
Introductory User’s Guide
to the Architect’s Workbench Tools

J. Torrellas, B. Bray, K. Cuderman,
S. Goldschmidt, A. Kobrin and A. Zimmerman

Technical Report CSL-TR-88-355

May 1988

This research is supported by the Institute for Defense Analyses under contract
MDA-0031-68.

Introductory User’s Guide
to the Architect’s Workbench Tools

bY
J. Torrellas, B. Bray, K. Cuderman,

S. Goldschmidt, A. Kobrin and A. Zimmerman

Technical Report CSL-TR-88-355
May 1988

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305-4055

Abstract

The Architect’s Workbench is a set of simulation tools to provide insight on
how the instruction set and the organization of registers and cache affect processor-
memory traffic and, as a result, processor performance. This report is designed to
be an introductory guide to the tools for the novice user.

Key Words and Phrases: Architecture Simulation, Cache Simulation, Register
Organization, Bus Traffic.

Copyright @ 1988
bY

J. Torrellas, B. Bray, K. Cuderman,
S. Goldschmidt, A. Kobrin and A. Zimmerman

Contents
1 Introduction and First Steps

2 Instruction Referencing Simulation

3 Data Referencing Simulation

A List of predefined architectures

B An example of Cache.conf

C Another example of Cachezonf

D File listings

1

1

8

17

20

20

21

..I

111

List of Figures

Figure 1
High-level flowchart of the tools

Figure 2
Detailed flowchart of the tools (1)

Figure 3
Datailed flowchart of the tools (2)

Plot 1
Data cache miss rate

Plot 2
Number of misses in the instruction cache

2

3

4

7

16

1 Introduction and First Steps
The Architect’s Workbench is currently a set of tools to provide an insight
on how a particular register organization and cache organization affects
processor-memory traffic. It is organized as a set of program tools to be
applied sequentially to a high level language source program. See figures 1,
2 and 3.

This guide will use a test program called Myfi1e.p (see listing 1) to
proceed along the simulator tools step by step and discuss some of the
results. The test program generates a series of 100 real numbers and uses
bubble sort to sort them.

A set of man pages are available for on line help. To list them on the
screen we use the command

awbman (name-of-page)

To print the page the command is

awbman -p (name-of-page)

For a list of tools see awbman page on awbtools.
The simulator tools are organized into two groups. One group of tools

are used to simulate the instruction referencing traffic for different archi-
tectures and cache configurations and the second group simulates data ref-
erencing traffic for different architectures and cache configurations.

2 Instruction Referencing Simulation
The script file irefsim (see awbman page on irefsim) organizes the tools for
the novice user. The tools called by irefsim will produce an output file for
a particular architecture and a particular application showing the number
of cache lines fetched, number of bits fetched, miss rate, traffic ratio and
relative traffic for different cache organizations. The cache organizations
consist of the line size, number of elements and associativity of different-
sized caches. The caches can range from 128B to 16KB in size. The results
for an application - architecture pair can be expressed relative to the no-
cache memory traffic for that particular architecture - application or relative

1

Figure 1: High-level flowchart of the tools

Input file Input data

Data tools Instruction
tools

Simulation statistics Output data

2

l r e f s i m

f i l e

Figure 2: Detailed flowchart of the tools (1)

Myfil

9 4

Upasawb
Myfile .p

1
Ucode,

Input data
Myfile.in

P a s c a l

P r o g r a m

Compiling
into Uccde

Dynamic Block
I

Myfi1e.u
Count
Myfi1e.b -

Optimi d Myfi1e.z

I Order
Mvfi1e.u IzI

Register allc cate J
Myfi1e.z

U2x Myfi1e.u I
Z2x Myfi1e.z I

PerformaGe
S t a t i s t i c s f i
My f i le .d i f

Optimize
and

neg1ster

a l l o c a t e

-

le
Inslru-

men1

Ucode

Executab le Myfile
I

C r e a t e

E x e c u -

Output file
Myfile.out

t a b l e

flun
Execu-

Myfile.out simulation
Results
Myfile.stai.r/s

I n s t r u c t i o n tools

Program Trace f i le
Referenc ing Myfile tr
A c t i v i t y
Myf i le .s t

Data t o o l s

Figure 3: Detailed flowchart of the tools (2)

Myfile.st
I Cache.conf file

Stack buffer Mult iple reg sets

B u f s i m Myfile

(Bufsub
Myfile)

M r s s i m Myfile

(Mrssub
Myfile)

I Simulatio
resu l ts

n
1 Myfile.mrs

resul.

Single reg set

S r s s i m Myfile

(Srssub
Myfile)

1 Myfile.srs
Myfi le.buf

Address trace
Myfile.at

nata

B u f f e r

Simu-

l a t a r s

resul.

Fu l l y associativ 2 Set associat ive

A s s c c h Myfile S e t c c h Myfileb
 - I

C a c h e +
performance
resu l ts
Myfile.ass.cch

C a c h e +
performance
resu l ts
Myfi le.set.cch

Set associative
with subblocks

Setrep Myfile
1

Cache +
performance
resu l ts
Myfile.set.rep

Set assoc with :ubb
load foward and pref

Setsub Myfile
I C a c h e

+
Simu-

Cache l a t a r s

performance
results.
Myfile.set.sub

nf

4

to the no-cache memory traffic for a different architecture with the same
application.

Irefsim takes the following arguments:

irefsim {architecture} {application} { smcache Ilregcache} { re f er ence-arch}
Architecture refers to the type of architecture we want to simulate. Ar-

chitectures are divided into register and stack machines. Parameters that
can be specified include number of bits per functional instruction, num-
ber of additional bits per memory reference, alignment policy for branch
targets, etc. The list of architectures supported by irefsim and the pa-
rameters that specify them are in Appendix A. They include IBM/370
style architectures, RISC, stack, etc. The user can simulate new archi-
tectures by including their parameters in the file archdir/more.parameters
in the current version of irefsim, in a style consistent with that found in
/awb/interface/parameters. Awbman pages on Regstat, awb.StacEstat and
Dcastat give information on the parameters used by register, stack and
direct correspondence machines respectively. These programs are directly
called by irefsim.

Application is the application, in our case Myfile. Irefsim expects a full
directory structure named benchdir/Myfile/Myfile.p. (See irefsim).

Smcache and regcache are two different programs that simulate different
size caches. Smcache simulates caches with size ranging from 128B to 4KB
and line sizes of 32/64/128/2X bits. R ge cache considers caches from 512B
to 16KB and line sizes of 64/128bits.

Reference-archit is the architecture that is going to be used as a base in
our study. That is, all the results of Architecture will be made relative to the
performance of Reference-archit. If the user wants to study an architecture
relative to its own no-cache traffic, Reference-archit has to be substituted
by the keyword self. To use an architecture as a reference architecture it
first has to be run in the self mode, to create the reference files. Irefsim
expects every architecture to have a directory residing in archdir.

The files Irefsim needs as input in benchdir/Myfile are:

Myfi1e.p: the source code.

Myfile.in: the input to the source program (this file may be
empty >*

5

The output files of irefsim are the following:

Archdir/Myfile.sti: file th ta cant ains static block usage of the
application. This file is a mapping of each basic block to ref-
erences to the instructions this basic block contains, the block
offset and the block length. Since different architectures have
different instructions this file is architecture dependent.

Archdir/Myfile.sta: file that contains the simulation results.
This file is dependent on the architecture and the application.
If it is created by smcache, irefsim renames it to Myfi1e.stai.s
otherwise it is renamed to Myfi1e.stai.r.

Benchdir/Myfile.out: physical output of the program. In our
example this file would cant ain the list of ordered numbers.

Benchdir/Myfile.b: file that contains a list numbering each ba-
sic block of the application and its dynamic use. This file is
independent of the architecture and is only dependent on the
application. It is only created if it is required to preform the
specified register allocation.

