the Command Window to
determine the cross-sectional area, centroid location, and moments of inertia

and of a beam with b = 300 mm, h = 400 mm, t 1 = 20 mm, and tw = 12 mm.

A.20 Write a user-defined MATLAB function that cal-
culates the equivalent resistance, Req of n resistors

R1, R2, .. ., Rn connected in parallel. For function name

and arguments use Req = EqResistance (R). The

input argument is a vector whose elements are the values
of the resistors. The output argument is the value of the
equivalent resistance. The function should work for any

number of resistors. Use the function in the Command

R

y b
--r--r--_-----. l t1

--.-----+++--x T

Window to determine the equivalent resistance of the following five resistors that are connected in parallel

R1 = 200Q' R1 = 600Q ' R3 = IOOOQ ' R4 = IOOQ ' and Rs = soon.

A.21 A vector is given by x = [15 85 72 59 100 80 44 60 91 38]. Using conditional statements and
loops write a program that determines the average of the elements of the vector that are larger than 59.

A.22 Write a user-defined function that creates a vector whose elements are the prime numbers between
two numbers. For the function name and arguments use pr= Primary (a, b). The input to the function

are two numbers (integers) a and b (such that a< b), and the output pr is a vector in which the elements

are the prime numbers between a and b.

A.23 Write a user-defmed function that sorts the elements of a vector (of any
length) from the largest to the smallest. For the function name and arguments use
y =down sort (x). The input to the function is a vector x of any length, and the

output y is a vector in which the elements of x are arranged in descending order.

Do not use the MATLAB sort function. Test your function by using it in the
Command Window to rearrange the elements of the following vector: [-2, 8, 29, 0,
3,-17,-1,54, 15,-10,32].

546 Appendix A Introductory MATLAB

A.24 A cylindrical, vertical fuel tank has hemispheric end cap at the bottom and a conic end cap at the top

as shown. The radius of the cylinder and the hemispheric end cap is r = 60 cm.

Write a user-defined function (for the function name and arguments use V = Vfuel (h)) that gives the

volume of the fuel in the tank as a function of the height h. Use the function to make a plot of the volume as a

function of h for 0:::;; h:::;; 2.8 m.

A.25 Write a user-defined MATLAB function that calculates the determinant of a 3 x 3 matrix by using

the formula:

i A22 A23
A A21 A23 +A A21 A22

et = A11 - 12 13
A32 A33 A31 A33 A31 A32

For the function name and arguments use d3 = det3by3 (A), where the input argument A is the matrix
and the output argument d3 is the value of the determinant. Write the code of det3by3 such that it has a

subfunction that calculates the 2 x 2 determinant. Use det3by3 for calculating the determinants of:

(a) [� � !l (b) [-�.5
:3 -�.61 .

7 8 �J 4 2 -lJ
A.26 Write a user-defined function that determines the polar coordinates of a point

from the Cartesian coordinates in a two-dimensional plane. For the function name and

arguments use [radius theta] =CartToPolar (x, y). The input arguments are

the x and y coordinates of the point, and the output arguments are the radial distance to

the point and angle 8. The angle 8 is in degrees and is measured relative to the positive

x axis, such that it is a number between 0 and 90 in quadrant I, between 90 and 180 in

quadrant II, between 180 and 270 in quadrant III, and between 270 and 360 in quadrant

(II)

(III)

y
(x,y)

(IV)

IV Use the function to determine the polar coordinates of points (-15, -3), (7, 12), (17, -9), and (-10, 6.5).

A.27 Write a user-defined function that adds two vectors that are written in polar coordinates. For the function

name and arguments use [vapb] =VecAddPolar (va, vb). The input arguments va and vb are the vectors

to be added. The output argument v a pb is the results. Each is a two-element MATLAB vector where the first

element is the angle (between 0 and 360 in degrees) and the second element is the magnitude of the radius. To

add the vectors the program first converts each of the vectors to Cartesian coordinates, then adds the vectors, and

finally converts the result to polar coordinates and assigns it to the output argument vapb. The code is written

such that it includes subfunctions for the conversion of the input vectors to Cartesian coordinates, and for the

conversion of the result to polar coordinates (the user-defined function Cart ToPolar from Problem A.26 can

be used for the latter task). Use the function in the Command Window to:

(a) Add the vectors a = [32°, 50] and b = [60°, 70].

(b) Add the vectors c = [167°, 58] and d = [250°, 90].
(c) Add the vectors e = [25°, 43] and g = [290°, 115].