To simulate a machine with an IBM-370 like instruction set with the
specific switches given in appendix A under IBM360-2, and for caches in
the range 128B to 4KB, use the command

irefsim IBM360-2 Myfile smcache self

The result is Myfi1e.stai.s which is shown in listing 2. The file gives us
the number of instructions read from the cache (l), plus the lines fetched
and miss ratio for different cache sizes and different line sizes. For example
(2), for a direct mapped I-cache with 64 bit lines and a total size of 128
bytes, a total of 878 lines would be fetched from memory. To get plots of
the miss rates and traffic ratios type the command

awbplot archdir/Myfile. st ai. s

4.9

4.2

Plot 1. Data cache miss rate

0-0 32 bits per line

n -----A 64 bits per line

El -G 128 bits per Ime
0 - 0 256 bits per line

256 512 1024 2048 4096
Cache Size (bytes)

lBM360-2 Di rect Mapped Cache Miss Rate (myfile)

7

If your system is running Xwindows 10.4 you can view the plots. You
also have the option of having a postcript file of the plot being sent to the
default printer . Plot 1 shows a plot of the miss rates for direct mapped
caches as expressed in the file Myfile.st ai.s.

If we had specified regcache then irefsim would have produced the file
Myfi1e.stai.r (listing 3), which contains the same information as in the case
of listing 2 but for different range of caches.

The relative traffic data in listings 2 and 3 is the traffic of the IBM360-
2 with respect to its own no cache traffic. Once we have the results for
the IBM360-2 (our reference architecture) we can use irefsim to give us
the traffic of another architecture relative to the IBM360-2 architecture no-
cache traffic (for the application Myfile). The architecture we will compare
to IBM360-2 is one with a 32 bit fixed sized instruction set called fix32-0.
This architecture is encoded in a way similar to the RISC computers. We
use the command:

irefsim fix32-0 Myfile smcache IBM360-2

and the result is listing 4. The number of lines fetched, bits fetched, miss
rate and traffic ratio are absolute values, the same as the values found
running fix32-0 in the self mode as shown in listing 5. The column labeled
Relative Traffic represents data relative to the IBM360-2 without cache.
Some things that can be observed are that e.g. for 64 bit lines, the IBM360-
2 references 48 different lines, while the fix32-0 references 80. As a result,
for small caches, e.g. 128 bytes, the IBM360-2 without cache performs
better than the fix32-0 with a cache.

3 Data Referencing Simulation
The basic sequence of operations that has to be done to produce data
reference statistics files is as follows:

1. The first step is to compile the source program into an intermediate
language representation called U-code. The U-code is a standard
representation to allow portability to different machine languages.

8

2.

3.

4.

5.

Do a register allocation and possibly a global optimization of the
U-code.

Instrument the code, assemble and run the program. A trace file
Myfile.tr will be generated.

Use Myfile.tr to simulate a type of data buffering architecture. Avail-
able architectures, with the tools that are used to simulate them in
brackets, are: stack buffer architecture [Bufsim] , multiple register set
(register windows) buffer architecture [Mrssim] and single register set
architecture [Srssim]. The results are a simulation statistics file and
a file with address trace to memory system, Myfile.at. All the men-
tioned tools take the same input files.

Use any of the above Myfile.at files and a cache configuration file
(cache.conf) to simulate different types of caches. The available types
are: full associative caches with LRU [Asscch]; l/2/4 way set associa-
tive caches with LRU/ random / FIFO replacement [Setcch] ; set asso-
ciative caches with LRU replacement, with subblocks, load fowarding
and prefetching [Set sub]; set associative caches with LRU / random /
FIFO replacement [Setrep]. These nrograms all take the same input
files.

Let us consider each of these steps in order. The reader is reminded that all
these operations expect the input files in the current directory and produce
output files in the current directory.

1. To compile the source program into U-code we use Upnsawb. This
pass takes Myfi1e.p and produces Myfi1e.q the U-code file.

A typical call would be of the form:

upasawb [options] Myfi1e.p

For available options see the awbman page on upasawb. In our ex-
ample we used the default settings.

2. Two tools can be used to do register allocation: Uoptawb and Order.

9

Uoptawb does global optimization of the U-code files. This includes
global register allocation, detection of redundant stores, code motion,
etc. The command is of the form:

uoptawb [options] Myfi1e.u

and produces the output in file Myfi1e.z. For a complete set of the
options see awbman page on uoptawb. In our example we used t,he
default settings.

The Order register allocator is the other alternative. See awbman
page on order for information. Unless the flag -us:3 is given, order
needs as one of its inputs Myfile.b, a file containing Myfile’s dynamic
basic block counts, which is currently different to Myfi1e.b used in the
instruction referencing simulators. This file is characteristic of the
application, not dependent on the architecture/cache type simulated
and gives us a listing of basic block number and number of times it
was used. To generate Myfi1e.b we will have to use some of the tools
in section 3 above.
The steps to follow to get Myfi1e.b start by producing an executable
with u2x, as in

u2x Myfile

this command will create the executable Myfile and a file called My-
file.st which contains a static summary of the high-level language
program referencing activity. We run Myfile

Myfile < Myfile.in > Myfile.out

and the result is the trace file Myfile.tr which reports the order of
execution of the basic blocks and the addresses for indirect references.
To produce Myfile. b we run any of the architecture simulators men-
tioned above using the -bent switch. This process can be done with
any of them because it is architecture independent. The command is:

xxxsim -bent Myfile

10

where xxx refers to srs, mrs or buf.

These tools, covered later on, expect to have three files, Myfile.st,
Myfile.tr and a cache configuration file cache.conf. Cache.conf is not
used at this point, it may be empty, but the file must exist.
Since Myfi1e.b is present, Order can now be invoked (with a -us flag
other than 3). Order maps locals in registers for the entire time a
procedure is active and so all registers have to be saved on procedure
call/return. The command is

Order [switches] Myfile.ext

where ext is some extension. Be sure not to give a file Myfi1e.z for
input. For the purposes of this example we will use the extension u,
corresponding to the u-code file. It will take Myfi1e.u and Myfile.b,
producing the variable reordered U-code file Myfi1e.z. It also gener-
ates a file with the count usage of each block Myfile.dif if the correct
switches are given. The count usage will be a static count if we in-
cluded among the switches -us:2, otherwise the default is a dynamic
count. The -1 flag tells which types of variables should be reordered.
If the -1 flag is omitted then no reordering occurs. For example we
used the following command to reorder all variables:

Order -1:7 -us:1 Myfi1e.u.

3. To generate the trace file we have to instrument the code, assemble
and run the program. We instrument the code and produce the ex-
ecutable with the script x2x. This script runs the same programs as
the u2x script, but uses for input Myfi1e.z instead of Myfi1e.u.

z2x Myfile

which produces Myfile and Myfile.st. We then run the executable

Myfile < Myfile.in > Myfile.out

to get the trace file Myfile.tr.

11

4. The following tools simulate different on chip data buffering organi-
zations and optionally a first level cache.
The tools accept as input files the files generated above, namely My-
file.tr and Myfile.st. In addition, the buffer simulators need the file
cache.conf, specifying some buffer characteristics and the configura-
tion of the first level cache. Running the xxxsims will generate one
or two files. The file that is always generated contains simulation
statistics. It is called different names depending on the generating
tool: Myfile.buf if it is generated by bufsim; Myfile.mrs if generated
by mrssim; and Myfilesrs if generated by srssim. The second file con-
tains address traces to the memory system. It is called Myfile.at and is
only created if the processor configuration specified in the cache.conf
file contains an off chip cache description, which is the case when we
want to use the tools described in the next section.
Cache.conf is a file that specifies the type of cache memory config-
uration we want to simulate. In the appendices B and C we give
a few examples of cache.conf files we can use (see awbman page on
cacheconf).
For the data buffer simulators it is assumed that all registers which
buffer data traffic are general purpose registers. This does not neces-
sarily mean that all registers need to be general purpose. All the data
buffer simulators need eight additional registers to keep the evalua-
tion stack (2), static information (3) and constants and so forth (3).
Some of these registers could be special purpose registers.
If we had a 16 register set machine, 8 registers would be used by the
data buffer’s register set architecture, leaving eight registers available
for allocation strategies. As an example, let us allocate six registers
for buffering local (stack) variables (switch -lrs:6) and two registers
for buffering global variables (switch -grs:2). Globals are normally in
the stack so we must map them into a separate global space (switch
-gs:3 global simple and structure variables). We are going to use the
cache.conf file in appendix B with the trace file generated by Order
with the above mentioned switches.

srssim -grs:2 -gs:3 -lrs:6 Myfile

12

We get the statistics file Myfile.srs (listing 6) and the memory system
address trace file Myfile .at .
Myfile.srs gives us the number of global traffic to CPU: reads and
writes, the local traffic to CPU: reads and writes and other informa-
tion. The reader can see the number of 32b word references made
by the ALU in (1) and the total number of word references that are
made by the ALU and registers to the cache or to the memory system
if there is no cache in (2). See awbman page on srssim for the list of
switches srssim offers.
Mrssim provides for simulating architectures with multiple register
sets in a register window fashion (see awbman page on mrssim). Let
us assume we still have the same ISA (instruction set architecture) as
before which limits the number of visible registers to 16 but we want
to see the benefit of register windows. The 16 registers have eight
substracted because of the register set architecture of the data buffer
simulators, leaving eight visible registers. If we want to make six
visible registers windowed (leaving two registers for buffering global
variables), we can for example allocate four registers for locals and one
register for each parameter section. The number of registers which
are visible by a window is the number of in-parameter registers plus
locals plus out-parameter registers, that is, the number of locals plus
two times the number of parameter registers. In our example this
value is six.
We will run the same cache configuration as before simulating 8 dif-
ferent sized windows (switch -cnt:8) and wanting the memory address
trace to come from the buffer with 4 windows (switch -win:4). The
parameter size is 2 registers (switch -psize:2) and the local size is
4 registers, making the total size of the window 6 registers (switch
-wsize:6).

mrssim -gs:3 -grs:2 -win:4 -cnt:8 -wsize:6 -psize:2 Myfile

This command produces a file with the results of the simulation called
Myfile.mrs (listing 7) and a file with an address trace to memory
system Myfile.at. In file Myfile.mrs we see that the number of ALU
references is the same and that the number of references that leave

13

the processor is still high with 4 windows. These references are global
references and the small amount of global registers the processor have
are not able to intercept them.
To simulate stack buffers (e.g. AT&T’s CRISP) we use Buffsim.

bufsim [switches] Myfile

which would expect Myfile.st, Myfile.tr and cache.conf. It would pro-
duce Myfile.buf, a listing of the simulation results, and if suitable,
Myfile.at, an address trace to memory system. Among the available
switches (see awbman page on bufsim) we can specify the number of
buffers to simulate (where the buffer sizes start from an initial size
and each buffer is twice as large as the previous one), the size of the
first buffer, the save/restore policy, etc.
In addition to the above three tools we have srssub, mrssub and buf-
sub. They differ to the presented tools in that their first level caches
have subblocks and so they take slightly different switches. They
produce the same output files as their corresponding tool above. (see
awbman page on srssub, mrssub and bufsub).

5. Once Myfile.at has been created we can simulate different cache types.
Notice that the type of cache we simulate here may be a second level
cache (if Myfile.at was created using a first level cache) or may be a
first level cache (if Myfile.at was created without any first level cache).
There are four tools which take Myfile.at generated above and file
cache.conf and produce a cache performance file. The tools, their
object and the name of the output file are:

Asscch Simulates fully associative caches with LRU. Output file:
Myfile.as.cch.

Setcch Simulates l/2/4 way set associative caches with LRU/ ran-
dom/ FIFO replacement strategy. Output file: Myfile.set.cch.

Setsub Simulates set associative caches with LRU replacement with
subblocks, load fowarding and prefetching. Output file: My-
file.set .sub.

14

Setrep Simulates set associative caches with LRU/random/FIFO re-
placement with subblocks. Output file: Myfile.set.rep.

In all of them 7 types of data references are distinguished: static,
global, stack, structure, heap, frame and i/o (i/o references are cur-
rently not generated). The output file reports the counts and miss
ratio for the separate and combined references for several cache sizes.
The switches available in asscch allow the user to specify the maxi-
mum number of cache blocks to simulate, the cache block size, etc.
See awbman page on asscch. The output file resulting from using de-
fault values, the cache.conf in appendix B and the trace file Myfile.at
resulting from srssim is given in listing 8. The actual command typed
in is

asscch Myfile

In listing 8 we are given the simulation results for various sized caches,
from 32 to 32K bytes, all with a 32 byte line size. Fot each of these
caches we see the number of read misses, write misses, total misses,
the read miss ratio, write miss ratio and total miss ratio. Other
information includes traffic, etc. The file shows that in a cache with
128 bytes the traffic to memory is 6560 reads and 5848 writes (all in
32b words and highlighted in (1)). If the cache were organized in a
write through way, the traffic to memory would be 6560 reads and
7455 writes.
To get plots of the misses or miss ratios, type the command

awbplot Myfile.as.cch

If your system is running Xwindows 10.4 you can view the plots. You
also have the option of having a postcript file of the plot being sent to
the default printer. Plot 2 shows a plot of the read misses as expressed
in the file Myfile.as.cch.
We now use setrep (see awbman page on setrep) to simulate set as-
sociative caches with subblocks. To be able to simulate subblocks we
will change our cache.conf file to the one in appendix C, in which we
simulate a cache with line size of 32 bytes and 4 byte sublocks. Let

15

s’2(

800C

6000

4000

2000

Plot 2: Number of misses in the instruction cache

+-+ tota l
O- 0 g loba l
n - A s t a c k

f d \ \ 6464 d128 256
512

10;4
2048

8192 1
4096 16384 3276

Basic Fully Associative Cache (myfile)

16

Cache Size (bytes)

us suppose we want a foru way set associative cache using a FIFO
replacement strategy. Note we do not have to create a new Myfile.at.
We use the command

setrep -a:4 -r:2 Myfile

The resulting file, Myfile.set.rep is listed in listing 9. The file also
gives us the number of misses in (1) and the traffic to memory in
(2) for a 128 byte cache. From the numbers we see that thanks to
the increase in the cache associativity, the read and write traffic have
been reduced. The number of dirty lines is now 3921 as opposed to
73 1 before.
The available switches in setsub allow us to determine the associativ-
ity, the cache block size, number of caches to simulate, whether we
have load fowarding or not, whether we have an invalidation of the
line on write through, the number of subblocks prefetched. ct)c. See
awbman page on setsub.
The options in setcch let us choose the number of cache blocks, the
cache block size, the replacement algorithm, etc. Please see awbman
page on setcch.
The running of setsub and setrep would proceed in the same way as
the previous two examples.

A List of predefined architectures
The architectures recognized by the simulator use the following conventions.
We then list the predefined architectures.

“reg” means register machine.

“stack” means stack machine.

“0” gives the number of bits for simple RR (register transfer)
instruction.

17

“m” gives t he number of additional bits for each memory refer-
ence.

.“c” gives the number of addit ional bits for small constant em-
bedded.

“a” gives the alignment of branch targets.

“r” gives the number of registers available

“1” gives the number of registers available

for temporaries.

for locals.

“p” gives the number of operand so1uces a~l1~~wc~d from memory
(0,1,2) (default 1).

“s” means that op destination allowed in memory (default false).

“w” means assume ideal register set windows (default false).

“b” gives the number of additional bits for each branch target
reference.

“e” means that it uses exact register allocation.

“t” means that the architecture only allows two registers in an
RR instruction (default is false).

“x” means that the source register and the destination register
in an RX instruction format are the same (default false).

Some other switches allow the user to specify the instruction set constant
handling, etc. For a complete set of switches please see the awbman page
on regstat for register machines and stackstat for stack machines.

18

- -
s e

e
e
e

-

- -
- -
- -
- -
- -

regref
B-mmm

reg - - -
rep: r:5 1:5 0:8 c:8b:24m:24

m:24
m:24
m:24
m:16
m:16
m:l6
m:l6
m:16
m:16
m:16

b:24
b:24
b:24
b:16
b:l6
b:l6
b:l6
b:16
b:16
b:l6
b:16

c:S
c:8

I ^

a:8 p:l
a:8 p:o
a:16 -
a:16 -
a:16 -
a:16 -
a:16 -
a:16 -
a:16 -
a:16 -

c:S
c:o
c:o
c:o
c:o
c:o

- I-

m:16 - -
- -
- -
- e
- e
- e
- e
- e
- e
- e
- e
- e

b:16
b:16
b:16
b:16
b:16
b:16
b:16
b:16
b:l6
b:l6

m:16
m:16
m:16
m:16
m:16
m:l6
m:16
m:16
m:l6
m:16
m 16 a:16 -

a:16 -
a:8 -

b:16
b:16m:16 w e

- -
- -
- e
- e
- e
- e
- e
- e
- e
- e
- e
- e
- e
- e
- -
- -
- -
- -
- -

b
b
b:O ’ a:32 p:O/

a:32 p:O
I a:32 p:O
a:32 p:O

a:32 p:O
a:32 p:O
a:32 p:O
a:32 p:O
a:32 p:O
a:32 p:O
a:32 p:l
a:32 p:O

m:O c:o
b:O
b:O

m:O
m:O
m:O b:O

b:Om:O
b:O
b:O
b:O
b:O
b:O
b:O
b:O

m:O
m:O
m:O
m:O
m:O
m:O
m:O

c:l6
c:l6

stack
stack816
stack816a

stack - - -
stack - - 0:8
s t a c k - - 0:8

a:8 I -c:16
c:16

For more information on the architecture classification and switches,
please see the paper The Effect3 of Processor Architecture on Memory Traf-
fic by C. Mitchell and M. Flynn.

B An example of Cache.conf
This file specifies the configuration of a cache. The first level buffer has a
datapath to/from cache of 4B (default). The cache has a datapath to/from
memory of 4B, blocks are 32 bytes, and writes are cached. The result file
will contain data for different sized caches. The cache does allocate on
write misses and has no subblocks in a line. We count both regular and
maintenance accesses. The latter are procedure calls and returns, stack link
accesses, etc. Both read and writes to cache include static references, global
references, stack references, structure references, heap and frame references,
all of which are cached in a copy-back fashion.

2 3 4 4 32 1024 0 1 0 0 1

1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

C Another example of Cache.conf
The same configuration as before but we support subblocks of size 4 bytes
in a cache where the line size is 32 bytes.

2 3 4 4 32 1024 0 1 1 4 1

1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

20

D File listings

program myfile(output);
const LEN-ARRAY= 100;
const FACTOR = 0.231;

arr:arrayCl. .LEB-ARRAY]
k,i,j,temp: integer;

of real;

begin
for j := 1 to 20 do begin

arr[j] := j * 34 ;
arr[j+20 I:= j * 24 ;
arr[j+40 I:= j * 14 ;
arr[j+bO I:= j * 4 ;
arr[j+80 I:= j * I ;

end;
for i := 1 to 100 do

for j := 1 to 100 - i do
if arr[j] > arr[j+l] then begin

temp := arrCj+ll;
arrCj+ll := arrCj1;
arr C jl := temp
end;

for i := 1 to 100 do
begin

nrite(arrCil);
if i mod 5 = 0 then begin

nriteln
end;

end.

Listing 1

*** Cache performance statistics *** Benchmark: myfile
Instructions read from cache: 175212 (4054592 bits 506824 bytes) --Cl)
Basic blocks traced: 14069, Relative Ho-Cache Traffic: 1.0000

LineSize===> 32 bits
Total lines in memory: 104, Distinct lines referenced (approx) = 97
Estim. Optimal Hiss Rate & Traffic Ratio: 0.06 0.08
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic

21

4 0 9 6 105 3 3 6 0 0 .OS% 0 . 0 8 % 0 . 0 0 0 8
2 0 4 8 105 3 3 6 0 0 .OS% 0 . 0 8 % 0 . 0 0 0 8
1 0 2 4 105 3 3 6 0 0 .OS% 0 . 0 8 % 0 . 0 0 0 8

512 105 3 3 6 0 0 . 0 6 % 0 . 0 8 % 0 . 0 0 0 8
2 5 6 1 0 5 3 3 6 0 0 . 0 6 % 0 . 0 8 % 0 . 0 0 0 8
1 2 8 1 4 8 3 4 7 4 5 6 0 . 8 5 % 1 . 1 7 % 0 . 0 1 1 7

Two Uay Associative
Cache Size Lines
(bytes) Fetched

4 0 9 6 1 0 5
2 0 4 8 105
1 0 2 4 105

512 105
2 5 6 105
1 2 8 1 5 3 4

Bits Miss
Fetched Rate

3 3 6 0 0 . 0 6 %
3 3 6 0 0 . 0 6 %
3 3 6 0 0 . 0 6 %
3 3 6 0 0 . 0 6 %
3 3 6 0 0 . 0 6 %

4 9 0 8 8 0 . 8 8 %

Traffic Relative
Ratio Traffic
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
1 . 2 1 % 0 . 0 1 2 1

LineSize===> 64 bits
Total lines in memory: 52, Distinct lines referenced (approx) = 48
Estim. Optimal Miss Rate & Traffic Ratio: 0 . 0 3 0 . 0 8
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines
(bytes) Fetched

4 0 9 6 5 3
2 0 4 8 5 3
1 0 2 4 5 3

512 5 3
2 5 6 5 3
1 2 8 8 7 8

Two Uay Associative
Cache Size Lines
(bytes) Fetched

4 0 9 6 5 3
2 0 4 8 5 3
1 0 2 4 5 3

512 5 3
2 5 6 5 3
1 2 8 9 0 0

Bits Miss Traffic Relative
Fetched Rate Ratio Traffic

3 3 9 2 0 . 0 3 % 0 . 0 8 % 0 . 0 0 0 8
3 3 9 2 0 . 0 3 % 0 . 0 8 % 0 . 0 0 0 8
3 3 9 2 0 . 0 3 % 0 . 0 8 % 0 . 0 0 0 8
3 3 9 2 0 . 0 3 % 0 . 0 8 % 0 . 0 0 0 8
3 3 9 2 0 . 0 3 % 0 . 0 8 % 0 . 0 0 0 8

56192 0 . 5 0 % 1 . 3 9 % 0 . 0 1 3 9

Bits Miss
Fetched Rate

3392 0 . 0 3 %
3 3 9 2 0 . 0 3 %
3 3 9 2 0 . 0 3 %
3 3 9 2 0 . 0 3 %
3 3 9 2 0 . 0 3 %

57600 0 . 5 1 %

--(2)

Traffic Relative
Ratio Traffic
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
0 . 0 8 % 0 . 0 0 0 8
1 . 4 2 % 0 . 0 1 4 2

LineSize===> 128 bits
Total lines in memory: 26, Distinct lines referenced (approx) = 24
Estim. Optimal Miss Rate & Traffic Ratio: 0.01 0.08
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines
(bytes) Fetched

4 0 9 6 2 7
2 0 4 8 2 7
1 0 2 4 2 7

5 1 2 2 7
2 5 6 2 7
1 2 8 1 0 3 5 8

Bits M i s s Traffic Relative
Fetched Rate Ratio Traffic

3 4 5 6 0 . 0 2 % 0 . 0 9 % 0.0009
3 4 5 6 0 . 0 2 % 0 . 0 9 % 0.0009
3 4 5 6 0 . 0 2 % 0 . 0 9 % 0.0009
3 4 5 6 0 . 0 2 % 0 . 0 9 % 0.0009
3 4 5 6 0 . 0 2 % 0 . 0 9 % 0.0009

1 3 2 5 8 2 4 5.91% 3 2 . 7 0 % 0.3270

22

Two Yay Associative
Cache Size Lines
(bytes) Fetched
4096 27
2048 27
1024 27
512 27
256 27
128 11053

Bits Miss Traffic Relative
Fetched Rate Ratio Traffic

3456 0.02% 0.09% 0.0009
3456 0.02% 0.09% 0.0009
3456 0.02% 0.09% 0.0009
3456 0.02% 0.09% 0.0009
3456 0.02% 0.09% 0.0009

1414784 6.31% 34.89% 0.3489

LineSize===> 256 bits
Total lines in memory: 13, Distinct lines referenced (approx) =
Estim. Optimal Miss Rate % Traffic Ratio: 0.01

: 12
0.08

Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines Bits Miss Traffic
(bytes) Fetched Fetched Rate Ratio
4096 14 3584 0.01% 0.09%
2048 14 3584 0.01% 0.09%
1024 14 3584 0.01% 0.09%
512 14 3584 0.01% 0.09%
256 14 3584 0.01% 0.09%
128 10148 2597888 5.79% 64.07%

Two Uay Associative
Cache Size Lines Bits Miss Traffic
(bytes) Fetched Fetched Rate Ratio
4096 14 3584 0.01% 0.09%
2048 14 3584 0.01% 0.09%
1024 14 3584 0.01% 0.09%
512 14 3584 0.01% 0.09%
256 14 3584 0.01% 0.09%
128 10939 2800384 6.24% 69.07%

Architecture: IBM360-2 Reference architecture: self

Listing 2

Relative
Traffic
0.0009
0.0009
0.0009
0.0009
0.0009
0.6407

Relative
Traffic
0.0009
0.0009
0.0009
0.0009
0.0009
0.6907

*** Cache performance statistics *** Benchmark: myfile
Instructions read from cache: 175212 (4054592 bits 506824 bytes)
Basic blocks traced: 14069, Relative Ho-Cache Traffic: 1.0000

LineSize===> 64 bits
Total lines in memory: 52, Distinct lines referenced (approx) = 49
Estim. Optimal Miss Rate & Traffic Ratio: 0.03 0.08
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic

23

16384 53 3392 0.03% 0.08% 0.0008
8192 53 3392 0.03% 0.08% 0.0008
4096 53 3392 0.03% 0.08% 0.0008
2048 53 3392 0.03% 0.08% 0.0008
1024 53 3392 0.03% 0.08% 0.0008
512 53 3392 0.03% 0.08% 0.0008

Two Yay Associative
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic
16384 53 3392 0.03% 0.08% 0.0008
8192 53 3392 0.03% 0.08% 0.0008
4096 53 3392 0.03% 0.08% 0.0008
2048 53 3392 0.03% 0.08% 0.0008
1024 53 3392 0.03% 0.08% 0.0008
512 53 3392 0.03% 0.08% 0.0008

LineSize===> 128 bits
Total lines in memory: 26, Distinct lines referenced (approx) = 24
Estim. Optimal Miss Rate & Traffic Ratio: 0.01 0.08
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines Bits Miss Traffic
(bytes) Fetched Fetched Rate Ratio
16384 27 3456 0.02% 0.09%
8192 27 3456 0.02% 0.09%
4096 27 3456 0.02% 0.09%
2048 27 3456 0.02% 0.09%
1024 27 3456 0.02% 0.09%
512 27 3456 0.02% 0.09%

Tno Uay Associative
Cache Size Lines Bits Miss Traffic
(bytes) Fetched Fetched Rate Ratio
16384 27 3456 0.02% 0.09%
8192 27 3456 0.02% 0.09%
4096 27 3456 0.02% 0.09%
2048 27 3456 0.02% 0.09%
1024 27 3456 0.02% 0.09%
512 27 3456 0.02% 0.09%

Architecture: IBM360-2 Reference architecture: self

Listing 3

Relative
Traffic
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009

Relative
Traffic
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009

*** Cache performance statistics *** Benchmark: myfile
Instructions read from cache: 216962 (6658080 bits 832260 bytes)
Basic blocks traced: 14069, Relative No-Cache Traffic: 1 6471

LineSize===> 32 bits
Total lines in memory: 170, Distinct lines referenced (approx) = 160

24

Estim. Optimal Miss Rate k Traffic Ratio: 0.07
Estim. Optimal Relative Traffic: 0.0013

Direct Mapped
Cache Size Lines
(bytes) Fetched
4096 171
2048 171
1024 171
512 171
256 171
128 134883

Two Uay Associative
Cache Size Lines
(bytes) Fetched
4096 171
2048 171
1024 171
512 171
256 171
128 176165

Bits Miss
Fetched Rate

5472 0.08%
5472 0.08%
5472 0.08%
5472 0.08%
5472 0.08%

4316256 62.17%

Bits Miss
Fetched Rate

5472 0.08%
5472 0.08%
5472 0.08%
5472 0.08%
5472 0.08%

5637280 81.20%

Traffic Relative
Ratio Traffic
0.08% 0.0013
0.08% 0.0013
0.08% 0.0013
0.08% 0.0013
0.08% 0.0013

64.83% 1.0645

Traffic Relative
Ratio Traffic
0.08% 0.0013
0.08% 0.0013
0.08% 0.0013
0.08% 0.0013
0.08% 0.0013

84.67% 1.3903

LineSize===> 64 bits
Total lines in memory: 85, Distinct lines referenced (approx) q

Estim. Optimal Miss Rate & Traffic Ratio: 0.04
Estim. Optimal Relative Traffic: 0.0013

Direct Mapped
Cache Size Lines
(bytes) Fetched
4096 86
2048 86
1024 86
512 86
256 86
128 71065

Two Uay Associative
Cache Size Lines
(bytes) Fetched
4096 86
2048 86
1024 86
512 86
256 86
128 89895

LineSize===> 128 bits
Total lines in memory: 42, Distinct lines referenced (approx) = 40
Estim. Optimal Miss Rate k Traffic Ratio: 0.02 0.08
Estim. Optimal Relative Traffic: 0.0013

Bits Miss
Fetched Rate

5504 0.04%
5504 0.04%
5504 0.04%
5504 0.04%
5504 0.04%

4548160 32.75%

Bits Miss
Fetched Rate

5504 0.04%
5504 0.04%
5504 0.04%
5504 0.04%
5504 0.04%

5753280 41.43%

Traffic Relative
Ratio Traffic
0.08% 0.0014
0.08% 0.0014
0.08% 0.0014
0.08% 0.0014
0.08% 0.0014
68.31% 1.1217

Traffic Relative
Ratio Traffic
0.08% 0.0014
0.08% 0.0014
0.08% 0.0014
0.08% 0.0014
0.08% 0.0014

86.41% 1.4190

0.08

: 80
0.08

Direct Mapped
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic

25

4096 4 3 5 5 0 4 0 . 0 2 %
2 0 4 8 4 3 5 5 0 4 0 . 0 2 %
1 0 2 4 4 3 5 5 0 4 0 . 0 2 %

512 4 3 5 5 0 4 0 . 0 2 %
2 5 6 4 3 5 5 0 4 0 . 0 2 %
1 2 8 4 1 9 2 6 5 3 6 6 5 2 8 1 9 . 3 2 %

Two Uay Associative
Cache Size Lines Bits
(bytes) Fetched Fetched
4096 4 3 5 5 0 4
2 0 4 8 4 3 5 5 0 4
1 0 2 4 4 3 5 5 0 4

512 4 3 5 5 0 4
2 5 6 4 3 5 5 0 4
1 2 8 4 6 9 5 7 6 0 1 0 4 9 6

LineSize===> 256 bits

Miss
Rate

0 . 0 2 %
0 . 0 2 %
0 . 0 2 %
0 . 0 2 %
0 . 0 2 %

2 1 . 6 4 %

0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4

8 0 . 6 0 % 1.3236

Traffic Relative
Ratio Traffic
0 . 0 8 % 0.0014
0 . 0 8 % 0.0014
0 . 0 8 % 0.0014
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4

9 0 . 2 7 % 1 . 4 8 2 4

Total lines in memory: 21, Distinct lines referenced (approx) = 20
Estim. Optimal Miss Rate k Traffic Ratio: 0.01 0 . 0 8
Estim. Optimal Relative Traffic: 0.0013

Direct Mapped
Cache Size Lines
(bytes) Fetched

4 0 9 6 22
2 0 4 8 22
1 0 2 4 22

512 2 2
2 5 6 2 2
1 2 8 2 4 5 2 7

Two Way Associative
Cache Size Lines
(bytes) Fetched
4096 22
2 0 4 8 22
1 0 2 4 22

512 2 2
2 5 6 2 2
1 2 8 25360

Architecture: f ix32-0

Bits Miss
Fetched Rate

5632 0.01%
5632 0.01%
5632 0.01%
5632 0.01%
5632 0.01%

6 2 7 8 9 1 2 11.30%

Bits Miss
Fetched Rate

5632 0.01%
5632 0.01%
5632 0.01%
5632 0.01%
5632 0.01%

6492160 11.69%

Reference architecture: IBM360-2

Traffic Relative
Ratio Traffic
0 . 0 8 % 0.0014
0 . 0 8 % 0.0014
0 . 0 8 % 0.0014
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4

9 4 . 3 1 % 1.5486

Traffic Relative
Ratio Traffic
0 . 0 8 % 0.0014
0 . 0 8 % 0.0014
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4
0 . 0 8 % 0 . 0 0 1 4

9 7 . 5 1 % 1 . 6 0 1 2

Listing 4

*** Cache performance statistics *** Benchmark: myfile
Instructions read from cache: 216962 (6658080 bits 832260 bytes)
Basic blocks traced: 14069, Relative Ho-Cache Traffic: 1.0000

LineSize===> 32 bits
Total lines in memory: 170, Distinct lines referenced (approx) = 160

26

Estim. Optimal Miss Rate & Traffic Ratio: 0.07
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic
4096 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
2 0 4 8 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
1 0 2 4 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8

512 171 5 4 7 2 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
2 5 6 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
1 2 8 1 3 4 8 8 3 4 3 1 6 2 5 6 6 2 . 1 7 % 6 4 . 8 3 % 0 . 6 4 8 3

Tao Uay Associative
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic

4 0 9 6 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
2 0 4 8 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
1 0 2 4 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8

512 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
2 5 6 171 5472 0 . 0 8 % 0 . 0 8 % 0 . 0 0 0 8
1 2 8 1 7 6 1 6 5 5 6 3 7 2 8 0 8 1 . 2 0 % 8 4 . 6 7 % 0 . 8 4 6 7

LineSize===> 64 bits
Total lines in memory: 85, Distinct lines referenced (approx) = 80
Estim. Optimal Miss Rate t Traffic Ratio: 0 . 0 4 0 . 0 8
Estim. Optimal Relative Traffic: 0 . 0 0 0 8

Direct Mapped
Cache Size Lines
(bytes) Fetched

4 0 9 6 8 6
2 0 4 8 8 6
1 0 2 4 8 6

512 8 6
2 5 6 8 6
1 2 8 71065

Two Uay Associative
Cache Size Lines
(bytes) Fetched
4096 8 6
2 0 4 8 8 6
1 0 2 4 8 6

5 1 2 8 6
2 5 6 8 6
1 2 8 89895

LineSize===> 128 bits
Total lines in memory: 42, Distinct lines referenced (approx) = 40
Estim. Optimal Miss Rate & Traffic Ratio: 0 . 0 2 0 . 0 8
Estim. Optimal Relative Traffic: 0.0008

Bits Miss
Fetched Rate

5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %

4 5 4 8 1 6 0 3 2 . 7 5 %

Bits Miss
Fetched Rate

5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %
5 5 0 4 0 . 0 4 %

5 7 5 3 2 8 0 4 1 . 4 3 %

Traffic Relative
Ratio Traffic
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008

6 8 . 3 1 % 0.6831

Traffic Relative
Ratio Traffic
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008
0 . 0 8 % 0.0008

8 6 . 4 1 % 0.8641

Direct Mapped
Cache Size Lines Bits Miss Traffic Relative
(bytes) Fetched Fetched Rate Ratio Traffic

27

4 0 9 6 43 5504 0.02% 0.08% 0.0008
2048 43 5504 0.02% 0.08% 0.0008
1024 43 5504 0.02% 0.08% 0.0008
512 43 5504 0.02% 0.08% 0.0008
256 43 5504 0.02% 0.08% 0.0008
128 41926 5366528 19.32% 80.60% 0.8060

Two Way Associative
Cache Size Lines Bits
(bytes) Fetched Fetched
4096 43 5504
2048 43 5504
1024 43 5504
512 43 5504
256 43 5504
128 46957 6010496

LineSize===> 256 bits

Miss Traffic Relative
Rate Ratio Traffic

0.02% 0.08% 0.0008
0.02% 0.08% 0.0008
0.02% 0.08% 0.0008
0.02% 0.08% 0.0008
0.02% 0.08% 0.0008
21.64% 90.27% 0.9027

Total lines in memory: 21, Distinct lines referenced
Estim. Optimal Miss Rate 8t Traffic Ratio: 0.01
Estim. Optimal Relative Traffic: 0.0008

Direct Mapped
Cache Size Lines
(bytes) Fetched
4096 22
2048 22
1024 22
512 22
256 22
128 24527

Two Uay Associative
Cache Size Lines
(bytes) Fetched
4096 22
2048 22
1024 22
512 22
256 22
128 25360

Bits Miss Traffic Relative
Fetched Rate Ratio Traffic

5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008

6278912 11.30% 94.31% 0.9431

Bits Miss Traffic Relative
Fetched Rate Ratio Traffic

5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008
5632 0.01% 0.08% 0.0008

6492160 11.69% 97.51% 0.9751

Architecture: fix32-0 Reference architecture: self

Listing 5

simulator: srssim
version: 3.0
date: 16 May 88
time: 16:41:55

(approx) = 20
0.08

program: myfile

28

simsim: heap: 0 static: 0 io: 0

status blocks calls rt recs io recs refs
static 15 1 70
completed 13968 1 24200 372 76512 --(I)

srssim: stack[global[fmt,mmtI,local] grs:2 lrs:6 ordered othersr

traffic: read nrite total
cpu to reg 0 0 0
mem to reg 0 0 0
cpu to global 37665 8595 46260

register set statistics:
size loads stores allot calls a/c malloc cdepth m/c
6 0 0 4 1 4 . 0 0 4 1 4.00

register-set size distribution:
regs count relative
4 1 1 . 0 0 0 *

call chain distribution
chain count relative
leaf 1 1.000 ********************************
1 0 0.000

second level reference counts
traff: read write total read write total
access: 2 2 8 0 0 7 4 5 3 3 0 2 5 3 1.000 1.000 1.000

access: read write total read write total
global 22800 7452 30252 1.000 1.000 1.000 **********************
stack 0 1 1 0.000 0.000 0.000

--

ecache:
transfer size: 4 bytes in 4 bytes out

acmask: [access maintenance]
rdmask: [static global stack struct heap frame]
nrmask: [static global stack struct heap frame 1

traff: read write total read write total
maint: 0 0 0 0.000 0.000 0.000
access: 22800 7455 30255 1.000 1.000 1.000
total: 22800 7455 30255 0.754 0.246 1 ---(2)

access: read write total read write total
static 0 0 0 0.000 0.000 0.000
global 22800 7452 30252 1.000 1.000 1.000 **********************
stack 0 3 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
struct 0 0 0 0.000 0.000 0.000
heap 0 0 0 0.000 0.000 0.000

29

frame 0 0 0 0.000 0.000 0.000
io 0 0 0 0.000 0.000 0.000
m+a: read write total read nrite total
static 0 0 0 0.000 0.000 0.000
global 22800 7452 30252 1.000 1.000 1.000 **********************
s t a c k 0 3 3 0.000 0.000 0.000
struct 0 0 0 0.000 0.000 0.000
heap 0 0 0 0.000 0.000 0.000
frame 0 0 0 0.000 0.000 0.000
io 0 0 0 0.000 0.000 0.000

memory
transfer size: 4 bytes

Listing 6

simulator: mrssim
version: 2.0
date: 16 May 88
t h e : 16:44:45
program: myfile

simsim: heap: 0 static: 0 io: 0

status blocks calls rt recs io recs refs
static 15 1 70
completed 13968 1 24200 372 76512 --Cl>

bufsim: seeplent[global[fmt,rmntl,structure_stack,s~ple-stack]
globalbufferC81
mrs[2/6,4,rag,par-mem,load[staticl,flush[staticl,l

traffic: read write total
cpu to global 37665 8595 46260

windows words ovf unf ov pert un pert
1 6 0 0 0.000 0.000
2 1 2 0 0 0 . 0 0 0 0 . 0 0 0
4 2 4 0 0 0 . 0 0 0 0 . 0 0 0
8 4 8 0 0 0 . 0 0 0 0 . 0 0 0
1 6 9 6 0 0 0 . 0 0 0 0 . 0 0 0
32 192 0 0 0.000 0.000
6 4 3 8 4 0 0 0 . 0 0 0 0 . 0 0 0
1 2 8 7 6 8 0 0 0 . 0 0 0 0 . 0 0 0

misses type read write total rrd rwr rtot
1 local 0 0 0 0 0 0
1 global 0 0 0 0 0 0

30

1 nlocal 0 0 0 0 0 0
1 link 0 0 0 0 0 0
1 call 0 0 0 0 0 0
1 return 0 0 0 0 0 0
1 maint 0 0 0 0 0 0
24 total 0 0 0 0 0
2 local 0 0 0 0 0 0
2 global 0 0 0 0 0 0
2 nlocal 0 0 0 0 0 0
2 link 0 0 0 0 0 0
2 call 0 0 0 0 0 0
2 return 0 0 0 0 0 0
2 maint 0 0 0 0 0 0
48 total 0 0 0 0 0
4 local 0 0 0 0 0 0
4 global 0 0 0 0 0 0
4 nlocal 0 0 0 0 0 0
4 link 0 0 0 0 0 0
4 call 0 0 0 0 0 0
4 return 0 0 0 0 0 0
4 maint 0 0 0 0 0 0
96 total 0 0 0 0 0
8 local 0 0 0 0 0 0
8 global 0 0 0 0 0 0
8 nlocal 0 0 0 0 0 0
8 link 0 0 0 0 0 0
8 call 0 0 0 0 0 0
8 return 0 0 0 0 0 0
8 maint 0 0 0 0 0 0
192 total 0 0 0 0 0
16 local 0 0 0 0 0 0
16 global 0 0 0 0 0 0
16 nlocal 0 0 0 0 0 0
16 link 0 0 0 0 0 0
16 call 0 0 0 0 0 0
16 return 0 0 0 0 0 0
16 maint 0 0 0 0 0 0
384 total 0 0 0 0 0
32 local 0 0 0 0 0 0
32 global 0 0 0 0 0 0
32 nlocal 0 0 0 0 0 0
32 link 0 0 0 0 0 0
32 call 0 0 0 0 0 0
32 return 0 0 0 0 0 0
32 maint 0 0 0 0 0 0
768 total 0 0 0 0 0
64 local 0 0 0 0 0 0
64 global 0 0 0 0 0 0
64 nlocal 0 0 0 0 0 0
64 link 0 0 0 0 0 0
64 call 0 0 0 0 0 0
64 return 0 0 0 0 0 0
64 maint 0 0 0 0 0 0
1536 total 0 0 0 0 0
128 local 0 0 0 0 0 0
128 global 0 0 0 0 0 0

31

128 nlocal 0 0 0 0 0 0
128 link 0 0 0 0 0 0
128 call 0 0 0 0 0 0
128 return 0 0 0 0 0 0
128 maint 0 0 0 0 0 0
3072 total 0 0 0 0 0

hits type top rd top ur top ru ali rd ali wr ali rw tot ru
1 local 0 0 0 0 0 0 0
1 global 0 0 0 0 0 0 0
lnlocal 0 0 0 0 0 0 0
1 link 0 0 0 0 0 0 0
1 call 0 2 2 0 0 0 2
lreturn 0 0 0 0 0 0 0
24 total 0 2 2 0 0 0 2
2 local 0 0 0 0 0 0 0
2 global 0 0 0 0 0 0 0
2 nlocal 0 00 00 00
2 link 0 0 0 0 0 0 0
2 call 0 2 2 0 0 0 2
2 return 0 0000 00
48 total 0 2 2 0 0 0 2
4 local 0 0 0 0 0 0 0
4 global 0 0 0 0 0 0 0
4nlocal 0 0 0 0 0 0 0
4 link 0 0 0 0 0 0 0
4 call 0 2 2 0 0 0 2
4 return 0 0 0 0 0 0 0
96 total 0 2 2 0 0 0 2
8 local 0 0 0 0 0 0 0
8 global 0 0 0 0 0 0 0
8nlocal 0 0000 00
8 link 0 0 0 0 0 0 0
8 call 0 2 2 0 0 0 2
8 return 0 0 0 0 0 0 0
192 total 0 2 2 0 0 0 2
16 local 0 0 0 0 0 0 0
16 global 0 0 0 0 0 0 0
16 nlocal 0 0 0 0 0 0 0
16 link 0 0 0 0 0 0 0
16 call 0 2 2 0 0 0 2
16 return 0 0 0 0 0 0 0
384 total 0 2 2 0 0 0 2
32 local 0 0 0 0 0 0 0
32 global 0 0 0 0 0 0 0
32 nlocal 0 0 0 0 0 0 0
32 link 0 0 0 0 0 0 0
32 call 0 2 2 0 0 0 2
32 return 0 0 0 0 0 0 0
768 total 0 2 2 0 0 0 2
64 local 0 0 0 0 0 0 0
64 global. 0 0 0 0 0 0 0
64 nlocal 0 0 0 0 0 0 0
64 link 0 0 0 0 0 0 0
64 call 0 2 2 0 0 0 2
64 return 0 0 0 0 0 0 0

32

1536 total 0 2 2 0 0 0 2
128 local 0 0 0 0 0 0 0
128global 0 0 0 0 0 0 0
128 nlocal 0 0 0 0 0 0 0
128 link 0 0 0 0 0 0 0
128 call 0 2 2 0 0 0 2
128 return 0 0 0 0 0 0 0
3072 total 0 2 2 0 0 0 2

second level reference counts
traff: read write total read nrite total
access: 22800 7452 30252 1.000 1.000 1.000

access: read write total read write total
global 22800 7452 30252 1.000 1.000 1.000 **********************

ecache:
transfer size: 4 bytes in 4 bytes out

acmask : [access maintenance]
rdmask: [static global stack struct heap frame]
m-mask : [static global stack struct heap frame]

traff: read nrite total read write total
maint: 0 0 0 0.000 0.000 0.000
access: 22800 7452 30252 1.000 1.000 1.000
total: 22800 7452 30252 0.754 0.246 1 --(2)

access : read nrite total read write total
static 0 0 0 0.000 0.000 0.000
global 22800 7452 30252 1.000 1.000 1.000 **********************
s t a c k 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
struct 0 0 0 0.000 0.000 0.000
heap 0 0 0 0.000 0.000 0.000
frame 0 0 0 0.000 0.000 0.000
io 0 0 0 0.000 0.000 0.000
m+a: read write total read urite total
static 0 0 0 0.000 0.000 0.000
global 22800 7452 30252 1.000 1.000 1.000 **********************
stack 0 0 0 0.000 0.000 0.000
struct 0 0 0 0.000 0.000 0.000
heap 0 0 0 0.000 0.000 0.000
frame 0 0 0 0.000 0.000 0.000
io 0 0 0 0.000 0.000 0.000

--
memory
transfer size: 4 bytes

Listing 7

33

simulating: myfile
dynamic: 30255 (refs)

cache: bl size bl mar writes allot
asscch 32 1024 count rd/nr 4 4 0

rdmask
nrmask

[stat
[stat

i c
ic

global
global

stack
stack

dp in dp out subblock

struct heap
struct heap

frame 1
frame 1

traff: read write total read write total
static 0 0 0 0.000 0.000 0.000
global 22800 7452 30252 1.000 1.000 1.000 **********************
stack 0 3 3 0.000 0.000 0.000
struct 0 0 0 0.000 0.000 0.000
heap 0 0 0 0.000 0.000 0.000
frame 0 0 0 0.000 0.000 0.000
io 0 0 0 0.000 0.000 0.000
imm 0 0 0 0.000 0.000 0.000
total 22800 7455 30255 0.754 0.246 1.000 **********************

size segment rd miss ur miss tt miss r ratio w ratio t ratio
1*32 global 11430 1080 12510 0.501 0.145 0.414 ******
s t a c k 0 2 2 0.000 0.667 0.667 *********
32 total11430 1082 12512 0.501 0.145 0.414 ******

2*32 global 2403 101 2504 0.105 0.014 0.083 *
s t a c k 0 2 2 0.000 0.667 0.667 *********
64 t o t a l 2 4 0 3 1 0 3 2 5 0 6 0 . 1 0 5 0 . 0 1 4 0 . 0 8 3 *

4*32 global 717 101 818 0.031 0.014 0.027
s t a c k 0 2 2 0.000 0.667 0.667 *********
128 total 717 103 820 0.031 0.014 0.027

8*32 global 540 19 559 0.024 0.003 0.018
stack 0 2 2 0.000 0.667 0.667 *********
256 t o t a l 5 4 0 2 1 5 6 1 0 . 0 2 4 0 . 0 0 3 0.019

16*32 global 0 14 14 0.000 0.002 0.000
s t a c k 0 2 2 0.000 0.667 0.667 *********
512 t o t a l 0 1 6 1 6 0 . 0 0 0 0 . 0 0 2 0.001

32*32 global 0 14 14 0.000 0.002 0.000
stack 0 2 2 0.000 0.667 0.667 *********
1024 total 0 1 6 1 6 0 . 0 0 0 0 . 0 0 2 0.001

64*32 global 0 14 14 0.000 0.002 0.000
stack 0 2 2 0.000 0.667 0.667 *********
2048 total 0 1 6 1 6 0 . 0 0 0 0 . 0 0 2 0.001

128*32 global 0 14 14 0.000 0.002 0.000
stack 0 2 2 0.000 0.667 0.667 *********
4 0 9 6 t o t a l 0 1 6 1 6 0 . 0 0 0 0 . 0 0 2 0.001

34

256*32 global 0 1 4 1 4 0 . 0 0 0 0 . 0 0 2 0 . 0 0 0
s t a c k 0 2 2 0. 0 0 0 0 . 6 6 7 0 . 6 6 7 *********
8192 total 0 16 1 6 0 . 0 0 0 0 . 0 0 2 0 . 0 0 1

512*32 global 0 1 4 1 4 0 . 0 0 0 0 . 0 0 2 0 . 0 0 0
s t a c k 0 2 2 0 . 0 0 0 0 . 6 6 7 0 . 6 6 7 444444444

1 6 3 8 4 total 0 1 6 1 6 0 . 0 0 0 0 . 0 0 2 0.001

1024432 global 0 14 14 0.000 0.002 0.000
stack 0 2 2 0 . 0 0 0 0 . 6 6 7 0 . 6 6 7 444444444

3 2 7 6 8 total 0 1 6 1 6 0 . 0 0 0 0 . 0 0 2 0 . 0 0 1

size dirty cp rat cp rd cp ur cp tot nt rd nt wr nt tot
1 4 3 6 1 0 . 1 4 4 1 0 0 0 9 6 3 4 8 8 8 1 3 4 9 8 4 1 0 0 0 9 6 7 4 5 5 1 0 7 5 5 1
2 1 6 8 4 0 . 0 5 6 2 0 0 4 8 1 3 4 7 2 3 3 5 2 0 2 0 0 4 8 7 4 5 5 2 7 5 0 3
4 7 3 1 0 . 0 2 4 6 5 6 0 5 8 4 8 1 2 4 0 8 6 5 6 0 7 4 5 5 1 4 0 1 5 --Cl)
8 5 0 4 0 . 0 1 7 4 4 8 8 4 0 3 2 8 5 2 0 4 4 8 8 7 4 5 5 1 1 9 4 3
16 16 0.001 128 128 256 128 7455 7583
3 2 1 6 0 . 0 0 1 1 2 8 1 2 8 2 5 6 1 2 8 7 4 5 5 7 5 8 3
64 16 0.001 128 128 256 128 7455 7583
128 16 0.001 128 128 256 128 7455 7583
2 5 6 1 6 0 . 0 0 1 1 2 8 1 2 8 2 5 6 1 2 8 7 4 5 5 7 5 8 3
512 16 0.001 128 128 256 128 7455 7583
1024 16 0.001 128 128 256 128 7455 7583

Listing 8

simulating: myfile
dynamic: 30255 (refs)

cache: bl size bl maz writes allot rep1
asssub 3 2 1 0 2 4 count rd/wr fifo 4 4 4 4

rdmask: [static
nrmask: [static

global stack
global stack

struct heap
struct heap

assoc dp in dp out subsize

frame 1
frame]

traff: read write total read write total
static 0 0 0 0.000 0.000 0.000
global 2 2 8 0 0 7 4 5 2 3 0 2 5 2 1 . 0 0 0 1 . 0 0 0 1.000 **********************
stack 0 3 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
struct 0 0 0 0.000 0.000 0.000
heap 0 0 0 0.000 0.000 0.000
frame 0 0 0 0.000 0.000 0.000
io 0 0 0 0.000 0.000 0.000
imm 0 0 0 0.000 0.000 0.000
t o t a l 2 2 8 0 0 7 4 5 5 3 0 2 5 5 0 . 7 5 4 0 . 2 4 6 1.000 4444444444444444444444

size segment rd miss wr miss tt miss r ratio w ratio t ratio
4-way global 5235 1 2 0 5 3 5 5 0 . 2 3 0 0 . 0 1 6 0 . 1 7 7 **
1432 stack 0 3 3 0.000 1.000 1.000 44444444444444

128 total 5235 123 5358 0.230 0.016 0.177 44 --Cl>

35

4-way global 3761 102 3863 0.165 0.014 0.128 **
2432 stack 0 3 3 0.000 1 .000 1.000 44444444444444

256 total 3761 105 3866 0.165 0.014 0.128 44

4-way global 0 102 102 0.000 0.014 0.003
4432 stack 0 3 3 0.000 1.000 1.000 44444444444444

512 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
8432 stack 0 3 3 0.000 1.000 1.000 44444444444444

1024 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
16432 stack 0 3 3 0.000 1.000 1.000 44444444444444

2048 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
32432 s t a c k 0 3 3 0.000 1.000 1.000 44444444444444

4096 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
64432 stack 0 3 3 0.000 1.000 1.000 44444444444444

8192 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
128432 stack 0 3 3 0.000 1.000 1.000 44444444444444

16384 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
256432 stack 0 3 3 0.000 1.000 1.000 44444444444444

32768 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
512432 s t a c k 0 3 3 0.000 1.000 1.000 44444444444444

65536 total 0 105 105 0.000 0.014 0.003

4-way global 0 102 102 0.000 0.014 0.003
1024432 stack 0 3 3 0.000 1.000 1.000 44444444444444

131072 total 0 105 105 0.000 0.014 0.003

a size dirty cp rat cp rd cp ur cp tot ut rd ut ur wt tot
4 1 3921 0.130 5358 3921 9279 5358 7455 12813 --(2)
4 2 3031 0.100 3866 3031 6897 3866 7455 11321
4 4 105 0.003 105 105 210 105 7455 7560
4 8 105 0.003 105 105 210 105 7455 7560
4 16 105 0.003 105 105 210 105 7455 7560
4 32 105 0.003 105 105 210 105 7455 7560
4 64 105 0.003 105 105 210 105 7455 7560
4 128 105 0.003 105 105 210 105 7455 7560
4 256 105 0.003 105 105 210 105 7455 7560
4 512 105 0.003 105 105 210 105 7455 7560
4 1024 105 0.003 105 105 210 105 7455 7560

Listing 9

36

